

13
P r o x i e s a nd C h e c k s u ms

This chapter, aptly number 13, examines
two unlucky features of conducting NSM

on real networks: proxies and checksums.
The term proxy refers to a piece of network infra-

structure that some companies use to observe, control,
and accelerate Internet usage. The term checksum,
in the context of this chapter, refers to an error detection mechanism
offered by the Internet Protocol (IP). This chapter describes some ways
to cope with the problems caused by each of these features in operational
environments.

Proxies
Web proxies are especially popular in corporate environments. One type
of web proxy is tuned to handle traffic from web clients destined for web
servers.

294 Chapter 13

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/
xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />
<meta name="Richard Bejtlich" content="Home page of TaoSecurity founder Richard Bejtlich" />
<meta name="keywords" content="bejtlich,taosecurity,network,security" />
-- snip --

Listing 13-6: Traffic from the server to the proxy as seen at location Y

As far as the web server in Listing 13-6 is concerned, the proxy is the sys-
tem making the request. There is nothing special about what it sends back.
(Notice in Listing 13-3 how the two differ, paying particular attention to
the headers added by the proxy.)

Dealing with Proxies in Production Networks
CIRTs have four options when dealing with proxies in production networks:

1.	 Try to gain access to the logs generated by a proxy in order to see traf-
fic from the proxy’s perspective.

2.	 Use the techniques described in Chapter 2 to deploy multiple sensors
with appropriate visibility. In this respect, a proxy is like a NAT issue—
put sensors where you need them in order to see true source and desti-
nation IP addresses.

3.	 Make more extensive use of the information kept inside logs generated
by proxy-aware NSM software. As shown in the transcripts in Listings 13-2,
13-3, and 13-5, information about proxy use is available for review.

4.	 Use software that can enable special features to track X-Forwarded-For
headers and extract the client IP address when reporting alert data.
(See the enable_xff configuration option in Snort, for example.)

The next part of this chapter will take the third approach. We’ll use
Bro to examine the traffic in these sample traces to see whether it can gen-
erate information that helps us deal with proxies. Before dealing with our
proxy problem, however, we need to take a slight detour into the world of
IP checksums.

Checksums
IP headers contain a checksum as an error detection mechanism. Network
devices calculate and insert checksums when they process packets. When
a downstream device receives an IP packet, it calculates a checksum for
that packet based on the contents of the IP header. For the purposes of the
calculation, the equation sets the IP checksum field itself to zero. If the cal-
culated checksum fails to match the checksum in the IP packet, the device
may discard the packet. The device senses an error and deals with it by
dropping the IP packet.

Proxies and Checksums 295

A Good Checksum
Figure 13-2 shows a checksum that is correct for the contents of a packet.

Figure 13-2: Correct IP checksum of 0x81a4 in a TCP packet

The IP checksum is 0x81a4 (0x means the value is represented in hexa-
decimal). Wireshark appends the word [correct] after the checksum value
to show that it calculated a checksum and found that it matched the value
reported in the packet. (Note this is a TCP segment, but we are concerned
only with the IP checksum here.)

A Bad Checksum
Figure 13-3 shows a checksum that is not correct for the contents of a packet.

Figure 13-3: Incorrect IP checksum of 0x0000 in a TCP packet

Here, we see that the IP checksum is 0x0000. Wireshark doesn’t like
this value. It reports concern via a red bar over the IP header entry and the
words [incorrect, should be 0x1529 (may be caused by “IP checksum offload”?)].
Wireshark shows that it calculated a checksum that didn’t match the value
reported in the packet. (This is also a TCP segment.)

296 Chapter 13

Identifying Bad and Good Checksums with Tshark
Tshark offers a few helpful ways to quickly review checksums. We’ll use
the traffic we collected in “Proxies” on page 289 as our sample data. We’re
supposed to be troubleshooting performance, and we expect to rely on
those traces to answer our questions. First, look at the trace file recorded
at location X, as shown in Listing 13-7.

$ tshark -n -r bej-int.pcap -T fields -E separator=/t -e ip.src -e tcp.srcport
-e ip.dst -e tcp.dstport -e ip.checksum

Source IP SrcPort Destination IP DstPort IP Checksum
192.168.2.108 50949 172.16.2.1 3128 0x81a4
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81af
192.168.2.108 50949 172.16.2.1 3128 0x8036
172.16.2.1 3128 192.168.2.108 50949 0x0000
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81ad
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81a5
172.16.2.1 3128 192.168.2.108 50949 0x0000
172.16.2.1 3128 192.168.2.108 50949 0x0000
192.168.2.108 50949 172.16.2.1 3128 0x81a4

Listing 13-7: Custom Tshark output for the bej-int.pcap trace file

Listing 13-7 invokes a few new switches to display only the information
that concerns us. We used the -T fields and -E separator=/t switches to tell
Tshark we wanted specific parts of the packets to be displayed and we wanted
those fields printed with tabs between them. Using the -e switches, we told
Tshark just which parts of the packets we wanted. (I added the headers after
the command line to make it easier for you to recognize the fields.)

Looking at the last column, it seems odd that every packet from
172.16.2.1 has a checksum of 0x0000. When we saw that same occurrence
in Wireshark, the tool reported a checksum error.

We can invoke Tshark again to tell us which packets have miscalculated
checksums, as shown in Listing 13-8.

$ tshark -n -r bej-int.pcap -T fields -E separator=/t -e ip.src -e tcp.srcport
-e ip.dst -e tcp.dstport -e ip.proto -e ip.checksum -R "ip.checksum_bad==1"

172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000
172.16.2.1 3128 192.168.2.108 50949 6 0x0000

Listing 13-8: Tshark output for sample trace file showing only bad checksums

Proxies and Checksums 297

In Listing 13-8, we add the display filter -R "ip.checksum_bad==1". This
tells Tshark to show only packets whose checksums do not match the values
Tshark thinks they should have. If you want to see only packets with good
checksums, try the command shown in Listing 13-9.

$ tshark -n -r bej-int.pcap -T fields -E separator=/t -e ip.src -e tcp.srcport
-e ip.dst -e tcp.dstport -e ip.proto -e ip.checksum -R "ip.checksum_good==1"

192.168.2.108 50949 172.16.2.1 3128 6 0x81a4
192.168.2.108 50949 172.16.2.1 3128 6 0x81af
192.168.2.108 50949 172.16.2.1 3128 6 0x8036
192.168.2.108 50949 172.16.2.1 3128 6 0x81ad
192.168.2.108 50949 172.16.2.1 3128 6 0x81a5
192.168.2.108 50949 172.16.2.1 3128 6 0x81a4

Listing 13-9: Tshark output for sample trace file showing only good checksums

In Listing 13-9, we add the display filter -R "ip.checksum_good==1". This
tells Tshark to show only packets whose checksums match the values Tshark
thinks they should have. You could get the same results for Listing 13-8
using the display filter -R "ip.checksum_good==0" and the same results for
Listing 13-9 using the display filter -R "ip.checksum_bad==0".

Before investigating why we’re getting these bad checksums, let’s see
whether they also appear in bej-ext.pcap. As we did with Listing 13-7, we can
show the key elements of a trace file using Tshark. Listing 13-10 provides
the syntax and output.

$ tshark -n -r ../bej-ext.pcap -T fields -E separator=/t -e ip.src -e tcp.
srcport -e ip.dst -e tcp.dstport -e ip.checksum

192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x5b28
192.168.1.2 2770 205.186.148.46 80 0x0000
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x9597
205.186.148.46 80 192.168.1.2 2770 0x8fee
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x8fed
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x9367
192.168.1.2 2770 205.186.148.46 80 0x0000
192.168.1.2 2770 205.186.148.46 80 0x0000
192.168.1.2 2770 205.186.148.46 80 0x0000
205.186.148.46 80 192.168.1.2 2770 0x9593

Listing 13-10: Custom Tshark output for the bej-ext.pcap trace file

In Listing 13-10, the proxy is 192.168.1.2, and the server is 205.186.148.46,
offering web services on port 80 TCP. Again, we see suspicious IP checksums
(0x0000) on all packets from the proxy to the web server. As with bej-int.pcap,
the system generating IP traffic with bad checksums is the proxy. Why?

298 Chapter 13

How Bad Checksums Happen
IP checksums occasionally fail to match the intended values due to errors
introduced over the Internet. These errors are exceptionally rare, however,
unless a real network problem is involved. How did so many checksums
fail in Listings 13-7 and 13-10, and why are those failures so consistent?
The error reported by Wireshark in Figure 13-3, [incorrect, should be
0x1529 (may be caused by "IP checksum offload"?)], can help us answer those
questions.

Traditionally, the operating system and network stack were responsible
for calculating IP checksums, but modern network drivers and some NICs
assume that burden. This process, called offloading, allows the network stack
to send traffic quickly. Calculating checksums can be done quickly in the
driver or, better yet, by dedicated hardware.

Frequent IP checksum errors like those in Listings 13-7 and 13-10 will
interfere with your ability to conduct NSM. Traces with bad checksums are
often the result of capturing network traffic on a platform that offloads the
checksum process to a driver or hardware. The packet seen by the network
security tool has a 0x0000, or empty, checksum, but the “real” packet sent
on the wire has a true checksum calculated and added to the packet by the
driver or hardware. (When SO configures network interfaces, the setup
script disables driver and hardware checksum offloading in an effort to
avoid these issues.)

In our scenario, the proxy relies on checksum offloading to speed up
the transmission of network traffic. Unfortunately, the software on the
proxy sets a 0x0000 IP checksum on all outgoing packets. Before the packet
hits the wire, though, the driver or NIC hardware calculates and inserts
a proper checksum. Packets received from other devices have the correct
checksums.

Bro and Bad Checksums
Now that we’ve looked at good and bad IP checksums, let’s examine why
they matter. Some network security tools assume that packets with a bad IP
checksum will never be processed by the receiving network endpoint. The
network security tool drops the packet. Unfortunately, these bad checksums
might simply be caused by offloading.

Bro ignores traffic with bad IP checksums. For example, notice how it
processes the bej-int.pcap trace file, as shown in Listing 13-11.

$ sudo bro -r bej-int.pcap /opt/bro/share/bro/site/local.bro

WARNING: No Site::local_nets have been defined. It's usually a good idea to define your local
networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-{{interface}}/bpf-
bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)
WARNING: Template value remaining in BPFConf filename: /etc/nsm/ds61so-{{interface}}/bpf-bro.
conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)

Listing 13-11: Bro reads the bej-int.pcap trace file.

Proxies and Checksums 299

Nothing odd appears by default, but take a look at weird.log, shown in
Listing 13-12.

$ cat weird.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path weird
#open 2013-04-23-19-40-10

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p name
addl notice peer

#types time string addr port addr port string string bool string

1366577618.249515 - - - - - bad_IP_checksum - F
bro
1366577618.251250 rhdNNjfMGkc 192.168.2.108 50949 172.16.2.1 3128
upossible_split_routing - F bro
1366577618.251867 rhdNNjfMGkc 192.168.2.108 50949 172.16.2.1 3128
vdata_before_established - F bro

#close 2013-04-23-19-40-10

Listing 13-12: Bro weird.log file

The first entry reports possible_split_routing u because Bro is seeing only
half the traffic, namely packets from 192.168.2.108 to 172.16.2.1. These were
the packets in Listing 13-9 with good IP checksums. The second entry reports
data_before_established v because Bro didn’t see a complete TCP three-way
handshake. When Bro misses the three-way handshake, it’s confused when it
sees data transmitted before the session was properly established.

The Bro http.log file is also odd, as shown in Listing 13-13.

$ cat http.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-23-19-40-10

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types time string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

300 Chapter 13

1366577618.251867 rhdNNjfMGkc 192.168.2.108 50949 172.16.2.1 3128 1
GETu www.bejtlich.net http://www.bejtlich.net/ http://www.taosecurity.
com/training.html Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101
Firefox/20.0 0 0 - - - - - (empty) - - -
- - -

#close 2013-04-23-19-40-10

Listing 13-13: Bro http.log file

We see a GET request here u, but no indication of a reply.

Setting Bro to Ignore Bad Checksums
We can tell Bro to shut off its checksum verification and process all traffic
using the -C switch, as shown in Listing 13-14.

$ sudo bro -r bej-int.pcap -C /opt/bro/share/bro/site/local.bro

WARNING: No Site::local_nets have been defined. It's usually a good idea to define your local
networks.
WARNING: Template value remaining in BPFConf filename: /etc/nsm/{{hostname}}-{{interface}}/bpf-
bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)

WARNING: 1366577618.694909 Template value remaining in BPFConf filename: /etc/nsm/ds61so-
{{interface}}/bpf-bro.conf (/opt/bro/share/bro/securityonion/./bpfconf.bro, line 99)

Listing 13-14: Bro reads the trace file and ignores checksums.

Now there is no weird.log. If we look at http.log, we’ll see that it’s what
we’ve come to expect. Listing 13-15 shows the results.

$ cat http.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-23-20-06-19

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types time string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

Proxies and Checksums 301

1366577618.251867 aqjpeHaXm7f 192.168.2.108 50949 172.16.2.1 3128 1
GETu www.bejtlich.net http://www.bejtlich.net/v http://www.taosecurity.
com/training.html Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101
Firefox/20.0 0 3195 200 OKw - - - (empty) - -
- text/htmlx - -

#close 2013-04-23-20-06-19

Listing 13-15: Bro http.log file for bej-int.pcap with checksum validation disabled

Now we see not only the GET request u for http://www.bejtlich.net/ v but
also a record of the server’s 200 OK reply w and indication that the page
returned was text/html x. You could perform similar analysis concerning
Bro’s handling of bej-ext.pcap to see how it works when processing and ignor-
ing checksums. Listing 13-16 shows the results of the http.log file when Bro
reads the bej-ext.pcap trace file with checksum processing disabled.

$ cat http.log

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path http
#open 2013-04-24-00-36-03

#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p trans_
depth method host uri referrer user_agent request_body_len
response_body_len status_code status_msg info_code info_msg filename
tags username password proxied mime_type md5 extraction_file

#types time string addr port addr port count string string string string
string count count count string count string string table[enum] string string
table[string] string string file

1366577618.269074 ua3JI6YJIxh 192.168.1.2 2770 205.186.148.46 80
1 GET www.bejtlich.net /u http://www.taosecurity.com/training.html
Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:20.0) Gecko/20100101 Firefox/20.0 0 3195
200 OKv - - - (empty) - - wVIA -> 1.1 localhost:3128
(squid/2.7.STABLE9),X-FORWARDED-FOR -> 192.168.2.108x text/html - -

#close 2013-04-24-00-36-04

Listing 13-16: Bro http.log file for bej-ext.pcap with checksum validation disabled

In Listing 13-16, the interesting fields are the GET request for / u, the
200 OK reply v from the server, the Via statement w revealing the presence
of the Squid proxy, and the X-Forwarded-For field x showing the true source
IP address of the web client. With access only to logs of this nature, you
could use the X-Forwarded-For field to identify the true source IP address
of a client if you saw activity only at location Y and needed to know which
browser was surfing to the web server in question.

302 Chapter 13

The moral of the checksum story is this: If you must collect traffic from
a system that transmits traffic with checksum offloading, be sure your tools
know how to handle the situation. Remember that you can tell Bro to ignore
bad checksums with the -C switch. See the SO mailing list and wiki or the
manual pages for details on equivalent features in other tools. Snort, for
example, offers the following options to handle checksum processing:

-k <mode> Checksum mode (all,noip,notcp,noudp,noicmp,none)

Now that you know how to handle the checksum offloading character-
istics of collecting traffic on this pfSense box running a Squid proxy, you
can use the data collected here for troubleshooting. Without taking into
account the checksum issue, you may have interpreted the traffic incor-
rectly and arrived at odd conclusions about network performance.

Conclusion
This chapter introduced two features of networks that might trouble ana-
lysts: proxies and checksums. Proxies are problematic because they intro-
duce another middlebox, adding complexity to the network.

Like NAT, proxies obscure true source and destination IP addresses.
Although this chapter showed only one proxy at work, some organizations
chain multiple proxies! Such a multiproxy scenario makes the supposed
Holy Grail of NSM and proxies—proxy logs—unattainable. When multiple
proxies are involved, no single log shows all the activity analysts need to see.
If proxy logs were available, however, they would make a useful addition to
the data collected by an application like ELSA.

We also discussed checksums and odd results caused by offloading.
This feature, designed to speed up networking, reveals a downside: zeroed
checksums when reported by a traffic capture tool. Although it’s easier to
engineer around this challenge, don’t be surprised if an eager analyst pro-
vides a trace file with one or both sides of a conversation containing 0x0000
for the IP checksums. With the help of this chapter, you should understand
why that occurs and how to handle the issue.

C o n c l u s i o n

I wrote this book to help readers start a net-
work security monitoring operation within

their organization. I used the open source
SO suite to show how to put NSM to work in a

rapid and cost-effective manner. This final section
of the book shows several other options for NSM and
related operations. My goal is to show how NSM applies to other areas of
digital defense and how I think NSM will adapt to increasingly complex
information processing requirements.

First, I discuss how cloud computing affects NSM. The cloud presents
challenges and opportunities, and awareness of both will help security man-
agers better defend their data. Second, I talk about the importance of work-
flow and why an operational, metrics-driven model is a key to CIRT success.

304 Conclusion

Cloud Computing
The National Institute of Standards and Technology (NIST) defines cloud
computing as

a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction.1

NIST describes three service models:

Software as a Service (SaaS)  Allows the consumer to use the provider’s
applications running on a cloud infrastructure.

Platform as a Service (PaaS)  Allows the consumer to deploy consumer-
created applications or acquired applications created using program-
ming languages, libraries, services, and tools supported by the provider
onto the cloud infrastructure.

Infrastructure as a Service (IaaS)  Gives the consumer access to process-
ing, storage, networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary software, which
can include operating systems and applications.

A SaaS offering, like Salesforce.com (http://www.salesforce.com/), gives
customers an application that provides certain capabilities, such as cus-
tomer relationship management. A PaaS offering, like Heroku (http://
www.heroku.com/), gives customers a set of programming languages and
related capabilities to build their own applications. An IaaS offering, like
Amazon Elastic Compute Cloud (EC2, https://aws.amazon.com/ec2), gives
customers a virtual machine and related supporting infrastructure upon
which they can install their own software.

From an NSM perspective, a key feature of cloud computing is the fact
that information processing is being done “somewhere else.” One excep-
tion may be a “private” cloud, operated by an organization for internal use,
or a “community” cloud, operated by an organization cooperating with
partners. When a cloud is “public” or “hybrid,” though, it means an orga-
nization’s data is stored, manipulated, and transmitted beyond the normal
enterprise boundaries. While many security professionals have debated
cloud security and related topics, this section examines visibility challenges
posed by cloud computing.

Cloud Computing Challenges
With data processing occurring outside an organization, a CIRT cannot
rely on the network instrumentation models introduced in Chapter 2.

1. Peter Mell and Timothy Grance, “The NIST Definition of Cloud Computing,” NIST Special
Publication 800-145, National Institute of Standards and Technology, U.S. Department of
Commerce, September 2011, http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

Conclusion 305

Cloud users are not normally able to deploy taps or configure SPAN ports
to see traffic to or from a cloud provider’s infrastructure. By its very nature,
cloud infrastructures tend to be multitenant environments catering to hun-
dreds or thousands of customers on shared platforms. Even though you may
want to see network traffic to and from the platforms processing your data,
your cloud neighbors may not want you to see their traffic!

NSM is generally not an option for SaaS offerings because customers
interact with an application provided by a cloud company. Customers are
limited to relying upon whatever logs the cloud provider makes available.
NSM is also rarely possible for PaaS offerings, although customers can choose
to build application-level logging capabilities into the software they build
on the PaaS platform. NSM may be possible on IaaS offerings, but the visi-
bility is generally limited to specific virtual machines. NSM on IaaS requires
lightweight approaches where agents on the specific VM collect and analyze
network-centric data.

Threat Stack (http://www.threatstack.com/) is an example of a commercial
offering to meet the need for NSM on IaaS cloud platforms. Dustin Webber,
author of the Snorby tool, founded Threat Stackwith Jen Andre to extend
Snorby beyond the enterprise. Threat Stack provides a lightweight agent that
collects and generates NSM information on individual endpoints, whether
in the enterprise or on IaaS cloud platforms. The Threat Stack agent reports
its findings to a cloud-based controller operated by the Threat Stack team.
When analysts want to investigate NSM data from the agents, they log into
a cloud application published by Threat Stack. Figure 1 depicts the Threat
Stack dashboard, showing data from an agent deployed on a virtual private
server.

Figure 1: Threat Stack dashboard

306 Conclusion

Threat Stack demonstrates how a cloud-based challenge, like monitor-
ing IaaS platforms, can be met by using the cloud to collect and present
NSM data from agents. This hints at some of the benefits cloud computing
brings to NSM operators.

Cloud Computing Benefits
Cloud environments give analysts powerful and expandable environments
to process and mine NSM data. By putting NSM data in the cloud, storage
and analytical power become less of an issue. Analysts must be comfort-
able with the security controls applied by the cloud provider before putting
sensitive information in the hands of another company. If the provider can
meet those concerns, the cloud offers exciting possibilities.

Packetloop (http://www.packetloop.com/) is an example of another com-
mercial offering built on the cloud, but with a different focus. Michael Baker
and his team in Australia built Packetloop as a cloud-based application to
analyze network traffic uploaded by users. Analysts can send network traffic
in bulk to Packetloop, which then processes and displays that traffic in various
ways. Figure 2 shows a Packetloop dashboard for the network traffic asso-
ciated with a Digital Corpora sample case (http://digitalcorpora.org/corpora/
scenarios/m57-patents-scenario/).

Figure 2: Packetloop dashboard for sample network traffic

Threat Stack and Packetloop are options for enterprise users comfort-
able with sending local data to cloud providers. Perhaps more importantly,
these two offerings are suitable for customers who already do computing
in the cloud. In other words, customers doing work in the cloud are likely

Conclusion 307

to be comfortable sending logs or network traffic or both to another cloud
offering, such as a security vendor. As more computing work shifts from the
enterprise to the cloud, I expect this sort of “cloud-to-cloud” relationship to
become more important for security and monitoring needs.

Workflow, Metrics, and Collaboration
NSM isn’t just about tools. NSM is an operation, and that concept implies
workflow, metrics, and collaboration. A workflow establishes a series of steps
that an analyst follows to perform the detection and response mission.
Metrics, like the classification and count of incidents and the time elapsed
from incident detection to containment, measure the effectiveness of the
workflow. Collaboration enables analysts to work smarter and faster.

Workflow and Metrics
The next generation of NSM tools will incorporate these key features.
Mandiant provides these capabilities in several of its commercial offerings.
The goal is to help customers more rapidly scope an intrusion, manage
the escalation and resolution process, and highlight areas of improvement.
Figure 3 shows a graph of two key incident response measurements.

Figure 3: Tracking open incidents versus the average time to close an incident

In Figure 3, we see a series of dots connected into a line, showing the
average time, in hours, required to close an incident. In this case, “closing”
means conducting short-term incident containment (STIC) to mitigate the
risk posed by an intruder who has compromised a computer. The bars show
the number of open incidents on a daily basis. The spike in open incidents
on April 23 caused the average closure time to spike as well. This indicates
that the CIRT was overwhelmed by the number of incidents it had to man-
age. If the organization’s goal for average closure time is 10 hours or less,
this spike demonstrates that the CIRT cannot meet such a goal when the
number of open incidents exceeds 10 daily cases. CIRT managers can use
these metrics to justify additional headcount or to adjust processes or tools
to keep the CIRT on track.

308 Conclusion

Collaboration
CIRTs that can manage many simultaneous intrusions often benefit from
powerful collaboration tools. Many analysts are familiar with wikis, chat
channels and clients, and other tools for exchanging incident data. A new
sort of collaboration tool combines processing NSM data with shared ana-
lytical capabilities. Just as online word processing applications like Google
Docs allow multiple users to collaborate simultaneously, some tools are
emerging to provide similar features to NSM operators.

CloudShark (http://www.cloudshark.org/) is an example of a collabora-
tive packet analysis tool. The team at QA Cafe (http://www.qacafe.com/)
built CloudShark as a platform that customers could deploy on-premise
and share among multiple team members. (Despite its name, CloudShark
doesn’t reside in the cloud; customers buy the software and deploy it within
their enterprise.2) Analysts upload packet captures to the local appliance
and then manipulate packet captures via a web browser. Figure 4 shows
an example of CloudShark rendering DNS and Online Certificate Status
Protocol (OCSP) traffic.

Figure 4: CloudShark displaying DNS and OCSP traffic

CloudShark appears very similar to Wireshark, so analysts will feel at
home in the interface. A CIRT could maintain a local CloudShark appli-
ance as a repository of key network traces derived from various intrusions.

2. The example in this section appears courtesy of CloudShark and Jeremy Stretch, who pub-
lish sample traces online at http://packetlife.net/captures/protocol/dns/ and http://www.cloudshark
.org/captures/46b2c8403863/ to demonstrate CloudShark’s capabilities.

Conclusion 309

For example, when Sguil retrieves traffic from a sensor to build a transcript,
the server retains a local archive of the traffic. A CIRT could upload all of
those captures to CloudShark, making them easily available and browsable
by analysts. These analysts could also add comments to the trace via the
Info and Comments features and tag the trace with key names for later
reference. Being a local appliance, CloudShark may address some of the
concerns presented by pure cloud-based offerings as well.

Conclusion
This final part of the book showed examples of some of the NSM capabil
ities found outside the SO suite. As CIRTs realize that the power of NSM
must be applied to cloud environments and can be augmented by cloud
and collaborative platforms, I expect to see more offerings leveraging
those capabilities. Threat Stack, Packetloop, Mandiant, and CloudShark
are a few examples of companies integrating NSM-related services into
their core offerings. With luck, these and other solution providers will
continue to put tools and processes into the hands of CIRTs worldwide.
It is possible to defeat adversaries if we stop them before they accomplish
their mission. As it has been since the early 1990s, NSM will continue to
be a powerful, cost-effective way to counter intruders. Take heart, CIRTs;
the future remains bright!

S O S c r i pts
a nd C o n f i g u r a t i o n

by Doug Burks, creator of Security Onion

This appendix provides a quick reference
to the Security Onion (SO) control scripts

and configuration files. This material will
help SO users better administer and optimize

their sensor deployments.

SO Control Scripts
The NSM control scripts are one of the core components of SO. These
scripts were originally a part of the NSMnow package developed by the
SecurixLive team (http://www.securixlive.com/nsmnow/docs/index.php), but
they have been heavily modified for use in SO.

312 Appendix

The NSM scripts were first developed to control a Sguil server (sguild),
its agents (snort_agent, pads_agent, sancp_agent, and pcap_agent), and its sensor
components (snort, pads, sancp, and daemonlogger). The following are some of
the changes we’ve made to SO:

•	 Added the ability to use Suricata instead of Snort

•	 Added the ability to spin up multiple instances of Snort via PF_RING (and
an equal number of instances of barnyard2 and snort_agent)

•	 Added control of Argus

•	 Added control of Bro

•	 Added control of Sguil’s OSSEC agent

•	 Added control of Sguil’s HTTP agent

•	 Replaced pads and sancp with prads

•	 Replaced daemonlogger with netsniff-ng

The NSM scripts are installed at /usr/sbin/nsm* and require root privi-
leges, so they should be run using sudo. The directory /usr/sbin/ should be
in your PATH variable, so you shouldn’t need to include the full path when
executing the commands. The full path is included in the examples here
for completeness.

We won’t cover every option for every script, but you can explore each
of these scripts using --help to learn more about them. For example, to see
more information about /usr/sbin/nsm, enter this command:

$ sudo /usr/sbin/nsm --help

The NSMnow Administration scripts are designed to easily configure and manage
your NSM installation. Bugs, comments and flames can be directed to the
SXL team at dev@securixlive.com

The NSMnow Administration scripts come with ABSOLUTELY NO WARRANTY.

Usage: /usr/sbin/nsm [options]

Options:
 -U Check and apply any available upgrades
 -V Show version information
 -? Show usage information

Long Options:
 --sensor See nsm_sensor
 --server See nsm_server
 --all Performs actions on both sensor and server

 --upgrade Same as -U
 --version Same as -V
 --help Same as -?

SO Scripts and Configuration 313

/usr/sbin/nsm
The high-level /usr/sbin/nsm script can pass options to some of the under
lying scripts such as nsm_server and nsm_sensor. To check the status of all
server and sensor processes, enter the following:

$ sudo /usr/sbin/nsm --all --status

Status: securityonion
 * sguil server [OK]
Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 13015 0 18 Feb 16:35:40
Status: securityonion-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]
/etc/init.d/nsm is a wrapper for “/usr/sbin/nsm –all”, so you can also do:
sudo service nsm status

In addition to status, you can use other process control keywords, such
as start, stop, and restart.

/usr/sbin/nsm_all_del
The high-level /usr/sbin/nsm_all_del script will prompt for user confirmation,
and then call nsm_all_del_quick to delete all NSM data and configuration.

$ sudo /usr/sbin/nsm_all_del

WARNING!

Continuing will permanently delete all NSM configuration and data!

Press Ctrl-C to cancel.
OR
Press Enter to continue.

Stopping: securityonion
 * stopping: sguil server [OK]
Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...

314 Appendix

Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

Delete Sensor
All configurations and collected data for sensor "securityonion-eth1" will be
deleted.

Deleting sensor: securityonion-eth1
 * removing configuration files [OK]
 * removing collected data files [OK]
 * updating the sensor table [OK]

Delete Server
All configurations and collected data for server "securityonion" will be
deleted.

Deleting server:ontinue? (Y/N) [N]:
 * removing configuration files [OK]
 * removing collected data files [OK]
 * removing database [OK]
 * updating the server table [OK]

/usr/sbin/nsm_all_del_quick
The high-level /usr/sbin/nsm_all_del_quick script will call nsm_sensor_del and
nsm_server_del to delete all NSM data and configuration, but will not prompt
for user confirmation. Be careful with this one!

$ sudo nsm_all_del_quick

Stopping: securityonion
 * stopping: sguil server [OK]
Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...
Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]

SO Scripts and Configuration 315

 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

Delete Sensor
All configurations and collected data for sensor "securityonion-eth1" will be
deleted.

Deleting sensor: securityonion-eth1
 * removing configuration files [OK]
 * removing collected data files [OK]
 * updating the sensor table [OK]

Delete Server
All configurations and collected data for server "securityonion" will be
deleted.

Deleting server:ontinue? (Y/N) [N]:
 * removing configuration files [OK]
 * removing collected data files [OK]
 * removing database [OK]
 * updating the server table [OK]

/usr/sbin/nsm_sensor
The high-level /usr/sbin/nsm_sensor script can pass options to some of the
underlying nsm_sensor_* scripts.

$ sudo /usr/sbin/nsm_sensor --status

Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 13015 0 18 Feb 16:35:40
Status: securityonion-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]
 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

316 Appendix

/usr/sbin/nsm_sensor_add
The /usr/sbin/nsm_sensor_add script is called by the setup wizard to add a new
sensor. You shouldn’t need to run this script manually.

/usr/sbin/nsm_sensor_backup-config
The /usr/sbin/nsm_sensor_backup-config script will back up sensor configura-
tion files to a user-specified tarball.

/usr/sbin/nsm_sensor_backup-data
The /usr/sbin/nsm_sensor_backup-data script will back up sensor datafiles to a
user-specified tarball. Keep in mind that datafiles consist of full packet cap-
ture and could be many gigabytes or terabytes.

/usr/sbin/nsm_sensor_clean
The /usr/sbin/nsm_sensor_clean script is called by an hourly cronjob. If disk
usage is at 90 percent or higher, the oldest day’s worth of NSM data (pcaps,
Bro logs, and so on) will be deleted until disk usage is below 90 percent. The
process is repeated until disk usage falls below 90 percent.

/usr/sbin/nsm_sensor_clear
The /usr/sbin/nsm_sensor_clear script clears all data from a sensor.

$ sudo /usr/sbin/nsm_sensor_clear --sensor-name=securityonion-eth1

Clear Sensor
All collected data for sensor "securityonion-eth1" will be cleared.

Do you want to continue? (Y/N) [N]: y
Clearing sensor: securityonion-eth1
 * removing bookmarks [OK]
 * removing collected data files [OK]
 * removing collected log directories [OK]

/usr/sbin/nsm_sensor_del
The /usr/sbin/nsm_sensor_del script removes all data and configuration for a
user-specified sensor, permanently disabling it.

$ sudo /usr/sbin/nsm_sensor_del --sensor-name=securityonion-eth1

Delete Sensor
All configurations and collected data for sensor "securityonion-eth1" will be
deleted.

Do you want to continue? (Y/N) [N]: y

SO Scripts and Configuration 317

Deleting sensor: securityonion-eth1
 * removing configuration files [OK]
 * removing collected data files [OK]
 * updating the sensor table [OK]

/usr/sbin/nsm_sensor_edit
The /usr/sbin/nsm_sensor_edit script allows you to edit certain details of a
sensor’s configuration.

/usr/sbin/nsm_sensor_ps-daily-restart
The /usr/sbin/nsm_sensor_ps-daily-restart script is called by a daily cronjob at
midnight to restart any services that may be dealing with date-based output
and need to roll to a new date stamp.

/usr/sbin/nsm_sensor_ps-restart
The /usr/sbin/nsm_sensor_ps-restart script is used to restart sensor processes.

$ sudo /usr/sbin/nsm_sensor_ps-restart

Restarting: HIDS
 * stopping: ossec_agent (sguil) [OK]
 * starting: ossec_agent (sguil) [OK]
Restarting: Bro
stopping bro ...
starting bro ...
Restarting: securityonion-eth1
 * restarting with overlap: netsniff-ng (full packet data)
 * starting: netsniff-ng (full packet data) [OK]
 - stopping old process: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * starting: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * starting: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * starting: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * starting: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * starting: prads (sessions/assets) [OK]
 * stopping: pads_agent (sguil) [OK]
 * starting: pads_agent (sguil) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * stopping: argus [OK]
 * starting: argus [OK]
 * stopping: http_agent (sguil) [OK]
 * starting: http_agent (sguil) [OK]

318 Appendix

Note that this and the remaining nsm_sensor_ps-* scripts allow you to be
very granular in what sensors or processes you control. For example, notice
the --only-, --skip-, and --sensor-name= options in the following --help listing:

$ sudo /usr/sbin/nsm_sensor_ps-restart --help

The NSMnow Administration scripts come with ABSOLUTELY NO WARRANTY.

Usage: /usr/sbin/nsm_sensor_ps-restart [options]

Options:
 -d Use dialog mode
 -y Force yes
 -V Show version information
 -? Show usage information

Long Options:
 --sensor-name=<name> Define specific sensor <name> to process
 --only-barnyard2 Only process barnyard2
 --only-snort-alert Only process snort alert
 --only-pcap Only process packet logger
 --only-argus Only process argus
 --only-prads Only process prads
 --only-bro Only process bro

 --only-pcap-agent Only process pcap_agent
 --only-sancp-agent Only process sancp_agent
 --only-snort-agent Only process snort_agent
 --only-http-agent Only process http_agent
 --only-pads-agent Only process pads_agent
 --only-ossec-agent Only process ossec_agent

 --skip-barnyard2 Skip processing of barnyard2
 --skip-snort-alert Skip processing of snort alert
 --skip-pcap Skip processing of packet logger
 --skip-argus Skip processing of argus
 --skip-prads Skip processing of prads
 --skip-bro Skip processing of bro

 --skip-pcap-agent Skip processing of pcap_agent
 --skip-sancp-agent Skip processing of sancp_agent
 --skip-snort-agent Skip processing of snort_agent
 --skip-http-agent Skip processing of http_agent
 --skip-pads-agent Skip processing of pads_agent
 --skip-ossec-agent Skip processing of ossec_agent

 --if-stale Only restart processes that have crashed
 --dialog Same as -d
 --force-yes Same as -y

 --version Same as -V
 --help Same as -?

SO Scripts and Configuration 319

For example, suppose you’ve just made changes to snort.conf, and you
want to restart Snort to make those changes take effect. Instead of restart-
ing the entire stack, you could restart just the Snort process, as follows:

$ sudo /usr/sbin/nsm_sensor_ps-restart --only-snort-alert

Restarting: securityonion-eth1
 * stopping: snort-1 (alert data) [OK]
 * starting: snort-1 (alert data) [OK]

/usr/sbin/nsm_sensor_ps-start
The /usr/sbin/nsm_sensor_ps-start script is used to start sensor processes.

$ sudo /usr/sbin/nsm_sensor_ps-start

Starting: HIDS
 * starting: ossec_agent (sguil) [OK]
Starting: Bro
starting bro ...
Starting: securityonion-eth1
 * starting: netsniff-ng (full packet data) [OK]
 * starting: pcap_agent (sguil) [OK]
 * starting: snort_agent-1 (sguil) [OK]
 * starting: snort-1 (alert data) [OK]
 * starting: barnyard2-1 (spooler, unified2 format) [OK]
 * starting: prads (sessions/assets) [OK]
 * starting: pads_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * starting: argus [OK]
 * starting: http_agent (sguil) [OK]
 * disk space currently at 26%

/usr/sbin/nsm_sensor_ps-status
The /usr/sbin/nsm_sensor_ps-status script is used to check the status of sensor
processes.

$ sudo /usr/sbin/nsm_sensor_ps-status

Status: HIDS
 * ossec_agent (sguil) [OK]
Status: Bro
Name Type Host Status Pid Peers Started
bro standalone localhost running 15426 0 18 Feb 16:40:23
Status: securityonion-eth1
 * netsniff-ng (full packet data) [OK]
 * pcap_agent (sguil) [OK]
 * snort_agent-1 (sguil) [OK]
 * snort-1 (alert data) [OK]
 * barnyard2-1 (spooler, unified2 format) [OK]

320 Appendix﻿

 * prads (sessions/assets) [OK]
 * sancp_agent (sguil) [OK]
 * pads_agent (sguil) [OK]
 * argus [OK]
 * http_agent (sguil) [OK]

/usr/sbin/nsm_sensor_ps-stop
The /usr/sbin/nsm_sensor_ps-stop script is used to stop sensor processes.

$ sudo /usr/sbin/nsm_sensor_ps-stop

Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
stopping bro ...
Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

/usr/sbin/nsm_server
The high-level /usr/sbin/nsm_server script can pass options to some of the
underlying nsm_server_* scripts.

$ sudo /usr/sbin/nsm_server --status

Status: securityonion
 * sguil server [OK]

/usr/sbin/nsm_server_add
The /usr/sbin/nsm_server_add script is used by the setup wizard to create a
new Sguil server (sguild). You shouldn’t need to run this script manually.

/usr/sbin/nsm_server_backup-config
The /usr/sbin/nsm_server_backup-config script backs up the sguild configura-
tion files to a user-specified tarball.

/usr/sbin/nsm_server_backup-data
The /usr/sbin/nsm_server_backup-data script backs up the sguild data to a
user-specified tarball.

SO Scripts and Configuration 321

/usr/sbin/nsm_server_clear
The /usr/sbin/nsm_server_clear script clears all sguild data.

/usr/sbin/nsm_server_del
The /usr/sbin/nsm_server_del script permanently deletes the Sguil server
(sguild).

/usr/sbin/nsm_server_edit
The /usr/sbin/nsm_server_edit script can be used to edit certain details of the
sguild configuration.

/usr/sbin/nsm_server_ps-restart
The /usr/sbin/nsm_server_ps-restart script can be used to restart sguild.

$ sudo /usr/sbin/nsm_server_ps-restart

Restarting: securityonion
 * stopping: sguil server [OK]
 * starting: sguil server [OK]

/usr/sbin/nsm_server_ps-start
The /usr/sbin/nsm_server_ps-start script can be used to start sguild.

$ sudo /usr/sbin/nsm_server_ps-start

Starting: securityonion
 * starting: sguil server [OK]

/usr/sbin/nsm_server_ps-status
The /usr/sbin/nsm_server_ps-status script can be used to check the status of
sguild.

$ sudo /usr/sbin/nsm_server_ps-status

Status: securityonion
 * sguil server [OK]

/usr/sbin/nsm_server_ps-stop
The /usr/sbin/nsm_server_ps-stop script can be used to stop sguild.

$ sudo /usr/sbin/nsm_server_ps-stop

Stopping: securityonion
 * stopping: sguil server [OK]

322 Appendix

/usr/sbin/nsm_server_sensor-add
The /usr/sbin/nsm_server_sensor-add script is used to add a sensor to the
sguild configuration.

/usr/sbin/nsm_server_sensor-del
The /usr/sbin/nsm_server_sensor-del script is used to delete a sensor from the
sguild configuration.

/usr/sbin/nsm_server_user-add
The /usr/sbin/nsm_server_user-add script is used to add a new sguild user.

$ sudo /usr/sbin/nsm_server_user-add

User Name
Enter the name of the new user that will be granted privilege to connect to
this server.: richard

User Pass
Enter the password for the new user that will be granted privilege to connect
to this server.:
Verify:

Add User to Server
The following information has been collected:

 server: securityonion
 user: richard

Do you want to create? (Y/N) [Y]: y
Adding user to server: richard => securityonion

SO Configuration Files
Configuration files control how SO applications operate. Administrators
can change the contents of some of these files to tailor how SO collects and
interprets NSM data.

The SO team configures SO with sensible defaults, but in some cases,
changes may be appropriate. This section describes SO’s configuration files,
including whether the SO team believes that administrators may sometimes
need to make changes to them.

/etc/nsm/
/etc/nsm/ is the main configuration directory. It contains the following:

administration.conf
ossec/
pulledpork/
rules/

SO Scripts and Configuration 323

securityonion/
securityonion.conf
sensortab
servertab
templates/
$HOSTNAME-$INTERFACE

The final entry in this list will vary based on your hostname and the
interfaces you choose to monitor. For example, the following is output from
my sensor named securityonion with a single monitored interface (eth1):

-rw-r--r-- 1 root root 247 Jul 24 2012 administration.conf
drwxr-xr-x 2 root root 4.0K Feb 18 16:16 ossec
drwxr-xr-x 2 root root 4.0K Dec 18 11:15 pulledpork
drwxr-xr-x 3 root root 4.0K Feb 18 16:16 rules
drwxrwxr-x 3 sguil sguil 4.0K Feb 18 16:16 securityonion
-rw-r--r-- 1 root root 37 Feb 18 16:16 securityonion.conf
drwxrwxr-x 2 sguil sguil 4.0K Feb 18 16:17 securityonion-eth1
-rw-r--r-- 1 root root 31 Feb 18 16:16 sensortab
-rw-r--r-- 1 root root 349 Feb 18 16:16 servertab
drwxr-xr-x 8 root root 4.0K Dec 18 11:14 templates

Let’s look at each of these files and directories in turn.

/etc/nsm/administration.conf
The /etc/nsm/administration.conf file defines some filesystem locations for the
NSM scripts. You should never need to change anything in this file.

/etc/nsm/ossec/
The /etc/nsm/ossec/ directory contains the OSSEC agent for Sguil (ossec_
agent.tcl) and its configuration file (ossec_agent.conf). You probably won’t
need to modify these files.

/etc/nsm/pulledpork/
The /etc/nsm/pulledpork/ directory contains the configuration files for
PulledPork, which is responsible for downloading IDS rulesets from the
Internet. The main configuration file for PulledPork is pulledpork.conf, but
you’ll probably spend most of your time modifying disablesid.conf, enablesid​
.conf, and modifysid.conf to tune your ruleset.

/etc/nsm/rules/
The /etc/nsm/rules/ directory contains the IDS ruleset(s) downloaded
by PulledPork and associated files that control the sensor processes. When
PulledPork runs, it stores the rules in downloaded.rules. Don’t modify this file
manually because PulledPork will overwrite it automatically the next time it
runs. Instead, tune your ruleset using the files in /etc/nsm/pulledpork/.

You can write your own rules and store them in local.rules. To tune a
particular rule without totally disabling it, use threshold.conf. To specify a

324 Appendix

Berkeley Packet Filter (BPF) so that the sniffing processes will selectively
ignore traffic from certain IP addresses, use bpf.conf. Bro automatically
monitors this file for changes and will update it as needed. Other services
(such as Snort and Suricata, PRADS, and Netsniff-ng) will need to be
restarted for the change to take effect.

/etc/nsm/securityonion/
The /etc/nsm/securityonion/ directory contains the following Sguil server
(sguild) configuration files:

autocat.conf  Used to configure Sguil to automatically categorize
certain events.

certs  Contains the files used to secure communications between the
Sguil server (sguild) and its agents and clients.

server.conf  Contains some general settings used to start sguild and
should not need to be modified.

sguild.access  Used to control access to sguild.

sguild.conf  Contains general settings for sguild and probably doesn’t
need to be changed.

sguild.email  Allows you to configure Sguil to automatically send email
when certain events occur.

sguild.queries  Contains queries that can be accessed from the Sguil
client by selecting Query4Standard Queries.

sguild.users  This file should not be modified.

/etc/nsm/securityonion.conf
The /etc/nsm/securityonion.conf file contains the IDS_ENGINE, DAYSTOKEEP, and
ELSA settings, which let you change the intrusion detection system (IDS)
engine, the amount of time data is kept in the Sguil database, and whether
ELSA is enabled, respectively.

If you run the setup wizard and select Quick Setup, SO will default to
using Snort as the IDS engine. If you choose Advanced Setup, SO will ask if
you want to run Snort or Suricata. In either case, the setup wizard will set
the IDS_ENGINE variable. If you later decide to change your IDS engine, you
can stop all sensor processes, change the IDS_ENGINE setting, execute rule-
update, and then restart all sensor processes.

For example, suppose you ran the Quick Setup, giving you the default
of Snort. If you want to try Suricata, do the following:

$ sudo nsm_sensor_ps-stop

Stopping: HIDS
 * stopping: ossec_agent (sguil) [OK]
Stopping: Bro
waiting for lock ok
stopping bro ...

SO Scripts and Configuration 325

Stopping: securityonion-eth1
 * stopping: netsniff-ng (full packet data) [OK]
 * stopping: pcap_agent (sguil) [OK]
 * stopping: snort_agent-1 (sguil) [OK]
 * stopping: snort-1 (alert data) [OK]
 * stopping: barnyard2-1 (spooler, unified2 format) [OK]
 * stopping: prads (sessions/assets) [OK]
 * stopping: sancp_agent (sguil) [OK]
 * stopping: pads_agent (sguil) [OK]
 * stopping: argus [OK]
 * stopping: http_agent (sguil) [OK]

$ sudo sed -i 's|ENGINE=snort|ENGINE=suricata|g' /etc/nsm/securityonion.conf

$ sudo rule-update > /dev/null

$ sudo nsm_sensor_ps-start

Starting: HIDS
 * starting: ossec_agent (sguil) [OK]
Starting: Bro
starting bro ...
Starting: securityonion-eth1
 * starting: netsniff-ng (full packet data) [OK]
 * starting: pcap_agent (sguil) [OK]
 * starting: snort_agent (sguil) [OK]
 * starting: suricata (alert data) [OK]
 * starting: barnyard2 (spooler, unified2 format) [OK]
 * starting: prads (sessions/assets) [OK]
 * starting: pads_agent (sguil) [OK]
 * starting: sancp_agent (sguil) [OK]
 * starting: argus [OK]
 * starting: http_agent (sguil) [OK]
 * disk space currently at 26%

The DAYSTOKEEP variable allows you to define the retention policy for the
Sguil database. A daily cronjob deletes any data in securityonion_db older than
$DAYSTOKEEP. The default is 365.

The ELSA variable is set when the setup wizard asks if you want to
enable ELSA.

/etc/nsm/sensortab
If the box is configured to monitor interfaces, this file contains the list of
interfaces to be monitored. To disable the sniffing processes on an interface,
you can temporarily stop interfaces as follows (replacing HOSTNAME-INTERFACE
with your actual hostname and interface name):

sudo nsm_sensor_ps-stop --sensor-name=HOSTNAME-INTERFACE

A
Address Resolution Protocol (ARP),

16, 140–142
address translation, 42–45
administration.conf, 322–323
administrators, as within IDC, 203–204
Advanced Package Tool (APT), 65
Advanced Persistent Threat (APT), 193

APT1, 193, 202, 277–278. See also
APT1 module

resources, 190
adversary simulation, 187
Air Force Computer Emergency

Response Team
(AFCERT), 3

alert data, 28–30
American Registry for Internet

Numbers (ARIN), 40
Amin, Rohan, 190
analysis, as element of detection phase,

188, 193–195
“anatomy of a hack,” 190–191
Andre, Jen, 305
Applied Threat Intelligence (ATI)

Center, 203–204
APT (Advanced Package Tool), 65
APT (Advanced Persistent Threat), 193

APT1, 193, 202, 277–278. See also
APT1 module

resources, 190
APT1 module, 278

installing, 280
testing, 280–283
using, 278–279

apt-get

and configuring SO sensor, 94
installing APT1 module, 280
and setting up an SO server, 89–90
for updating packages, 64, 77, 80,

88–90, 94, 101
upgrade vs. dist-upgrade, 65–66

architects, as within IDC, 203–204

Argus
as alternative to NetFlow, 202
counting bytes in session data

using, 169
as data collection tool, 115
log storage location, 106
and Ra client, 128–133
and Racluster client, 130–132, 248
as source of session data, 22, 248

ARIN (American Registry for Internet
Numbers), 40

ARP (Address Resolution Protocol),
16, 140–142

AS (autonomous system), 28
ASIM (Automated Security Incident

Measurement), 3
asset-centric security, 199
associate analyst, in ATI, 203–204
ATI (Applied Threat Intelligence)

Center, 203–204
autocat.conf, 324
autonomous system (AS), 28
autossh, as tunnel for SO data, 84,

97, 333
Automated Security Incident

Measurement (ASIM), 3

B
Baker, Michael, 306
barnyard2.conf, 327
Berkeley Packet Filter (BPF), 118–123,

130, 230, 280
Bianco, David, 32, 193
BPF (Berkeley Packet Filter), 118–123,

130, 230, 280
bpf-bro.conf, 327
bpf.conf, 324, 327
breaches

classification of, 194, 208, 219,
232, 237

inevitability of, 5
and notifications, 196–197

Ind e x

336 Index

Bro
as alternative to NetFlow, 202
APT1 module, 278

installing, 280
testing, 280–283
using, 278–279

capture_loss.log, 243–244
checksum validation with, 298–302
creating hashes of executables

with, 264
counting bytes in session data, 169
as data collection tool, 115
DNS logs generated by, 225–226,

244–246
extracting binaries with, 266–273
FTP logs generated by, 228–229
integration with Malware Hash

Registry, 285–288
log storage location for, 106
restarting with broctl, 275–277, 283,

329–330
as source of HTTP transaction data

in Sguil, 165, 167
as source of logs in ELSA, 178–180,

240, 242
as source of session data, 21
as source of transaction data, 22–23
SSH logs generated by, 226–227

Bullard, Carter, 128
Burks, Doug, 55, 167

C
campaigns, for tracking adversary

activity, 199–201
CapMe

as accessed from ELSA, 180,
250–251

as accessed from Snorby, 174–177
as data delivery tool, 115

CIRT (computer incident response
team), 4, 203–205

checksums
bad checksums, 298

telling Bro to ignore, 298–301
telling Snort to ignore, 302

for error detection in IP
packets, 304

using Tshark to identify, 297–298
Cisco, as switch vendor, 12, 48
client-side compromises, 235–237
Cloppert, Michael, 190

cloud computing, 304–307
CloudShark, 308
collection, as element of detection

phase, 188–191
Combs, Gerald, 122
command-and-control (C2) channel,

190–194, 208, 237, 250–251
compromises

client-side, 235–237
phases of, 190
server-side, 207–208

computer incident response team
(CIRT), 4, 203–205

conn.log, as generated by Bro, 21,
242–243

Constituent Relations Team, 203, 205
containment

speed of, 199–200
techniques for, 198

continuous monitoring, 8–9
Costa, Gianluca, 147
cron, for periodic execution of

commands, 107, 330
cronjobs, to execute commands,

316–317, 325, 330

D
datatypes, 16, 160

alert data, 28–30
extracted content data, 19–20
full content data, 16–18
metadata, 26–28
session data, 21–22
statistical data, 24–26
transaction data, 22–23

date command, translating Unix
epoch to human readable
format, 106

DAYSTOKEEP variable, 108
De Francheschi, Andrea, 147
defensible network architecture, 196
demilitarized zone (DMZ), 11, 37–46
df, to check partition utilization, 108
Digital Corpora, 147, 151, 154
Director of Incident Response, 203–204
disablesid.conf, 323
display filters, as used in Wireshark and

Tshark, 125–128
DMZ (demilitarized zone), 11, 37–46
dns.log, as generated by Bro, 23,

243–246, 282

338 Index

Mandiant for Intelligent Response
(MIR), 189

matching (IOC-centric analysis),
193, 202

metadata, 26–28
Metasploit, 239–241, 248, 251
Metasploitable, 221
Meterpreter, as Metasploit component,

240–241, 248, 251–255
MHR (Malware Hash Registry),

283–288
modifysid.conf, 323
MySQL

database storage location, 105
keeping software up-to-date, 333
query to determine storage

usage, 107
setting up on SO using PPA, 89, 94
as SO database, 76, 115, 167–169,

178, 180
as target of data theft, 228–232

N
NAT (network address translation),

42–43
drawback with NSM, 31
network visibility, 45–46
vs. proxy, 294

National Institute of Standards and
Technology (NIST), 304

net blocks, 39–41
Net Optics, as tap vendor, 12, 48
Netsniff-ng, as data collection tool, 115,

170, 172, 244
network address translation (NAT),

42–43
drawback with NSM, 31
network visibility, 45–46
vs. proxy, 294

NetworkMiner
counting bytes in session data

using, 169
usage of, 153–157

network port address translation
(NPAT), 43–46

network security monitoring. See
NSM (network security
monitoring)

network taps, 48, 49

network visibility
capturing traffic on a client or

server, 49
locations for, 45–46
network taps for, 48
switching SPAN ports for, 47–48

vs. network taps, 50
NIST (National Institute of Standards

and Technology), 304
notice.log, as generated by Bro

analyzing with ELSA, 242–243
with APT1 module, 279, 282
extracting binaries from HTTP

traffic, 277
hashing downloaded executables

with Bro, 264
and malicious downloads, 286

NPAT (network port address
translation), 43–46

NSM (network security monitoring)
benefit to CIRTs, 4
as continuous business process, 4
datatypes, 16, 160
definition of, 3
efficacy of, 12–13, 31
how to win with, 10
legality of, 13–14
protecting user privacy when

conducting, 14
purchasing, 31–32
relationship to other approaches,

9–10
resources, 32
simple setup, 10–11

NSMNow, 311
/nsm/sensor_data/<sensorname>/dailylogs

directory, 105–106, 116,
122, 128–129, 136–137

O
OpenIOC format, 278
OpenSSH

for communications among
distributed SO platforms,
82–83

for connecting via SOCKS
proxy, 103

as logged by Bro, 277
for sensor administration, 51, 88,

94, 124

Index 339

for X forwarding, 95–97
as used by an intruder, 232–233

OSSEC, 115, 165, 182, 227
ossec_agent.conf, 323

P
Packetloop, 306
pads_agent.conf, 327
Passive Real-Time Asset Detection

System. See PRADS (Passive
Real-Time Asset Detection
System)

pcap_agent.conf, 328
pcap file format, 50, 76, 114, 115
pcap-filter man page, 120
penetration testing, 187
People’s Liberation Army. See APT

(Advanced Persistent
Threat)

Poison Ivy, 288
PPA (Personal Package Archive), 59.

See also SO (Security
Onion): installation of

PRADS (Passive Real-Time Asset
Detection System)

counting bytes in session data
using, 169

as source of NSM data, 115
with Sguil, 165, 167–169,

210–211
similarity to Bro’s connection

logs, 180
prads.conf, 328
principal analyst, in ATI, 203–204
Prosise, Chris, 193
protecting user privacy, 14
protocol analyzer, 116
proxies, 289–294
pulledpork.conf, 323
PuTTY, for SOCKS proxy access,

103–105

R
ra.conf. See /tmp/ra.conf
RAT (remote access trojan), 288
red teaming, 187
Regional Internet Registry (RIR), 40
remote access trojan (RAT), 288
resolution, as element of response

phase, 188, 198–201

retrospective security analysis, 30
Richardson, Michael, 116
RIR (Regional Internet Registry), 40
Risso, Fulvio, 116
RobTex, 28, 132
routing, 28, 34, 49, 198, 299

S
SANCP (Security Analyst Network

Connection Profiler)
database table, 167
querying via Sguil, 167–169,

211–212, 223
as source of session data, 22, 167

sancp_agent.conf, 328
SANS Internet Storm Center (ISC)

Port Report, 132
Security Analyst Network Connection

Profiler. See SANCP
(Security Analyst Network
Connection Profiler)

Security Onion. See SO (Security
Onion)

securityonion.conf, 108, 324–325
SecurixLive, 311
senior analyst, in ATI, 203–204
sensor hardware

estimating hard drive space for, 51
requirements for, 49–50

sensor.conf, 328
sensor_cleandisk() function, 107
sensor management, recommendations

for, 51–52
server.conf, 324
server-side compromises, 207–208
session data, 21–22
Sguil

agents, 115, 312
for analyzing a client-side intrusion,

210–224
databases used by, 107–108
incident category definitions in, 172
key functions, 164
managing the Sguil database, 108
transcript data storage, 172
usage of

categorizing alert data, 172–173
metadata and related data,

164–165
pivoting to full content data,

169–171

Index 341

/tmp/.xkey.log, as logged keystrokes,
253–255

traffic
capturing on a client or server, 49
processing, 122, 128
and Tcpdump, 268, 280-281, 291
understanding flow, 35–38

transaction data, 22–23
Tshark,

reviewing checksums with, 296–297
reviewing full content data with,

216–218, 249
usage of, 122–128

Twitter, as compromise vector, 238–239
256, 261–262

U
Ubuntu, as NSM platform operating

system, 59, 64–65, 85–94
UFW (Uncomplicated Firewall),

102–103, 105
Unit 61398. See APT (Advanced

Persistent Threat)
Universal Coordinated Time (UTC),

62, 70, 118
Unix epoch time, 118
understanding traffic flow, 35–38
UTC (Universal Coordinated Time),

62, 70, 118

V
VERIS (Vocabulary for Event

Recording and Incident
Sharing), 196

virtual private network (VPN), 31, 58,
258

VirusTotal
submitting a binary to, 273–275
submitting a hash to, 264–266,

273–274, 288
Visscher, Bamm, 3
Vocabulary for Event Recording

and Incident Sharing
(VERIS), 196

VPN (virtual private network), 31,
58, 258

W
Wade, Aaron, 193
waves, for tracking CIRT activity,

200–201

Webber, Dustin, 174, 177, 305
weird.log, as generated by Bro, 299
WHOIS

as form of metadata, 26–27
as used in Sguil, 164–165

whois, as tool to query Malware Hash
Registry, 284

Windows Management Instrumen
tation Command-line
(WMIC), 189

wireless local area network (WLAN),
12–13, 34–35, 38–46,
238, 246

Wireshark
counting bytes in session data

using, 169
decoding protocols in, 144–145
following streams in, 143–144
modifying default column

layout of, 137–140
as packet analysis tool, 18–19
problems when sniffing traffic

as root with, 123–124
as source of extracted content data,

19–20
as source of statistical data, 24–26
usage of, 136–147

Wiretap Act, 13
WLAN (wireless local area network),

12–13, 34–35, 38–46,
238, 246

WMIC (Windows Management
Instrumentation
Command-line), 189

www.testmyids.com, 15–16, 20–23, 28–29,
71, 84, 179

X
X forwarding via Secure Shell, 95
Xplico, usage of, 147–153
Xubuntu, as NSM platform operating

system, 59–60, 63–65

Y
Young, David, 116
YYYY-MM-DD.log, as session data

generated by Argus, 129

	Brief Contents

	Contents in Detail

	About the Author
	Foreword
	Preface
	Audience
	Prerequisites
	A Note on Software and Protocols
	Scope
	Acknowledgements

	Part I: Getting Started
	Chapter 1:
Network Security Monitoring Rationale
	An Introduction to NSM
	Does NSM Prevent Intrusions?
	What Is the Difference Between NSM and Continuous Monitoring?
	How Does NSM Compare with Other Approaches?
	Why Does NSM Work?
	How NSM Is Set Up
	When NSM Won’t Work
	Is NSM Legal?
	How Can You Protect User Privacy During NSM Operations?

	A Sample NSM Test
	The Range of NSM Data
	Full Content Data
	Extracted Content Data
	Session Data
	Transaction Data
	Statistical Data
	Metadata
	Alert Data

	What’s the Point of All This Data?
	NSM Drawbacks
	Where Can I Buy NSM?
	Where Can I Go for Support or More Information?
	Conclusion

	Chapter 2: Collecting Network Traffic: Access, Storage, and Management
	A Sample Network for a Pilot NSM System
	Traffic Flow in a Simple Network
	Possible Locations for NSM

	IP Addresses and Network Address Translation
	Net Blocks
	IP Address Assignments
	Address Translation

	Choosing the Best Place to Obtain Network Visibility
	Location for DMZ Network Traffic
	Locations for Viewing the Wireless and Internal Network Traffic

	Getting Physical Access to the Traffic
	Using Switches for Traffic Monitoring
	Using a Network Tap
	Capturing Traffic Directly on a Client or Server

	Choosing an NSM Platform
	Ten NSM Platform Management Recommendations
	Conclusion

	Part II: Security Onion Deployment

	Chapter 3: Stand-alone NSM Deployment and Installation
	Stand-alone or Server Plus Sensors?
	Choosing How to Get SO Code onto Hardware
	Installing a Stand-alone System
	Installing SO to a Hard Drive
	Configuring SO Software
	Choosing the Management Interface
	Installing the NSM Software Components
	Checking Your Installation

	Conclusion

	Chapter 4: Distributed Deployment
	Installing an SO Server Using the SO .iso File
	SO Server Considerations
	Building Your SO Server
	Configuring Your SO Server

	Installing an SO Sensor Using the SO .iso Image
	Configuring the SO Sensor
	Completing Setup
	Verifying that the Sensors Are Working
	Verifying that the Autossh Tunnel Is Working

	Building an SO Server Using PPAs
	Installing Ubuntu Server as the SO Server Operating System
	Choosing a Static IP Address
	Updating the Software
	Beginning MySQL and PPA Setup on the SO Server
	Configuring Your SO Server via PPA

	Building an SO Sensor Using PPAs
	Installing Ubuntu Server as the SO Sensor Operating System
	Configuring the System as a Sensor
	Running the Setup Wizard

	Conclusion

	Chapter 5: SO Platform Housekeeping
	Keeping SO Up-to-Date
	Limiting Access to SO
	Connecting via a SOCKS Proxy
	Changing the Firewall Policy

	Managing SO Data Storage
	Managing Sensor Storage
	Checking Database Drive Usage
	Managing the Sguil Database
	Tracking Disk Usage

	Conclusion

	Part III: Tools

	Chapter 6:
Command Line Packet Analysis Tools
	SO Tool Categories
	Data Presentation
	SO Data Collection Tools
	SO Data Delivery Tools

	Running Tcpdump
	Displaying, Writing, and Reading Traffic with Tcpdump
	Using Filters with Tcpdump
	Extracting Details from Tcpdump Output
	Examining Full Content Data with Tcpdump

	Using Dumpcap and Tshark
	Running Tshark
	Running Dumpcap
	Running Tshark on Dumpcap’s Traffic
	Using Display Filters with Tshark
	Tshark Display Filters in Action

	Running Argus and the Ra Client
	Stopping and Starting Argus
	The Argus File Format
	Examining Argus Data

	Conclusion

	Chapter 7: Graphical Packet Analysis Tools
	Using Wireshark
	Running Wireshark
	Viewing a Packet Capture in Wireshark
	Modifying the Default Wireshark Layout
	Some Useful Wireshark Features

	Using Xplico
	Running Xplico
	Creating Xplico Cases and Sessions
	Processing Network Traffic
	Understanding the Decoded Traffic
	Getting Metadata and Summarizing Traffic

	Examining Content with NetworkMiner
	Running NetworkMiner
	Collecting and Organizing Traffic Details
	Rendering Content

	Conclusion

	Chapter 8: NSM Consoles
	An NSM-centric Look at Network Traffic
	Using Sguil
	Running Sguil
	Sguil’s Six Key Functions

	Using Squert
	Using Snorby
	ELSA
	Conclusion

	Part IV: NSM in Action
	Chapter 9: NSM Operations
	The Enterprise Security Cycle
	The Planning Phase
	The Resistance Phase
	The Detection and Response Phases

	Collection, Analysis, Escalation, and Resolution
	Collection
	Analysis
	Escalation
	Resolution

	Remediation
	Using NSM to Improve Security
	Building a CIRT

	Conclusion

	Chapter 10: Server-side Compromise
	Server-side Compromise Defined
	Server-side Compromise in Action
	Starting with Sguil
	Querying Sguil for Session Data
	Returning to Alert Data
	Reviewing Full Content Data with Tshark
	Understanding the Backdoor
	What Did the Intruder Do?
	What Else Did the Intruder Do?

	Exploring the Session Data
	Searching Bro DNS Logs
	Searching Bro SSH Logs
	Searching Bro FTP Logs
	Decoding the Theft of Sensitive Data
	Extracting the Stolen Archive

	Stepping Back
	Summarizing Stage 1
	Summarizing Stage 2
	Next Steps

	Conclusion

	Chapter 11: Client-side Compromise
	Client-side Compromise Defined
	Client-side Compromise in Action
	Getting the Incident Report from a User
	Starting Analysis with ELSA
	Looking for Missing Traffic

	Analyzing the Bro dns.log File
	Checking Destination Ports
	Examining the Command-and-Control Channel
	Initial Access
	Improving the Shell
	Summarizing Stage 1
	Pivoting to a Second Victim
	Installing a Covert Tunnel
	Enumerating the Victim
	Summarizing Stage 2

	Conclusion

	Chapter 12:
Extending Security Onion
	Using Bro to Track Executables
	Hashing Downloaded Executables with Bro
	Submitting a Hash to VirusTotal

	Using Bro to Extract Binaries from Traffic
	Configuring Bro to Extract Binaries from Traffic
	Collecting Traffic to Test Bro
	Testing Bro to Extract Binaries from HTTP Traffic
	Examining the Binary Extracted from HTTP
	Testing Bro to Extract Binaries from FTP Traffic
	Examining the Binary Extracted from FTP
	Submitting a Hash and Binary to VirusTotal
	Restarting Bro

	Using APT1 Intelligence
	Using the APT1 Module
	Installing the APT1 Module
	Generating Traffic to Test the APT1 Module
	Testing the APT1 Module

	Reporting Downloads of Malicious Binaries
	Using the Team Cymru Malware Hash Registry
	The MHR and SO: Active by Default
	The MHR and SO vs. a Malicious Download
	Identifying the Binary

	Conclusion

	Chapter 13:
Proxies and Checksums
	Proxies
	Proxies and Visibility
	Dealing with Proxies in Production Networks

	Checksums
	A Good Checksum
	A Bad Checksum
	Identifying Bad and Good Checksums with Tshark
	How Bad Checksums Happen
	Bro and Bad Checksums
	Setting Bro to Ignore Bad Checksums

	Conclusion

	Conclusion
	Cloud Computing
	Cloud Computing Challenges
	Cloud Computing Benefits

	Workflow, Metrics, and Collaboration
	Workflow and Metrics
	Collaboration

	Conclusion

	Appendix: Security Onion Scripts
and Configuration
	Security Onion Control Scripts
	/usr/sbin/nsm
	/usr/sbin/nsm_all_del
	/usr/sbin/nsm_all_del_quick
	/usr/sbin/nsm_sensor
	/usr/sbin/nsm_sensor_add
	/usr/sbin/nsm_sensor_backup-config
	/usr/sbin/nsm_sensor_backup-data
	/usr/sbin/nsm_sensor_clean
	/usr/sbin/nsm_sensor_clear
	/usr/sbin/nsm_sensor_del
	/usr/sbin/nsm_sensor_edit
	/usr/sbin/nsm_sensor_ps-daily-restart
	/usr/sbin/nsm_sensor_ps-restart
	/usr/sbin/nsm_sensor_ps-start
	/usr/sbin/nsm_sensor_ps-status
	/usr/sbin/nsm_sensor_ps-stop
	/usr/sbin/nsm_server
	/usr/sbin/nsm_server_add
	/usr/sbin/nsm_server_backup-config
	/usr/sbin/nsm_server_backup-data
	/usr/sbin/nsm_server_clear
	/usr/sbin/nsm_server_del
	/usr/sbin/nsm_server_edit
	/usr/sbin/nsm_server_ps-restart
	/usr/sbin/nsm_server_ps-start
	/usr/sbin/nsm_server_ps-status
	/usr/sbin/nsm_server_ps-stop
	/usr/sbin/nsm_server_sensor-add
	/usr/sbin/nsm_server_sensor-del
	/usr/sbin/nsm_server_user-add

	Security Onion Configuration Files
	/etc/nsm/
	/etc/nsm/administration.conf
	/etc/nsm/ossec/
	/etc/nsm/pulledpork/
	/etc/nsm/rules/
	/etc/nsm/securityonion/
	/etc/nsm/securityonion.conf
	/etc/nsm/sensortab
	/etc/nsm/servertab
	/etc/nsm/templates/
	/etc/nsm/$HOSTNAME-$INTERFACE/
	/etc/cron.d/
	Bro
	CapMe
	ELSA
	Squert
	Snorby
	Syslog-ng
	/etc/network/interfaces

	Index

	Updates

