
You don’t need to be a wizard to transform a
game you like into a game you love. Imagine
if you could give your favorite PC game a more
informative heads-up display or instantly col-
lect all that loot from your latest epic battle.

Bring your knowledge of Windows-based
development and memory management,
and Game Hacking will teach you what you
need to become a true game hacker. Learn
the basics, like reverse engineering, assembly
code analysis, programmatic memory manip
ulation, and code injection, and hone your
new skills with hands-on example code and
practice binaries.

Level up as you learn how to:

💎	 Scan and modify memory with Cheat
Engine

💎	 Explore program structure and execution
flow with OllyDbg

💎	 Log processes and pinpoint useful data files
with Process Monitor

💎	 Manipulate control flow through NOPing,
hooking, and more

💎	 Locate and dissect common game memory
structures

You’ll even discover the secrets behind common
game bots, including:

💎	 Extrasensory perception hacks, such as
wallhacks and heads-up displays

💎	 Responsive hacks, such as autohealers and
combo bots

💎	 Bots with artificial intelligence, such as
cave walkers and automatic looters

Game hacking might seem like black magic,
but it doesn’t have to be. Once you understand
how bots are made, you’ll be better positioned
to defend against them in your own games.
Journey through the inner workings of PC
games with Game Hacking, and leave with a
deeper understanding of both game design
and computer security.

About the Author
Nick Cano wrote his first scripts for open source
game servers when he was 12 and has been
a part of the game-hacking community ever
since. He has years of experience in detecting
and defending against malware, and advises
developers and designers on best practices
to protect their games against bots. Nick has
spoken about his research and tools at many
conferences.

Get Inside the Game

$44.95 ($51.95 CDN)	 Shelve In: Computers/Security

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Cano

Game Hacking
Developing Autonomous Bots

for Online GamesDeveloping Autonomous Bots for Online Games

Nick Cano
Foreword by Dr. Jared DeMott

WARNING! This book does not condone piracy, violating the DMCA, infringing copyright, or breaking in-game Terms of
Service. Game hackers have been banned from games for life, sued for millions of dollars, and even jailed for their work.

Game Hacking

Game Hacking

G A M E
H A C K I N G

D e v e l o p i n g A u t o n o m o u s
B o t s f o r O n l i n e G a m e s

by Nick Cano

San Francisco

Game Hacking. Copyright © 2016 by Nick Cano.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed in USA

First printing

20 19 18 17 16   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-669-9
ISBN-13: 978-1-59327-669-0

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Ryan Milner
Interior Design: Octopod Studios
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Stephen Lawler
Copyeditor: Rachel Monaghan
Compositor: Laurel Chun
Proofreader: Paula L. Fleming
Indexer: BIM Creatives, LLC

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Cano, Nick, author.
 Game hacking : developing autonomous bots for online games / by Nick Cano.
 pages cm
 Includes index.
 Summary: "A hands-on guide to hacking computer games. Shows programmers how to dissect computer
games and create bots to alter their gaming environment. Covers the basics of game hacking,
including reverse engineering, assembly code analysis, programmatic memory manipulation, persistent
hacks, responsive hacks, and code injection."-- Provided by publisher.
 ISBN 978-1-59327-669-0 -- ISBN 1-59327-669-9
 1. Intelligent agents (Computer software) 2. Internet programming. 3. Internet games--
Programming. 4. Hacking. I. Title.
 QA76.76.I58C36 2016
 005.8--dc23
 2015036294

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

About the Author
Nick Cano wrote his first scripts for open source game servers when he
was 12 and started a business selling his bots when he was 16. He has
been a part of the game-hacking community ever since and advises game
developers and designers on best practices to protect their games against
bots. Nick also has years of experience in detecting and defending against
malware, and he has spoken at many conferences about his research and
tools.

About the Technical Reviewer
Stephen Lawler is the founder and president of a small computer software
and security consulting firm. He has been actively working in information
security for over 10 years, primarily in reverse engineering, malware analy-
sis, and vulnerability research. He was a member of the Mandiant malware
analysis team and assisted with high-profile computer intrusions affecting
several Fortune 100 companies. Stephen also developed and teaches the
Practical ARM Exploitation class, which has been offered at BlackHat and
several other security conferences for the past five years.

B r ie f C on t en t s

Foreword by Dr. Jared DeMott . xv

Acknowledgments . xvii

Introduction . xix

PART 1: TOOLS OF THE TRADE

Chapter 1: Scanning Memory Using Cheat Engine . 3

Chapter 2: Debugging Games with OllyDbg . 23

Chapter 3: Reconnaissance with Process Monitor and Process Explorer 49

PART 2: GAME DISSECTION

Chapter 4: From Code to Memory: A General Primer . 65

Chapter 5: Advanced Memory Forensics . 97

Chapter 6: Reading from and Writing to Game Memory . 119

PART 3: PROCESS PUPPETEERING

Chapter 7: Code Injection . 133

Chapter 8: Manipulating Control Flow in a Game . 149

PART 4: CREATING BOTS

Chapter 9: Using Extrasensory Perception to Ward Off Fog of War 189

Chapter 10: Responsive Hacks . 203

Chapter 11: Putting It All Together: Writing Autonomous Bots . 221

Chapter 12: Staying Hidden . 245

Index . 265

C on t en t s in D e t ai l

Foreword by Dr. Jared DeMott	 xv

Acknowledgments	 xvii

Introduction	 xix
Prerequisites for the Reader . xx
A Brief Game Hacking History . xx
Why Hack Games? . xxi
How This Book Is Organized . xxii
About the Online Resources . xxiv
How to Use This Book . xxiv

Part 1
Tools of the Trade

1
Scanning Memory Using Cheat Engine	 3
Why Memory Scanners Are Important . 4
Basic Memory Scanning . 4
Cheat Engine’s Memory Scanner . 5

Scan Types . 6
Running Your First Scan . 6
Next Scans . 7
When You Can’t Get a Single Result . 7
Cheat Tables . 7

Memory Modification in Games . 8
Manual Modification with Cheat Engine . 8
Trainer Generator . 9

Pointer Scanning . 11
Pointer Chains . 11
Pointer Scanning Basics . 12
Pointer Scanning with Cheat Engine . 14
Pointer Rescanning . 17

Lua Scripting Environment . 18
Searching for Assembly Patterns . 19
Searching for Strings . 21

Closing Thoughts . 22

x Contents in Detail

2
Debugging Games with OllyDbg	 23
A Brief Look at OllyDbg’s User Interface . 24
OllyDbg’s CPU Window . 26

Viewing and Navigating a Game’s Assembly Code . 27
Viewing and Editing Register Contents . 29
Viewing and Searching a Game’s Memory . 29
Viewing a Game’s Call Stack . 30

Creating Code Patches . 31
Tracing Through Assembly Code . 32
OllyDbg’s Expression Engine . 33

Using Expressions in Breakpoints . 34
Using Operators in the Expression Engine . 34
Working with Basic Expression Elements . 35
Accessing Memory Contents with Expressions . 36

OllyDbg Expressions in Action . 36
Pausing Execution When a Specific Player’s Name Is Printed 37
Pausing Execution When Your Character’s Health Drops 39

OllyDbg Plug-ins for Game Hackers . 42
Copying Assembly Code with Asm2Clipboard . 42
Adding Cheat Engine to OllyDbg with Cheat Utility . 42
Controlling OllyDbg Through the Command Line . 43
Visualizing Control Flow with OllyFlow . 45

Closing Thoughts . 47

3
Reconnaissance with Process Monitor
and Process Explorer	 49
Process Monitor . 50

Logging In-Game Events . 50
Inspecting Events in the Process Monitor Log . 52
Debugging a Game to Collect More Data . 53

Process Explorer . 55
Process Explorer’s User Interface and Controls . 56
Examining Process Properties . 57
Handle Manipulation Options . 59

Closing Thoughts . 61

Part 2
Game Dissection

4
From Code to Memory: A General Primer	 65
How Variables and Other Data Manifest in Memory . 66

Numeric Data . 67
String Data . 69
Data Structures . 71

Contents in Detail xi

Unions . 73
Classes and VF Tables . 74

x86 Assembly Crash Course . 78
Command Syntax . 79
Processor Registers . 81
The Call Stack . 86
Important x86 Instructions for Game Hacking . 89

Closing Thoughts . 96

5
Advanced Memory Forensics	 97
Advanced Memory Scanning . 98

Deducing Purpose . 98
Finding the Player’s Health with OllyDbg . 99
Determining New Addresses After Game Updates . 101

Identifying Complex Structures in Game Data . 105
The std::string Class . 105
The std::vector Class . 108
The std::list Class . 110
The std::map Class . 114

Closing Thoughts . 118

6
Reading from and Writing to Game Memory	 119
Obtaining the Game’s Process Identifier . 120

Obtaining Process Handles . 121
Working with OpenProcess() . 121

Accessing Memory . 122
Working with ReadProcessMemory() and WriteProcessMemory() 122
Accessing a Value in Memory with ReadProcessMemory()

and WriteProcessMemory() . 123
Writing Templated Memory Access Functions . 123

Memory Protection . 124
Differentiating x86 Windows Memory Protection Attributes 125
Changing Memory Protection . 126

Address Space Layout Randomization . 128
Disabling ASLR to Simplify Bot Development . 128
Bypassing ASLR in Production . 128

Closing Thoughts . 130

Part 3
Process Puppeteering

7
Code Injection	 133
Injecting Code Caves with Thread Injection . 134

Creating an Assembly Code Cave . 134
Translating the Assembly to Shellcode . 135

xii Contents in Detail

Writing the Code Cave to Memory . 136
Using Thread Injection to Execute the Code Cave . 137

Hijacking a Game’s Main Thread to Execute Code Caves . 138
Building the Assembly Code Cave . 138
Generating Skeleton Shellcode and Allocating Memory 140
Finding and Freezing the Main Thread . 141

Injecting DLLs for Full Control . 142
Tricking a Process into Loading Your DLL . 143
Accessing Memory in an Injected DLL . 145
Bypassing ASLR in an Injected DLL . 146

Closing Thoughts . 147

8
Manipulating Control Flow in a Game	 149
NOPing to Remove Unwanted Code . 150

When to NOP . 150
How to NOP . 151

Hooking to Redirect Game Execution . 153
Call Hooking . 153
VF Table Hooking . 156
IAT Hooking . 160
Jump Hooking . 165

Applying Call Hooks to Adobe AIR . 169
Accessing the RTMP Goldmine . 169
Hooking the RTMPS encode() Function . 171
Hooking the RTMPS decode() Function . 172
Placing the Hooks . 173

Applying Jump Hooks and VF Hooks to Direct3D . 175
The Drawing Loop . 176
Finding the Direct3D Device . 177
Writing a Hook for EndScene() . 182
Writing a Hook for Reset() . 183
What’s Next? . 184

Closing Thoughts . 185

Part 4
Creating Bots

9
Using Extrasensory Perception to Ward Off
Fog of War 	 189
Background Knowledge . 190
Revealing Hidden Details with Lighthacks . 190

Adding a Central Ambient Light Source . 190
Increasing the Absolute Ambient Light . 191
Creating Other Types of Lighthacks . 192

Contents in Detail xiii

Revealing Sneaky Enemies with Wallhacks . 192
Rendering with Z-Buffering . 193
Creating a Direct3D Wallhack . 194
Fingerprinting the Model You Want to Reveal . 196

Getting a Wider Field of Vision with Zoomhacks . 197
Using NOPing Zoomhacks . 197
Scratching the Surface of Hooking Zoomhacks . 198

Displaying Hidden Data with HUDs . 198
Creating an Experience HUD . 199
Using Hooks to Locate Data . 200

An Overview of Other ESP Hacks . 201
Closing Thoughts . 202

10
Responsive Hacks	 203
Observing Game Events . 204

Monitoring Memory . 204
Detecting Visual Cues . 205
Intercepting Network Traffic . 206

Performing In-Game Actions . 211
Emulating the Keyboard . 211
Sending Packets . 215

Tying the Pieces Together . 218
Making the Perfect Healer . 218
Resisting Enemy Crowd-Control Attacks . 218
Avoiding Wasted Mana . 219

Closing Thoughts . 219

11
Putting It All Together:
Writing Autonomous Bots	 221
Control Theory and Game Hacking . 222
State Machines . 223
Combining Control Theory and State Machines . 225

A Basic Healer State Machine . 225
A Complex Hypothetical State Machine . 228
Error Correction . 230

Pathfinding with Search Algorithms . 232
Two Common Search Techniques . 233
How Obstacles Disrupt Searches . 233
An A* Search Algorithm . 234
When A* Searches Are Particularly Useful . 240

Common and Cool Automated Hacks . 241
Looting with Cavebots . 241
Automating Combat with Warbots . 243

Closing Thoughts . 244

xiv Contents in Detail

12
Staying Hidden	 245
Prominent Anti-Cheat Software . 246
The PunkBuster Toolkit . 246

Signature-Based Detection . 246
Screenshots . 247
Hash Validation . 247

The ESEA Anti-Cheat Toolkit . 247
The VAC Toolkit . 247

DNS Cache Scans . 248
Binary Validation . 248
False Positives . 248

The GameGuard Toolkit . 248
User-Mode Rootkit . 248
Kernel-Mode Rootkit . 249

The Warden Toolkit . 249
Carefully Managing a Bot’s Footprint . 250

Minimizing a Bot’s Footprint . 250
Masking Your Footprint . 251
Teaching a Bot to Detect Debuggers . 251
Anti-Debugging Techniques . 255

Defeating Signature-Based Detection . 256
Defeating Screenshots . 258
Defeating Binary Validation . 259
Defeating an Anti-Cheat Rootkit . 261
Defeating Heuristics . 262
Closing Thoughts . 263

Index	 265

Fo r e w o r d

Nick is great. We first hit it off in all the right and wrong ways, as you can
imagine. I’ve been in the security field a while; he’s a little younger. I’ve had
the schooling, whereas he’s not much for college. I’m a faith guy, and he’s
not. The interesting thing is that none of that matters; we’ve had a blast
anyway. Age, race, gender, degrees—when it comes to gaming, hacking, and
coding, no one cares!

Nick gets it done. He’s fun. He’s brilliant. He’s hard working. And prob-
ably most pertinent: he’s one of the rare few who understand the intersec-
tion of gaming, hacking, and coding. He’s worked in this niche and created
profitable bots.

In this first-of-its-kind book, Nick walks you through what it means to
pull apart games. He teaches you the software investigation tools and tricks
of the trade. You’ll learn about game internals, how to pull them apart, and
how to modify play. For example, Nick teaches how to avoid anti-cheat so
that you can automate play. Wouldn’t it be cool to have your own bot that
collects experience, gold, items, and more—all while you’re away?

Ever wonder how the cheaters cheat? Ever wanted to patch or protect
your game? Grab a coffee, crack open your laptop, and enjoy.

Blessings to you and yours,

Dr. Jared DeMott
Security Expert & Software Builder

A ckno w l edgmen t s

Writing this book was an amazing journey, and I couldn’t have done it
alone. No Starch Press has been extremely supportive and worked closely
with me to take this book from concept to reality. In particular, I’d like to
thank my developmental editor, Jennifer Griffith-Delgado, and my produc-
tion editor, Laurel Chun. Bill Pollock, Tyler Ortman, Alison Law, and the
rest of the team at No Starch are wonderful people, and I’m pleased to have
worked with them.

Thanks to copyeditor Rachel Monaghan, proofreader Paula L. Fleming,
and technical reviewer Stephen Lawler. Thanks also to my friends Cavitt
“synt4x” Glover and Vadim Kotov, who took the time to skim some chapters
before submission, and to Jared DeMott for writing the book’s foreword.

I’d like to thank all of the people on TPForums who took me in when I
was just a naive kid and helped me learn how to hack games. In particular,
I owe my thanks to Joseph “ jo3bingham” Bingham, Ian Obermiller, and
jeremic, who all had a significant influence on my progression as a hacker,
and to TPForums founder Josh “Zyphrus” Hartzell, who helped me find my
confidence and skills when my future looked its bleakest.

Thanks also to my entire forum staff and every customer who has ever
used my bots. And finally, thanks to my family, friends, and colleagues,
who have been fun and supportive and helped shape me into the man I am
today.

I n t r od u c t ion

A common misconception in the world
of online gaming is the idea that the only

game you can play is the one in the title.
In fact, game hackers enjoy playing the game

that hides behind the curtain: a cat-and-mouse game
of wits between them and the game developers. While
game hackers work to reverse engineer game binaries, automate aspects
of game play, and modify gaming environments, game developers combat
the hacker-designed tools (normally referred to as bots) using anti-reversing
techniques, bot detection algorithms, and heuristic data mining.

As the battle between game hackers and developers has progressed, the
technical methods implemented by both parties—many of which resemble
techniques utilized by malware developers and antivirus vendors—have
evolved, becoming more complex. This book highlights the fight put up by
game hackers, and the advanced methods they have engineered to manipu-
late games while simultaneously eluding game developers in the dark cor-
ners of their own software.

xx Introduction

Although the book focuses on teaching you to develop tools that would
likely be considered a nuisance or even malicious by gaming companies,
you’ll find that many of the techniques are useful for development of tools
that are perfectly benign and neutral. Furthermore, the knowledge of how
these techniques are implemented is key for the game developers working
to prevent their use.

Prerequisites for the Reader
This book does not aim to teach you software development, and therefore
assumes that you have, at minimum, a solid software development back-
ground. This background should include familiarity with native Windows-
based development, as well as light experience with game development and
memory management. While these skills will be enough for you to follow
this book, experience with x86 assembly and Windows internals will ensure
that details of more advanced implementations are not lost on you.

Furthermore, since all the advanced hacks discussed in this book rely
on code injection, an ability to write code in a native language like C or
C++ is a must. All of the example code in this book is written in C++ and
can be compiled with Microsoft Visual C++ Express Edition. (You can
download MSVC++ Express Edition from http://www.visualstudio.com/en-US/
products/visual-studio-express-vs.)

N o t e 	 Other languages that compile to native code, such as Delphi, are also capable of injec-
tion, but I will not discuss them in this book.

A Brief Game Hacking History
Since the dawn of online PC gaming in the early 1980s, an ongoing war of
wits between game hackers and game developers has been taking place.
This seemingly endless struggle has prompted game developers to devote
countless hours toward preventing hackers from taking their games apart
and greasing between the gears. These hackers, who fight back with their
sophisticated stealth implementations, have many motivations: customized
graphics, better performance, ease of use, autonomous play, in-game asset
acquisition, and, of course, real-life profit.

The late 1990s and early 2000s were the golden age of game hacking,
when online PC games became advanced enough to draw large crowds
but were still simple enough to easily reverse engineer and manipulate.
Online games that came out during this time, such as Tibia (January 1997),
Runescape (January 2001), and Ultima Online (September 1997), were heavily
targeted by bot developers. The developers of these games and others like
them still struggle today to control the massive communities of bot devel-
opers and bot users. The game developers’ lack of action and the hackers’

Introduction xxi

tenacity have not only completely shattered the economies within the games,
but have also produced a thriving for-profit industry focused around bot
development and bot defense.

In the years since the golden age, more mature game companies
started taking bot defense very seriously. These companies now have dedi-
cated teams focused on developing bot prevention systems, and many also
view bots as a legal matter and will not hesitate to banish players who use
bots and sue the bot developers who provided them. As a result, many game
hackers have been forced to develop advanced stealth techniques to keep
their users safe.

This war wages on, and the numbers on both sides of the fight will con-
tinue to grow as online gaming becomes more prevalent over the coming
years. Major game developers are pursuing hackers with endless determina-
tion, even slamming some game hacking giants with multimillion-dollar
lawsuits. This means that game hackers who are serious about their business
must either target smaller gaming companies, or anonymously market their
products from the shadows in order to escape prosecution. For the foresee-
able future, game hacking and bot development will continue to grow into
a larger and more lucrative industry for those game hackers bold enough to
take the risks.

Why Hack Games?
Aside from its obvious allure and challenging nature, game hacking has
some practical and profitable purposes. Every day, thousands of novice pro-
grammers experiment with small-scale game hacking as a way to automate
monotonous tasks or perform menial actions. These script kiddies will use
automation tools like AutoIt for their small, relatively harmless hacks. On
the other hand, professional game hackers, backed by their large toolkits
and years of programming experience, will devote hundreds of hours to the
development of advanced game hacks. These types of game hacks, which
are the focus of this book, are often created with the intent of making large
amounts of money.

Gaming is a huge industry that generated $22.4 billion in sales in
2014, according to the Entertainment Software Association. Of the tens
of millions of players who play games daily, 20 percent play massively multi
player online role-playing games (MMORPGs). These MMORPGs often
have thousands of players who trade virtual goods within thriving in-game
economies. Players often have a need for in-game assets and are willing to
buy these assets with real-world money. Consequently, MMORPG players
end up developing large communities that provide gold-for-cash services.
These services often go as far as enforcing exchange rates from in-game
gold to real-world currencies.

To take advantage of this, game hackers will create bots that are capable
of automatically farming gold and leveling characters. Then, depending
on their goal, hackers will either set up massive gold farms and sell their

xxii Introduction

in-game profits, or perfect and sell their software to players who wish to
seamlessly obtain levels and gold with minimal interference. Due to the
massive communities surrounding popular MMORPGs, these game hackers
can make between six and seven figures annually.

While MMORPGs provide the largest attack surface for hackers, they
have a relatively small audience overall. About 38 percent of gamers favor
real-time strategy (RTS) and massive online battle arena (MOBA) games,
and another 6 percent play primarily first-person shooter (FPS) games.
These competitive player versus player (PvP) games collectively represent
44 percent of the gaming market and provide great rewards to determined
game hackers.

PvP games are often episodic in nature; each match is an isolated game,
and there’s typically not much profitable progression for botting away from
keyboard (AFK). This means that, instead of running gold farms or creat-
ing autonomous bots to level up characters, hackers will create reactive bots
that assist players in combat.

These highly competitive games are about skill and tactics, and most
players participate to prove their ability to themselves and others. As a
consequence, the number of people seeking bots for PvP-type games is
substantially lower than you’d find in the grind-heavy world of MMORPGs.
Nevertheless, hackers can still make a pretty penny selling their PvP bots,
which are often much easier to develop than full-fledged autonomous bots.

How This Book Is Organized
This book is split into four parts, each of which focuses on a different core
aspect of game hacking. In Part 1: Tools of the Trade, you’ll get a box full
of tools to help you hack games.

•	 Chapter 1: Scanning Memory Using Cheat Engine will teach you how
to scan a game’s memory for important values using Cheat Engine.

•	 In Chapter 2: Debugging Games with OllyDbg, you’ll get a crash
course in debugging and reverse engineering with OllyDbg. The
skills you learn here will be extremely useful when you start making
advanced bots and injecting code.

•	 To wrap up, Chapter 3: Reconnaissance with Process Monitor and
Process Explorer, will teach you how to use two reconnaissance tools to
inspect how games interact with files, other processes, the network, and
the operating system.

The online resources for each chapter in Part 1 include custom binaries
I created to give you a safe place to test and hone your newly discovered
skills.

Once you’re comfortable with every wrench and hammer, Part 2: Game
Dissection, will teach you how to get under the hood and figure out how
games work.

Introduction xxiii

•	 In Chapter 4: From Code to Memory: A General Primer, you’ll learn
what a game’s source code and data look like once compiled into a
game binary.

•	 Chapter 5: Advanced Memory Forensics builds on the knowledge
you’ll gain from Chapter 4. You’ll learn how to scan memory and use
debugging to seamlessly locate tricky memory values and dissect com-
plex classes and structures.

•	 Finally, Chapter 6: Reading from and Writing to Game Memory shows
you how to read and modify data within a running game.

These chapters provide lots of in-depth proof-of-concept example code
that you can use to verify everything you read.

In Part 3: Process Puppeteering, you’ll become a puppeteer as you
learn how to turn any game into a marionette.

•	 Building on the skills from Parts 1 and 2, Chapter 7: Code Injection
describes how to inject and execute your own code in the address space
of a game.

•	 Once you’ve mastered injection, Chapter 8: Manipulating Control Flow
in a Game will teach you how to use injection to intercept, modify, or
disable any function call made by a game, and will wrap up with some
useful real-world examples for the common libraries Adobe AIR and
Direct 3D.

To complement your puppeteering classes, these chapters are accompa-
nied by thousands of lines of production-ready code that you can use as a
boilerplate library for a future bot.

In Part 4: Creating Bots, you’ll see how to combine your toolbox, dis-
section abilities, puppeteering skills, and software engineering background
to create powerful bots.

•	 Chapter 9: Using Extrasensory Perception to Ward Off Fog of War
explores ways to make a game display useful information that isn’t
exposed by default, such as the locations of hidden enemies and the
amount of experience you earn per hour.

•	 Chapter 10: Responsive Hacks shows code patterns you can use to
detect in-game events, like decreases in health, and to make bots that
react to those events faster than human players.

•	 Chapter 11: Putting It All Together: Writing Autonomous Bots reveals
how bots that play games without human interaction work. Automated
bots combine control theory, state machines, search algorithms, and
mathematical models, and this chapter is a crash course in those topics.

•	 In Chapter 12: Staying Hidden, you’ll learn about some of the high-
level techniques you can use to escape and evade any system that would
interfere with your bots.

xxiv Introduction

As you’ve probably come to expect, these chapters have lots of example
code. Some of the hacks shown in this part are built on example code from
previous chapters. Others explore succinct, straightforward design pat-
terns you can use to create your own bots. Once you’ve finished all four
parts of this book, you’ll be sent off into the virtual world with your new
superpower.

About the Online Resources
You’ll find many additional resources for this book at https://www.nostarch​
.com/gamehacking/. These resources include compiled binaries to test your
skills, a considerable amount of example code, and quite a few snippets of
production-ready game hacking code. These resources go hand-in-hand
with the book, and it really isn’t complete without them, so make sure to
download them before you continue.

How to Use This Book
This book should be used first and foremost as a guide to get you started
in game hacking. The progression is such that the content of each chap-
ter introduces new skills and abilities that build on all previous chapters.
As you complete chapters, I encourage you to play with the example code
and test your skills on a real game before continuing your reading. This is
important, as some covered topics will have use cases that don’t become evi-
dent until you’re 10 feet deep in the mud.

Once you’ve finished the book, I hope it can still be useful to you as a
field manual. If you come across some data structure you’re unsure of, maybe
the details in Chapter 5 can help. If you reverse engineer a game’s map for-
mat and are ready to create a pathfinder, you can always flip to Chapter 11,
study the content, and use some of the example code as a starting point.
Although it’s impossible to anticipate all the problems you might face when
you’re hacking away, I’ve tried to ensure you’ll find some answers within
these pages.

A Not e f rom t he Publ ishe r

This book does not condone piracy, violating the DMCA, infringing copyright,
or breaking in-game Terms of Service. Game hackers have been banned from
games for life, sued for millions of dollars, and even jailed for their work.

https://www.nostarch.com/gamehacking
https://www.nostarch.com/gamehacking

Part 1
Too l s o f t he T r ade

1
Scanning M emo r y

U s ing C hea t E ngine

The best game hackers in the world spend
years personalizing expansive arsenals with

custom-built tools. Such potent toolkits
enable these hackers to seamlessly analyze

games, effortlessly prototype hacks, and effectively
develop bots. At the core, however, each unique kit is
built from the same four-piece powerhouse: a memory
scanner, an assembler-level debugger, a process moni-
tor, and a hex editor.

Memory scanning is the gateway to game hacking, and this chapter will
teach you about Cheat Engine, a powerful memory scanner that searches a
game’s operating memory (which lives in RAM) for values like the player’s
level, health, or in-game money. First, I’ll focus on basic memory scanning,
memory modification, and pointer scanning. Following that, we’ll dive into
Cheat Engine’s powerful embedded Lua scripting engine.

4 Chapter 1

N o t e 	 You can grab Cheat Engine from http://www.cheatengine.org/. Pay attention
when running the installer because it will try to install some toolbars and other bloat-
ware. You can disable those options if you wish.

Why Memory Scanners Are Important
Knowing a game’s state is paramount to interacting with the game intel-
ligently, but unlike humans, software can’t determine the state of a game
simply by looking at what’s on the screen. Fortunately, underneath all of
the stimuli produced by a game, a computer’s memory contains a purely
numeric representation of that game’s state—and programs can under-
stand numbers easily. Hackers use memory scanners to find those values in
memory, and then in their programs, they read the memory in these loca-
tions to understand the game’s state.

For example, a program that heals players when they fall below 500
health needs to know how to do two things: track a player’s current health
and cast a healing spell. The former requires access to the game’s state,
while the latter might only require a button to be pressed. Given the loca-
tion where a player’s health is stored and the way to read a game’s memory,
the program would look something like this pseudocode:

// do this in some loop
health = readMemory(game, HEALTH_LOCATION)
if (health < 500)
 pressButton(HEAL_BUTTON)

A memory scanner allows you to find HEALTH_LOCATION so that your soft-
ware can query it for you later.

Basic Memory Scanning
The memory scanner is the most basic, yet most important, tool for the
aspiring game hacker. As in any program, all data in the memory of a game
resides at an absolute location called a memory address. If you think of the
memory as a very large byte array, a memory address is an index pointing
to a value in that array. When a memory scanner is told to find some value
x (called a scan value, because it’s the value you’re scanning for) in a game’s
memory, the scanner loops through the byte array looking for any value
equal to x. Every time it finds a matching value, it adds the index of the
match to a result list.

Due to the sheer size of a game’s memory, however, the value of x can
appear in hundreds of locations. Imagine that x is the player’s health, which
is currently 500. Our x uniquely holds 500, but 500 is not uniquely held by
x, so a scan for x returns all variables with a value of 500. Any addresses not
related to x are ultimately clutter; they share a value of 500 with x only by

Scanning Memory Using Cheat Engine 5

chance. To filter out these unwanted values, the memory scanner allows you
to rescan the result list, removing addresses that no longer hold the same
value as x, whether x is still 500 or has changed.

For these rescans to be effective, the overall state of the game must
have significant entropy—a measure of disorder. You increase entropy by
changing the in-game environment, often by moving around, killing crea-
tures, or switching characters. As entropy increases, unrelated addresses are
less likely to continue to arbitrarily hold the same value, and given enough
entropy, a few rescans should filter out all false positives and leave you with
the true address of x.

Cheat Engine’s Memory Scanner
This section gives you a tour of Cheat Engine’s memory-scanning options,
which will help you track down the addresses of game state values in mem-
ory. I’ll give you a chance to try the scanner out in “Basic Memory Editing”
on page 11; for now, open Cheat Engine and have a look around. The
memory scanner is tightly encapsulated in its main window, as shown in
Figure 1-1.

�

�

�

�

�

�

Figure 1-1: Cheat Engine main screen

To begin scanning a game’s memory, click the Attach icon u to attach
to a process and then enter the scan value (referred to as x in our concep-
tual scanner) you want to locate w. By attaching to a process, we’re telling

6 Chapter 1

Cheat Engine to prepare to operate on it; in this case, that operation is a
scan. It helps to also tell Cheat Engine what kind of scan to run, as I’ll dis-
cuss next.

Scan Types
Cheat Engine allows you to select two different scan directives, called Scan
Type and Value Type x. Scan Type tells the scanner how to compare your
scan value with the memory being scanned using one of the following scan
types:

Exact Value  Returns addresses pointing to values equal to the
scan value. Choose this option if the value you are looking for won’t
change during the scan; health, mana, and level typically fall into this
category.

Bigger Than  Returns addresses pointing to values greater than the
scan value. This option is useful when the value you’re searching for is
steadily increasing, which often happens with timers.

Smaller Than  Returns addresses pointing to values smaller than the
scan value. Like Bigger Than, this option is useful for finding timers
(in this case, ones that count down rather than up).

Value Between  Returns addresses pointing to values within a scan
value range. This option combines Bigger Than and Smaller Than,
displaying a secondary scan value box that allows you to input a much
smaller range of values.

Unknown Initial Value  Returns all addresses in a program’s memory,
allowing rescans to examine the entire address range relative to their
initial values. This option is useful for finding item or creature types,
since you won’t always know the internal values the game developers
used to represent these objects.

The Value Type directive tells the Cheat Engine scanner what type of
variable it’s searching for.

Running Your First Scan
Once the two scan directives are set, click First Scan v to run an initial
scan for values, and the scanner will populate the results list y. Any green
addresses in this list are static, meaning that they should remain persistent
across program restarts. Addresses listed in black reside in dynamically allo-
cated memory, memory that is allocated at runtime.

When the results list is first populated, it shows the address and real-
time value of each result. Each rescan will also show the value of each result
during the previous scan. (Any real-time values displayed are updated at
an interval that you can set in Edit4Settings4General Settings4Update
interval.)

Scanning Memory Using Cheat Engine 7

Next Scans
Once the results list is populated, the scanner enables the Next Scan v but-
ton, which offers six new scan types. These additional scan types allow you
to compare the addresses in the results list to their values in the previous
scan, which will help you narrow down which address holds the game state
value you’re scanning for. They are as follows:

Increased Value  Returns addresses pointing to values that have
increased. This complements the Bigger Than scan type by keeping
the same minimum value and removing any address whose value has
decreased.

Increased Value By  Returns addresses pointing to values that have
increased by a defined amount. This scan type usually returns far fewer
false positives, but you can use it only when you know exactly how much
a value has increased.

Decreased Value  This option is the opposite of Increased Value.

Decreased Value By  This option is the opposite of Increased Value By.

Changed Value  Returns addresses pointing to values that have
changed. This type is useful when you know a value will mutate, but
you’re unsure how.

Unchanged Value  Returns addresses pointing to values that haven’t
changed. This can help you eliminate false positives, since you can eas-
ily create a large amount of entropy while ensuring the desired value
stays the same.

You’ll usually need to use multiple scan types in order to narrow down
a large result list and find the correct address. Eliminating false positives is
often a matter of properly creating entropy (as described in “Basic Memory
Scanning” on page 4), tactically changing your scan directives, bravely
pressing Next Scan, and then repeating the process until you have a single
remaining address.

When You Can’t Get a Single Result
Sometimes it is impossible to pinpoint a single result in Cheat Engine, in
which case you must determine the correct address through experimenta-
tion. For example, if you’re looking for your character’s health and can’t
narrow it down to fewer than five addresses, you could try modifying the
value of each address (as discussed in “Manual Modification with Cheat
Engine” on page 8) until you see the health display change or the other
values automatically change to the one you set.

Cheat Tables
Once you’ve found the correct address, you can double-click it to add it to
the cheat table pane z; addresses in the cheat table pane can be modified,
watched, and saved to cheat table files for future use.

8 Chapter 1

For each address in the cheat table pane, you can add a description by
double-clicking the Description column, and you can add a color by right-
clicking and selecting Change Color. You can also display the values of each
address in hexadecimal or decimal format by right-clicking and selecting
Show as hexadecimal or Show as decimal, respectively. Lastly, you can
change the data type of each value by double-clicking the Type column,
or you can change the value itself by double-clicking the Value column.

Since the main purpose of the cheat table pane is to allow a game
hacker to neatly track addresses, it can be dynamically saved and loaded.
Go to File4Save or File4Save As to save the current cheat table pane to
a .ct document file containing each address with its value type, description,
display color, and display format. To load the saved .ct documents, go to
File4Load. (You’ll find many ready-made cheat tables for popular games
at http://cheatengine.org/tables.php.)

Now that I’ve described how to scan for a game state value, I’ll discuss
how you can change that value when you know where it lives in memory.

Memory Modification in Games
Bots cheat a game system by modifying memory values in the game’s state
in order to give you lots of in-game money, modify your character’s health,
change your character’s position, and so on. In most online games, a char-
acter’s vitals (such as health, mana, skills, and position) are held in memory
but are controlled by the game server and relayed to your local game client
over the Internet, so modifying such values during online play is merely
cosmetic and doesn’t affect the actual values. (Any useful memory modifica-
tion to an online game requires a much more advanced hack that’s beyond
Cheat Engine’s capabilities.) In local games with no remote server, however,
you can manipulate all of these values at will.

Manual Modification with Cheat Engine
We’ll use Cheat Engine to understand how the memory modification magic
works.

To modify memory manually, do the following:

1.	 Attach Cheat Engine to a game.

2.	 Either scan for the address you wish to modify or load a cheat table that
contains it.

3.	 Double-click on the Value column for the address to open an input
prompt where you can enter a new value.

4.	 If you want to make sure the new value can’t be overwritten, select the
box under the Active column to freeze the address, which will make
Cheat Engine keep writing the same value back to it every time it
changes.

Scanning Memory Using Cheat Engine 9

This method works wonders for quick-and-dirty hacks, but constantly
changing values by hand is cumbersome; an automated solution would be
much more appealing.

Trainer Generator
Cheat Engine’s trainer generator allows you to automate the whole memory
modification process without writing any code.

To create a trainer (a simple bot that binds memory modification actions
to keyboard hotkeys), go to File4Create generic trainer Lua script from
table. This opens a Trainer generator dialog similar to the one shown in
Figure 1-2.

Figure 1-2: Cheat Engine Trainer generator dialog

There are a number of fields to modify here:

Processname  The name of the executable the trainer should attach
to. This is the name shown in the process list when you attach with
Cheat Engine, and it should be autofilled with the name of the pro-
cess Cheat Engine is attached to.

Popup trainer on keypress  Optionally enables a hotkey—which you
set by entering a key combination in the box below the checkbox—to
display the trainer’s main window.

Title  The name of your trainer, which will be displayed on its inter-
face. This is optional.

About text  The description of your trainer, to be displayed on the
interface; this is also optional.

Freeze interval (in milliseconds)  The interval during which a freeze
operation overwrites the value. You should generally leave this at 250, as
lower intervals can sap resources and higher values may be too slow.

10 Chapter 1

Once these values are configured, click Add Hotkey to set up a key
sequence to activate your trainer. You will be prompted to select a value
from your cheat table. Enter a value, and you will be taken to a Set/Change
hotkey screen similar to Figure 1-3.

�
�

�

�

Figure 1-3: Cheat Engine Set/Change hotkey screen

On this screen, place your cursor in the box labeled Type the keys you
want to set the hotkey to u and enter the desired key combination. Next,
choose the desired action from the drop-down menu v; your options
should appear in the following order:

Toggle freeze  Toggles the freeze state of the address.

Toggle freeze and allow increase  Toggles the freeze state of the
address but allows the value to increase. Any time the value decreases,
the trainer overwrites it with its previous value. Increased values will
not be overwritten.

Toggle freeze and allow decrease  Does the opposite of Toggle freeze
and allow increase.

Freeze  Sets the address to frozen if it’s not frozen already.

Unfreeze  Unfreezes the address if it’s frozen.

Set value to  Sets the value to whatever you specify in the value box w.

Decrease value with  Decreases the value by the amount you specify in
the value box w.

Increase value with  Does the opposite of Decrease value with.

Finally, you can set a description for the action x. Click Apply, then
OK, and your action will appear in the list on the Trainer generator
screen. At this point, Cheat Engine runs the trainer in the background,
and you can simply press the hotkeys you configured to execute the mem-
ory actions.

Scanning Memory Using Cheat Engine 11

To save your trainer to a portable executable, click Generate trainer.
Running this executable after the game is launched will attach your trainer
to the game so you can use it without starting Cheat Engine.

Now that you know your way around Cheat Engine’s memory scanner
and trainer generator, try modifying some memory yourself.

Pointer Scanning
As I’ve mentioned, online games often store values in dynamically allocated
memory. While addresses that reference dynamic memory are useless to us in
and of themselves, some static address will always point to another address,
which in turn points to another, and so on, until the tail of the chain points
to the dynamic memory we’re interested in. Cheat Engine can locate these
chains using a method called pointer scanning.

In this section, I’ll introduce you to pointer chains and then describe
how pointer scanning works in Cheat Engine. When you have a good grasp
of the user interface, you can get some hands-on experience in “Pointer
Scanning” on page 18.

Pointer Chains
The chain of offsets I’ve just described is called a pointer chain and looks
like this:

list<int> chain = {start, offset1, offset2[, ...]}

The first value in this pointer chain (start) is called a memory pointer. It’s
an address that starts the chain. The remaining values (offset1, offset2, and
so on) make up the route to the desired value, called a pointer path.

Ba sic Memo ry E di t ing

Download the files for this book from https://www.nostarch.com/gamehacking/,
and run the file BasicMemory.exe. Next, start up Cheat Engine and attach to
the binary. Then, using only Cheat Engine, find the addresses for the x- and
y-coordinates of the gray ball. (Hint: Use the 4 Bytes value type.)

Once you’ve found the values, modify them to place the ball on top of the
black square. The game will let you know once you’ve succeeded by display-
ing the text “Good job!” (Hint: Each time the ball is moved, its position—stored
as a 4-byte integer—in that plane is changed by 1. Also, try to look only for
static [green] results.)

12 Chapter 1

This pseudocode shows how a pointer chain might be read:

int readPointerChain(chain) {
u ret = read(chain[0])

 for i = 1, chain.len - 1, 1 {
 offset = chain[i]
 ret = read(ret + offset)
 }
 return ret
}

This code creates the function readPointerPath(), which takes a pointer
chain called chain as a parameter. The function readPointerPath() treats the
pointer path in chain as a list of memory offsets from the address ret, which
is initially set to the memory pointer at u. It then loops through these off-
sets, updating the value of ret to the result of read(ret + offset) on each
iteration and returning ret once it’s finished. This pseudocode shows what
readPointerPath() looks like when the loop is unrolled:

list<int> chain = {0xDEADBEEF, 0xAB, 0x10, 0xCC}
value = readPointerPath(chain)
// the function call unrolls to this
ret = read(0xDEADBEEF) //chain[0]
ret = read(ret + 0xAB)
ret = read(ret + 0x10)
ret = read(ret + 0xCC)
int value = ret

The function ultimately calls read four times, on four different
addresses—one for each element in chain.

N o t e 	 Many game hackers prefer to code their chain reads in place, instead of encapsulating
them in functions like readPointerPath().

Pointer Scanning Basics
Pointer chains exist because every chunk of dynamically allocated memory
must have a corresponding static address that the game’s code can use to
reference it. Game hackers can access these chunks by locating the pointer
chains that reference them. Because of their multitier structure, however,
pointer chains cannot be located through the linear approach that memory
scanners use, so game hackers have devised new ways to find them.

From a reverse engineering perspective, you could locate and analyze
the assembly code in order to deduce what pointer path it used to access the
value, but doing so is very time-consuming and requires advanced tools.
Pointer scanners solve this problem by using brute-force to recursively iterate
over every possible pointer chain until they find one that resolves to the tar-
get memory address.

Scanning Memory Using Cheat Engine 13

The Listing 1-1 pseudocode should give you a general idea of how a
pointer scanner works.

list<int> pointerScan(target, maxAdd, maxDepth) {
u for address = BASE, 0x7FFFFFF, 4 {

 ret = rScan(address, target, maxAdd, maxDepth, 1)
 if (ret.len > 0) {
 ret.pushFront(address)
 return ret
 }
 }
 return {}
}
list<int> rScan(address, target, maxAdd, maxDepth, curDepth) {

v for offset = 0, maxAdd, 4 {
 value = read(address + offset)

w if (value == target)
 return list<int>(offset)
 }

x if (curDepth < maxDepth) {
 curDepth++

y for offset = 0, maxAdd, 4 {
 ret = rScan(address + offset, target, maxAdd, maxDepth, curDepth)

z if (ret.len > 0) {
 ret.pushFront(offset)

{ return ret
 }
 }
 }
 return {}
}

Listing 1-1: Pseudocode for a pointer scanner

This code creates the functions pointerScan() and rScan().

pointerScan()

The pointerScan() function is the entry point to the scan. It takes the param-
eters target (the dynamic memory address to find), maxAdd (the maximum
value of any offset), and maxDepth (the maximum length of the pointer path).
It then loops through every 4-byte aligned address u in the game, calling
rScan() with the parameters address (the address in the current iteration),
target, maxAdd, maxDepth, and curDepth (the depth of the path, which is always 1
in this case).

rScan()

The rScan() function reads memory from every 4-byte aligned offset between
0 and maxAdd v, and returns if a result is equal to target w. If rScan() doesn’t
return in the first loop and the recursion is not too deep x, it increments
curDepth and again loops over each offset y, calling itself for each iteration.

14 Chapter 1

If a self call returns a partial pointer path z, rScan() will prepend the
current offset to the path and return up the recursion chain { until it
reaches pointerScan(). When a call to rScan() from pointerScan() returns a
pointer path, pointerScan() pushes the current address to the front of the
path and returns it as a complete chain.

Pointer Scanning with Cheat Engine
The previous example showed the basic process of pointer scanning, but
the implementation I’ve shown is primitive. Aside from being insanely
slow to execute, it would generate countless false positives. Cheat Engine’s
pointer scanner uses a number of advanced interpolations to speed up the
scan and make it more accurate, and in this section, I’ll introduce you to
the smorgasbord of available scanning options.

To initiate a pointer scan in Cheat Engine, right-click on a dynamic
memory address in your cheat table and click Pointer scan for this address.
When you initiate a pointer scan, Cheat Engine will ask you where to store
the scan results as a .ptr file. Once you enter a location, a Pointerscanner
scanoptions dialog similar to the one shown in Figure 1-4 will appear.

Figure 1-4: Cheat Engine Pointerscanner scanoptions dialog

Scanning Memory Using Cheat Engine 15

The Address to find input field at the top displays your dynamic mem-
ory address. Now carefully select from among Cheat Engine’s many scan
options.

Key Options

Several of Cheat Engine’s scan options typically retain their default values.
Those options are as follows:

Addresses must be 32-bits aligned  Tells Cheat Engine to scan only
addresses that are multiples of 4, which greatly increases the scan
speed. As you’ll learn in Chapter 4, compilers align data so that most
addresses will be multiples of 4 anyway by default. You’ll rarely need to
disable this option.

Only find paths with a static address  Speeds up the scan by prevent-
ing Cheat Engine from searching paths with a dynamic start pointer.
This option should always be enabled because scanning for a path start-
ing at another dynamic address can be counterproductive.

Don’t include pointers with read-only nodes  Should also always be
enabled. Dynamically allocated memory that stores volatile data should
never be read-only.

Stop traversing a path when a static has been found  Terminates the
scan when it finds a pointer path with a static start address. This should
be enabled to reduce false positives and speed up the scan.

Pointer path may only be inside this region  Can typically be left as is.
The other options available to you compensate for this large range by
intelligently narrowing the scope of the scan.

First element of pointerstruct must point to module  Tells Cheat
Engine not to search heap chunks in which virtual function tables are
not found, under the assumption that the game was coded using object
orientation. While this setting can immensely speed up scans, it’s highly
unreliable and you should almost always leave it disabled.

No looping pointers  Invalidates any paths that point to themselves,
weeding out inefficient paths but slightly slowing down the scan. This
should usually be enabled.

Max level  Determines the maximum length of the pointer path.
(Remember the maxDepth variable in the example code in Listing 1-1?)
This should be kept around 6 or 7.

Of course, there will be times when you’ll need to change these options
from the settings described. For example, failing to obtain reliable results
with the No looping pointers or Max level settings typically means that the
value you’re looking for exists in a dynamic data structure, like a linked list,
binary tree, or vector. Another example is the Stop traversing a path when a
static has been found option, which in rare cases can prevent you from get-
ting reliable results.

16 Chapter 1

Situational Options

Unlike the previous options, your settings for the remaining ones will depend
on your situation. Here’s how to determine the best configuration for each:

Improve pointerscan with gathered heap data  Allows Cheat Engine
to use the heap allocation record to determine offset limits, effectively
speeding up the scan by weeding out many false positives. If you run
into a game using a custom memory allocator (which is becoming
increasingly common), this option can actually do the exact opposite
of what it’s meant to do. You can leave this setting enabled in initial
scans, but it should be the first to go when you’re unable to find reli-
able paths.

Only allow static and heap addresses in the path  Invalidates all paths
that can’t be optimized with heap data, making this approach even
more aggressive.

Max different offsets per node  Limits the number of same-value
pointers the scanner checks. That is, if n different addresses point to
0x0BADF00D, this option tells Cheat Engine to consider only the first m
addresses. This can be extremely helpful when you’re unable to narrow
down your result set. In other cases, you may want to disable it, as it will
miss many valid paths.

Allow stack addresses of the first thread(s) to be handled as static 
Scans the call stacks of oldest m threads in the game, considering the
first n bytes in each one. This allows Cheat Engine to scan the param-
eters and local variables of functions in the game’s call chain (the goal
being to find variables used by the game’s main loop). The paths found
with this option can be both highly volatile and extremely useful; I use
it only when I fail to find heap addresses.

Stack addresses as only static address  Takes the previous option even
further by allowing only stack addresses in pointer paths.

Pointers must end with specific offsets  Can be useful if you know the
offset(s) at the end of a valid path. This option will allow you to specify
those offsets (starting with the last offset at the top), greatly reducing
the scope of the scan.

Nr of threads scanning  Determines how many threads the scanner
will use. A number equal to the number of cores in your processor
often works best. A drop-down menu with options allows you to specify
the priority for each thread. Idle is best if you want your scan to go very
slowly, Normal is what you should use for most scans, and Time critical
is useful for lengthy scans but will render your computer useless for the
scan duration.

Maximum offset value  Determines the maximum value of each offset
in the path. (Remember the maxAdd variable in Listing 1-1?) I typically
start with a low value, increasing it only if my scan fails; 128 is a good
starting value. Keep in mind that this value is mostly ignored if you’re
using the heap optimization options.

Scanning Memory Using Cheat Engine 17

N o t e 	 What if both Only allow static and heap addresses in the path and Stack addresses as
only static address are enabled? Will the scan come up empty? Seems like a fun, albeit
useless, experiment.

Once you have defined your scan options, click OK to start a pointer
scan. When the scan completes, a results window will appear with the list of
pointer chains found. This list often has thousands of results, containing
both real chains and false positives.

Pointer Rescanning
The pointer scanner has a rescan feature that can help you eliminate false
positives. To begin, press ctrl-R from the results window to open the
Rescan pointerlist dialog, as shown in Figure 1-5.

�

�

Figure 1-5: Cheat Engine Rescan pointerlist
dialog

There are two main options to consider when you tell Cheat Engine to
rescan:

Only filter out invalid pointers  If you check this box u, the rescan
will discard only pointer chains that point to invalid memory, which
helps if your initial result set is very large. Disable this to filter out paths
that don’t resolve to a specific address or value (as shown in the figure).

Repeat rescan until stopped  If you check this box v, the rescan will
execute in a continuous loop. Ideally, you should enable this setting and
let rescan run while you create a large amount of memory entropy.

For the initial rescan, enable both Only filter out invalid pointers and
Repeat rescan until stopped, and then press OK to initiate the rescan. The
rescan window will go away, and a Stop rescan loop button will appear in
the results window. The result list will be constantly rescanned until you click
Stop rescan loop, but spend a few minutes creating memory entropy before
doing so.

18 Chapter 1

In rare cases, rescanning using a rescan loop may still leave you with
a large list of possible paths. When this happens, you may need to restart
the game, find the address that holds your value (it may have changed!),
and use the rescan feature on this address to further narrow results. In this
scan, leave Only filter out invalid pointers unchecked and enter the new
address in the Address to find field.

N o t e 	 If you had to close the results window, you can reopen it and load the result list by
going to the main Cheat Engine window and pressing the Memory View button below
the results pane. This should bring up a memory dump window. When the window
appears, press ctrl-P to open the pointer scan results list. Then press ctrl-O to open
the .ptr file where you saved the pointer scan.

If your results still aren’t narrow enough, try running the same scan
across system restarts or even on different systems. If this still yields a large
result set, each result can safely be considered static because more than one
pointer chain can resolve to the same address.

Once you’ve narrowed down your result set, double-click on a usable
pointer chain to add it to your cheat table. If you have a handful of seem-
ingly usable chains, grab the one with the fewest offsets. If you find multiple
chains with identical offsets that start with the same pointer but diverge
after a certain point, your data may be stored in a dynamic data structure.

That’s all there is to pointer scanning in Cheat Engine. Try it yourself!

Lua Scripting Environment
Historically, bot developers rarely used Cheat Engine to update their
addresses when a game released a patch because it was much easier to
do so in OllyDbg. This made Cheat Engine useless to game hackers other

Poin t e r Scanning

Go to https://www.nostarch.com/gamehacking/ and download MemoryPointers​
.exe. Unlike the last task, which required you to win only once, this one requires
that you win 50 times in 10 seconds. Upon each win, the memory addresses
for the x- and y-coordinates will change, meaning you will be able to freeze
the value only if you have found a proper pointer path. Start this exercise the
same way as the previous one, but once you’ve found the addresses, use the
Pointer scan feature to locate pointer paths to them. Then, place the ball on
top of the black square, freeze the value in place, and press tab to begin the
test. Just as before, the game will let you know once you’ve won. (Hint: Try set-
ting the maximum level to 5 and the maximum offset value to 512. Also, play
with the options to allow stack addresses, terminate the scan when a static is
found, and improve the pointer scan with heap data. See which combination
of options gives the best results.)

Scanning Memory Using Cheat Engine 19

than for initial research and development—that is, until a powerful Lua-
based embedded scripting engine was implemented around Cheat Engine’s
robust scanning environment. While this engine was created to enable the
development of simple bots within Cheat Engine, professional game hack-
ers found they could also use it to easily write complex scripts to automati-
cally locate addresses across different versions of a game’s binary—a task
that might otherwise take hours.

N o t e 	 You’ll find more detail about the Cheat Engine Lua scripting engine on the wiki at
http://wiki.cheatengine.org/.

To start using the Lua engine, press ctrl-alt-L from the main Cheat
Engine window. Once the window opens, write your script in the text area
and click Execute script to run it. Save a script with ctrl-S and open a
saved script with ctrl-O.

The scripting engine has hundreds of functions and infinite use cases,
so I’ll give you just a glimpse of its abilities by breaking down two scripts.
Every game is different and every game hacker writes scripts to accomplish
unique goals, so these scripts are only useful for demonstrating concepts.

Searching for Assembly Patterns
This first script locates functions that compose outgoing packets and sends
them to the game server. It works by searching a game’s assembly code for
functions that contain a certain code sequence.

u BASEADDRESS = getAddress("Game.exe")
v function LocatePacketCreation(packetType)
w for address = BASEADDRESS, (BASEADDRESS + 0x2ffffff) do

 local push = readBytes(address, 1, false)
 local type = readInteger(address + 1)
 local call = readInteger(address + 5)

x if (push == 0x68 and type == packetType and call == 0xE8) then
 return address
 end
 end
 return 0
end
FUNCTIONHEADER = { 0xCC, 0x55, 0x8B, 0xEC, 0x6A }

y function LocateFunctionHead(checkAddress)
 if (checkAddress == 0) then return 0 end

z for address = checkAddress, (checkAddress - 0x1fff), -1 do
 local match = true
 local checkheader = readBytes(address, #FUNCTIONHEADER, true)

{ for i, v in ipairs(FUNCTIONHEADER) do
 if (v ~= checkheader[i]) then
 match = false
 break
 end
 end

| if (match) then return address + 1 end
 end

20 Chapter 1

 return 0
end

} local funcAddress = LocateFunctionHead(LocatePacketCreation(0x64))
if (funcAddress ~= 0) then
 print(string.format("0x%x",funcAddress))
else
 print("Not found!")
end

The code begins by getting the base address of the module that
Cheat Engine is attached to u. Once it has the base address, the function
LocatePacketCreation() is defined v. This function loops through the first
0x2FFFFFF bytes of memory in the game w, searching for a sequence that
represents this x86 assembler code:

PUSH type ; Data is: 0x68 [4byte type]
CALL offset ; Data is: 0xE8 [4byte offset]

The function checks that the type is equal to packetType, but it doesn’t
care what the function offset is x. Once this sequence is found, the func-
tion returns.

Next, the LocateFunctionHead() function is defined y. The function back-
tracks up to 0x1FFF bytes from a given address z, and at each address, it
checks for a stub of assembler code { that looks something like this:

INT3 ; 0xCC
PUSH EBP ; 0x55
MOV EBP, ESP ; 0x8B 0xEC
PUSH [-1] ; 0x6A 0xFF

This stub will be present at the beginning of every function, because it’s
part of the function prologue that sets up the function’s stack frame. Once
it finds the code, the function will return the address of the stub plus 1 |
(the first byte, 0xCC, is padding).

To tie these steps together, the LocatePacketCreation() function is called
with the packetType that I’m looking for (arbitrarily 0x64) and the resulting
address is passed into the LocateFunctionHead() function }. This effectively
locates the first function that pushes packetType into a function call and
stores its address in funcAddress. This stub shows the result:

INT3 ; LocateFunctionHead back-tracked to here
PUSH EBP ; and returned this address
MOV EBP, ESP
PUSH [-1]
--snip--
PUSH [0x64] ; LocatePacketCreation returned this address
CALL [something]

Scanning Memory Using Cheat Engine 21

This 35-line script can automatically locate 15 different functions in
under a minute.

Searching for Strings
This next Lua script scans a game’s memory for text strings. It works much as
the Cheat Engine’s memory scanner does when you use the string value type.

BASEADDRESS = getAddress("Game.exe")
u function findString(str)

 local len = string.len(str)
v local chunkSize = 4096
w local chunkStep = chunkSize - len

 print("Found '" .. str .. "' at:")
x for address = BASEADDRESS, (BASEADDRESS + 0x2ffffff), chunkStep do

 local chunk = readBytes(address, chunkSize, true)
 if (not chunk) then break end

y for c = 0, chunkSize-len do
z checkForString(address , chunk, c, str, len)

 end
 end
end
function checkForString(address, chunk, start, str, len)
 for i = 1, len do
 if (chunk[start+i] ~= string.byte(str, i)) then
 return false
 end
 end

{ print(string.format("\t0x%x", address + start))
end

| findString("hello")
} findString("world")

After getting the base address, the findString() function is defined u,
which takes a string, str, as a parameter. This function loops through the
game’s memory x in 4,096-byte-long chunks v. The chunks are scanned
sequentially, each one starting len (the length of str) bytes before the end
of the previous one w to prevent missing a string that begins on one chunk
and ends on another.

As findString() reads each chunk, it iterates over every byte until the over-
lap point in the chunk y, passing each subchunk into the checkForString()
function z. If checkForString() matches the subchunk to str, it prints the
address of that subchunk to the console {.

Lastly, to find all addresses that reference the strings "hello" and
"world", the functions findString("hello") | and findString("world") } are
called. By using this code to search for embedded debug strings and pairing
it with the previous code to locate function headers, I’m able to find a large
number of internal functions within a game in mere seconds.

22 Chapter 1

Closing Thoughts
By this point, you should have a basic understanding of Cheat Engine
and how it works. Cheat Engine is a very important tool in your kit, and I
encourage you to get some hands-on experience with it by following “Basic
Memory Editing” on page 11 and “Pointer Scanning” on page 18 and
playing around with it on your own.

Op t imi z ing Memo ry Code

Due to the high overhead of memory reading, optimization is extremely impor-
tant when you’re writing code that performs memory reads. In the previous code
snippet, notice that the function findString() does not use the Lua engine’s built-
in readString() function. Instead, it reads big chunks of memory and searches
them for the desired string. Let’s break down the numbers.

A scan using readString() would try to read a string of len bytes at every
possible memory address. This means it would read, at most, (0x2FFFFFF * len
+ len) bytes. However, findString() reads chunks of 4,096 bytes and scans
them locally for matching strings. This means it would read, at most, (0x2FFFFFF
+ 4096 + (0x2FFFFFF / (4096 - 10)) * len) bytes. When searching for a
string with a length of 10, the number of bytes that each method would read is
503,316,480 and 50,458,923, respectively.

Not only does findString() read an order of magnitude less data, it also
invokes far fewer memory reads. Reading in chunks of 4,096 bytes would
require a total of (0x2FFFFFF / (4096 - len)) reads. Compare that to a scan
using readString(), which would need 0x2FFFFFF reads. The scan that uses
findString() is a huge improvement because invoking a read is much more
expensive than increasing the size of data being read. (Note that I chose
4,096 arbitrarily. I keep the chunk relatively small because reading memory
can be time-consuming, and it might be wasteful to read four pages at a time
just to find the string in the first.)

2
D eb u gging G ame s

w i t h O l ly D bg

You can scratch the surface of what hap-
pens as a game runs with Cheat Engine,

but with a good debugger, you can dig
deeper until you understand the game’s

structure and execution flow. That makes OllyDbg
essential to your game-hacking arsenal. It’s packed
with a myriad of powerful tools like conditional breakpoints, referenced
string search, assembly pattern search, and execution tracing, making it a
robust assembler-level debugger for 32-bit Windows applications.

I’ll cover low-level code structure in detail in Chapter 4, but for this
chapter, I assume you’re at least familiar with modern code-level debug-
gers, such as the one packaged with Microsoft Visual Studio. OllyDbg is
functionally similar to those, with one major difference: it interfaces with

24 Chapter 2

the assembly code of an application, working even in the absence of source
code and/or debug symbols, making it ideal when you need to dig into the
internals of a game. After all, game companies are rarely nice (or dumb)
enough to ship their games with debug symbols!

In this chapter, I’ll go over OllyDbg’s user interface, show you how to
use its most common debugging features, break down its expression engine,
and provide some real-world examples of how you can tie it in to your game
hacking endeavors. As a wrap-up, I’ll teach you about some useful plug-ins
and send you off with a test game designed to get you started in OllyDbg.

N o t e 	 This chapter focuses on OllyDbg 1.10 and may not be entirely accurate for later
versions. I use this version because, at the time of writing, the plug-in interface for
OllyDbg 2 is still far less robust than the one for OllyDbg 1.

When you feel like you have a handle on OllyDbg’s interface and fea-
tures, you can try it on a game yourself with “Patching an if() Statement”
on page 46.

A Brief Look at OllyDbg’s User Interface
Go to the OllyDbg website (http://www.ollydbg.de/), download and install
OllyDbg, and open the program. You should see the toolbar shown in
Figure 2-1 above a multiple window interface area.

� � � � �

Figure 2-1: OllyDbg main window

This toolbar contains the program controls u, the debug buttons v,
the Go to button w, the control window buttons x, and the Settings
button y.

The three program controls allow you to open an executable and
attach to the process it creates, restart the current process, or terminate
execution of the current process, respectively. You can also complete these
functions with the hotkeys F3, ctrl-F2, and alt-F2, respectively. To attach
to a process that is already running, click File4Attach.

The debug buttons control the debugger actions. Table 2-1 describes
what these buttons do, along with their hotkeys and functions. This table
also lists three useful debugger actions that don’t have buttons on the
debug toolbar.

http://www.ollydbg.de/

Debugging Games with OllyDbg 25

Table 2-1: Debug Buttons and Other Debugger Functions

Button Hotkey Function

Play F9 Resumes normal execution of the process.

Pause F12 Pauses execution of all threads within the
process and brings up the CPU window at the
instruction currently being executed.

Step into F7 Single-steps to the next operation to be executed
(will dive down into function calls).

Step over F8 Steps to the next operation to be executed
within current scope (will skip over function
calls).

Trace into ctrl-F11 Runs a deep trace, tracing every operation that
is executed.

Trace over ctrl-F12 Runs a passive trace that traces only operations
within the current scope.

Execute until return ctrl-F9 Executes until a return operation is hit within the
current scope.

ctrl-F7 Automatically single-steps on every operation,
following execution in the disassembly window.
This makes execution appear to be animated.

ctrl-F8 Also animates execution, but steps over
functions instead of stepping into them.

esc Stops animation, pausing execution on the
current operation.

The Go to button opens a dialog asking for a hexadecimal address. Once
you enter the address, OllyDbg opens the CPU window and shows the disas-
sembly at the specified address. When the CPU window is in focus, you can
also show that information with the hotkey ctrl-G.

The control window buttons open different control windows, which display
useful information about the process you’re debugging and expose more
debugging functions, like the ability to set breakpoints. OllyDbg has a total of
13 control windows, which can all be open simultaneously within the multiple
window interface. Table 2-2 describes these windows, listed in the order in
which they appear on the window buttons toolbar.

Table 2-2: OllyDbg’s Control Windows

Window Hotkey Function

Log alt-L Displays a list of log messages, including debug prints,
thread events, debugger events, module loads, and
much more.

Modules alt-E Displays a list of all executable modules loaded into
the process. Double-click a module to open it in the
CPU window.

(continued)

26 Chapter 2

Table 2-2 (continued)

Window Hotkey Function

Memory map alt-M Displays a list of all blocks of memory allocated by the
process. Double-click a block in the list to bring up a
dump window of that memory block.

Threads Displays a list of threads running in the process. For each
thread in this list, the process has a structure called a
Thread Information Block (TIB). OllyDbg allows you to
view each thread’s TIB; simply right-click a thread and
select Dump thread data block.

Windows Displays a list of window handles held by the process.
Right-click a window in this list to jump to or set a
breakpoint on its class procedure (the function that
gets called when a message is sent to the window).

Handles Displays a list of handles held by the process. (Note
that Process Explorer has a much better handle list than
OllyDbg, as I will discuss in Chapter 3.)

CPU alt-C Displays the main disassembler interface and controls
a majority of the debugger functionality.

Patches ctrl-P Displays a list of any assembly code modifications you
have made to modules within the process.

Call stack alt-K Displays the call stack for the active thread. The
window updates when the process halts.

Breakpoints alt-B Displays a list of active debugger breakpoints and
allows you to toggle them on and off.

References Displays the reference list, which typically holds the
search results for many different types of searches. It
pops up on its own when you run a search.

Run trace Displays a list of operations logged by a debugger
trace.

Source Displays the source code of the disassembled module if
a program debug database is present.

Finally, the Settings button opens the OllyDbg settings window. Keep
the default settings for now.

Now that you’ve had a tour of the main OllyDbg window, let’s explore the
CPU, Patches, and Run trace windows more closely. You’ll use those windows
extensively as a game hacker, and knowing your way around them is key.

OllyDbg’s CPU Window
The CPU window in Figure 2-2 is where game hackers spend most of their
time in OllyDbg because it is the main control window for the debugging
features.

Debugging Games with OllyDbg 27

�

� �

�

Figure 2-2: OllyDbg CPU window

This window houses four distinct control panes: the disassembler
pane u, the registers pane v, the dump pane w, and the stack pane x.
These four panes encapsulate OllyDbg’s main debugger functions, so it’s
important to know them inside and out.

Viewing and Navigating a Game’s Assembly Code
You’ll navigate game code and control most aspects of debugging from
OllyDbg’s disassembler pane. This pane displays the assembly code for the
current module, and its data is neatly displayed in a table composed of four
distinct columns: Address, Hex dump, Disassembly, and Comment.

The Address column displays the memory addresses of each operation
in the game process you’re attached to. You can double-click an address in
this column to toggle whether it’s the display base. When an address is set as
the display base, the Address column displays all other addresses as offsets
relative to it.

The Hex dump column displays the byte code for each operation,
grouping operation codes and parameters accordingly. Black braces span-
ning multiple lines on the left side of this column mark known function
boundaries. Operations that have jumps going to them are shown with a

28 Chapter 2

right-facing arrow on the inside of these braces. Operations that perform
jumps are shown with either up-facing or down-facing arrows, depending
on the direction in which they jump, on the inside of these braces. For
example, in Figure 2-2, the instruction at address 0x779916B1 (highlighted
in gray) has an up-facing arrow, indicating it’s an upward jump. You can
think of a jump as a goto operator.

The Disassembly column displays the assembly code of each operation
the game performs. So, for example, you can confirm that the instruction
at 0x779916B1 in Figure 2-2 is a jump by looking at the assembly, which
shows a JNZ (jump if nonzero) instruction. Black braces in this column
mark the boundaries of loops. Right-facing arrows attached to these braces
point to the conditional statements that control whether the loops continue
or exit. The three right-facing arrows in this column in Figure 2-2 point to
CMP (compare) and TEST instructions, which are used by assembly code to
compare values.

The Comment column displays human-readable comments about each
operation the game performs. If OllyDbg encounters known API function
names, it will automatically insert a comment with the name of the function.
Similarly, if it successfully detects arguments being passed to a function,
it will label them (for example, Arg1, Arg2, . . . , ArgN). You can double-click
in this column to add a customized comment. Black braces in this column
mark the assumed boundaries of function call parameters.

N o t e 	 OllyDbg infers function boundaries, jump directions, loop structures, and function
parameters during code analysis, so if these columns lack boundary lines or jump
arrows, just press ctrl-A to run a code analysis on the binary.

When the disassembler pane is in focus, there are a few hotkeys you can
use to quickly navigate code and control the debugger. Use F2 for Toggle
breakpoint, shift-F12 for Place conditional breakpoint, - (hyphen) for Go
back and + (plus) for Go forward (these two work as you’d expect in a web
browser), * (asterisk) for Go to EIP (which is the execution pointer in the
x86 architecture), ctrl-- (hyphen) for Go to previous function, and ctrl-+
for Go to next function.

The disassembler can also populate the References window with differ-
ent types of search results. When you want to change the References win-
dow’s contents, right-click in the disassembler pane, mouse over the Search
for menu to expand it, and select one of the following options:

All intermodular calls  Searches for all calls to functions in remote
modules. This can, for example, allow you to see everywhere that a
game calls Sleep(), PeekMessage(), or any other Windows API function,
enabling you to inspect or set breakpoints on the calls.

All commands  Searches for all occurrences of a given operation writ-
ten in assembly, where the added operators CONST and R32 will match
a constant value or a register value, respectively. One use for this
option might be searching for commands like MOV [0xDEADBEEF], CONST;

Debugging Games with OllyDbg 29

MOV [0xDEADBEEF], R32; and MOV [0xDEADBEEF], [R32+CONST] to list all opera-
tions that modify memory at the address 0xDEADBEEF, which could be any-
thing, including the address of your player’s health.

All sequences  Searches for all occurrences of a given sequence of
operations. This is similar to the previous options, but it allows you to
specify multiple commands.

All constants  Searches for all instances of a given hexadecimal con-
stant. For instance, if you enter the address of your character’s health,
this will list all of the commands that directly access it.

All switches  Searches for all switch-case blocks.

All referenced text strings  Searches for all strings referenced in code.
You can use this option to search through all referenced strings and see
what code accesses them, which can be useful for correlating in-game
text displays with the code that displays them. This option is also very
useful for locating any debug assertion or logging strings, which can be
a tremendous help in determining the purpose of code parts.

The disassembler can also populate the Names window with all labels
in the current module (ctrl-N) or all known labels in all modules (Search
for4Name in all modules). Known API functions will be automatically
labeled with their names, and you can add a label to a command by high-
lighting it, pressing shift-; and entering the label when prompted. When
a labeled command is referenced in code, the label will be shown in place of
the address. One way to use this feature is to name functions that you’ve
analyzed (just set a label on the first command in a function) so you can
see their names when other functions call them.

Viewing and Editing Register Contents
The registers pane displays the contents of the eight processor registers, all
eight flag bits, the six segment registers, the last Windows error code, and
EIP. Underneath these values, this pane can display either Floating-Point
Unit (FPU) registers or debug registers; click on the pane’s header to change
which registers are displayed. The values in this pane are populated only if
you freeze your process. Values that are displayed in red have been changed
since the previous pause. Double-click on values in this pane to edit them.

Viewing and Searching a Game’s Memory
The dump pane displays a dump of the memory at a specific address. To
jump to an address and display the memory contents, press ctrl-G and
enter the address in the box that appears. You can also jump to the address
of an entry in the other CPU window panes by right-clicking on the Address
column and selecting Follow in dump.

While there are always three columns in the dump pane, the only one
you should always see is the Address column, which behaves much like its
cousin within the disassembler pane. The data display type you choose

30 Chapter 2

determines the other two columns shown. Right-click the dump pane to
change the display type; for the one shown in Figure 2-2, you’d right-click
and select Hex4Hex/ASCII (8 bytes).

You can set a memory breakpoint on an address shown in the dump
pane by right-clicking that address and expanding the Breakpoint submenu.
Select Memory4On access from this menu to break on any code that uses
the address at all, or select Memory4On write to break only on code that
writes to that space in memory. To remove a memory breakpoint, select
Remove memory breakpoint in the same menu; this option appears only
when the address you right-click has a breakpoint.

With one or more values selected in the dump, you can press ctrl-R to
search the current module’s code for references to addresses of the selected
values; results of this search appear in the References window. You can also
search for values in this pane using ctrl-B for binary strings and ctrl-N for
labels. After you initiate a search, press ctrl-L to jump to the next match.
ctrl-E allows you to edit any values you have selected.

N o t e 	 The dump windows that you can open from the Memory window work in the same
way as the dump pane.

Viewing a Game’s Call Stack
The final CPU pane is the stack pane, and as the name suggests, it shows
the call stack. Like the dump and disassembler panes, the stack pane has an
Address column. The stack pane also has a Value column, which shows the
stack as an array of 32-bit integers, and a Comment column, which shows
return addresses, known function names, and other informative labels. The
stack pane supports all the same hotkeys as the dump pane, with the excep-
tion of ctrl-N.

Mult icl ien t Patching

One type of hack, called a multiclient patch, overwrites the single-instance
limitation code within a game’s binary with no-operation code, allowing the
user to run multiple game clients, even when doing so is normally forbidden.
Because the code that performs instance limitation must be executed very early
after a game client is launched, it can be nearly impossible for a bot to inject
its patch on time. The easiest workaround for this is to make multiclient patches
persist by applying them within OllyDbg and saving them directly to the game
binary.

Debugging Games with OllyDbg 31

Creating Code Patches
OllyDbg’s code patches let you make assembly code modifications for a game
you want to hack, removing the need to engineer a tool tailored to that
specific game. This makes prototyping control flow hacks—which manipulate
game behavior through a mix of game design flaws, x86 assembly protocols,
and common binary constructs—much easier.

Game hackers typically include perfected patches as optional features
in a bot’s tool suite, but in some cases, making those features persistent is
actually more convenient for your end user. Luckily, OllyDbg patches pro-
vide the complete functionality you need to design, test, and permanently
save code modifications to an executable binary using only OllyDbg.

To place a patch, navigate to the line of assembly code you want to patch
in the CPU window, double-click the instruction you wish to modify, place
a new assembly instruction in the pop-up prompt, and click Assemble, as
shown in Figure 2-3.

Figure 2-3: Placing a patch with OllyDbg

Always pay attention to the size of your patch—you can’t just resize and
move around assembled code however you’d like. Patches larger than the
code you intend to replace will overflow into subsequent operations, poten-
tially removing critical functionality. Patches smaller than the operations
you intend to replace are safe, as long as Fill with NOPs is checked. This
option fills any abandoned bytes with no-operation (NOP) commands, which
are single-byte operations that do nothing when executed.

All patches you place are listed, along with the address, size, state, old
code, new code, and comment, in the Patches window. Select a patch in this
list to access a small but powerful set of hotkeys, shown in Table 2-3.

32 Chapter 2

Table 2-3: Patches Window Hotkeys

Operator Function

enter Jumps to the patch in the disassembler.

spacebar Toggles the patch on or off.

F2 Places a breakpoint on the patch.

shift-F2 Places a conditional breakpoint on the patch.

shift-F4 Places a conditional log breakpoint on the patch.

del Removes the patch entry from the list only.

In OllyDbg, you can also save your patches directly to the binary. First,
right-click in the disassembler and click Copy to executable4All modifica-
tions. If you want to copy only certain patches, highlight them in the disas-
sembly pane and press Copy to executable4Selection instead.

Tracing Through Assembly Code
When you run a trace on any program, OllyDbg single-steps over every
executed operation and stores data about each one. When the trace is
complete, the logged data is displayed in the Run trace window, shown
in Figure 2-4.

De t e r mining Patch Si z e

There are a few ways to determine whether your patch will be a different size
than the original code. For example, in Figure 2-3, you can see the command
at 0x7790ED2E being changed from SHR AL, 6 to SHR AL, 7. If you look at the
bytes to the left of the command, you see 3 bytes that represent the memory of
the command. This means our new command must either be 3 bytes or padded
with NOPs if it’s less than 3 bytes. Furthermore, these bytes are arranged in
two columns. The first column contains 0xC0 and 0x08, which represent the com-
mand SHR and the first operand, AL. The second column contains 0x06, which
represents the original operand. Because the second column shows a single
byte, any replacement operand must also be 1 byte (between 0x00 and 0xFF).
If this column had shown 0x00000006 instead, a replacement operand could be
up to 4 bytes in length.

Typical code patches will either use all NOPs to completely remove a
command (by leaving the box empty and letting it fill the entire command with
NOPs) or just replace a single operand, so this method of checking patch size
is almost always effective.

Debugging Games with OllyDbg 33

Figure 2-4: The Run trace window

The Run trace window is organized into the following six columns:

Back  The number of operations logged between an operation and the
current execution state

Thread  The thread that executed the operation

Module  The module where the operation resides

Address  The address of the operation

Command  The operation that was executed

Modified registers  The registers changed by the operation and their
new values

When hacking games, I find OllyDbg’s trace feature very effective at
helping me find pointer paths to dynamic memory when Cheat Engine
scans prove inconclusive. This works because you can follow the log in the
Run trace window backward from the point when the memory is used to
the point where it is resolved from a static address.

This potent feature’s usefulness is limited only by the creativity of the
hacker using it. Though I typically use it only to find pointer paths, I’ve
come across a few other situations where it has proven invaluable. The anec-
dotes in “OllyDbg Expressions in Action” on page 36 will help to illumi-
nate the functionality and power of tracing.

OllyDbg’s Expression Engine
OllyDbg is home to a custom expression engine that can compile and evalu-
ate advanced expressions with a simple syntax. The expression engine is
surprisingly powerful and, when utilized properly, can be the difference
between an average OllyDbg user and an OllyDbg wizard. You can use this
engine to specify expressions for many features, such as conditional break-
points, conditional traces, and the command line plug-in. This section
introduces the expression engine and the options it provides.

34 Chapter 2

N o t e 	 Parts of this section are based on the official expressions documentation (http://
www.ollydbg.de/Help/i_Expressions.htm). I have found, however, that a few
of the components defined in the documentation don’t seem to work, at least not in
OllyDbg v1.10. Two examples are the INT and ASCII data types, which must be sub-
stituted with the aliases LONG and STRING. For this reason, here I include only compo-
nents that I’ve personally tested and fully understand.

Using Expressions in Breakpoints
When a conditional breakpoint is toggled on, OllyDbg prompts you to enter an
expression for the condition; this is where most expressions are used. When
that breakpoint is executed, OllyDbg silently pauses execution and evalu-
ates the expression. If the result of the evaluation is nonzero, execution
remains paused and you will see the breakpoint get triggered. But if the
result of the evaluation is 0, OllyDbg silently resumes execution as if noth-
ing happened.

With the huge number of executions that happen within a game every
second, you’ll often find that a piece of code is executed in far too many
contexts for a breakpoint to be an effective way of getting the data you are
looking for. A conditional breakpoint paired with a good understanding of
the code surrounding it is a foolproof way to avoid these situations.

Using Operators in the Expression Engine
For numeric data types, OllyDbg expressions support general C-style opera-
tors, as seen in Table 2-4. While there is no clear documentation on the
operator precedence, OllyDbg seems to follow C-style precedence and can
use parenthesized scoping.

Table 2-4: OllyDbg Numeric Operators

Operator Function

a == b Returns 1 if a is equal to b, else returns 0.
a != b Returns 1 if a is not equal to b, else returns 0.
a > b Returns 1 if a is greater than b, else returns 0.
a < b Returns 1 if a is less than b, else returns 0.
a >= b Returns 1 if a is greater than or equal to b, else returns 0.
a <= b Returns 1 if a is less than or equal to b, else returns 0.
a && b Returns 1 if a and b are both nonzero, else returns 0.
a || b Returns 1 if either a or b are nonzero, else returns 0.
a ^ b Returns the result of XOR(a, b).
a % b Returns the result of MODULUS(a, b).
a & b Return the result of AND(a, b).
a | b Return the result of OR(a, b).
a << b Returns the result of a shifted b bits to the left.
a >> b Returns the result of a shifted b bits to the right.

Debugging Games with OllyDbg 35

Operator Function

a + b Returns the sum of a plus b.
a - b Returns the difference of a minus b.
a / b Returns the quotient of a divided by b.
a * b Returns the product of a times b.
+a Returns the signed representation of a.
-a Returns a*-1.
!a Returns 1 if a is 0, else returns 0.

For strings, on the other hand, the only available operators are == and
!=, which both adhere to the following set of rules:

•	 String comparisons are case insensitive.

•	 If only one of the operands is a string literal, the comparison will termi-
nate after it reaches the length of the literal. As a result, the expression
[STRING EAX]=="ABC123", where EAX is a pointer to the string ABC123XYZ, will
evaluate to 1 instead of 0.

•	 If no type is specified for an operand in a string comparison and the
other operand is a string literal (for example, "MyString"!=EAX), the com-
parison will first assume the nonliteral operand is an ASCII string, and,
if that compare would return 0, it will try a second compare assuming
the operand is a Unicode string.

Of course, operators aren’t much use without operands. Let’s look at
some of the data you can evaluate in expressions.

Working with Basic Expression Elements
Expressions are able to evaluate many different elements, including:

CPU registers  EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. You can also use
the 1-byte and 2-byte registers (for example, AL for the low byte and AX
for the low word of EAX). EIP can also be used.

Segment registers  CS, DS, ES, SS, FS, and GS.

FPU registers  ST0, ST1, ST2, ST3, ST4, ST5, ST6, and ST7.

Simple labels  Can be API function names, such as GetModuleHandle, or
user-defined labels.

Windows constants  Such as ERROR_SUCCESS.

Integers  Are written in hexadecimal format or decimal format if fol-
lowed by a trailing decimal point (for example, FFFF or 65535.).

Floating-point numbers  Allow exponents in decimal format (for
example, 654.123e-5).

String literals  Are wrapped in quotation marks (for example, "my
string").

36 Chapter 2

The expressions engine looks for these elements in the order they’re
listed here. For example, if you have a label that matches the name of a
Windows constant, the engine uses the address of the label instead of the
constant’s value. But if you have a label named after a register, such as EAX,
the engine uses the register value, not the label value.

Accessing Memory Contents with Expressions
OllyDbg expressions are also powerful enough to incorporate memory read-
ing, which you can do by wrapping a memory address, or an expression that
evaluates to one, in square brackets. For example, [EAX+C] and [401000] rep-
resent the contents at the addresses EAX+C and 401000. To read the mem-
ory as a type other than DWORD, you can specify the desired type either before
the brackets, as in BYTE [EAX], or as the first token within them, as in [STRING
ESP+C]. Supported types are listed in Table 2-5.

Table 2-5: OllyDbg Data Types

Data type Interpretation

BYTE 8-bit integer (unsigned)
CHAR 8-bit integer (signed)
WORD 16-bit integer (unsigned)
SHORT 16-bit integer (signed)
DWORD 32-bit integer (unsigned)
LONG 32-bit integer (signed)
FLOAT 32-bit floating-point number
DOUBLE 64-bit floating-point number
STRING Pointer to an ASCII string (null-terminated)
UNICODE Pointer to a Unicode string (null-terminated)

Plugging memory contents directly into your OllyDbg expressions is
incredibly useful in game hacking, in part because you can tell the debug-
ger to check a character’s health, name, gold, and so on in memory before
breaking. You’ll see an example of this in “Pausing Execution When a
Specific Player’s Name Is Printed” on page 37.

OllyDbg Expressions in Action
Expressions in OllyDbg use a syntax similar to that of most programming
languages; you can even combine multiple expressions and nest one expres-
sion within another. Game hackers (really, all hackers) commonly use them
to create conditional breakpoints, as I described in “Using Expressions in
Breakpoints” on page 34, but you can use them in many different places
in OllyDbg. For instance, OllyDbg’s command line plug-in can evaluate

Debugging Games with OllyDbg 37

expressions in place and display their results, allowing you to easily read
arbitrary memory, inspect values that are being calculated by assembly code,
or quickly get the results of mathematical equations. Furthermore, hackers
can even create intelligent, position-agnostic breakpoints by coupling expres-
sions with the trace feature.

In this section, I’ll share some anecdotes where the expression engine
has come in handy during my work. I will explain my thought process, walk
through my entire debugging session, and break each expression down into
its component parts so you can see some ways to use OllyDbg expressions in
game hacking.

N o t e 	 These examples contain some assembly code, but if you don’t have much experience
with assembly, don’t worry. Just ignore the fine details and know that values like ECX,
EAX, and ESP are process registers like the ones discussed in “Viewing and Editing
Register Contents” on page 29. From there, I’ll explain everything else.

If you get confused about an operator, element, or data type in an
expression as I walk through these anecdotes, just refer to “OllyDbg’s
Expression Engine” on page 33.

Pausing Execution When a Specific Player’s Name Is Printed
During one particular debugging session, I needed to figure out exactly
what was happening when a game was drawing the names of players on
screen. Specifically, I needed to invoke a breakpoint before the game drew
the name “Player 1,” ignoring all other names that were drawn.

Figuring Out Where to Pause

As a starting point, I used Cheat Engine to find the address of Player 1’s
name in memory. Once I had the address, I used OllyDbg to set a memory
breakpoint on the first byte of the string. Every time this breakpoint got
hit, I quickly inspected the assembly code to determine how it was using
Player 1’s name. Eventually, I found the name being accessed directly above
a call to a function that I had previously given the name printText(). I had
found the code that was drawing the name.

I removed my memory breakpoint and replaced it with a code breakpoint
on the call to printText(). There was a problem, however: because the call to
printText() was inside a loop that iterated over every player in the game, my
new breakpoint was getting hit every time a name was drawn—and that was
much too often. I needed to fix it to hit only on a specific player.

Inspecting the assembly code at my previous memory breakpoint told
me that each player’s name was accessed using the following assembly code:

PUSH DWORD PTR DS:[EAX+ECX*90+50]

The EAX register contained the address of an array of player data; I’ll
call it playerStruct. The size of playerStruct was 0x90 bytes, the ECX register
contained the iteration index (the famous variable i), and each player’s

38 Chapter 2

name was stored 0x50 bytes after the start of its respective playerStruct. This
meant that this PUSH instruction essentially put EAX[ECX].name (the name of the
player at index i) on the stack to be passed as an argument to the printText()
function call. The loop, then, broke down to something like the following
psuedocode:

playerStruct EAX[MAX_PLAYERS]; // this is filled elsewhere
for (int uECX = 0; ECX < MAX_PLAYERS; ECX++) {
 char* name = vEAX[ECX].name;
 breakpoint(); // my code breakpoint was basically right here
 printText(name);
}

Purely through analysis, I determined that the playerStruct() function
contained data for all players, and the loop iterated over the total number
of players (counting up with ECX u), fetched the character name v for each
index, and printed the name.

Crafting the Conditional Breakpoint

Knowing that, to pause execution only when printing “Player 1” all I had to
do was check the current player name before executing my breakpoint. In
pseudocode, the new breakpoint would look like this:

if (EAX[ECX].name == "Player 1") breakpoint();

Once I figured out the form of my new breakpoint, I needed to access
EAX[ECX].name from within the loop. That’s where OllyDbg’s expression engine
came in: I could achieve my goal by making slight modifications to the
expression that the assembly code used, leaving me with this expression:

[STRING EAX + ECX*0x90 + 0x50] == "Player 1"

I removed the code breakpoint on printText() and replaced it with
a conditional breakpoint that used this expression, which told OllyDbg
to break only if the string value stored at EAX + ECX*0x90 + 0x50 matched
Player 1’s name. This breakpoint hit only when "Player 1" was being drawn,
allowing me to continue my analysis.

The amount of work it took to engineer this breakpoint might seem
extensive, but with practice, the entire process becomes as intuitive as writ-
ing code. Experienced hackers can do this in a matter of seconds.

In practice, this breakpoint enabled me to inspect certain values in
the playerStruct() function for "Player 1" as soon as he appeared on screen.
Doing it this way was important, as the states of these values were relevant
to my analysis only in the first few frames after the player entered the screen.
Creatively using breakpoints like this can enable you to analyze all sorts of
complex game behavior.

Debugging Games with OllyDbg 39

Pausing Execution When Your Character’s Health Drops
During another debugging session, I needed to find the first function called
after my character’s health dropped below the maximum. I knew two ways
to approach this problem:

•	 Find every piece of code that accesses the health value and place a con-
ditional breakpoint that checks the health on each one. Then, once one
of these breakpoints is hit, single-step through the code until the next
function call.

•	 Use OllyDbg’s trace function to create a dynamic breakpoint that can
stop exactly where I need.

The first method required more setup and was not easily repeatable,
mostly due to the sheer number of breakpoints needed and the fact that
I’d have to single-step by hand. In contrast, the latter method had a quick
setup, and since it did everything automatically, it was easily repeatable.
Though using the trace function would slow the game down consider-
ably (every single operation was captured by the trace), I chose the latter
method.

Writing an Expression to Check Health

Once again, I started by using Cheat Engine to find the address that stored
my health. Using the method described in “Cheat Engine’s Memory Scanner”
on page 5, I determined the address to be 0x40A000.

Next, I needed an expression that told OllyDbg to return 1 when my
health was below maximum and return 0 otherwise. Knowing that my health
was stored at 0x40A000 and that the maximum value was 500, I initially
devised this expression:

[0x40A000] < 500.

This expression would invoke a break when my health was below 500
(remember, decimal numbers must be suffixed with a period in the expres-
sion engine), but instead of waiting for a function to be called, the break
would happen immediately. To ensure that it waited until a function was
called, I appended another expression with the && operator:

[0x40A000] < 500. && [uBYTE EIP] == 0xE8

On x86 processors, the EIP register stores the address of the operation
being executed, so I decided to check the first byte at EIP u to see if it was
equal to 0xE8. This value tells the processor to execute a near function call,
which is the type of call I was looking for.

Before starting my trace, I had to do one last thing. Because the trace
feature repeatedly single-steps (Trace into uses step into and Trace over

40 Chapter 2

uses step over, as described in “A Brief Look at OllyDbg’s User Interface”
on page 24), I needed to start the trace at a location scoped at or above
the level of any code that could possibly update the health value.

Figuring Out Where to Start the Trace

To find a good location, I opened the game’s main module in OllyDbg’s
CPU window, right-clicked in the disassembler pane, and selected Search
for4All intermodular calls. The References window popped up and dis-
played a list of external API functions that were called by the game.
Nearly all gaming software polls for new messages using the Windows
USER32.PeekMessage() function, so I sorted the list using the Destination col-
umn and typed PEEK (you can search the list by simply typing a name with
the window in focus) to locate the first call to USER32.PeekMessage().

Thanks to the Destination sorting, every call to this function was listed
in a contiguous chunk following the first, as shown in Figure 2-5. I set a
breakpoint on each by selecting it and pressing F2.

Figure 2-5: OllyDbg’s Found intermodular calls window

Though there were around a dozen calls to USER32.PeekMessage(), only
two of them were setting off my breakpoints. Even better, the active calls
were beside one another in an unconditional loop. At the bottom of this
loop were a number of internal function calls. This looked exactly like a
main game loop.

Activating the Trace

To finally set my trace, I removed all of my previous breakpoints and placed
one at the top of the suspected main loop. I removed the breakpoint as soon
as it was hit. I then pressed ctrl-T from the CPU window, which brought up a

Debugging Games with OllyDbg 41

dialog called Condition to pause run trace, shown in Figure 2-6. Within this
new dialog, I enabled the Condition is TRUE option, placed my expression in
the box beside it, and pressed OK. Then, I went back to the CPU window and
pressed ctrl-F11 to begin a Trace Into session.

Figure 2-6: Condition to pause run trace dialog

Once the trace began, the game ran so slowly it was nearly unplayable.
To decrease my test character’s health, I opened a second instance of the
game, logged into a different character, and attacked my test character.
When the execution of the trace caught up to real time, OllyDbg saw my
health change and triggered the breakpoint on the following function
call—just as expected.

In this game, the main pieces of code that would modify the health
value were directly invoked from the network code. Using this trace, I was
able to find the function that the network module called directly after a
network packet told the game to change the player’s health. Here’s the
psuedocode of what the game was doing:

void network::check() {
 while (this->hasPacket()) {
 packet = this->getPacket();
 if (packet.type == UPDATE_HEALTH) {
 oldHealth = player->health;
 player->health = packet.getInteger();

u observe(HEALTH_CHANGE, oldHealth, player->health);
 }
 }
}

I knew the game had code that needed to execute only when the player’s
health was changed, and I needed to add code that could also respond to
such changes. Without knowing the overall code structure, I guessed that

42 Chapter 2

the health-dependent code would be executed from some function call
directly after health was updated. My trace conditional breakpoint con-
firmed this hunch, as it broke directly on the observe() function u. From
there, I was able to place a hook on the function (hooking, a way to intercept
function calls, is described in “Hooking to Redirect Game Execution” on
page 153) and execute my own code when the player’s health changed.

OllyDbg Plug-ins for Game Hackers
OllyDbg’s highly versatile plug-in system is perhaps one of its most power-
ful features. Experienced game hackers often configure their OllyDbg
environments with dozens of useful plug-ins, both publicly available and
custom-made.

You can download popular plug-ins from the OpenRCE (http://www​
.openrce.org/downloads/browse/OllyDbg_Plugins) and tuts4you (http://www​
.tuts4you.com/download.php?list.9/) plug-in repositories. Installing them is
easy: just unzip the plug-in files and place them inside OllyDbg’s installa-
tion folder.

Once installed, some plug-ins can be accessed from the OllyDbg’s Plugin
menu item. Other plug-ins, however, might be found only in specific places
throughout the OllyDbg interface.

You can find hundreds of potent plug-ins using these online reposito-
ries, but you should be careful when constructing your arsenal. Working
in an environment bloated by unused plug-ins can actually impede pro-
ductivity. In this section, I’ve carefully selected four plug-ins that I believe
are not only integral to a game hacker’s toolkit but also noninvasive to the
environment.

Copying Assembly Code with Asm2Clipboard
Asm2Clipboard is a minimalistic plug-in from the OpenRCE repository that
allows you to copy chunks of assembly code from the disassembler pane to
the clipboard. This can be useful for updating address offsets and devising
code caves, two game-hacking essentials I cover deeply in Chapters 5 and 7.

With Asm2Clipboard installed, you can highlight a block of assem-
bly code in the disassembler, right-click the highlighted code, expand
the Asm2Clipboard submenu, and select either Copy fixed Asm code to
clipboard or Copy Asm code to clipboard. The latter prepends the code
address of each instruction as a comment, while the former copies only
the pure code.

Adding Cheat Engine to OllyDbg with Cheat Utility
The Cheat Utility plug-in from tuts4you provides a highly slimmed-down
version of Cheat Engine within OllyDbg. While Cheat Utility only allows
you to do exact-value scans with a very limited number of data types, it can

Debugging Games with OllyDbg 43

make simple scans much easier when you don’t need the full functional-
ity of Cheat Engine to find what you’re looking for. After installing Cheat
Utility, to open its interface (shown in Figure 2-7), select Plugins4Cheat
utility4Start.

Figure 2-7: Cheat Utility interface

Cheat Utility’s user interface and operation mimic Cheat Engine
closely, so review Chapter 1 if you need a refresher.

N o t e 	 Games Invader, an updated version of Cheat Utility also from tuts4you, was created
to provide more functionality. I’ve found it buggy, however, and I prefer Cheat Utility
since I can always use Cheat Engine for advanced scans.

Controlling OllyDbg Through the Command Line
The command line plug-in enables you to control OllyDbg through a small
command line interface. To access the plug-in, either press alt-F1 or select
Plugins4Command line4Command line. You should then see a window,
shown in Figure 2-8, which acts as the command line interface.

�
�

�

Figure 2-8: Command line interface

To execute a command, type it into the input box u and press enter.
You will see a session-level command history in the center list v, and the
bottom label displays the command’s return value w (if any).

44 Chapter 2

Though there are many commands available, I find a majority of
them useless. I primarily use this tool as a way to test that expressions are
parsing as expected and as a handy calculator, but there are a few addi-
tional use cases that are also worth mentioning. I’ve described these in
Table 2-6.

Table 2-6: Command Line Plug-in Commands

Command Function

BC identifier Removes any breakpoints present on identifier,
which can be a code address or API function name.

BP identifier [,condition] Places a debugger breakpoint on identifier,
which can be a code address or API function
name. When identifier is an API function name, the
breakpoint will be placed on the function entry point.
The condition parameter is an optional expression
that, if present, will be set as the breakpoint
condition.

BPX label Places a debugger breakpoint on every instance
of label within the module currently being
disassembled. This label will typically be an
API function name.

CALC expression

? expression

Evaluates expression and displays the result.

HD address Removes any hardware breakpoints present on
address.

HE address Places a hardware on-execute breakpoint on
address.

HR address Places a hardware on-access breakpoint on
address. Only four hardware breakpoints can
exist at a time.

HW address Places a hardware on-write breakpoint on address.
MD Removes any existing memory breakpoint, if

present.
MR address1, address2 Places a memory on-access breakpoint starting at

address1 and spanning until address2. Will replace
any existing memory breakpoint.

MW address1, address2 Places a memory on-write breakpoint starting at
address1 and spanning until address2. Will replace
any existing memory breakpoint.

WATCH expression

W expression

Opens the Watches window and adds expression
to the watch list. Expressions in this list will be
reevaluated every time the process receives
a message and the evaluation results will be
displayed beside them.

The command line plug-in was made by the OllyDbg developer and
should come preinstalled with OllyDbg.

Debugging Games with OllyDbg 45

Visualizing Control Flow with OllyFlow
OllyFlow, which can be found in the OpenRCE plug-in directory, is a purely
visual plug-in that can generate code graphs like the one in Figure 2-9 and
display them using Wingraph32.

Figure 2-9: An OllyFlow function flowchart

N O T E 	 Wingraph32 is not provided with OllyFlow, but it is available with the free version of
IDA here: https://www.hex-rays.com/products/ida/. Download it and drop the
.exe in your OllyDbg installation folder.

Though not interactive, these graphs allow you to easily identify con-
structs such as loops and nested if() statements in game code, which can be
paramount in control flow analysis. With OllyFlow installed, you can gener-
ate a graph by going to Plugins4OllyFlow (alternatively, right-click in the
disassembler pane and expand the OllyFlow graph submenu) and selecting
one of the following options:

Generate function flowchart  Generates a graph of the function cur-
rently in scope, breaking apart different code blocks and showing jump
paths. Figure 2-9 shows a function flowchart. Without a doubt, this is
OllyFlow’s most useful feature.

Generate xrefs from graph  Generates a graph of all functions called
by the function that is currently in scope.

Generate xrefs to graph  Generates a graph of all functions that call
the function currently in scope.

46 Chapter 2

Generate call stack graph  Generates a graph of the assumed call path
from the process entry point to the function currently in scope.

Generate module graph  Theoretically generates a complete graph of
all function calls in the entire module, but rarely actually works.

To get an idea of the usefulness of OllyFlow, take a look at the graph
in Figure 2-9 and compare it to the relatively simple assembly function that
generated it:

76f86878:
u MOV EAX,DWORD PTR DS:[76FE7E54]

 TEST AL,1
 JE ntdll.76F8689B
76f86881:

v MOV EAX,DWORD PTR FS:[18]
 MOV EAX,DWORD PTR DS:[EAX+30]
 OR DWORD PTR DS:[EAX+68],2000000
 MOV EAX,DWORD PTR DS:[76FE66E0]
 OR DWORD PTR DS:[EAX],1
 JMP ntdll.76F868B2
76f8689b:

w TEST EAX,8000
 JE ntdll.76F868B2
76f868a2:

x MOV EAX,DWORD PTR FS:[18]
 MOV EAX,DWORD PTR DS:[EAX+30]
 OR DWORD PTR DS:[EAX+68],2000000
76f868b2:

y MOV AL,1
 RETN

There are five boxes in Figure 2-9, and they map to the five pieces of
this function. The function starts with u, and it falls through to v if the
branch fails or jumps to w if it succeeds. After v executes, it jumps directly
to piece y, which then returns out of the function. After w executes, it
either falls through to x or branches to y to return directly. After x
executes, it unconditionally falls through to y. What this function does is
irrelevant to understanding OllyFlow; for now, just focus on seeing how the
code maps to the graph.

Patching an if() S tat emen t

If you think you’re ready to get your hands dirty with OllyDbg, keep read-
ing. Go to https://www.nostarch.com/gamehacking/, download the book’s
resource files, grab BasicDebugging.exe, and execute it. At first glance, you’ll
see that it looks like the classic game Pong. In this version of Pong, the ball is
invisible to you when it is on your opponent’s screen. Your task is to disable
this feature so that you can always see the ball. To make it easier for you, I’ve
made the game autonomous. You don’t have to play, only hack.

Debugging Games with OllyDbg 47

Closing Thoughts
OllyDbg is a much more complex beast than Cheat Engine, but you’ll learn
best by using it, so dive in and get your hands dirty! You can start by pairing
the controls taught in this chapter with your debugging skills and going to
work on some real games. If you are not yet ready to tamper with your vir-
tual fate, however, try tackling the example in “Patching an if() Statement”
for a practice environment. When you’re done, read on to Chapter 3, where
I’ll introduce you to Process Monitor and Process Explorer, two tools you’ll
find invaluable in game-hacking reconnaissance.

To start, attach OllyDbg to the game. Then focus the CPU window on the
main module (find the .exe in the module list and double-click it) and use the
Referenced text strings feature to locate the string that is displayed when the
ball is hidden. Next, double-click the string to bring it up in the code and
analyze the surrounding code until you find the if() statement that determines
whether to hide the ball. Lastly, using the code-patching feature, patch the
if() statement so the ball is always drawn. As an added bonus, you might try
using OllyFlow to graph this function so you can get a better understanding
of what exactly it is doing. (Hint: The if() statement checks whether the ball’s
x-coordinate is less than 0x140. If so, it jumps to code that draws the ball.
If not, it draws the scene without the ball. If you can change 0x140 to, say,
0xFFFF, the ball will never get hidden.)

3
Reconnai s s ance

w i t h P r oce s s M oni t o r
and P r oce s s E x p l o r e r

Cheat Engine and OllyDbg can help you
tear apart a game’s memory and code, but

you also need to understand how the game
interacts with files, registry values, network

connections, and other processes. To learn how those
interactions work, you must use two tools that excel at
monitoring the external actions of processes: Process Monitor and Process
Explorer. With these tools, you can track down the complete game map,
locate save files, identify registry keys used to store settings, and enumerate
the Internet Protocol (IP) addresses of remote game servers.

In this chapter, I’ll teach you how to use both Process Monitor and
Process Explorer to log system events and inspect them to see how a game
was involved. Useful mainly for initial reconnaissance, these tools are

50 Chapter 3

amazing at giving a clear, verbose picture of exactly how a game interacts
with your system. You can download both programs from the Windows
Sysinternals website (https://technet.microsoft.com/en-us/sysinternals/).

Process Monitor
You can learn a lot about a game simply by exploring how it interacts with
the registry, filesystem, and network. Process Monitor is a powerful system-
monitoring tool that logs such events in real time and lets you seamlessly
integrate the data into a debugging session. This tool provides extensive
amounts of useful data regarding a game’s interaction with the external
environment. With calculated review (and sometimes, spontaneous intu-
ition) on your part, this data can reveal details about data files, network
connections, and registry events that are helpful to your ability to see and
manipulate how the game functions.

In this section, I’ll show you how to use Process Monitor to log data,
navigate it, and make educated guesses about the files a game interacts with.
After this interface tour, you’ll have a chance to try out Process Monitor for
yourself in “Finding a High Score File” on page 55.

Logging In-Game Events
Process Monitor’s logs can hold all sorts of potentially useful informa-
tion, but their most practical use is to help you figure out where data files,
such as in-game item definitions, might be stored. When you start Process
Monitor, the first dialog you see is the Process Monitor Filter, shown in
Figure 3-1.

Figure 3-1: Process Monitor Filter dialog

This dialog allows you to show or suppress events based on a number
of dynamic properties they possess. To start monitoring processes, select
Process Name4Is4YourGameFilename.exe4Include and then press Add,

https://technet.microsoft.com/en-us/sysinternals

Reconnaissance with Process Monitor and Process Explorer 51

Apply, and OK. This tells Process Monitor to show events invoked by
YourGameFilename.exe. With the proper filters set, you will be taken to the
main window shown in Figure 3-2.

Figure 3-2: Process Monitor main window

To configure the columns displayed in Process Monitor’s log area, right-
click on the header and choose Select Columns. There’s an impressive
number of options, but I recommend seven.

Time of Day  Lets you see when actions are happening.

Process Name  Is useful if you’re monitoring multiple processes, but
with the single-process filter that is typically used for games; disabling
this option can save precious space.

Process ID  Is like Process Name, but it shows the ID rather than
the name.

Operation  Shows what action was performed; thus, this option is
compulsory.

Path  Shows the path of the action’s target; also compulsory.

Detail  Is useful only in some cases, but enabling it won’t hurt.

Result  Shows when actions, such as loading files, fail.

As you show more columns, the log can get very crowded, but sticking
with these options should help keep the output succinct.

Once the monitor is running and you’ve defined the columns you wish
to see, there are five event class filters, outlined in black in Figure 3-2, that
you can toggle to clean up your logs even further. Event class filters let you
choose which events to show in the log, based on type. From left to right,
these filters are as follows:

Registry  Shows all registry activity. There will be a lot of white noise
in the registry upon process creation, as games rarely use the registry
and Windows libraries always use it. Leaving this filter disabled can save
a lot of space in the log.

52 Chapter 3

Filesystem  Shows all filesystem activity. This is the most important
event class filter, since knowing where data files are stored and how they
are accessed is integral to writing an effective bot.

Network  Shows all network activity. The call stack on network events
can be useful in finding network-related code within a game.

Process and thread activity  Shows all process and thread actions. The
call stack on these events can give you insight into how a game’s code
handles threads.

Process profiling  Periodically shows information about the memory
and CPU usage of each running process; a game hacker will rarely use it.

If class-level event filtering is still not precise enough to filter out
unwanted pollution in your logs, right-click on specific events for event-
level filtering options. Once you have your event filtering configured to log
only what you need, you can begin navigating the log. Table 3-1 lists some
useful hotkeys for controlling the log’s behavior.

Table 3-1: Process Monitor Hotkeys

Hotkey Action

ctrl-E Toggles logging.

ctrl-A Toggles automatic scrolling of the log.

ctrl-X Clears the log.

ctrl-L Displays the Filter dialog.

ctrl-H Displays the Highlight dialog. This dialog looks very similar to
the Filter dialog, but it is used to indicate which events should
be highlighted.

ctrl-F Displays the Search dialog.

ctrl-P Displays the Event Properties dialog for the selected event.

As you navigate the log, you can examine the operations recorded to
see the fine-grained details of an event.

Inspecting Events in the Process Monitor Log
Process Monitor logs every data point it possibly can about an event,
enabling you to learn more about these events than just the files they act
upon. Carefully inspecting data-rich columns, such as Result and Detail,
can yield some very interesting information.

For example, I’ve found that games sometimes read data structures,
element by element, directly from files. This behavior is apparent when a
log contains a large number of reads to the same file, where each read has
sequential offsets but differing lengths. Consider the hypothetical event log
shown in Table 3-2.

Reconnaissance with Process Monitor and Process Explorer 53

Table 3-2: Example Event Log

Operation Path Detail

Create File C:\file.dat Desired Access: Read

Read File C:\file.dat Offset: 0 Size: 4

Read File C:\file.dat Offset: 4 Size: 2

Read File C:\file.dat Offset: 6 Size: 2

Read File C:\file.dat Offset: 8 Size: 4

Read File C:\file.dat Offset: 12 Size: 4

...Continues to read chunks of 4 bytes for a while

This log reveals that the game is reading a structure from the file piece
by piece, disclosing some hints about what the structure looks like. For
example, let’s say that these reads reflect the following data file:

struct myDataFile
{
 int header; // 4 bytes (offset 0)
 short effectCount; // 2 bytes (offset 4)
 short itemCount; // 2 bytes (offset 6)
 int* effects;
 int* items;
};

Compare the log in Table 3-2 with this structure. First, the game reads
the 4 header bytes. Then, it reads two 2-byte values: effectCount and itemCount.
It then creates two integer arrays, effects and items, of respective lengths
effectCount and itemCount. The game then fills these arrays with data from
the file, reading 4 bytes effectCount + itemCount times.

N o t e 	 Developers definitely shouldn’t use a process like this to read data from a file, but
you’d be amazed at how often it happens. Fortunately for you, naïveté like this just
makes your analysis easier.

In this case, the event log can identify small pieces of information
within a file. But keep in mind that, while correlating the reads with the
known structure is easy, it’s much harder to reverse engineer an unknown
structure from nothing but an event log. Typically, game hackers will use
a debugger to get more context about each interesting event, and the
data from Process Monitor can be seamlessly integrated into a debugging
session, effectively tying together the two powerful reverse engineering
paradigms.

Debugging a Game to Collect More Data
Let’s step away from this hypothetical file read and look at how Process
Monitor lets you transition from event logging to debugging. Process Monitor
stores a complete stack trace for each event, showing the full execution

54 Chapter 3

chain that led to the event being triggered. You can view these stack traces
in the Stack tab of the Event Properties window (double-click the event or
press ctrl-P), as shown in Figure 3-3.

� � � � �

Figure 3-3: Process Monitor event call stack

The stack trace is displayed in a table starting with a Frame column u,
which shows the execution mode and stack frame index. A pink K in this
column means the call happened in kernel mode, while a blue U means it
happened in user mode. Since game hackers typically work in user mode,
kernel mode operations are usually meaningless.

The Module column v shows the executable module where the calling
code was located. Each module is just the name of the binary that made
the call; this makes it easy to identify which calls were actually made from
within a game binary.

The Location column w shows the name of the function that made
each call, as well as the call offset. These function names are deduced from
the export table of the module and will generally not be present for the
functions within a game binary. When no function names are present, the
Location column instead shows the module name and the call’s offset (how
many bytes past the origin address the call is in memory) from the mod-
ule’s base address.

Reconnaissance with Process Monitor and Process Explorer 55

N o t e 	 In the context of code, the offset is how many bytes of assembly code are between an
item and its origin.

The Address column x shows the code address of the call, which is very
useful because you can jump to the address in the OllyDbg disassembler.
Finally, the Path column y shows the path to the module that made the call.

In my opinion, the stack trace is, by far, the most powerful feature in
Process Monitor. It reveals the entire context that led to an event, which can
be immensely useful when you are debugging a game. You can use it to find
the exact code that triggered an event, crawl up the call chain to see how it
got there, and even determine exactly what libraries were used to complete
each action.

Process Monitor’s sister application, Process Explorer, doesn’t have
many capabilities beyond those in Process Monitor or OllyDbg. But it does
expose some of those capabilities much more effectively, making it an ideal
pick in certain situations.

Process Explorer
Process Explorer is an advanced task manager (it even has a button you
can press to make it your default task manager), and it’s very handy when
you’re starting to understand how a game operates. It provides complex
data about running processes, such as parent and child processes, CPU
usage, memory usage, loaded modules, open handles, and command line
arguments, and it can manipulate those processes. It exceeds at showing
you high-level information, such as process trees, memory consumption,
file access, and process IDs, all of which can be very useful.

Of course, none of this data is specifically useful in isolation. But with
a keen eye, you can make correlations and draw some useful conclusions
about what global objects—including files, mutexes, and shared memory

Finding a High Scor e Fi l e

If you’re ready to test your Process Monitor skills, you’ve come to the right
place. Open the GameHackingExamples/Chapter3_FindingFiles directory
and execute FindingFiles​.exe. You’ll see that it is a game of Pong, like the one
in “Patching an if() Statement” on page 46. Unlike in Chapter 2, though,
now the game is actually playable. It also displays your current score and
your all-time-high score.

Now restart the game, firing up Process Monitor before executing it for the
second time. Filtering for filesystem activity and creating any other filters you
see fit, try to locate where the game stores the high-score file. For bonus points,
try to modify this file to make the game show the highest possible score.

56 Chapter 3

segments—a game has access to. Additionally, the data shown in Process
Explorer can be even more valuable when cross-referenced with data gath-
ered in a debugging session.

This section introduces the Process Explorer interface, discusses the
properties it shows, and describes how you can use this tool to manipu-
late handles (references to system resources). After this introduction, use
“Finding and Closing a Mutex” on page 60 to hone your skills.

Process Explorer’s User Interface and Controls
When you open Process Explorer, you see a window that is split into three
distinct sections, as in Figure 3-4.

�
�

�

Figure 3-4: Process Explorer main window

Those three sections are the toolbar u, an upper pane v, and a lower
pane w. The upper pane shows a list of processes, utilizing a tree struc-
ture to display their parent/child relationships. Different processes are
highlighted with different colors; if you don’t like the current colors, click
Options4Configure Colors to display a dialog that allows you to view and
change them.

Just as in Process Monitor, the display for this table is highly versatile,
and you can customize it by right-clicking on the table header and choosing
Select Columns. There are probably more than 100 customization options,
but I find that the defaults with the addition of the ASLR Enabled column
work just fine.

Reconnaissance with Process Monitor and Process Explorer 57

N o t e 	 Address Space Layout Randomization (ASLR) is a Windows security feature
that allocates executable images at unpredictable locations, and knowing whether it’s
on is invaluable when you’re trying to alter game state values in memory.

The lower pane has three possible states: Hidden, DLLs, and Handles.
The Hidden option hides the pane from view, DLLs displays a list of
Dynamic Link Libraries loaded within the current process, and Handles
shows a list of handles held by the process (visible in Figure 3-4). You can
hide or unhide the entire lower pane by toggling View4Show Lower
Pane. When it is visible, you can change the information display by
selecting either View4Lower Pane View4DLLs or View4Lower Pane
View4Handles.

You can also use hotkeys to quickly change between lower pane modes
without affecting processes in the upper pane. These hotkeys are listed in
Table 3-3.

Table 3-3: Process Explorer Hotkeys

Hotkey Action

ctrl-F Search through lower pane data sets for a value.

ctrl-L Toggle the lower pane between hidden and visible.

ctrl-D Toggle the lower pane to display DLLs.

ctrl-H Toggle the lower pane to display handles.

spacebar Toggle process list autorefresh.

enter Display the Properties dialog for the selected process.

del Kill the selected process.

shift-del Kill the selected process and all child processes.

Use the GUI or hotkeys to practice changing modes. When you’re
acquainted with the main window, we’ll look at another important Process
Explorer dialog, called Properties.

Examining Process Properties
Much like Process Monitor, Process Explorer has a very kinetic approach to
data gathering; the end result is a broad and verbose spectrum of informa-
tion. In fact, if you open the Properties dialog (shown in Figure 3-5) for a
process, you’ll see a massive tab bar containing 10 tabs.

The Image tab, selected by default and shown in Figure 3-5, displays the
executable name, version, build date, and complete path. It also displays the
current working directory and the Address Space Layout Randomization sta-
tus of the executable. ASLR status is the most important piece of informa-
tion here, because it has a direct effect on how a bot can read the memory
from a game. I’ll talk about this more in Chapter 6.

58 Chapter 3

Figure 3-5: Process Explorer Properties dialog

The Performance, Performance Graph, Disk and Network, and GPU
Graph tabs display a myriad of metrics about the CPU, memory, disk, net-
work, and GPU usage of the process. If you create a bot that injects into a
game, this information can be very useful to determine how much of a per-
formance impact your bot has on the game.

The TCP/IP tab displays a list of active TCP connections, which you
can use to find any game server IP addresses that a game connects to. If
you’re trying to test connection speed, terminate connections, or research
a game’s network protocol, this information is critical.

The Strings tab displays a list of strings found in either the binary or
the memory of the process. Unlike the string list in OllyDbg, which shows
only strings referenced by assembly code, the list includes any occurrences
of three or more consecutive readable characters, followed by a null termi-
nator. When a game binary is updated, you can use a diffing tool on this
list from each game version to determine whether there are any new strings
that you want to investigate.

The Threads tab shows you a list of threads running within the pro-
cess and allows you to pause, resume, or kill each thread; the Security tab
displays the security privileges of the process; and the Environment tab dis-
plays any environment variables known to or set by the process.

Reconnaissance with Process Monitor and Process Explorer 59

N o t e 	 If you open the Properties dialog for a .NET process, you’ll notice two additional
tabs: .NET Assemblies and .NET Performance. The data in these tabs is pretty self-
explanatory. Please keep in mind that a majority of the techniques in this book won’t
work with games written in .NET.

Handle Manipulation Options
As you’ve seen, Process Explorer can provide you with a wealth of informa-
tion about a process. That’s not all it’s good for, though: it can also manipu-
late certain parts of a process. For example, you can view and manipulate
open handles from the comfort of Process Explorer’s lower pane (see
Figure 3-4). This alone makes a strong argument for adding Process
Explorer to your toolbox. Closing a handle is as simple as right-clicking on
it and selecting Close Handle. This can come in handy when you want, for
instance, to close mutexes, which is essential to certain types of hacks.

N o t e 	 You can right-click on the lower pane header and click Select Columns to customize
the display. One column you might find particularly useful is Handle Value, which
can help when you see a handle being passed around in OllyDbg and want to know
what it does.

Closing Mutexes

Games often allow only one client to run at a time; this is called single-
instance limitation. You can implement single-instance limitation in a
number of ways, but using a system mutex is common because mutexes
are sessionwide and can be accessed by a simple name. It’s trivial to limit
instances with mutexes, and thanks to Process Explorer, it’s just as trivial to
remove that limit, allowing you to run multiple instances of a game at the
same time.

First, here’s how a game might tackle single-instance limitation with a
mutex:

int main(int argc, char *argv[]) {
 // create the mutex
 HANDLE mutex = CreateMutex(NULL, FALSE, "onlyoneplease");
 if (GetLastError() == ERROR_ALREADY_EXISTS) {
 // the mutex already exists, so exit
 ErrorBox("An instance is already running.");
 return 0;
 }
 // the mutex didn't exist; it was just created, so
 // let the game run
 RunGame();
 // the game is over; close the mutex to free it up
 // for future instances
 if (mutex)
 CloseHandle(mutex);
 return 0;
}

60 Chapter 3

This example code creates a mutex named onlyoneplease. Next, the func-
tion checks GetLastError() to see whether the mutex was already created, and
if so, it closes the game. If the mutex doesn’t already exist, the game creates
the first instance, thereby blocking any future game clients from running. In
this example, the game runs normally, and once it finishes, CloseHandle() is
called to close the mutex and allow future game instances to run.

You can use Process Explorer to close instance-limiting mutexes and
run many game instances simultaneously. To do so, choose the Handles
view of the lower pane, look for all handles with a type of Mutant, determine
which one is limiting instances of the game, and close that mutex.

Wa r ning 	 Mutexes are also used to synchronize data across threads and processes. Close one
only if you’re sure that its sole purpose is the one you’re trying to subvert!

Multiclient hacks are generally in high demand, so being able to quickly
develop them for emerging games is crucial to your overall success as a bot
developer within that market. Since mutexes are one of the most common
ways to achieve single-instance limitation, Process Explorer is an integral
tool for prototyping these kinds of hacks.

Inspecting File Accesses

Unlike Process Monitor, Process Explorer can’t show a list of filesystem calls.
On the other hand, the Handles view of Process Explorer’s lower pane can
show all file handles that a game currently has open, revealing exactly what
files are in continuous use without the need to set up advanced filtering cri-
teria in Process Monitor. Just look for handles with a type of File to see all
files the game is currently using.

This functionality can come in handy if you’re trying to locate logfiles
or save files. Moreover, you can locate named pipes that are used for inter
process communication (IPC); these are files prefixed with \Device\
NamedPipe\ . Seeing one of these pipes is often a hint that the game is talk-
ing to another process.

Finding and Closing a Mu t e x

To put your Process Explorer skills to use, go to the GameHackingExamples/
Chapter3_CloseMutex directory and execute CloseMutex​.exe. This game plays
exactly like the one in “Finding a High Score File” on page 55, but it pre-
vents you from simultaneously running multiple instances. As you might have
guessed, it does this using a single-instance-limitation mutex. Using Process
Explorer’s Handles view in the lower pane, find the mutex responsible for this
limitation and close it. If you succeed, you’ll be able to open a second instance
of the game.

Reconnaissance with Process Monitor and Process Explorer 61

Closing Thoughts
To be effective when using Process Monitor and Process Explorer, you need,
above all else, a deep familiarity with the data that these applications dis-
play as well as the interfaces they use to display it. While this chapter’s over-
view is a good baseline, the intricacies of these applications can be learned
only through experience, so I encourage you to play around with them on
your system.

You won’t use these tools on a regular basis, but at some point, they’ll
save the day: as you struggle to figure out how some code works, you’ll recall
an obscure piece of information that caught your eye during a previous
Process Explorer or Process Monitor session. That’s why I consider them
useful reconnaissance tools.

Part 2
G ame D i s s ec t ion

4
F r om C ode t o M emo r y:

A G ene r a l P r ime r

At the lowest level, a game’s code, data,
input, and output are complex abstrac-

tions of erratically changing bytes. Many
of these bytes represent variables or machine

code generated by a compiler that was fed the game’s
source code. Some represent images, models, and
sounds. Others exist only for an instant, posted by the
computer’s hardware as input and destroyed when the game finishes pro-
cessing them. The bytes that remain inform the player of the game’s inter-
nal state. But humans can’t think in bytes, so the computer must translate
them in a way we can understand.

There’s a huge disconnect in the opposite direction as well. A computer
doesn’t actually understand high-level code and visceral game content, so
these must be translated from the abstract into bytes. Some content—such
as images, sounds, and text—is stored losslessly, ready to be presented to the

66 Chapter 4

player at a microsecond’s notice. A game’s code, logic, and variables, on the
other hand, are stripped of all human readability and compiled down to
machine data.

By manipulating a game’s data, game hackers obtain humanly improb-
able advantages within the game. To do this, however, they must understand
how a developer’s code manifests once it has been compiled and executed.
Essentially, they must think like computers.

To get you thinking like a computer, this chapter will begin by teach-
ing you how numbers, text, simple structures, and unions are represented
in memory at the byte level. Then you’ll dive deeper to explore how class
instances are stored in memory and how abstract instances know which vir-
tual functions to call at runtime. In the last half of the chapter, you’ll take
an x86 assembly language crash course that covers syntax, registers, oper-
ands, the call stack, arithmetic operations, branching operations, function
calls, and calling conventions.

This chapter focuses very heavily on general technical details. There
isn’t a lot of juicy information that immediately relates to hacking games,
but the knowledge you gain here will be central in the coming chapters,
when we talk about topics like programmatically reading and writing mem-
ory, injecting code, and manipulating control flow.

Since C++ is the de facto standard for both game and bot development,
this chapter explains the relationships between C++ code and the memory
that represents it. Most native languages have very similar (sometimes iden-
tical) low-level structure and behavior, however, so you should be able to
apply what you learn here to just about any piece of software.

All of the example code in this chapter is in the GameHackingExamples/
Chapter4_CodeToMemory directory of this book’s source files. The included
projects can be compiled with Visual Studio 2010 but should also work
with any other C++ compiler. Download them at https://www.nostarch.com/
gamehacking/ and compile them if you want to follow along.

How Variables and Other Data Manifest in Memory
Properly manipulating a game’s state can be very hard, and finding the
data that controls it is not always as easy as clicking Next Scan and hoping
Cheat Engine won’t fail you. In fact, many hacks must manipulate dozens
of related values at once. Finding these values and their relationships often
requires you to analytically identify structures and patterns. Moreover, devel-
oping game hacks typically means re-creating the original structures within
your bot’s code.

To do these things, you need an in-depth understanding of exactly how
variables and data are laid out in the game’s memory. Through example
code, OllyDbg memory dumps, and some tables to tie everything together,
this section will teach you everything there is to know about how different
types of data manifest in memory.

From Code to Memory: A General Primer 67

Numeric Data
Most of the values game hackers need (like the player’s health, mana, loca-
tion, and level) are represented by numeric data types. Because numeric
data types are also a building block for all other data types, understanding
them is extremely important. Luckily, they have relatively straightforward
representations in memory: they are predictably aligned and have a fixed
bit width. Table 4-1 shows the five main numeric data types you’ll find in
Windows games, along with their sizes and ranges.

Table 4-1: Numeric Data Types

Type name(s) Size Signed range Unsigned range

char, BYTE 8 bits −128 to 127 0 to 255

short, WORD,
wchar_t

16 bits −32,768 to −32,767 0 to 65535

int, long, DWORD 32 bits −2,147,483,648 to 2,147,483,647 0 to 4,294,967,295
long long 64 bits −9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
0 to 18,446,744,073,709,551,615

float 32 bits +/−1.17549*10−38 to
+/−3.40282*1038

N/A

The sizes of numeric data types can differ between architectures and
even compilers. Since this book focuses on hacking x86 games on Windows,
I’m using type names and sizes made standard by Microsoft. With the excep-
tion of float, the data types in Table 4-1 are stored with little-endian ordering,
meaning the least significant bytes of an integer are stored in the lowest
addresses occupied by that integer. For example, Figure 4-1 shows that DWORD
0x0A0B0C0D is represented by the bytes 0x0D 0x0C 0x0B 0x0A.

0D

0C

0B

0A

. . .

. . .

Register

Memory

a:

a+1:

a+2:

a+3:

0A0B0C0D

Figure 4-1: Little-endian ordering diagram

The float data type can hold mixed numbers, so its representation in
memory isn’t as simple as that of other data types. For example, if you see

68 Chapter 4

0x0D 0x0C 0x0B 0x0A in memory and that value is a float, you can’t simply
convert it to 0x0A0B0C0D. Instead, float values have three components: the
sign (bit 0), exponent (bits 1–8), and mantissa (bits 9–31).

The sign determines whether the number is negative or positive, the
exponent determines how many places to move the decimal point (start-
ing before the mantissa), and the mantissa holds an approximation of
the value. You can retrieve the stored value by evaluating the expression
mantissa × 10n (where n is the exponent) and multiplying the result by –1
if the sign is set.

Now let’s look at some numeric data types in memory. Listing 4-1 ini-
tializes nine variables.

unsigned char ubyteValue = 0xFF;
char byteValue = 0xFE;
unsigned short uwordValue = 0x4142;
short wordValue = 0x4344;
unsigned int udwordValue = 0xDEADBEEF;
int dwordValue = 0xDEADBEEF;
unsigned long long ulongLongValue = 0xEFCDAB8967452301;
long long longLongValue = 0xEFCDAB8967452301;
float floatValue = 1337.7331;

Listing 4-1: Creating variables of numeric data types in C++

Starting from the top, this example includes variables of types char, short,
int, long long, and float. Four of these are unsigned, and five are signed. (In
C++, a float can’t be unsigned.) Taking into account what you’ve learned so
far, carefully study the relationship between the code in Listing 4-1 and the
memory dump in Figure 4-2. Assume that the variables are declared in global
scope.

Figure 4-2: OllyDbg memory dump of our numeric data

You might notice that some values seem arbitrarily spaced out. Since
it’s much faster for processors to access values residing at addresses that are
multiples of the address size (which is 32 bits in x86), compilers pad values
with zeros in order to align them on such addresses—hence, padding is also
called alignment. Single-byte values are not padded, since operations that
access them perform the same regardless of alignment.

Keeping this in mind, take a look at Table 4-2, which provides a sort of
memory-to-code crosswalk between the memory dump in Figure 4-2 and
the variables declared in Listing 4-1.

From Code to Memory: A General Primer 69

Table 4-2: Memory-to-Code Crosswalk for Listing 4-1 and Figure 4-2

Address Size Data Object

0x00BB3018 1 byte 0xFF ubyteValue

0x00BB3019 1 byte 0xFE byteValue

0x00BB301A 2 bytes 0x00 0x00 Padding before uwordValue

0x00BB301C 2 bytes 0x42 0x41 uwordValue

0x00BB301E 2 bytes 0x00 0x00 Padding before wordValue

0x00BB3020 2 bytes 0x44 0x43 wordValue

0x00BB3022 2 bytes 0x00 0x00 Padding before udwordValue

0x00BB3024 4 bytes 0xEF 0xBE 0xAD 0xDE udwordValue

0x00BB3028 4 bytes 0xEF 0xBE 0xAD 0xDE dwordValue

0x00BB302C 4 bytes 0x76 0x37 0xA7 0x44 floatValue

0x00BB3030 8 bytes 0x01 0x23 0x45 0x67
0x89 0xAB 0xCD 0xEF

ulongLongValue

0x00BB3038 8 bytes 0x01 0x23 0x45 0x67
0x89 0xAB 0xCD 0xEF

LongLongValue

The Address column lists locations in memory, and the Data column
tells you exactly what’s stored there. The Object column tells you which
variable from Listing 4-1 each piece of data relates to. Notice that floatValue
is placed before ulongLongValue in memory, even though it’s the last variable
declared in Listing 4-1. Because these variables are declared in global scope,
the compiler can place them wherever it wants. This particular move is
likely a result of either alignment or optimization.

String Data
Most developers use the term string as if it’s synonymous with text, but text is
only the most common use for strings. At a low level, strings are just arrays
of arbitrary numeric objects that appear linear and unaligned in memory.
Listing 4-2 shows four text string declarations.

// char will be 1 byte per character
char* thinStringP = "my_thin_terminated_value_pointer";
char thinStringA[40] = "my_thin_terminated_value_array";

// wchar_t will be 2 bytes per character
wchar_t* wideStringP = L"my_wide_terminated_value_pointer";
wchar_t wideStringA[40] = L"my_wide_terminated_value_array";

Listing 4-2: Declaring several strings in C++

70 Chapter 4

In the context of text, strings hold character objects (char for 8-bit encod-
ing or wchar_t for 16-bit encoding), and the end of each string is specified by a
null terminator, a character equal to 0x0. Let’s look at the memory where these
variables are stored, as shown in the two memory dumps in Figure 4-3.

�

�

Figure 4-3: In this OllyDbg memory dump of string data, the
human-readable text in the ASCII column is the text we stored
in Listing 4-2.

If you’re not used to reading memory, the OllyDbg dump might be a bit
difficult to follow at this point. Table 4-3 shows a deeper look at the correla-
tion between the code in Listing 4-2 and the memory in Figure 4-3.

Table 4-3: Memory-to-Code Crosswalk for Listing 4-2 and Figure 4-3

Address Size Data Object

Pane 1

0x012420F8 32 bytes 0x6D 0x79 0x5F {…} 0x74 0x65 0x72 thinStringP characters

0x01242118 4 bytes 0x00 0x00 0x00 0x00 thinStringP terminator and
padding

0x0124211C 4 bytes 0x00 0x00 0x00 0x00 Unrelated data

0x01242120 64 bytes 0x6D 0x00 0x79 {…} 0x00 0x72 0x00 wideStringP characters

0x01242160 4 bytes 0x00 0x00 0x00 0x00 wideStringP terminator and
padding

{...} Unrelated data

Pane 2

0x01243040 4 bytes 0xF8 0x20 0x24 0x01 Pointer to thinStringP at
0x012420F8

0x01243044 30 bytes 0x6D 0x79 0x5F {…} 0x72 0x61 0x79 thinStringA characters

0x01243062 10 bytes 0x00 repeated 10 times thinStringA terminator and
array fill

0x0124306C 4 bytes 0x20 0x21 0x24 0x01 Pointer to wideStringP at
0x01242120

0x01243070 60 bytes 0x6D 0x00 0x79 {…} 0x00 0x79 0x00 wideStringA characters

0x012430AC 20 bytes 0x00 repeated 10 times wideStringA terminator and
array fill

From Code to Memory: A General Primer 71

In Figure 4-3, pane 1 shows that the values stored where thinStringP
(address 0x01243040) and wideStringP (address 0x0124306C) belong in
memory are only 4 bytes long and contain no string data. That’s because
these variables are actually pointers to the first characters of their respec-
tive arrays. For example, thinStringP contains 0x012420F8, and in pane 2 in
Figure 4-3, you can see "my_thin_terminated_value_pointer" located at address
0x012420F8.

Look at the data between these pointers in pane 1, and you can see the
text being stored by thinStringA and wideStringA. Furthermore, notice that
thinStringA and wideStringA are padded beyond their null terminators; this
is because these variables were declared as arrays with length 40, so they are
filled up to 40 characters.

Data Structures
Unlike the data types we have previously discussed, structures are containers
that hold multiple pieces of simple, related data. Game hackers who know
how to identify structures in memory can mimic those structures in their
own code. This can greatly reduce the number of addresses they must find,
as they need to find only the address to the start of the structure, not the
address of every individual item.

N o t e 	 This section talks about structures as simple containers that lack member functions
and contain only simple data. Objects that exceed these limitations will be discussed
in “Classes and VF Tables” on page 74.

Structure Element Order and Alignment

Since structures simply represent an assortment of objects, they don’t visibly
manifest in memory dumps. Instead, a memory dump of a structure shows
the objects that are contained within that structure. The dump would look
much like the others I’ve shown in this chapter, but with important differ-
ences in both order and alignment.

To see these differences, start by taking a look at Listing 4-3.

struct MyStruct {
 unsigned char ubyteValue;
 char byteValue;
 unsigned short uwordValue;
 short wordValue;
 unsigned int udwordValue;
 int dwordValue;
 unsigned long long ulongLongValue;
 long long longLongValue;
 float floatValue;
};
MyStruct& m = 0;

72 Chapter 4

printf("Offsets: %d,%d,%d,%d,%d,%d,%d,%d,%d\n",
 &m->ubyteValue, &m->byteValue,
 &m->uwordValue, &m->wordValue,
 &m->udwordValue, &m->dwordValue,
 &m->ulongLongValue, &m->longLongValue,
 &m->floatValue);

Listing 4-3: A C++ structure and some code that uses it

This code declares a structure named MyStruct and creates a variable
named m that supposedly points to an instance of the structure at address
0. There’s not actually an instance of the structure at address 0, but this
trick lets me use the ampersand operator (&) in the printf() call to get the
address of each member of the structure. Since the structure is located
at address 0, the address printed for each member is equivalent to its offset
from the start of the structure.

The ultimate purpose of this example is to see exactly how each mem-
ber is laid out in memory, relative to the start of the structure. If you were
to run the code, you’d see the following output:

Offsets: 0,1,2,4,8,12,16,24,32

As you can see, the variables in MyStruct are ordered exactly as they
were defined in code. This sequential member layout is a mandatory prop-
erty of structures. Compare this to the example from Listing 4-1, when we
declared an identical set of variables; in the memory dump from Figure 4-2,
the compiler clearly placed some values out of order in memory.

Furthermore, you may have noticed that the members are not aligned
like the globally scoped variables in Listing 4-1; if they were, for example,
there would be 2 padding bytes before uwordValue. This is because structure
members are aligned on addresses divisible by either the struct member align-
ment (a compiler option that accepts 1, 2, 4, 8, or 16 bytes; in this example,
it’s set to 4) or the size of the member—whichever is smaller. I arranged the
members of MyStruct so that the compiler didn’t need to pad the values.

If, however, we put a char immediately after ulongLongValue, the printf()
call would give the following output:

Offsets: 0,1,2,4,8,12,16,28,36

Now, take a look at the original and the modified outputs together:

Original: Offsets: 0,1,2,4,8,12,16,24,32
Modified: Offsets: 0,1,2,4,8,12,16,28,36

In the modified version, the last two values, which are the offsets for
longLongValue and floatValue from the start of the structure, have changed.
Thanks to the struct member alignment, the variable longLongValue moves
by 4 bytes (1 for the char value and 3 following it) to ensure it gets placed on
an address divisible by 4.

From Code to Memory: A General Primer 73

How Structures Work

Understanding structures—how they are aligned and how to mimic them—
can be very useful. For instance, if you replicate a game’s structures in your
own code, you can read or write those entire structures from memory in
a single operation. Consider a game that declares the player’s current and
max health like so:

struct {
 int current;
 int max;
} vital;
vital health;

If an inexperienced game hacker wants to read this information from
memory, they might write something like this to fetch the health values:

int currentHealth = readIntegerFromMemory(currentHealthAddress);
int maxHealth = readIntegerFromMemory(maxHealthAddress);

This game hacker doesn’t realize that seeing these values right next to
each other in memory could be more than a lucky happenstance, so they’ve
used two separate variables. But if you came along with your knowledge of
structures, you might conclude that, since these values are closely related and
are adjacent in memory, our hacker could have used a structure instead:

struct {
 int current;
 int max;
} _vital;

 _vital health = readTypeFromMemory<_vital>(healthStructureAddress);

Since this code assumes a structure is being used and correctly mimics it,
it can fetch both health and max health in just one line . We’ll dive deeper
into how to write your own code to read memory from in Chapter 6.

Unions
Unlike structures, which encapsulate multiple pieces of related data, unions
contain a single piece of data that is exposed through multiple variables.
Unions follow three rules:

•	 The size of a union in memory is equal to that of its largest member.

•	 Members of a union all reference the same memory.

•	 A union inherits the alignment of its largest member.

The printf() call in the following code helps illustrate the first two rules:

union {
 BYTE byteValue;
 struct {

74 Chapter 4

 WORD first;
 WORD second;
 } words;
 DWORD value;
} dwValue;
dwValue.value = 0xDEADBEEF;
printf("Size %d\nAddresses 0x%x,0x%x\nValues 0x%x,0x%x\n",
 sizeof(dwValue), &dwValue.value, &dwValue.words,
 dwValue.words.first, dwValue.words.second);

This call to printf() outputs the following:

Size 4
Addresses 0x2efda8,0x2efda8
Values 0xbeef,0xdead

The first rule is illustrated by the Size value, which is printed first. Even
though dwValue has three members that occupy a total of 9 bytes, it has a
size of only 4 bytes. The size result validates the second rule as well, because
dwValue.value and dwValue.words both point to address 0x2efda8, as shown by
the values printed after the word Addresses. The second rule is also vali-
dated by the fact that dwValue.words.first and dwValue.words.second contain
0xbeef and 0xdead, printed after Values, which makes sense considering that
dwValue.value is 0xdeadbeef. The third rule isn’t demonstrated in this example
because we don’t have enough memory context, but if you were to put this
union inside a structure and surround it with whatever types you like, it
would in fact always align like a DWORD.

Classes and VF Tables
Much like structures, classes are containers that hold and isolate multiple
pieces of data, but classes can also contain function definitions.

A Simple Class

Classes with normal functions, such as bar in Listing 4-4, conform to the
same memory layouts as structures.

class bar {
public:
 bar() : bar1(0x898989), bar2(0x10203040) {}
 void myfunction() { bar1++; }
 int bar1, bar2;
};

bar _bar = bar();
printf("Size %d; Address 0x%x : _bar\n", sizeof(_bar), &_bar);

Listing 4-4: A C++ class

From Code to Memory: A General Primer 75

The printf() call in Listing 4-4 would output the following:

Size 8; Address 0x2efd80 : _bar

Even though bar has two member functions, this output shows that it
spans only the 8 bytes needed to hold bar1 and bar2. This is because the bar
class doesn’t include abstractions of those member functions, so the pro-
gram can call them directly.

N o t e 	 Access levels such as public, private, and protected do not manifest in memory.
Regardless of these modifiers, members of classes are still ordered as they are defined.

A Class with Virtual Functions

In classes that do include abstract functions (often called virtual functions),
the program must know which function to call. Consider the class defini-
tions in Listing 4-5:

class foo {
public:
foo() : myValue1(0xDEADBEEF), myValue2(0xBABABABA) {}
 int myValue1;
 static int myStaticValue;
 virtual void bar() { printf("call foo::bar()\n"); }
 virtual void baz() { printf("call foo::baz()\n"); }
 virtual void barbaz() {}
 int myValue2;
};

int foo::myStaticValue = 0x12121212;

class fooa : public foo {
public:
 fooa() : foo() {}
 virtual void bar() { printf("call fooa::bar()\n"); }
 virtual void baz() { printf("call fooa::baz()\n"); }
};

class foob : public foo {
public:
 foob() : foo() {}
 virtual void bar() { printf("call foob::bar()\n"); }
 virtual void baz() { printf("call foob::baz()\n"); }
};

Listing 4-5: The foo, fooa, and foob classes

The class foo has three virtual functions: bar, baz, and barbaz. Classes
fooa and foob inherit from class foo and overload both bar and baz. Since fooa

76 Chapter 4

and foob have a public base class of foo, a foo pointer can point to them, but
the program must still call the correct versions of bar and baz. You can see
this by executing the following code:

foo* _testfoo = (foo*)new fooa();
_testfoo->bar(); // calls fooa::bar()

And here is the output:

call fooa::bar()

The output shows that _testfoo->bar() invoked fooa::bar() even though
_testfoo is a foo pointer. The program knew which version of the function
to call, because the compiler included a VF (virtual function) table in the
memory of _testfoo. VF tables are arrays of function addresses that abstract
class instances use to tell a program where their overloaded functions are
located.

Class Instances and Virtual Function Tables

To understand the relationship between class instances and VF tables, let’s
inspect a memory dump of the three objects declared in this listing:

foo _foo = foo();
fooa _fooa = fooa();
foob _foob = foob();

These objects are of the types defined in Listing 4-5. You can see them
in memory in Figure 4-4.

�

�

Figure 4-4: OllyDbg memory dump of class data

Pane 1 shows that each class instance stores its members just like a
structure, but it precedes them with a DWORD value that points to the class
instance’s VF table. Pane 2 shows the VF tables for each of our three class
instances. The memory-to-code crosswalk in Table 4-4 shows how these
panes and the code tie together.

From Code to Memory: A General Primer 77

Table 4-4: Memory-to-Code Crosswalk for Listing 4-5 and Figure 4-4

Address Size Data Object

Pane 1

0x0018FF20 4 bytes 0x004022B0 Start of _foo and pointer to foo VF
table

0x0018FF24 8 bytes 0xDEADBEEF
0xBABABABA

_foo.myValue1 and _foo.myValue2

0x0018FF2C 4 bytes 0x004022C0 Start of _fooa and pointer to fooa VF
table

0x0018FF30 8 bytes 0xDEADBEEF
0xBABABABA

_fooa.myValue1 and _fooa.myValue2

0x0018FF38 4 bytes 0x004022D0 Start of _foob and pointer to foob VF
table

0x0018FF3C 8 bytes 0xDEADBEEF
0xBABABABA

_foob.myValue1 and _foob.myValue2

{...} Unrelated data

Pane 2

0x004022B0 4 bytes 0x00401060 Start of foo VF table; address of
foo::bar

0x004022B4 4 bytes 0x00401080 Address of foo::baz

0x004022B8 4 bytes 0x004010A0 Address of foo::barbaz

0x004022BC 4 bytes 0x0040243C Unrelated data

0x004022C0 4 bytes 0x004010D0 Start of fooa VF table; address of
fooa::bar

0x004022C4 4 bytes 0x004010F0 Address of fooa::baz

0x004022C8 4 bytes 0x004010A0 Address of foo::barbaz

0x004022CC 4 bytes 0x004023F0 Unrelated data

0x004022D0 4 bytes 0x00401130 Start of foob VF table; address of
foob::bar

0x004022D4 4 bytes 0x00401150 Address of foob::baz

0x004022D8 4 bytes 0x004010A0 Address of foo::barbaz

This crosswalk shows how the VF tables for the code in Listing 4-5 are
laid out in memory. Each VF table is generated by the compiler when the
binary is made, and the tables remain constant. To save space, instances
of the same class all point to the same VF table, which is why the VF tables
aren’t placed inline with the class.

Since we have three VF tables, you might wonder how a class instance
knows which VF table to use. The compiler places code similar to the fol-
lowing bit of assembly in each virtual class constructor:

MOV DWORD PTR DS:[EAX], VFADDR

78 Chapter 4

This example takes the static address of a VF table (VFADDR) and places it
in memory as the first member of the class.

Now look at addresses 0x004022B0, 0x004022C0, and 0x004022D0 in
Table 4-4. These addresses contain the beginning of the foo, fooa, and foob
VF tables. Notice that foo::barbaz exists in all three VF tables; this is because
the function is not overloaded by either subclass, meaning instances of each
subclass will call the original implementation directly.

Notice, too, that foo::myStaticValue does not appear in this crosswalk.
Since the value is static, it doesn’t actually need to exist as a part of the foo
class; it’s placed inside this class only for better code organization. In real-
ity, it gets treated like a global variable and is placed elsewhere.

The memory tour ends here, but if you have trouble identifying a chunk
of data in the future, come back to this section for reference. Next, we’ll
look at how a computer can understand a game’s high-level source code in
the first place.

x86 Assembly Crash Course
When a program’s source code is compiled into a binary, it is stripped of all
unnecessary artifacts and translated into machine code. This machine code,
made up of only bytes (command bytes are called opcodes, but there are also
bytes representing operands), gets fed directly to the processor and tells it
exactly how to behave. Those 1s and 0s flip transistors to control computa-
tion, and they can be extremely difficult to understand. To make computers
a little easier to talk to, engineers working with such code use assembly lan-
guage, a shorthand that represents raw machine opcodes with abbreviated
names (called mnemonics) and a simplistic syntax.

Assembly language is important for game hackers to know because
many powerful hacks can be achieved only through direct manipulation
of a game’s assembly code, via methods such as NOPing or hooking. In this
section, you’ll learn the basics of x86 assembly language, a specific flavor of

V F Tab l e s and Chea t E ngine

Remember Cheat Engine’s First element of pointerstruct must point to module
option for pointer scans from Figure 1-4 on page 14? Now that you’ve read
a bit about VF tables, that knowledge should help you understand how this
option works: it makes Cheat Engine ignore all heap chunks where the first
member is not a pointer to a valid VF table. It speeds up scans, but it works
only if every step in a pointer path is part of an abstract class instance.

From Code to Memory: A General Primer 79

assembly made for speaking to 32-bit processors. Assembly language is very
extensive, so for the sake of brevity this section talks only about the small
subset of assembly concepts that are most useful to game hackers.1

N o t e 	 Throughout this section, many small snippets of assembly code include comments set
off by a semicolon ( ;) to describe each instruction in greater detail.

Command Syntax
Assembly language is used to describe machine code, so its syntax is pretty
simplistic. While this syntax makes it very easy for someone to understand
individual commands (also called operations), it also makes understanding
complex blocks of code very hard. Even algorithms that are easily readable
in high-level code seem obfuscated when written in assembly. For example,
the following snippet of pseudocode:

if (EBX > EAX)
 ECX = EDX
else
 ECX = 0

would look like Listing 4-6 in x86 assembly.

 CMP EBX, EAX
 JG label1
 MOV ECX, 0
 JMP label2
label1:
 MOV ECX, EDX
label2:

Listing 4-6: Some x86 assembly commands

Therefore, it takes extensive practice to understand even the most triv-
ial functions in assembly. Understanding individual commands, however,
is very simple, and by the end of this section, you’ll know how to parse the
commands I just showed you.

Instructions

The first part of an assembly command is called an instruction. If you equate
an assembly command to a terminal command, the instruction is the pro-
gram to run. At the machine code level, instructions are typically the first
byte of a command;2 there are also some 2-byte instructions, where the
first byte is 0x0F. Regardless, an instruction tells the processor exactly what
to do. In Listing 4-6, CMP, JG, MOV, and JMP are all instructions.

1. Randall Hyde’s The Art of Assembly Language, 2nd edition (No Starch Press, 2010) is a wonder-
ful book that can teach you everything there is to know about assembly.

2. Each command must fit within 15 bytes. Most commands are 6 or fewer.

80 Chapter 4

Operand Syntax

While some instructions are complete commands, the vast majority are
incomplete unless followed by operands, or parameters. Every command in
Listing 4-6 has at least one operand, like EBX, EAX, and label1.

Assembly operands come in three forms:

Immediate value  An integer value that is declared inline (hexadeci-
mal values have a trailing h).

Register  A name that refers to a processor register.

Memory offset  An expression, placed in brackets, that represents the
memory location of a value. The expression can be an immediate value
or a register. Alternatively, it can be either the sum or difference of a
register and immediate value (something like [REG+Ah] or [REG-10h]).

Each instruction in x86 assembly can have between zero and three
operands, and commas are used to separate multiple operands. In most
cases, instructions that require two operands have a source operand and a
destination operand. The ordering of these operands is dependent on the
assembly syntax. For example, Listing 4-7 shows a group of pseudocom-
mands written in the Intel syntax, which is used by Windows (and, thus,
by Windows game hackers):

MOV R1, 1 ; set R1 (register) to 1 (immediate)
 MOV R1, [BADF00Dh] ; set R1 to value at [BADFOODh] (memory offset)

MOV R1, [R2+10h] ; set R1 to value at [R2+10h] (memory offset)
MOV R1, [R2-20h] ; set R1 to value at [R2+20h] (memory offset)

Listing 4-7: Demonstrating Intel syntax

In the Intel syntax, the destination operand comes first, followed by the
source, so at , R1 is the destination and [BADFOODh] is the source. On the other
hand, compilers like GCC (which can be used to write bots on Windows) use
a syntax known as AT&T, or UNIX, syntax. This syntax does things a little
differently, as you can see in the following example:

MOV $1, %R1 ; set R1 (register) to 1 (immediate)
MOV 0xBADF00D, %R1 ; set R1 to value at 0xBADFOOD (memory offset)
MOV 0x10(%R2), %R1 ; set R1 to value at 0x10(%R2) (memory offset)
MOV -0x20(%R2), %R1 ; set R1 to value at -0x20(%R2) (memory offset)

This code is the AT&T version of Listing 4-7. AT&T syntax not only
reverses the operand order but also requires operand prefixing and has
a different format for memory offset operands.

Assembly Commands

Once you understand assembly instructions and how to format their oper-
ands, you can start writing commands. The following code shows an assem-
bly function, consisting of some very basic commands, that essentially does
nothing.

From Code to Memory: A General Primer 81

PUSH EBP ; put EBP (register) on the stack
MOV EBP, ESP ; set EBP to value of ESP (register, top of stack)
PUSH -1 ; put -1 (immediate) on the stack
ADD ESP, 4 ; negate the 'PUSH -1' to put ESP back where it was (a PUSH
 ; subtracts 4 from ESP, since it grows the stack)
MOV ESP, EBP ; set ESP to the value of EBP (they will be the same anyway,
 ; since we have kept ESP in the same place)
POP EBP ; set EBP to the value on top of the stack (it will be what
 ; EBP started with, put on the stack by PUSH EBP)
XOR EAX, EAX ; exclusive-or EAX (register) with itself (same effect as
 ; 'MOV EAX, 0' but much faster)
RETN ; return from the function with a value of 0 (EAX typically
 ; holds the return value)

The first two lines, a PUSH command and a MOV command, set up a stack
frame. The next line pushes –1 to the stack, which is undone when the stack
is set back to its original position by the ADD ESP, 4 command. Following that,
the stack frame is removed, the return value (stored in EAX) is set to 0 with
an XOR instruction, and the function returns.

You’ll learn more about stack frames and functions in “The Call Stack”
on page 86 and “Function Calls” on page 94. For now, turn your atten-
tion to the constants in the code—namely EBP, ESP, and EAX, which are used
frequently in the code as operands. These values, among others, are called
processor registers, and understanding them is essential to understanding the
stack, function calls, and other low-level aspects of assembly code.

Processor Registers
Unlike high-level programming languages, assembly language does not
have user-defined variable names. Instead, it accesses data by referenc-
ing its memory address. During intensive computation, however, it can be
extremely costly for the processor to constantly deal with the overhead of
reading and writing data to RAM. To mitigate this high cost, x86 proces-
sors provide a small set of temporary variables, called processor registers,
which are small storage spaces within the processor itself. Since accessing
these registers requires far less overhead than accessing RAM, assembly
uses them to describe its internal state, pass volatile data around, and store
context-sensitive variables.

General Registers

When assembly code needs to store or operate on arbitrary data, it uses a
subset of process registers called general registers. These registers are used
exclusively to store process-specific data, such as a function’s local variables.
Each general register is 32 bits and thus can be thought of as a DWORD vari-
able. General registers are also optimized for specific purposes:

EAX, the accumulator  This register is optimized for mathematical
computations. Some operations, such as multiplication and division,
can only occur in EAX.

82 Chapter 4

EBX, the base register  This register is used arbitrarily for extra
storage. Since its 16-bit predecessor, BX, was the only register that
operations could use to reference memory addresses, EBX was used
as a reference to RAM. In x86 assembly, however, all registers can be
address references, leaving EBX without a true purpose.

ECX, the counter  This register is optimized to act as the counter vari-
able (often called i in high-level code) in a loop.

EDX, the data register  This register is optimized to act as a helper to
EAX. In 64-bit computations, for instance, EAX acts as bits 0–31 and
EDX acts as bits 32–63.

These registers also have a set of 8- and 16-bit subregisters that you can
use to access partial data. Think of every general register as a union, where
a register name describes the 32-bit member and the subregisters are alter-
nate members that allow access to smaller pieces of the register. The follow-
ing code shows what this union might look like for EAX:

union {
 DWORD EAX;
 WORD AX;
 struct {
 BYTE L;
 BYTE H;
 } A;
} EAX;

In this example, AX allows access to the lower WORD of EAX, while AL allows
access to the lower BYTE of AX and AH to its higher BYTE. Every general reg-
ister has this structure, and I outline the other registers’ subregisters in
Figure 4-5.

EAX

EBX

ECX

EDX

AX

BX

CX

DX

AH

BH

CH

DH

AL

BL

CL

DL

16 bits

8 bits 8 bits

32 bits

Figure 4-5: x86 registers and subregisters

EAX, EBC, ECX, and EDX have higher words, too, but the compiler
will almost never access them on its own, as it can just use the lower word
when it needs word-only storage.

From Code to Memory: A General Primer 83

Index Registers

x86 assembly also has four index registers, which are used to access data
streams, reference the call stack, and keep track of local information. Like
the general registers, index registers are 32 bits, but index registers have
more strictly defined purposes:

EDI, the destination index  This register is used to index memory tar-
geted by write operations. If there are no write operations in a piece of
code, the compiler can use EDI for arbitrary storage if needed.

ESI, the source index  This register is used to index memory targeted
by read operations. It can also be used arbitrarily.

ESP, the stack pointer  This register is used to reference the top of the
call stack. All stack operations directly access this register. You must use
ESP only when working with the stack, and it must always point to the
top of the stack.

EBP, the stack base pointer  This register marks the bottom of the
stack frame. Functions use it as a reference to their parameters and local
variables. Some code may be compiled with an option to omit this behav-
ior, in which case EBP can be used arbitrarily.

Like the general registers, each index register has a 16-bit counterpart:
DI, SI, SP, and BP, respectively. However, the index registers have no 8-bit
subregisters.

The Execution Index Register

The Execution Index register, referred to as EIP, has a very concrete pur-
pose: it points to the address of the code currently being executed by the
processor. Because it controls the flow of execution, it is directly incre-
mented by the processor and is off-limits to assembly code. To modify EIP,
assembly code must indirectly access it using operations such as CALL, JMP,
and RETN.

Wh y Do Some x86 Regi s t e rs H ave Subr egis t e rs?

There is a historical reason why both general and index registers have
16-bit counterparts. The x86 architecture was based on a 16-bit architec-
ture, from which it extended the registers AX, BX, CX, DX, DI, SI, SP, and BP.
Appropriately, the extensions retain the same names but are prefixed with an
E, for “extended.” The 16-bit versions remain for backward compatibility. This
also explains why index registers have no 8-bit abstractions: they are intended
to be used as memory-address offsets, and there is no practical need to know
partial bytes of such values.

84 Chapter 4

The EFLAGS Register

Unlike high-level code, assembly language doesn’t have binary comparison
operators like ==, >, and <. Instead, it uses the CMP command to compare two
values, storing the resulting information in the EFLAGS register. Then, the
code changes its control flow using special operations that depend on the
value stored in ELFAGS.

While comparison commands are the only user-mode operations that
can access EFLAGS, they use only this register’s status bits: 0, 2, 4, 6, 7, and
11. Bits 8–10 act as control flags, bits 12–14 and 16–21 act as system flags,
and the remaining bits are reserved for the processor. Table 4-5 shows the
type, name, and description of each EFLAGS bit.

Table 4-5: EFLAGS bits

Bit(s) Type Name Description

0 Status Carry Set if a carry or borrow was generated from the most
significant bit during the previous instruction.

2 Status Parity Set if the least significant byte resulting from the previ-
ous instruction has an even number of bits set.

4 Status Adjust Same as the carry flag, but considers the 4 least sig-
nificant bits.

6 Status Zero Set if the resulting value from the previous instruction
is equal to 0.

7 Status Sign Set if the resulting value from the previous instruction
has its sign bit (most significant bit) set.

8 Control Trap When set, the processor sends an interrupt to the
operating system kernel after executing the next
operation.

9 Control Interrupt When not set, the system ignores maskable interrupts.

10 Control Direction When set, ESI and EDI are decremented by operations
that automatically modify them. When not set, they
are incremented.

11 Status Overflow Set when a value is overflowed by the previous instruc-
tion, such as when ADD is performed on a positive
value and the result is a negative value.

The EFLAGS register also contains a system bit and a reserved bit, but
those are irrelevant in user-mode assembly and game hacking, so I’ve omit-
ted them from this table. Keep EFLAGS in mind when you’re debugging
game code to figure out how it works. For example, if you set a breakpoint
on a JE (jump if equal) instruction, you can look at the EFLAGS 0 bit to see
whether the jump will be taken.

Segment Registers

Finally, assembly language has a set of 16-bit registers called segment registers.
Unlike other registers, segment registers are not used to store data; they
are used to locate it. In theory, they point to isolated segments of memory,

From Code to Memory: A General Primer 85

allowing different types of data to be stored in completely separate memory
segments. The implementation of such segmentation is left up to the operat-
ing system. These are the x86 segment registers and their intended purposes:

CS, the code segment  This register points to the memory that holds
an application’s code.

DS, the data segment  This register points to the memory that holds
an application’s data.

ES, FS, and GS, the extra segments  These registers point to any pro-
prietary memory segments used by the operating system.

SS, the stack segment  This register points to memory that acts as a
dedicated call stack.

In assembly code, segment registers are used as prefixes to memory off-
set operands. When a segment register isn’t specified, DS is used by default.
This means that the command PUSH [EBP] is effectively the same as PUSH
DS:[EBP]. But the command PUSH FS:[EBP] is different: it reads memory from
the FS segment, not the DS segment.

If you look closely at the Windows x86 implementation of memory seg-
mentation, you might notice that these segment registers were not exactly
used as intended. To see this in action, you can run the following commands
with the OllyDbg command line plug-in while OllyDbg is attached to a
paused process:

? CALC (DS==SS && SS==GS && GS==ES)
? 1
? CALC DS-CS
? 8
? CALC FS-DS
; returns nonzero (and changes between threads)

This output tells us three distinct things. First, it shows that there are
only three segments being used by Windows: FS, CS, and everything else.
This is demonstrated by DS, SS, GS, and ES being equal. For the same
reason, this output shows that DS, SS, GS, and ES can all be used inter-
changeably, as they all point to the same memory segments. Lastly, since FS
changes depending on the thread, this output shows that it is thread depen-
dent. FS is an interesting segment register, and it points to certain thread-
specific data. In “Bypassing ASLR in Production” on page 128, we’ll explore
how the data in FS can be used to bypass ASLR—something most bots will
need to do.

In fact, in assembly code generated for Windows by a compiler, you’d
only ever see three segments used: DS, FS, and SS. Interestingly enough,
even though CS seems to show a constant offset from DS, it has no real
purpose in user-mode code. Knowing all of these things, you can further
conclude that there are only two segments being used by Windows: FS and
everything else.

These two segments actually point to different locations in the same
memory (there’s no simple way to verify this, but it is true), which shows

86 Chapter 4

that Windows actually doesn’t use memory segments at all. Instead, it uses
a flat memory model in which segment registers are nearly irrelevant. While
all segment registers point to the same memory, only FS and CS point to
different locations, and CS is not used.

In conclusion, there are only three things you need to know about seg-
ment registers when working with x86 assembly in Windows. First, DS, SS,
GS, and ES are interchangeable, but for clarity DS should be used to access
data and SS should be used to access the call stack. Second, CS can be safely
forgotten. Third, FS is the only segment register with a special purpose; it
should be left alone for now.

The Call Stack
Registers are powerful, but unfortunately they come in very limited sup-
ply. In order for assembly code to effectively store all of its local data,
it must also use the call stack. The stack is used to store many different
values, including function parameters, return addresses, and some local
variables.

Understanding the ins and outs of the call stack will come in handy
when you’re reverse engineering a game. Moreover, you’ll rely on this
knowledge heavily when we jump into control flow manipulation in
Chapter 8.

Structure

You can think of the call stack as a FILO (first-in-last-out) list of DWORD values
that can be directly accessed and manipulated by assembly code. The
term stack is used because the structure resembles a stack of paper: objects
are both added to and removed from the top. Data is added to the stack
through the PUSH operand command, and it is removed (and placed in a reg-
ister) through the POP register command. Figure 4-6 shows how this process
might look.

PUSH POP

Figure 4-6: The structure of a stack

From Code to Memory: A General Primer 87

In Windows, the stack grows from higher memory addresses to lower
ones. It occupies a finite block of memory, piling up to address 0x00000000
(the absolute top) from address n (the absolute bottom). This means that
ESP (the pointer to the top of the stack) decreases as items are added and
increases as items are removed.

The Stack Frame

When an assembly function uses the stack
to store data, it references the data by creat-
ing a stack frame. It does so by storing ESP
in EBP and then subtracting n bytes from
ESP, effectively opening an n -byte gap that
is framed between the registers EBP and ESP.
To better understand this, first imagine that
the stack in Figure 4-7 is passed to a func-
tion that requires 0x0C bytes of local storage
space.

In this example, address 0x0000 is the
absolute top of the stack. We have unused
memory from addresses 0x0000 to 0xFF00
– 4, and at the time of the function call, 0xFF00 is the top of the stack. ESP
points to this address. The stack memory after 0xFF00 is used by preceding
functions in the call chain (from 0xFF04 to 0xFFFF). When the function is
called, the first thing it does is execute the following assembly code, which
creates a stack frame of 0x0C (12 in decimal) bytes:

PUSH EBP ; saves the bottom of the lower stack frame
MOV EBP, ESP ; stores the bottom of the current stack frame, in EBP
 ; (also 4 bytes above the lower stack frame)
SUB ESP, 0x0C ; subtracts 0x0C bytes from ESP, moving it up the stack
 ; to mark the top of the stack frame

After this code executes, the stack looks more like the one shown in
Figure 4-8. After creating this stack, the function can work with the 0x0C
bytes it allocated on the stack.

0x0000 is still the absolute top of the stack. We have unused stack
memory from addresses 0x0000 to 0xFF00 – 20, and the memory at
address 0xFF00 – 16 contains the final 4 bytes of local storage (referenced
by [EBP-Ch]). This is also the top of the current stack frame, so ESP points
here. 0xFF00 – 12 contains the middle 4 bytes of local storage (referenced
by [EBP-8h]), and 0xFF00 – 8 contains the first 4 bytes of local storage (ref-
erenced by [EBP-4h]). EBP points to 0xFF00 – 4, which is the bottom of the
current stack frame; this address holds the original value of EBP. 0xFF00 is
the top of the lower stack frame, and the original ESP in Figure 4-7 pointed
here. Finally, you can still see the stack memory from preceding functions
in the call chain from 0xFF04 to 0xFFFF.

Figure 4-7: Initial example stack
(read from bottom to top)

0x0000

0xFF00

. . .

. . .

ESP

88 Chapter 4

0x0000

ESP

EBP

0xFF00 – 16

. . .

0xFF00 – 12

0xFF00 – 8

. . .

0xFF00 – 4

0xFF00

Figure 4-8: Example stack with stack
frame set up (read from bottom to top)

With the stack in this state, the function is free to use its local data as
it pleases. If this function called another function, the new function would
build its own stack frame using the same technique (the stack frames really
stack up). Once a function finishes using a stack frame, however, it must
restore the stack to its previous state. In our case, that means making the
stack look like it did in Figure 4-7. When the second function finishes, our
first function cleans the stack using the following two commands:

MOV ESP, EBP ; demolishes the stack frame, bringing ESP to 4 bytes above
 ; its original value (0xFF00-4)
POP EBP ; restores the bottom of the old stack frame that was saved by
 ; 'PUSH EBP'. Also adds 4 bytes to ESP, putting it back at
 ; its original value

But if you want to change the parameters passed to a function in a game,
don’t look for them in that function’s stack frame. A function’s parameters
are stored in the stack frame of the function that called it, and they’re ref-
erenced through [EBP+8h], [EBP+Ch], and so on. They start at [EBP+8h] because
[EBP+4h] stores the function’s return address. (“Function Calls” on page 94
explains this topic further.)

N o t e 	 Code can be compiled with stack frames disabled. When this is the case, you’ll notice
that functions don’t open with PUSH EBP and instead reference everything relative to
ESP. More often than not, though, stack frames are enabled in compiled game code.

Now that you have a grasp on the fundamentals of assembly code, let’s
explore some specifics that will come in handy when hacking games.

From Code to Memory: A General Primer 89

Important x86 Instructions for Game Hacking
While assembly language has hundreds of instructions, many well-equipped
game hackers understand only a small subset of them, which I cover in detail
here. This subset typically encapsulates all instructions that are used to mod-
ify data, call functions, compare values, or jump around within code.

Data Modification

Data modification often happens over several assembly operations, but
the end result has to be stored either in memory or in a register, typically
with the MOV instruction. The MOV operation takes two operands: a destina-
tion and a source. Table 4-6 shows all possible sets of MOV operands and the
results you can expect from those calls.

Table 4-6: Operands to the MOV Instruction

Instruction syntax Result

MOV R1, R2 Copies R2’s value to R1.
MOV R1, [R2] Copies the value from the memory referenced

by R2 to R1.
MOV R1, [R2+Ah] Copies the value from the memory referenced

by R2+0xA to R1.
MOV R1, [DEADBEEFh] Copies the value from the memory at

0xDEADBEEF to R1.
MOV R1, BADF00Dh Copies the value 0xBADF00D to R1.
MOV [R1], R2 Copies R2’s value to the memory referenced

by R1.
MOV [R1], BADF00Dh Copies the value 0xBADF00D to the memory

referenced by R1.
MOV [R1+4h], R2 Copies R2’s value to the memory referenced

by R1+0x4.
MOV [R1+4h], BADF00Dh Copies the value 0xBADF00D to the memory

referenced by R1+0x4.
MOV [DEADBEEFh], R1 Copies R1’s value to the memory at

0xDEADBEEF.
MOV [DEADBEEFh], BADF00Dh Copies the value 0xBADF00D to the memory

at 0xDEADBEEF.

The MOV instruction can take a lot of operand combinations, but some
aren’t allowed. First, the destination operand can’t be an immediate value;
it must be a register or memory address, because immediate values can’t be
modified. Second, values can’t be directly copied from one memory address
to another. Copying a value requires two separate operations, like so:

MOV EAX, [EBP+10h] ; copy memory from EBP+0x10 to EAX
MOV [DEADBEEFh], EAX ; MOV the copied memory to memory at 0xDEADBEEF

90 Chapter 4

These instructions copy whatever is stored at EBP+0x10 to the memory at
0xDEADBEEF.

Arithmetic

Like many high-level languages, assembly language has two types of arith-
metic: unary and binary. Unary instructions take a single operand that
acts as both a destination and a source. This operand can be a register or
a memory address. Table 4-7 shows the common unary arithmetic instruc-
tions in x86.

Table 4-7: Unary Arithmetic Instructions

Instruction syntax Result

INC operand Adds 1 to the operand value.
DEC operand Subtracts 1 from the operand value.
NOT operand Logically negates the operand value (flips all bits).
NEG operand Performs two’s-complement negation (flips all bits and adds 1;

essentially multiplies by −1).

Binary instructions (which make up the majority of x86 arithmetic), on
the other hand, are syntactically similar to the MOV instruction. They require
two operands and have similar operand limitations. Unlike MOV, however,
their destination operand serves a second purpose: it is also the left-hand
value in the calculation. For example, the assembly operation ADD EAX,EBX
equates to EAX = EAX + EBX or EAX += EBX in C++. Table 4-8 shows the common
x86 binary arithmetic instructions.

Table 4-8: Binary Arithmetic Instructions

Instruction syntax Function Operand notes

ADD destination, source destination += source

SUB destination, source destination -= source

AND destination, source destination &= source

OR destination, source destination |= source

XOR destination, source destination ^= source

SHL destination, source destination = destination << source source must be CL or an 8-bit
immediate value.

SHR destination, source destination = destination >> source source must be CL or an 8-bit
immediate value.

IMUL destination, source destination *= source destination must be a register;
source cannot be an immediate
value.

Of these arithmetic instructions, IMUL is special because you can pass it
a third operand, in the form of an immediate value. With this prototype,
the destination operand is no longer involved in the calculation, which

From Code to Memory: A General Primer 91

instead takes place between the remaining operands. For example, the
assembly command IMUL EAX,EBX,4h equates to EAX = EBX * 0x4 in C++.

You can also pass a single operand to IMUL.3 In this case, the oper-
and acts as the source and can be either a memory address or a register.
Depending on the size of the source operand, the instruction will use
different parts of the EAX register for inputs and output, as shown in
Table 4-9.

Table 4-9: Possible IMUL Register Operands

Source size Input Output

8 bits AL 16 bit, stored in AH:AL (which is AX)

16 bits AX 32 bit, stored in DX:AX (bits 0–15 in AX and bits
16–31 in DX)

32 bits EAX 64 bit, stored in EDX:EAX (bits 0–31 in EAX and
bits 32–64 in EDX)

Notice that even though the input is only one register, each output uses
two registers. That’s because in multiplication, the result generally is larger
than the inputs.

Let’s look at an example calculation using IMUL with a single 32-bit
operand:

IMUL [BADFOODh] ; 32-bit operand is at address 0xBADFOOD

This command behaves like the following pseudocode:

EDX:EAX = EAX * [BADFOODh]

Similarly, here’s an operation that uses IMUL with a single 16-bit
operand:

IMUL CX ; 16-bit operand is stored in CX

And its corresponding pseudocode:

DX:AX = AX * CX

Finally, this is an IMUL command with a single 8-bit operand:

IMUL CL ; 8-bit operand is stored in CL

And its corresponding pseudocode:

AX = AL * CL

3. There is also an unsigned multiplication instruction, MUL, which only works with a single
operand.

92 Chapter 4

x86 assembly language has division as well, through the IDIV instruction.4
The IDIV instruction accepts a single source operand and follows register
rules similar to those for IMUL. As Table 4-10 shows, IDIV operations require
two inputs and two outputs.

Table 4-10: Possible IDIV Register Operands

Source size Input Output

8 bit 16 bit, stored in AH:AL (which is AX) Remainder in AH; quotient in AL

16 bit 32 bit, stored in DX:AX Remainder in DX; quotient in AX

32 bit 64 bit, stored in EDX:EAX Remainder in EDX; quotient in EAX

In division, the inputs are generally larger than the output, so here
the inputs take two registers. Moreover, division operations must store a
remainder, which gets stored in the first input register. For example, here’s
how a 32-bit IDIV calculation would look:

MOV EDX, 0 ; there's no high-order DWORD in the input, so EDX is 0
MOV EAX, inputValue ; 32-bit input value
IDIV ECX ; divide EDX:EAX by ECX

And here’s some pseudocode that expresses what happens under
the hood:

EAX = EDX:EAX / ECX ; quotient
EDX = EDX:EAX % ECX ; remainder

These details of IDIV and IMUL are important to remember, as the behav-
ior can otherwise be quite obfuscated when you’re simply looking at the
commands.

Branching

After evaluating an expression, programs can decide what to execute next
based on the result, typically using constructs such as if() statements or
switch() statements. These control flow statements don’t exist at the assem-
bly level, however. Instead, assembly code uses the EFLAGS register to make
decisions and jump operations to execute different blocks; this process is
called branching.

To get the proper value in EFLAGS, assembly code uses one of two
instructions: TEST or CMP. Both compare two operands, set the status bits of
EFLAGS, and then discard any results. TEST compares the operands using
a logical AND, while CMP uses signed subtraction to subtract the latter oper-
and from the former.

4. Just as MUL is to IMUL, DIV is the unsigned counterpart to IDIV.

From Code to Memory: A General Primer 93

In order to branch properly, the code has a jump command immedi-
ately following the comparison. Each type of jump instruction accepts a
single operand that specifies the address of the code to jump to. How a
particular jump instruction behaves depends on the status bits of EFLAGS.
Table 4-11 describes some x86 jump instructions.

Table 4-11: Common x86 Jump Instructions

Instruction Name Behavior

JMP dest Unconditional jump Jumps to dest (sets EIP to dest).
JE dest Jump if equal Jumps if ZF (zero flag) is 1.
JNE dest Jump if not equal Jumps if ZF is 0.
JG dest Jump if greater Jumps if ZF is 0 and SF (sign flag) is equal

to OF (overflow flag).
JGE dest Jump if greater or equal Jumps if SF is equal to OF.
JA dest Unsigned JG Jumps if CF (carry flag) is 0 and ZF is 0.
JAE dest Unsigned JGE Jumps if CF is 0.
JL dest Jump if less Jumps if SF is not equal to OF.
JLE dest Jump if less or equal Jumps if ZF is 1 or SF is not equal to OF.
JB dest Unsigned JL Jumps if CF is 1.
JBE dest Unsigned JLE Jumps if CF is 1 or ZF is 1.
JO dest Jump if overflow Jumps if OF is 1.
JNO dest Jump if not overflow Jumps if OF is 0.
JZ dest Jump if zero Jumps if ZF is 1 (identical to JE).
JNZ dest Jump if not zero Jumps if ZF is 0 (identical to JNE).

Remembering which flags control which jump instructions can be a
pain, but their purpose is clearly expressed in their name. A good rule of
thumb is that a jump preceded by a CMP is the same as its corresponding
operator. For example, Table 4-11 lists JE as “ jump if equal,” so when JE fol-
lows a CMP operation, it’s the same as the == operator. Similarly, JGE would be
>=, JLE would be >=, and so on.

As an example, consider the high-level code shown in Listing 4-8.

--snip--
if (EBX > EAX)
 ECX = EDX;
else
 ECX = 0;
--snip--

Listing 4-8: A simple conditional statement

94 Chapter 4

This if() statement just checks whether EBX is greater than EAX and sets
ECX based on the result. In assembly, the same statement may look some-
thing like this:

 --snip--
 CMP EBX, EAX ; if (EBX > EAX)
 JG label1 ; jump to label1 if EBX > EAX
 MOV ECX, 0 ; ECX = 0 (else block)
 JMP label2 ; jump over the if block
label1:

 MOV ECX, EDX ; ECX = EDX (if block)
label2:
 --snip--

The assembly for the if() statement in Listing 4-8 begins with a CMP
instruction and branches if EBX is greater than EAX. If the branch is taken,
EIP is set to the if block at  courtesy of the JG instruction. If the branch
is not taken, the code continues executing linearly and hits the else block
immediately after the JG instruction. When the else block finishes execut-
ing, an unconditional JMP sets EIP to 0x7, skipping over the if block.

Function Calls

In assembly code, functions are isolated blocks of commands executed
through the CALL instruction. The CALL instruction, which takes a function
address as the only operand, pushes a return address onto the stack and
sets EIP to its operand value. The following pseudocode shows a CALL in
action, with memory addresses on the left in hex:

0x1: CALL EAX
0x2: ...

When CALL EAX is executed, the next address is pushed to the stack and
EIP is set to EAX, showing that CALL is essentially a PUSH and JMP. The following
pseudocode underscores this point:

0x1: PUSH 3h
0x2: JMP EAX
0x3: ...

While there’s an extra address between the PUSH instruction and the
code to execute, the result is the same: before the block of code at EAX is
executed, the address of the code that follows the branch is pushed to the
stack. This happens so the callee (the function being called) knows where to
jump to in the caller (the function doing the call) when it returns.

If a function without parameters is called, a CALL command is all that’s
necessary. If the callee takes parameters, however, the parameters must first

From Code to Memory: A General Primer 95

be pushed onto the stack in reverse order. The following pseudocode shows
how a function call with three parameters might look:

PUSH 300h ; arg3
PUSH 200h ; arg2
PUSH 100h ; arg1
CALL ECX ; call

When the callee is executed, the top of the stack contains a return
address that points to the code after the call. The first parameter, 0x100,
is below the return address on the stack. The second parameter, 0x200, is
below that, followed by the third parameter, 0x300. The callee sets up its
stack frame, using memory offsets from EBP to reference each parameter.
Once the callee has finished executing, it restores the caller’s stack frame
and executes the RET instruction, which pops the return address off the
stack and jumps to it.

Since the parameters are not a part of the callee’s stack frame, they
remain on the stack after RET is executed. If the caller is responsible for
cleaning the stack, it adds 12 (3 parameters, at 4 bytes each) to ESP imme-
diately after CALL ECX completes. If the callee is responsible, it cleans up by
executing RET 12 instead of RET. This responsibility is determined by the cal-
lee’s calling convention.

A function’s calling convention tells the compiler how the assembly code
should pass parameters, store instance pointers, communicate the return
value, and clean the stack. Different compilers have different calling con-
ventions, but the ones listed in Table 4-12 are the only four that a game
hacker is likely to encounter.

Table 4-12: Calling Conventions to Know for Game Hacking

Directive Cleaner Notes

__cdecl caller Default convention in Visual Studio.
__stdcall callee Convention used by Win32 API functions.
__fastcall callee First two DWORD (or smaller) parameters are

passed in ECX and EDX.
__thiscall callee Used for member functions. The pointer to

the class instance is passed in ECX.

The Directive column in Table 4-12 gives the name of the calling con-
vention, and the Cleaner column tells you whether the caller or callee is
responsible for cleaning the stack given that directive. In the case of these
four calling conventions, parameters are always pushed right to left, and
return values are always stored in EAX. This is a standard, but not a rule;
it can differ across other calling conventions.

96 Chapter 4

Closing Thoughts
My goal in writing this chapter was to help you understand memory and
assembly in a general sense, before we dig into game-hacking specifics.
With your newfound ability to think like a computer, you should be ade-
quately armed to start tackling more advanced memory forensics tasks. If
you’re itching for a peek at how you’ll apply all of this to something real, flip
to “Applying Call Hooks to Adobe AIR” on page 169 or “Applying Jump
Hooks and VF Hooks to Direct3D” on page 175.

If you want some hands-on time with memory, compile this chapter’s
example code and use Cheat Engine or OllyDbg to inspect, tweak, and poke
at the memory until you’ve got the hang of it. This is important, as the next
chapter will build on these skills by teaching you advanced memory forensic
techniques.

5
A dvanced M emo r y Fo r en s ic s

Whether you hack games as a hobby or
a business, you’ll eventually find yourself

between a rock and . . . an unintelligible
memory dump. Be it a race with a rival bot

developer to release a highly requested feature, a
battle against a game company’s constant barrage of
updates, or a struggle to locate some complex data
structure in memory, you’ll need top-notch memory
forensics skills to prevail.

Successful bot development is precariously balanced atop speed and
skill, and tenacious hackers must rise to the challenge by swiftly releasing
ingenious features, promptly responding to game updates, and readily
searching for even the most elusive pieces of data. Doing this, however,
requires a comprehensive understanding of common memory patterns,
advanced data structures, and the purpose of different pieces of data.

98 Chapter 5

Those three aspects of memory forensics are perhaps the most effective
weapons in your arsenal, and this chapter will teach you how to use them.
First, I’ll discuss advanced memory-scanning techniques that focus on
searching for data by understanding its purpose and usage. Next, I’ll teach
you how to use memory patterns to tackle game updates and tweak your
bots without having to relocate all of your addresses from scratch. To wrap
up, I’ll dissect the four most common complex data structures in the C++
standard library (std::string, std::vector, std::list, and std::map) so you can
recognize them in memory and enumerate their contents. By the end of the
chapter, my hope is that you’ll have a deep understanding of memory foren-
sics and be able to take on any challenge related to memory scanning.

Advanced Memory Scanning
Within a game’s source code, each piece of data has a cold, calculated defi-
nition. When the game is being played, however, all of that data comes
together to create something new. Players only experience the beautiful
scenery, visceral sounds, and intense adventures; the data that drives these
experiences is irrelevant.

With that in mind, imagine Hacker A has just started tearing into his
favorite game, wanting to automate some of the boring bits with a bot. He
doesn’t have a complete understanding of memory yet, and to him, the
data is nothing but assumptions. He thinks, “I have 500 health, so I can
find the health address by telling Cheat Engine to look for a 4-byte integer
with a value of 500.” Hacker A has an accurate understanding of data: it’s
just information (values) stored at particular locations (addresses) using
defined structures (types).

Now imagine Hacker B, who already understands the game both inside
and out; she knows how playing the game alters its state in memory, and the
data no longer has any secrets. She knows that every defined property of
the data can be determined given its purpose. Unlike Hacker A, Hacker B
has an understanding of data that transcends the confines of a single vari-
able declaration: she considers the data’s purpose and usage. In this section,
we’ll discuss both.

Each piece of data in a game has a purpose, and the assembly code of
the game must, at some point, reference the data to fulfill that purpose.
Finding the unique code that uses a piece of data means finding a version-
agnostic marker that persists across game updates until the data is either
removed or its purpose is changed. Let me show you why this is important.

Deducing Purpose
So far, I’ve only shown you how to blindly search memory for a given piece
of data without considering how it’s being used. This method can be effec-
tive, but it is not always efficient. In many cases, it’s much quicker to deduce
the purpose of data, determine what code might use that data, and then
locate that code to ultimately find the address of the data.

Advanced Memory Forensics 99

This might not sound easy, but neither does “scan the game’s memory
for a specific value of a specific data type, and then continuously filter the
result list based on changing criteria,” which is what you’ve learned to do
thus far. So let’s look at how we might locate the address for health given its
purpose. Consider the code in Listing 5-1.

struct PlayerVital {
 int current, maximum;
};
PlayerVital health;
--snip--
printString("Health: %d of %d\n", health.current, health.maximum);

Listing 5-1: A structure containing the player’s vitals, and a function that displays them

If you pretend that printString() is a fancy function to draw text on an
in-game interface, then this code is pretty close to what you might find in a
game. The PlayerVital structure has two properties: the current value and a
maximum value. The value health is a PlayerVital structure, so it has these prop-
erties, too. Based on the name alone, you can deduce that health exists to
display information about the player’s health, and you can see this purpose
fulfilled when printString() uses the data.

Even without the code, you can intuitively draw similar conclusions by
just looking at the health text displayed in the game’s interface; a computer
can’t do anything without code, after all. Aside from the actual health vari-
able, there are a few code elements that need to exist to show a player this
text. First, there needs to be some function to display text. Second, the
strings Health and of must be nearby.

N o t e 	 Why do I assume the text is split into two separate strings instead of one? The game
interface shows that the current health value is between these two strings, but there are
many ways that could happen, including format strings, strcat(), or text aligned
with multiple display text calls. When you’re analyzing data, it’s best to keep your
assumptions broad to account for all possibilities.

To find health without using a memory scanner, we could utilize these
two distinct strings. We probably wouldn’t have a clue what the function
to display text looks like, where it is, or how many times it’s called, though.
Realistically, the strings are all we would know to look for, and that’s
enough. Let’s walk through it.

Finding the Player’s Health with OllyDbg
I’ll walk you through how to track down the health structure in this sec-
tion, but I’ve also included the binary I analyze in the book’s resource files.
To follow along and get some hands-on practice, use the file Chapter5_
AdvancedMemoryForensics_Scanning.exe.

First, open OllyDbg and attach it to the executable. Then, open
OllyDbg’s Executable modules window and double-click the main module;
in my example, the main module is the only .exe in the module’s window.

100 Chapter 5

The CPU window should pop up. Now, right-click in the Disassembler pane
and select Search forAll referenced text strings. This should open the
References window, shown in Figure 5-1.

Figure 5-1: OllyDbg’s References window, showing only
a list of strings. There would be a lot more than four in a
real game.

From this window, right-click and select Search for text. A search dia-
log appears. Enter the string you’re looking for, as shown in Figure 5-2,
and make the search as broad as possible by disabling Case sensitive and
enabling Entire scope.

Figure 5-2: Searching for strings in OllyDbg

Click OK to execute the search. The References window comes back into
focus with the first match highlighted. Double-click the match to see the
assembly code that uses the string inside the CPU window. The Disassembler
pane focuses on the line of code at 0x401030, which pushes the format string
parameter to printString(). You can see this line in Figure 5-3, where I’ve
highlighted the entire function call block.

�

�
�

Figure 5-3: Viewing the printString() call in the CPU window’s Disassembler pane

By reading the assembly code, you can get a very accurate understand-
ing of exactly what the game is doing. The black bracket on the left shows
that the string Health is inside a function call. Notice the arguments to that

Advanced Memory Forensics 101

function. In order, these are EAX , ECX , and the format string at
0x4020D0 . EAX is the value at 0x40301C, ECX is the value at 0x403018,
and the format string contains Health. Since the string contains two format
placeholders, you can assume that the remaining two parameters are the
arguments for those placeholders.

Knowing what the arguments are and that they are pushed in reverse
order, you can work backward and conclude that the original code looked
something like Listing 5-2.

int currentHealth; // value at 0x403018
int maxHealth; // value at 0x40301C
--snip--
someFunction("Health: %d of %d\n",
 currentHealth, maxHealth);

Listing 5-2: How a game hacker might interpret the assembly that Figure 5-3 compiles to

The values stored in EAX and ECX are adjacent in memory, which
means they may be part of a structure. To keep it simple, though, this
example just shows them as variable definitions. Either way, these are the
two numbers used to display the player’s health. Because both of these impor-
tant values were displayed in the game’s UI, it was easy to make assumptions
about the underlying code that displays them. When you know the purpose
of a piece of data, you can quickly find the code responsible for fulfilling it;
in this case, that knowledge helped us quickly find both addresses.

In many cases, finding addresses can be this easy, but some pieces of
data have such complex purposes that it’s harder to guess what to look for.
Figuring out how to search for map data or character locations in OllyDbg,
for instance, can be pretty tricky.

Strings are far from the only markers that you can use to find the
data you want to change in a game, but they are definitely the easiest to
teach without giving contrived examples. Moreover, some games have log-
ging or error strings embedded in their code, and poking around in the
Referenced text strings window of OllyDbg can be a quick way to determine
whether these strings are present. If you become familiar with a game’s log-
ging practices, you’ll be able to find values even more easily.

Determining New Addresses After Game Updates
When application code is modified and recompiled, a brand-new binary
that reflects the changes is produced. This binary might be very similar to
the previous one, or the binaries might be nothing alike; the difference
between the two versions has a direct correlation to the complexity of the
high-level changes. Small changes, like modified strings or updated con-
stants, can leave binaries nearly identical and often have no effect on the
addresses of code or data. But more complex changes—like added features,
a new user interface, refactored internals, or new in-game content—often
cause shifts in the location of crucial memory.

102 Chapter 5

Due to constant bug fixes, content improvements, and feature addi-
tions, online games are among the most rapidly evolving types of software.
Some games release updates as often as once a week, and game hackers often
spend a majority of their time reverse engineering the new binaries in order
to accordingly update their bots.

If you create advanced bots, they will become increasingly supported
by a foundation of memory addresses. When an update comes, determin-
ing the new addresses for a large number of values and functions is the
most time-consuming inevitability you will face. Relying on the “Tips for
Winning the Update Race” can be very beneficial, but the tips won’t help
you locate the updated addresses. You can automatically locate some
addresses using Cheat Engine scripts, but that won’t always work either.
Sometimes you’ll have to do the dirty work by hand.

If you try to reinvent the wheel and find these addresses the same way
you did initially, you’ll be wasting your time. You actually have a big advan-
tage, though: the old binary and the addresses themselves. Using these two
things, it is possible to find every single address you need to update in a
fraction of the time.

Figure 5-4 shows two different disassemblies: a new game binary on the
left and the previous version on the right. I have taken this image from an
actual game (which will remain nameless) in order to give you a realistic
example.

Au toma t ica l ly Find cur r en t Hea lt h and ma x Hea lt h

In “Searching for Assembly Patterns” on page 19 and “Searching for Strings”
on page 21, I showed a few Cheat Engine Lua scripts and explained how
they worked. Using the findString() function in these examples, you can
make Cheat Engine automatically locate the address of the format string that
we just found manually in OllyDbg. Next, you can write a small function to
scan for this address following byte 0x68 (the byte for the PUSH command,
as you can see beside it at 0x401030 in Figure 5-3) to locate the address
of the code that pushes it to the stack. Then, you can read 4 bytes from
pushAddress - 5 and pushAddress - 12 to locate currentHealth and maxHealth,
respectively.

This may not seem useful since we’ve already found the addresses, but
if this were a real game, these addresses would change when an update is
released. Using this knowledge to automate finding them can be very helpful.
If you’re up to the challenge, give it a whirl!

Advanced Memory Forensics 103

Figure 5-4: Side-by-side disassemblies of two versions of one game

My bot modified the code at 0x047B542 (right), and I needed to find
the corresponding code in the new version, which I discovered at 0x047B672
(left). This function call invokes a packet-parsing function when a packet
has been received. In order to find this address originally (and by “origi-
nally,” I mean about 100 updates previous), I figured out how the game’s
network protocol worked, set breakpoints on many network-related API
calls, stepped through execution, and inspected data on the stack until I
found something that looked similar to what I expected given my knowl-
edge of the protocol.

Tip s for Winning t he Updat e Race

In saturated markets, being the first bot developer to release a stable update is
critical to success. The race starts the second the game updates, and hackers
determined to be the fastest will spend hundreds of hours preparing. These are
the most common ways to stay on top:

Create update alarms  By writing software that alerts you as soon as the game
patches, you can begin working on your updates as soon as possible.

Automate bot installs  Games often schedule expected updates at times when
the fewest players are online. Botters hate waking up and downloading new
software before they bot, but they love waking up to find it silently installed
while the game is patching.

Use fewer addresses  The less there is to update, the better. Consolidating
related data into structures and eliminating unnecessary memory address
usage can save a bunch of time.

Have great test cases  Data changes, and hackers make mistakes. Having
ways to quickly test every feature can be the difference between a stable bot
and one that randomly crashes, gets users killed, or even leads to their charac-
ters being banned from the game.

Attacking updates with these practices will give you a sizable head start,
but they might not always be enough to lead you to victory. Above all else,
strive to understand reverse engineering as much as possible and use that
understanding to your advantage.

104 Chapter 5

I could have followed the same steps for each of the 100+ updates since
then, but that would have been unnecessary. The code stayed relatively the
same throughout the years, which let me use patterns from the old code to
find that function call’s address in the new code.

Now, consider this chunk of assembly code:

PUSH EDI
PUSH EAX
LEA EAX,DWORD PTR SS:[EBP-C]
MOV DWORD PTR FS:[0],EAX
MOV DWORD PTR SS:[EBP-10],ESP
MOV DWORD PTR SS:[EBP-220],-1
MOV DWORD PTR SS:[EBP-4],0

Does it look familiar? Compare it to Figure 5-4, and you’ll see that this
exact code exists right above the highlighted function call in both versions
of the game. Regardless of what it does, the combination of operations looks
pretty distinctive; because of the number of different offsets the code is
using relative to EBP, it’s unlikely that an identical chunk of code exists in
any other part of the binary.

Every time I have to update this address, I open the old binary
in OllyDbg, highlight this chunk of operations, right-click, and select
Asm2ClipboardCopy fixed asm to clipboard. Then, I open the new binary
in OllyDbg, navigate to the CPU Window, press ctrl-S, paste the assembly
code, and hit Find. In 9.5 cases out of 10, this places me directly above the
function call I need to find in the new version.

When an update comes, you can use the same method to find nearly all
of your known addresses. It should work for every address you can find eas-
ily in assembly code. There are a few caveats, though:

•	 OllyDbg limits search to eight operations, so you must find code mark-
ers of that size or smaller.

•	 The operations you use cannot contain any other addresses, as those
addresses have likely changed.

•	 If parts of the game have changed that use the address you’re looking
for, the code might be different.

•	 If the game changes compilers or switches optimization settings, almost
all code will be entirely different.

As discussed in “Automatically Find currentHealth and maxHealth” on
page 102, you can benefit from writing scripts that carry out these tasks for
you. Serious game hackers work very hard to automatically locate as many
addresses as possible, and some of the best bots are engineered to automati-
cally detect their addresses at runtime, every time. It can be a lot of work
initially, but the investment can definitely pay off.

Advanced Memory Forensics 105

Identifying Complex Structures in Game Data
Chapter 4 described how a game might store data in static structures. This
knowledge will suffice when you’re trying to find simple data, but it falls
short for data that is stored through dynamic structures. This is because
dynamic structures might be scattered across different memory locations,
follow long pointer chains, or require complex algorithms to actually extract
the data from them.

This section explores common dynamic structures you’ll find in video
game code, and how to read data from them once they’re found. To begin,
I’ll talk about the underlying composition of each dynamic structure.
Next, I’ll outline the algorithms needed to read the data from these struc-
tures. (For simplicity, each algorithm discussion assumes you have a pointer
to an instance of the structure as well as some way to read from memory.)
Lastly, I’ll cover tips and tricks that can help you determine when a value
you’re searching for in memory is actually encapsulated in one of these
structures, so you’ll know when to apply this knowledge. I’ll focus on C++,
as its object-oriented nature and heavily used standard library are typically
responsible for such structures.

N o t e 	 Some of these structures might differ slightly from machine to machine based on com-
pilers, optimization settings, or standard library implementations, but the basic con-
cepts will remain the same. Also, in the interest of brevity, I will be omitting irrelevant
parts of these structures, such as custom allocators or comparison functions. Working
example code can be found at https://www.nostarch.com/gamehacking/ in the
resource files for Chapter 5.

The std::string Class
Instances of std::string are among the most common culprits of dynamic
storage. This class from the C++ Standard Template Library (STL) abstracts
string operations away from the developer while preserving efficiency,
making it widely used in all types of software. A video game might use
std::string structure for any string data, such as creature names.

Examining the Structure of a std::string

When you strip away the member functions and other nondata components
of the std::string class, this is the structure that remains:

class string {
 union {
 char* dataP;
 char dataA[16];
 };
 int length;
};

// point to a string in memory
string* _str = (string*)stringAddress;

106 Chapter 5

The class reserves 16 characters that are presumably used to store
the string in place. It also, however, declares that the first 4 bytes can be a
pointer to a character. This might seem odd, but it’s a result of optimiza-
tion. At some point, the developers of this class decided that 15 charac-
ters (plus a null terminator) was a suitable length for many strings, and
they chose to save on memory allocations and de-allocations by reserving
16 bytes of memory in advance. To accommodate longer strings, they allowed
the first 4 bytes of this reserved memory to be used as a pointer to the char-
acters of these longer strings.

N o t e 	 If the code were compiled to 64 bits, then it would actually be the first 8 (not 4) bytes
that point to a character. Throughout this example, however, you can assume 32-bit
addresses and that int is the size of an address.

Accessing string data this way takes some overhead. The function to
locate the right buffer looks something like this:

const char* c_str() {
 if (_str->length <= 15)
 return (const char*)&_str->dataA[0];
 else
 return (const char*)_str->dataP;
}

The fact that a std::string can be either a complete string or a pointer
to a longer string makes this particular structure quite tricky from a game-
hacking perspective. Some games may use std::string to store strings that
only rarely exceed 15 characters. When this is the case, you might imple-
ment bots that rely on these strings, never knowing that the underlying
structure is in fact more complicated than a simple string.

Overlooking a std::string Can Ruin Your Fun

Not knowing the true nature of the structure containing the data you need
can lead you to write a bot that works only some of the time and fails when
it counts. Imagine, for example, that you’re trying to figure out how a game
stores creature data. In your hypothetical search, you find that all the
creatures in the game are stored in an array of structures that look some-
thing like Listing 5-3.

struct creatureInfo {
 int uniqueID;
 char name[16];
 int nameLength;
 int healthPercent;
 int xPosition;
 int yPosition;
 int modelID;

Advanced Memory Forensics 107

 int creatureType;
};

Listing 5-3: How you might interpret creature data found in memory

After scanning the creature data in memory, say you notice that the
first 4 bytes of each structure are unique for each creature, so you call those
bytes the uniqueID and assume they form a single int property. Looking fur-
ther in the memory, you find that the creature’s name is stored right after
uniqueID, and after some deduction, you figure out the name is 16 bytes
long. The next value you see in memory turns out to be the nameLength; it’s a
bit strange that a null-terminated string has an associated length, but you
ignore that oddity and continue analyzing the data in memory. After fur-
ther analysis, you determine what the remaining values are for, define the
structure shown in Listing 5-3, and write a bot that automatically attacks
creatures with certain names.

After weeks of testing your bot while hunting creatures with names like
Dragon, Cyclops, Giant, and Hound, you decide it’s time to give your bot to
your friends. For the inaugural use, you gather everyone together to kill a
boss named Super Bossman Supreme. The entire team sets the bot to attack
the boss first and target lesser creatures like a Demon or Grim Reaper when the
boss goes out of range.

Once your team arrives at the boss’s dungeon . . . you’re all slowly
obliterated.

What went wrong in this scenario? Your game must be storing creature
names with std::string, not just a simple character array. The name and
nameLength fields in creatureInfo are, in fact, part of a std::string field, and
the name character array is a union of dataA and dataP members. Super Bossman
Supreme is longer than 15 characters, and because the bot was not aware of
the std::string implementation, it didn’t recognize the boss. Instead, it con-
stantly retargeted summoned Demon creatures, effectively keeping you from
targeting the boss while he slowly drained your health and supplies.

Determining Whether Data Is Stored in a std::string

Without knowing how the std::string class is structured, you’d have trouble
tracking down bugs like the hypothetical one I just described. But pair what
you’ve learned here with experience, and you can avoid these kinds of bugs
entirely. When you find a string like name in memory, don’t just assume it’s
stored in a simple array. To figure out whether a string is in fact a std::string,
ask yourself these questions:

•	 Why is the string length present for a null-terminated string? If you
can’t think of a good reason, then you may have a std::string on your
hands.

•	 Do some creatures (or other game elements, depending on what you’re
looking for) have names longer than 16 letters, but you find room for
only 16 characters in memory? If so, the data is almost definitely stored
in a std::string.

108 Chapter 5

•	 Is the name stored in place, requiring the developer to use strcpy()
to modify it? It’s probably a std::string, because working with raw C
strings in this way is considered bad practice.

Finally, keep in mind that there is also a class called std::wstring that is
used to store wide strings. The implementation is very similar, but wchar_t
is used in place of every char.

The std::vector Class
Games must keep track of many dynamic arrays of data, but manag-
ing dynamically sized arrays can be very tricky. For speed and flexibility,
game developers often store such data using a templated STL class called
std::vector instead of a simple array.

Examining the Structure of a std::vector

A declaration of this class looks something like Listing 5-4.

template<typename T>
class vector {
 T* begin;
 T* end;
 T* reservationEnd;
};

Listing 5-4: An abstracted std::vector object

This template adds an extra layer of abstraction, so I’ll continue this
description using a std::vector declared with the DWORD type. Here’s how a
game might declare that vector:

std::vector<DWORD> _vec;

Now, let’s dissect what a std::vector of DWORD objects would look like in
memory. If you had the address of _vec and shared the same memory space,
you could re-create the underlying structure of the class and access _vec as
shown in Listing 5-5.

class vector {
 DWORD* begin;
 DWORD* end;
 DWORD* tail;
};
// point to a vector in memory
vector* _vec = (vector*)vectorAddress;

Listing 5-5: A DWORD std::vector object

You can treat the member begin like a raw array, as it points to the first
element in the std::vector object. There is no array length member, though,

Advanced Memory Forensics 109

so you must calculate the vector’s length based on begin and end, which is an
empty object following the final object in the array. The length calculation
code looks like this:

int length() {
 return ((DWORD)_vec->end - (DWORD)_vec->begin) / sizeof(DWORD);
}

This function simply subtracts the address stored in begin from the
address stored in end to find the number of bytes between them. Then, to
calculate the number of objects, it divides the number of bytes by the num-
ber of bytes per object.

Using begin and this length() function, you can safely access elements in
_vec. That code would look something like this:

DWORD at(int index) {
 if (index >= _vec->length())
 throw new std::out_of_range();
 return _vec->begin[index];
}

Given an index, this code will fetch an item from the vector. But if
the index is greater than the vector’s length, a std::out_of_range exception
will be thrown. Adding values to a std::vector would be very expensive if
the class couldn’t reserve or reuse memory, though. To remedy this, the
class implements a function called reserve() that tells the vector how many
objects to leave room for.

The absolute size of a std::vector (its capacity) is determined through an
additional pointer, which is called tail in the vector class we’ve re-created.
The calculation for the capacity resembles the length calculation:

int capacity() {
 return ((DWORD)_vec->tail - (DWORD)_vec->begin) / sizeof(DWORD);
}

To find the capacity of a std::vector, instead of subtracting the begin
address from the end address, as you would to calculate length, this function
subtracts the begin address from tail. Additionally, you can use this calcula-
tion a third time to determine the number of free elements in the vector by
using tail and end instead:

int freeSpace() {
 return ((DWORD)_vec->tail - (DWORD)_vec->end) / sizeof(DWORD);
}

Given proper memory reading and writing functions, you can use the
declaration in Listing 5-4 and the calculations that follow to access and
manipulate vectors in the memory of a game. Chapter 6 discusses reading
memory in detail, but for now, let’s look at ways you can determine whether
data you’re interested in is stored in a std::vector.

110 Chapter 5

Determining Whether Data Is Stored in a std::vector

Once you’ve found an array of data in a game’s memory, there are a few
steps you can follow to determine whether it is stored in a std::vector. First,
you can be sure that the array is not stored in a std::vector if it has a static
address, because std::vector objects require pointer paths to access the
underlying array. If the array does require a pointer path, having a final off-
set of 0 would indicate a std::vector. To confirm, you can change the final
offset to 4 and check if it points to the final object in the array instead of
the first one. If so, you’re almost definitely looking at a vector, as you’ve just
confirmed the begin and end pointers.

The std::list Class
Similar to std::vector, std::list is a class that you can use to store a collec-
tion of items in a linked list. The main differences are that std::list doesn’t
require a contiguous storage space for elements, cannot directly access ele-
ments by their index, and can grow in size without affecting any previous
elements. Due to the overhead required to access items, it is rare to see this
class used in games, but it shows up in some special cases, which I’ll discuss
in this section.

Examining the Structure of a std::list

The std::list class looks something like Listing 5-6.

template<typename T>
class listItem {
 listItem<T>* next;
 listItem<T>* prev;
 T value;
};

template<typename T>
class list {
 listItem<T>* root;
 int size;
};

Listing 5-6: An abstracted std::list object

There are two classes here: listItem and list. To avoid extra abstraction
while explaining how std::list works, I’ll describe this object as it would
look when the type is DWORD. Here’s how a game would declare a std::list of
the DWORD type:

std::list<DWORD> _lst;

Given that declaration, the std::list is structured like the code in
Listing 5-7.

Advanced Memory Forensics 111

class listItem {
 listItem* next;
 listItem* prev;
 DWORD value;
};
class list {
 listItem* root;
 int size;
};
// point to a list
list* _lst = (list*)listAddress;

Listing 5-7: A DWORD std::list object

The class list represents the list header, while listItem represents a
value stored in the list. Instead of being stored contiguously, the items
in the list are stored independently. Each item contains a pointer to the
item that comes after it (next) and the
one that comes before it (prev), and
these pointers are used to locate
items in the list. The root item acts
as a marker for the end of the list; the
next pointer of the last item points to
root, as does the prev pointer of the
first item. The root item’s next and
prev pointers also point to the first
item and the last item, respectively.
Figure 5-5 shows what this looks like.

Given this structure, you can use the following code to iterate over a
std::list object:

// iterate forward
listItem* it = _lst->root->next;
for (; it != _lst->root; it = it->next)
 printf("Value is %d\n", it->value);

// iterate backward
listItem* it = _lst->root->prev;
for (; it != _lst->root; it = it->prev)
 printf("Value is %d\n", it->value);

The first loop starts at the first item (root->next) and iterates forward
(it = it->next) until it hits the end marker (root). The second loop starts
at the last item (root->pres) and iterates backward (it = it->prev) until it
hits the end marker (root). This iteration relies on next and prev because
unlike objects in an array, objects in a std::list are not contiguous. Since
the memory of each object in a std::list is not contiguous, there’s no
quick-and-dirty way to calculate the size. Instead, the class just defines a

Figure 5-5: A std::list flowchart

Root

ItemItem Item

112 Chapter 5

size member. Additionally, the concept of reserving space for new objects
is irrelevant for lists, so there’s no variable or calculation to determine a
list’s capacity.

Determining Whether Game Data Is Stored in a std::list

Identifying objects stored in the std::list class can be tricky, but there are
a few hints you can watch for. First, items in a std::list cannot have static
addresses, so if the data you seek has a static address, then you’re in the clear.
Items that are obviously part of a collection may, however, be part of a
std::list if they’re not contiguous in memory.

Also consider that objects in a std::list can have infinitely long pointer
chains (think it->prev->next->prev->next->prev . . .), and pointer scanning
for them in Cheat Engine will show many more results when No Looping
Pointers is turned off.

You can also use a script to detect when a value is stored in a linked list.
Listing 5-8 shows a Cheat Engine script that does just this.

function _verifyLinkedList(address)
 local nextItem = readInteger(address) or 0
 local previousItem = readInteger(address + 4) or 0
 local nextItemBack = readInteger(nextItem + 4)
 local previousItemForward = readInteger(previousItem)

 return (address == nextItemBack
 and address == previousItemForward)
end

function isValueInLinkedList(valueAddress)
 for address = valueAddress - 8, valueAddress - 48, -4 do
 if (_verifyLinkedList(address)) then
 return address
 end
 end
 return 0
end

local node = isValueInLinkedList(addressOfSomeValue)
if (node > 0) then
 print(string.format("Value in LL, top of node at 0x0%x", node))
end

Listing 5-8: Determining whether data is in a std::list using a Cheat Engine Lua script

There’s quite a bit of code here, but what it’s doing is actually pretty
simple. The isValueInLinkedList() function takes an address of some value
and then looks backward for up to 40 bytes (10 integer objects, in case the

Advanced Memory Forensics 113

value is in some larger structure), starting 8 bytes above the address (two
pointers must be present, and they are 4 bytes each). Because of memory
alignment, this loop iterates in steps of 4 bytes.

On each iteration, the address is passed to the _verifyLinkedList() func-
tion, which is where the magic happens. If we look at it in terms of linked
list structure as defined in this chapter, the function simply does this:

return (node->next->prev == node && node->prev->next == node)

That is, the function basically assumes the memory address it’s given
points to a linked list, and it makes sure the supposed node has valid next
and previous nodes. If the nodes are valid, the assumption was correct and
the address is that of a linked list node. If the nodes don’t exist or don’t
point to the right locations, the assumption was wrong and the address is
not part of a linked list.

Keep in mind that this script won’t give you the address of the list’s root
node but simply the address of the node containing the value you’ve given
it. To properly traverse a linked list, you’ll need to scan for a valid pointer
path to the root node, so you’ll need its address.

Finding that address can require some searching of memory dumps,
a lot of trial and error, and a ton of head scratching, but it’s definitely pos-
sible. The best way to start is to follow the chain of prev and next nodes until
you find a node with data that is either blank, nonsensical, or filled with the
value 0xBAADF00D (some, but not all, standard library implementations use
this value to mark root nodes).

This investigation can also be made easier if you know exactly how
many nodes are in the list. Even without the list header, you can determine
the amount of nodes by continuously following the next pointer until you
end up back at your starting node, as in Listing 5-9.

function countLinkedListNodes(nodeAddress)
 local counter = 0
 local next = readInteger(nodeAddress)
 while (next ~= nodeAddress) do
 counter = counter + 1
 next = readInteger(next)
 end
 return counter
end

Listing 5-9: Determining the size of an arbitrary std::list using a Cheat Engine Lua script

First, this function creates a counter to store the number of nodes and
a variable to store the next node’s address. The while loop then iterates over
the nodes until it ends up back at the initial node. Finally, it returns the
counter variable, which was incremented on every iteration of the loop.

114 Chapter 5

The std::map Class
Like a std::list, a std::map uses links between elements to form its structure.
Unique to std::map, however, is the fact that each element stores two pieces
of data (a key and a value), and sorting the elements is an inherent prop-
erty of the underlying data structure: a red-black tree. The following code
shows the structures that compose a std::map.

template<typename keyT, typename valT>
struct mapItem {
 mapItem<keyT, valT>* left;
 mapItem<keyT, valT>* parent;
 mapItem<keyT, valT>* right;
 keyT key;
 valT value;
};

template<typename keyT, typename valT>
struct map {
 DWORD irrelevant;
 mapItem<keyT, valT>* rootNode;
 int size;
}

A red-black tree is a self-balancing binary search tree, so a std::map is,
too.� In the STL’s std::map implementation, each element (or node) in the
tree has three pointers: left, parent, and right. In addition to the point-
ers, each node also has a key and a value. The nodes are arranged in the
tree based on a comparison between their keys. The left pointer of a node
points to a node with a smaller key, and the right pointer points to a node
with a larger key. The parent points to the upper node. The first node in the
tree is called the rootNode, and nodes that lack children point to it.

Visualizing a std::map

Figure 5-6 shows a std::map that has the keys 1, 6, 8, 11, 13, 15, 17, 22, 25,
and 27.

Find t he Root Node w i t h a Scr ip t

It’s actually possible to write a script that can find the root node, but I’ll leave
it as an optional exercise for you. How does it work? Well, the root node must
be in the chain of nodes, the list header points to the root, and the size of the
list will immediately follow the root in memory. Given this information, you can
write a script that will search for any memory containing a pointer to one of the
list’s nodes, followed by the size of the list. More often than not, this piece of
memory is the list header, and the node it points to is the root node.

Advanced Memory Forensics 115

Root

13

8 17

1 11 15 25

22 27

Root

Root

Root Root Root Root

Root Root Root Root

6

Root

Figure 5-6: A red-black tree

The top node (holding the value 13) is pointed to by the parent of
rootNode. Everything to the left of it has a smaller key, and everything to the
right has a greater key. This is true for any node in the tree, and this truth
enables efficient key-based search. While not represented in the image, the
left pointer of the root node will point to the leftmost node (1), and the
right pointer will point to the rightmost node (27).

Accessing Data in a std::map

Once again, I’ll use a static std::map definition when discussing how to extract
data from the structure. Since the template takes two types, I’ll also use
some pseudotypes to keep things obvious. Here’s the declaration for the
std::map object I’ll reference for the rest of the section:

typedef int keyInt;
typedef int valInt;
std::map<keyInt, valInt> myMap;

With this declaration, the structure of myMap becomes:

struct mapItem {
 mapItem* left;
 mapItem* parent;
 mapItem* right;
 keyInt key;
 valInt value;
};
struct map {
 DWORD irrelevant;
 mapItem* rootNode;

116 Chapter 5

 int size;
}
map* _map = (map*)mapAddress;

There are some important algorithms that you might need to access the
data in a std::map structure in a game. First, blindly iterating over every item
in the map can be useful if you just want to see all of the data. To do this
sequentially, you could write an iteration function like this:

void iterateMap(mapItem* node) {
 if (node == _map->rootNode) return;
 iterateMap(node->left);
 printNode(node);
 iterateMap(node->right);
}

A function to iterate over an entire map would first read the current
node and check whether it’s the rootNode. If not, it would recurse left, print
the node, and recurse right.

To call this function, you’d have to pass a pointer to the rootNode as
follows:

iterateMap(_map->rootNode->parent);

The purpose of a std::map, however, is to store keyed data in a quickly
searchable way. When you need to locate a node given a specific key, mim-
icking the internal search algorithm is preferable to scanning the entire
tree. The code for searching a std::map looks something like this:

mapItem* findItem(keyInt key, mapItem* node) {
 if (node != _map->rootNode) {
 if (key == node->key)
 return node;
 else if (key < node->key)
 return findItem(key, node->left);
 else
 return findItem(key, node->right);
 } else return NULL;
}

Starting at the top of the tree, you simply recurse left if the current key
is greater than the search key and recurse right if it is smaller. If the keys are
equal, you return the current node. If you reach the bottom of the tree and
don’t find the key, you return NULL because the key isn’t stored in the map.

Here’s one way you might use this findItem() function:

mapItem* ret = findItem(someKey, _map->rootNode->parent);
if (ret)
 printNode(ret);

Advanced Memory Forensics 117

As long as findItem() doesn’t return NULL, this code should print a node
from _map.

Determining Whether Game Data Is Stored in a std::map

Typically, I don’t even consider whether data could be in a std::map until I
know the collection is not an array, a std::vector, or a std::list. If you rule
out all three options, then as with a std::list, you can look at the three inte-
ger values before the value and check if they point to memory that could
possibly be other map nodes.

Once again, this can be done with a Lua script in Cheat Engine. The
script is similar to the one I showed for lists, looping backward over memory
to see if a valid node structure is found before the value. Unlike the list code,
though, the function that verifies a node is much trickier. Take a look at the
code in Listing 5-10, and then I’ll dissect it.

function _verifyMap(address)
 local parentItem = readInteger(address + 4) or 0

 local parentLeftItem = readInteger(parentItem + 0) or 0
 local parentRightItem = readInteger(parentItem + 8) or 0

 local validParent =
 parentLeftItem == address
 or parentRightItem == address
 if (not validParent) then return false end

 local tries = 0
 local lastChecked = parentItem
 local parentsParent = readInteger(parentItem + 4) or 0

 while (readInteger(parentsParent + 4) ~= lastChecked and tries < 200) do
 tries = tries + 1
 lastChecked = parentsParent
 parentsParent = readInteger(parentsParent + 4) or 0
 end

 return readInteger(parentsParent + 4) == lastChecked
end

Listing 5-10: Determining whether data is in a std::map using a Cheat Engine Lua script

Given address, this function checks if address is in a map structure. It
first checks if there’s a valid parent node and, if so, checks whether that
parent node points to address on either side . But this check isn’t enough.
If the check passes, the function will also climb up the line of parent nodes
until it reaches a node that is the parent of its own parent , trying 200
times before calling it quits. If the climb succeeds in finding a node that
is its own grandparent, then address definitely points to a map node. This
works because, as I outlined in “Visualizing a std::map” on page 114, at the
top of every map is a root node whose parent points to the first node in the
tree, and that node’s parent points back to the root node.

118 Chapter 5

N o t e 	 I bet you didn’t expect to run into the grandfather paradox from time travel when
reading a game-hacking book!

Using this function and a slightly modified backtracking loop from
Listing 5-8, you can automatically detect when a value is inside a map:

function isValueInMap(valueAddress)
 for address = valueAddress - 12, valueAddress - 52, -4 do
 if (_verifyMap(address)) then
 return address
 end
 end
 return 0
end

local node = isValueInMap(addressOfSomeValue)
if (node > 0) then
 print(string.format("Value in map, top of node at 0x0%x", node))
end

Aside from function names, the only change in this code from
Listing 5-8 is that it starts looping 12 bytes before the value instead of 8,
because a map has three pointers instead of the two in a list. One good
consequence of a map’s structure is that it’s easy to obtain the root node.
When the _verifyMap function returns true, the parentsParent variable will
contain the address of the root node. With some simple modifications,
you could return this to the main call and have everything you need to
read the data from a std::map in one place.

Closing Thoughts
Memory forensics is the most time-consuming part of hacking games, and
its obstacles can appear in all shapes and sizes. Using purpose, patterns,
and a deep understanding of complex data structures, however, you can
quickly overcome these obstacles. If you’re still a bit confused about what’s
going on, make sure to download and play with the example code provided,
as it contains proofs of concept for all of the algorithms covered in this
chapter.

In Chapter 6, we’ll start diving in to the code you need to read from
and write to a game’s memory from your own programs so you can take
the first step in putting to work all of this information about memory struc-
tures, addresses, and data.

6
Reading f r om and

W r i t ing t o G ame M emo r y

Earlier chapters discussed how memory
is structured as well as how to scan and

modify memory using Cheat Engine and
OllyDbg. Working with memory will be essen-

tial when you begin to write bots, and your code will
need to know how to do so.

This chapter digs into the code-level details of memory manipulation.
First, you’ll learn how to use code to locate and obtain handles to game
processes. Next, you’ll learn how to use those handles to read from and
write to memory both from remote processes and from injected code. To
wrap up, you’ll learn bypasses for a certain memory protection technique,
complete with a small example of code injection. You’ll find the example
code for this chapter in the GameHackingExamples/Chapter6_AccessingMemory
directory in this book’s source files.

N o t e 	 When I talk about API functions in this chapter (and in later ones), I’m referring to
the Windows API unless otherwise specified. If I don’t mention a header file for the
library, you can assume it is Windows.h.

120 Chapter 6

Obtaining the Game’s Process Identifier
To read from or write to a game’s memory, you need its process identifier (PID),
a number that uniquely identifies an active process. If the game has a visible
window, you can obtain the PID of the process that created that window by
calling GetWindowThreadProcessId(). This function takes the window’s handle
as the first parameter and outputs the PID to the second parameter. You
can find the window’s handle by passing its title (the text on the taskbar) as
the second parameter to FindWindow(), as shown in Listing 6-1.

HWND myWindow =
 FindWindow(NULL, "Title of the game window here");
DWORD PID;
GetWindowThreadProcessId(myWindow, &PID);

Listing 6-1: Fetching a window’s handle to obtain a PID

With the window handle secured, all you have to do is create a place to
store the PID and call GetWindowThreadProcessId(), as shown in this example.

If a game isn’t windowed or the window name isn’t predictable, you
can find the game’s PID by enumerating all processes and looking for
the name of the game binary. Listing 6-2 does this using the API func-
tions CreateToolhelp32Snapshot(), Process32First(), and Process32Next() from
tlhelp32.h.

#include <tlhelp32.h>

PROCESSENTRY32 entry;
entry.dwSize = sizeof(PROCESSENTRY32);
HANDLE snapshot =
 CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);
if (Process32First(snapshot, &entry) == TRUE) {
 while (Process32Next(snapshot, &entry) == TRUE) {
 wstring binPath = entry.szExeFile;
 if (binPath.find(L"game.exe") != wstring::npos) {
 printf("game pid is %d\n", entry.th32ProcessID);
 break;
 }
 }
}
CloseHandle(snapshot);

Listing 6-2: Fetching a game’s PID without the window name

Listing 6-2 might look a bit more complex than Listing 6-1, but
underneath all that code, the function is actually like a canonical for
(iterator; comparator; increment) loop. The CreateToolhelp32Snapshot() func-
tion obtains a list of processes named snapshot, and entry is an iterator over
that list. The value returned by Process32First() initializes the iterator,
while Process32Next() increments it. Finally, the Boolean return value of

Reading from and Writing to Game Memory 121

Process32Next() is the comparator. This code just iterates over a snapshot of
every running process, looks for one whose binary path contains the text
game.exe, and prints its PID.

Obtaining Process Handles
Once you know a game’s PID, you can obtain a handle to the process itself
using an API function called OpenProcess(). This function allows you to fetch
handles with the access levels you need to read from and write to memory.
This is crucial to game hacking, as any function that operates on a process
will require a handle with proper access.

Let’s take a look at the prototype of OpenProcess():

HANDLE OpenProcess(DWORD DesiredAccess, BOOL InheritHandle, DWORD ProcessId);

The first parameter, DesiredAccess, expects one or a mixture of process
access flags to set on the handle that OpenProcess() returns. There are many
flags you can use, but these are the most common in game hacking:

PROCESS_VM_OPERATION  The returned handle can be used with
VirtualAllocEx(), VirtualFreeEx(), and VirtualProtectEx() to allocate,
free, and protect chunks of memory, respectively.

PROCESS_VM_READ  The returned handle can be used with
ReadProcessMemory().

PROCESS_VM_WRITE  The returned handle can be used with
WriteProcessMemory(), but it must also have PROCESS_VM_OPERATION rights.
You can set both flags by passing PROCESS_VM_OPERATION | PROCESS_VM_WRITE
as the DesiredAccess parameter.

PROCESS_CREATE_THREAD  The returned handle can be used with
CreateRemoteThread().

PROCESS_ALL_ACCESS  The returned handle can be used to do anything.
Avoid using this flag, as it can only be used by processes with debug
privileges enabled and has compatibility issues with older versions of
Windows.

When fetching a handle to a game, you can typically just set the
OpenProcess() function’s second parameter, InheritHandle, to false. The
third parameter, ProcessId, expects the PID of the process to be opened.

Working with OpenProcess()
Now let’s walk through an example call to OpenProcess() that uses a handle
with access permissions allowing it to read from and write to memory:

DWORD PID = getGamePID();
HANDLE process = OpenProcess(
 PROCESS_VM_OPERATION |
 PROCESS_VM_READ |
 PROCESS_VM_WRITE,

122 Chapter 6

 FALSE,
 PID
);

 if (process == INVALID_HANDLE_VALUE) {
 printf("Failed to open PID %d, error code %d",
 PID, GetLastError());
}

First, the call to getGamePID() fetches the PID you’re looking for. (The
function is something you’ll have to write yourself, though it could just be
one of the snippets I showed in Listings 6-1 and 6-2, fleshed out into a full-
blown function.) Then, the code calls OpenProcess() with three flags: the
PROCESS_VM_OPERATION flag gives this handle memory access permissions, and
the other two combined give it read and write permissions. This example
also contains an error-handling case , but as long as you have the correct
PID, you have valid access flags, and your code is running under the same
or higher permissions as the game (for example, if you start your bot using
Run As Admin), the call should never fail.

Once you’re done using a handle, clean it up using CloseHandle() as
follows:

CloseHandle(process);

You can reuse handles as much as you want, so you can leave one open
until you’re completely done using it or until your bot is exited.

Now that you’ve seen how to open a process handle in preparation for
manipulating game memory, let’s dig into how to actually access the mem-
ory of that process.

Accessing Memory
The Windows API exposes two functions that are crucial to memory access:
ReadProcessMemory() and WriteProcessMemory(). You can use these functions to
externally manipulate a game’s memory.

Working with ReadProcessMemory() and WriteProcessMemory()
The prototypes for these two functions (shown in Listing 6-3) resemble
each other closely, and you’ll follow almost exactly the same steps to
use them.

BOOL ReadProcessMemory(
 HANDLE Process, LPVOID Address,
 LPVOID Buffer, DWORD Size,
 DWORD *NumberOfBytesRead
);
BOOL WriteProcessMemory(
 HANDLE Process, LPVOID Address,
 LPCVOID Buffer, DWORD Size,

Reading from and Writing to Game Memory 123

 DWORD *NumberOfBytesWritten
);

Listing 6-3: ReadProcessMemory() and WriteProcessMemory() prototypes

Both functions expect Process to be a process handle and Address to be
the target memory address. When the function is reading from memory,
Buffer is expected to point to an object that will hold the read data. When
the function is writing to memory, Buffer is expected to point to the data
to write. In both cases, Size defines the size of Buffer, in bytes. The final
parameter to both functions is used to optionally return the number of
bytes that were accessed; you can safely set it to NULL. Unless the function
fails, the value returned in the final parameter should be equal to Size.

Accessing a Value in Memory with ReadProcessMemory() and
WriteProcessMemory()
The code in Listing 6-4 shows how you might use these functions to access a
value in memory.

DWORD val;
ReadProcessMemory(proc, adr, &val, sizeof(DWORD), 0);
printf("Current mem value is %d\n", val);

val++;

WriteProcessMemory(proc, adr, &val, sizeof(DWORD), 0);
ReadProcessMemory(proc, adr, &val, sizeof(DWORD), 0);
printf("New mem value is confirmed as %d\n", val);

Listing 6-4: Reading from and writing to process memory using the Windows API

Before code like this appears in a program, you need to find the
PID (proc) as described in “Obtaining the Game’s Process Identifier” on
page 120, as well as the memory address (adr) you want to read from or
write to. With those values in place, the ReadProcessMemory() function stores
a fetched value from memory in val. Then, the code increments val and
replaces the original value by calling WriteProcessMemory(). After the write
takes place, ReadProcessMemory() is called on the same address to confirm the
new memory value. Notice that val isn’t actually a buffer. Passing &val as the
Buffer parameter works because it can be a pointer to any static memory
structure, as long as Size matches.

Writing Templated Memory Access Functions
Of course, the example in Listing 6-4 assumes you already know what type
of memory you’re dealing with, and it hardcodes the type as DWORD. To be a
versatile game hacker, it’s better to have some generic code in your toolbox
to avoid duplicating code for different types. Generic memory reading and
writing functions that support different types might look like Listing 6-5.

124 Chapter 6

template<typename T>
T readMemory(HANDLE proc, LPVOID adr) {
 T val;
 ReadProcessMemory(proc, adr, &val, sizeof(T), NULL);
 return val;
}

template<typename T>
void writeMemory(HANDLE proc, LPVOID adr, T val) {
 WriteProcessMemory(proc, adr, &val, sizeof(T), NULL);
}

Listing 6-5: Generic memory functions

These functions use C++ templates to accept arbitrary types as argu-
ments. They allow you to access memory with whatever types you like in a
very clean way. For example, given these readMemory() and writeMemory() tem-
plates I just showed, you could make the calls in Listing 6-6.

DWORD value = readMemory<DWORD>(proc, adr); // read
writeMemory<DWORD>(proc, adr, value++); // increment and write

Listing 6-6: Calling templated memory access functions

Compare this to the calls to WriteProcessMemory() and ReadProcessMemory()
in Listing 6-4. This code still reads a value, increments it, and writes the
new value to memory. But since the templated functions let you specify the
type when you call them, you don’t need a new readMemory() and writeMemory()
function for every data type you might need to work with. That’s much
cleaner, since you’ll often want to work with all kinds of data.

Memory Protection
When memory is allocated by a game (or any program), it is placed in
a page. In x86 Windows, pages are chunks of 4,096 bytes that store data.
Because all memory must be within a page, the minimal allocation unit
is 4,096 bytes. The operating system can place memory chunks smaller
than 4,096 bytes as a subset of an existing page that has enough uncommit-
ted space, in a newly allocated page, or across two contiguous pages that
have the same attributes.

Memory chunks 4,096 bytes or larger span n pages, where n is

memory size
4 096,

.

The operating system typically looks for room in existing pages when
allocating memory, but it allocates new pages on demand if necessary.

N o t e 	 It’s also possible for large chunks to span n + 1 pages, as there’s no guarantee that a
chunk begins at the start of a page.

Reading from and Writing to Game Memory 125

The important thing to understand about memory pages is that each
page has a set of specific attributes. Most of these attributes are transparent
in user mode, but there’s one you should be extra conscious of when work-
ing with memory: protection.

Differentiating x86 Windows Memory Protection Attributes
The memory-reading techniques you’ve learned so far are very basic. They
assume that the memory you’re accessing is protected with the PAGE_READWRITE
attribute. While this assumption is correct for variable data, other types of
data exist on pages with different types of protection. Table 6-1 describes
the different types of memory protection in x86 Windows.

Table 6-1: Memory Protection Types

Protection type Value Read
permission?

Write
permission?

Execute
permission?

Special
permissions?

PAGE_NOACCESS 0x01 No No No
PAGE_READONLY 0x02 Yes No No
PAGE_READWRITE 0x04 Yes No No
PAGE_WRITECOPY 0x08 Yes Yes No Yes, copy on write
PAGE_EXECUTE 0x10 No No Yes
PAGE_EXECUTE_READ 0x20 Yes No Yes
PAGE_EXECUTE_READWRITE 0x40 Yes Yes Yes
PAGE_EXECUTE_WRITECOPY 0x80 Yes Yes Yes Yes, copy on write
PAGE_GUARD 0x100 No No No Yes, guard page

If a protection type in Table 6-1 has a Yes in any permission column, it
means the action in question can be performed on that page of memory.
For example, if a page is PAGE_READONLY, then a program can read the mem-
ory on that page, but the program cannot write to that memory.

Constant strings, for example, are usually stored with PAGE_READONLY pro-
tection. Other constant data, such as virtual function tables and a module’s
entire Portable Executable (PE) header (which contains information about a
program, such as the kind of application it is, library functions it uses, its
size, and so on), are also stored on read-only pages. Assembly code, on the
other hand, is stored on pages protected with PAGE_EXECUTE_READ.

Most protection types involve only some combination of read, write,
and execute protection. For now, you can safely ignore special protection
types; I cover them in “Special Protection Types” on page 126 if you’re
curious, but only very advanced hacks will ever require knowledge of them.
The basic protection types, though, will be prevalent in your game-hacking
adventures.

126 Chapter 6

Changing Memory Protection
When you want to hack a game, you’ll sometimes need to access memory in
a way that is forbidden by the memory page’s protection, making it impor-
tant to be able to change memory protection at will. Luckily, the Windows
API provides the VirtualProtectEx() function for this purpose. This is the
function’s prototype:

BOOL VirtualProtectEx(
 HANDLE Process, LPVOID Address,
 DWORD Size, DWORD NewProtect,
 PDWORD OldProtect
);

The parameters Process, Address, and Size take the same input as they
do in the ReadProcessMemory() and WriteProcessMemory() functions. NewProtect
should specify the new protection flags for the memory, and OldProtect can
optionally point to a DWORD where the old protection flags will be stored.

Specia l Prot ec t ion T y pe s

Two protection types in Table 6-1 include copy-on-write protection. When
multiple processes have pages of memory that are identical (such as pages
with mapped system DLLs), copy-on-write protection is used to conserve memory.
The actual data is stored in only one physical place, and the operating system
virtually maps all memory pages containing that data to the physical location. If
a process sharing the memory makes a change to it, a copy of the data will be
made in physical memory, the change will be applied, and the memory page(s)
for that process will be remapped to the new physical memory. When a copy
on write happens, the protection for all affected pages changes accordingly;
PAGE_WRITECOPY will become PAGE_READWRITE, and PAGE_EXECUTE_WRITECOPY will
become PAGE_EXECUTE_READWRITE. I’ve found no game hacking–specific uses for
copy-on-write pages, but it’s useful to understand them.

Pages can also be created with guard protection. Guarded pages must
have a secondary protection, defined like PAGE_GUARD | PAGE_READONLY. When
the program tries to access a guarded page, the operating system will throw
a STATUS_GUARD_PAGE_VIOLATION exception. Once the exception is handled, the
guard protection is removed from the page, leaving only the secondary protec-
tion. One way in which the operating system uses this type of protection is to
dynamically expand the call stack by placing a guarded page at the top and
allocating more memory when that guarded page is hit. Some memory analy-
sis tools place guarded pages after heap memory to detect heap corruption
bugs. In the context of game hacking, a guarded page can be used as a trip
wire that tells you when a game might be attempting to detect your code within
its memory.

Reading from and Writing to Game Memory 127

The most granular scale for memory protection is per page, which means
VirtualProtectEx() will set the new protection to every page that is on or
between Address and Address + Size - 1.

N o t e 	 The VirtualProtectEx() function has a sister called VirtualProtect(). They work
the same way, but VirtualProtect() operates only on the process calling it and, thus,
does not have a process handle parameter.

When you’re writing your own code to change memory protections, I
suggest making it flexible by creating a template. A generic wrapped func-
tion for VirtualProtectEx() should look something like Listing 6-7.

template<typename T>
DWORD protectMemory(HANDLE proc, LPVOID adr, DWORD prot) {
 DWORD oldProt;
 VirtualProtectEx(proc, adr, sizeof(T), prot, &oldProt);
 return oldProt;
}

Listing 6-7: A generic function to change memory protection

With this template in place, if you wanted to, say, write a DWORD to a mem-
ory page without write permission, you might do something like this:

protectMemory<DWORD>(process, address, PAGE_READWRITE)
writeMemory<DWORD>(process, address, newValue)

First, this sets the protection on the memory to change to PAGE_READWRITE.
With write permission granted, the door is open to call writeMemory() and
change the data at address.

When you’re changing memory protection, it’s best practice to let the
change persist only as long as needed and restore the original protection
as soon as possible. This is less efficient, but it ensures that a game doesn’t
detect your bot (for example, by noticing that some of its assembly code
pages have become writable).

A typical write operation on read-only memory should look like this:

DWORD oldProt =
 protectMemory<DWORD>(process, address, PAGE_READWRITE);
writeMemory<DWORD>(process, address, newValue);
protectMemory<DWORD>(process, address, oldProt);

This code calls the protectMemory() function from Listing 6-7 to change
the protection to PAGE_READWRITE. It then writes newValue to the memory before
changing the protection back to oldProt, which was set to the page’s original
protection by the initial call to protectMemory(). The writeMemory() function
used here is the same one defined in Listing 6-5.

A final important point is that when you’re manipulating a game’s
memory, it’s entirely possible that the game will access the memory at
the same time as you. If the new protection that you set is not compatible

128 Chapter 6

with the original protection, the game process will get an ACCESS_VIOLATION
exception and crash. For instance, if you change memory protection from
PAGE_EXECUTE to PAGE_READWRITE, the game might try to execute the code on
the page(s) when the memory is not marked as executable. In this case,
you’d want to instead set the memory protection to PAGE_EXECUTE_READWRITE to
ensure that you can operate on the memory while still allowing the game to
execute it.

Address Space Layout Randomization
So far, I’ve described memory addresses as static integers that change only
as the binary changes. This model is correct on Windows XP and earlier.
On later Windows systems, however, memory addresses are only static rela-
tive to the base address of the game binary, because these systems enable
a feature called address space layout randomization (ASLR) for supported bina-
ries. When a binary is compiled with ASLR support (enabled by default on
MSVC++ 2010 and many other compilers), its base address can be different
every time it is run. Conversely, non-ASLR binaries will always have a base
address of 0x400000.

N o t e 	 Since ASLR doesn’t work on XP, I’ll call 0x400000 the XP-base.

Disabling ASLR to Simplify Bot Development
To keep development simple, you can disable ASLR and use addresses with
the transparent XP-base. To do so, enter a single command in the Visual
Studio Command Prompt:

> editbin /DYNAMICBASE:NO "C:\path\to\game.exe"

To re-enable it, enter:

> editbin /DYNAMICBASE "C:\path\to\game.exe"

Bypassing ASLR in Production
Disabling ASLR is suitable for bot development, but it is a no-no for produc-
tion; end users cannot be expected to turn off ALSR. Instead, you can write
a function to dynamically rebase addresses at runtime. If you use addresses
with the XP-base, the code to do a rebase would look like this:

DWORD rebase(DWORD address, DWORD newBase) {
 DWORD diff = address - 0x400000;
 return diff + newBase;
}

Reading from and Writing to Game Memory 129

When you know the base address of the game (newBase), this function
allows you to essentially ignore ASLR by rebasing address.

To find newBase, however, you need to use the GetModuleHandle() function.
When the parameter to GetModuleHandle() is NULL, it always returns a handle
to the main binary in a process. The function’s returned type is HMODULE, but
the value is actually just the address where the binary is mapped. This is the
base address, so you can directly cast it to a DWORD to get newBase. Since you’re
looking for the base address in another process, though, you need a way to
execute the function in the context of that process.

To do this, call GetModuleHandle() using the CreateRemoteThread() API func-
tion, which can be used to spawn threads and execute code in a remote pro-
cess. It has the prototype shown in Listing 6-8.

HANDLE CreateRemoteThread(
 HANDLE Process,
 LPSECURITY_ATTRIBUTES ThreadAttributes,
 DWORD StackSize,
 LPTHREAD_START_ROUTINE StartAddress,
 LPVOID Param,
 DWORD CreationFlags,
 LPDWORD ThreadId
);

Listing 6-8: A function that spawns a thread

The spawned thread will start execution on StartAddress, treating it
as a single-parameter function with Param as input and setting the value
returned as the thread exit code. This is ideal, as the thread can be started
with StartAddress pointing to the address of GetModuleHandle() and Param set to
NULL. You can then use the API function WaitForSingleObject() to wait until
the thread is done executing and get the returned base address using the
API function GetExitCodeThread().

Once all of these things are tied together, the code to get newBase from
an external bot should look like Listing 6-9.

DWORD newBase;

// get the address of kernel32.dll
HMODULE k32 = GetModuleHandle("kernel32.dll");

// get the address of GetModuleHandle()
LPVOID funcAdr = GetProcAddress(k32, "GetModuleHandleA");
if (!funcAdr)
 funcAdr = GetProcAddress(k32, "GetModuleHandleW");

// create the thread
HANDLE thread =
 CreateRemoteThread(process, NULL, NULL,
 (LPTHREAD_START_ROUTINE)funcAdr,
 NULL, NULL, NULL);

130 Chapter 6

// let the thread finish
WaitForSingleObject(thread, INFINITE);

// get the exit code
GetExitCodeThread(thread, &newBase);

// clean up the thread handle
CloseHandle(thread);

Listing 6-9: Finding the base address of a game with API functions

The GetModuleHandle() function is part of kernel32.dll, which has the
same base address in every process, so first this code gets the address for
kernel32.dll. Since the base address of kernel32.dll is the same in every pro-
cess, the address of GetModuleHandle() will be the same in the game as it is in
the external bot. Given the base address of kernel32.dll, this code finds the
address of GetModuleHandle() easily with the API function GetProcAddress().
From there, it calls the CreateRemoteThread() function from Listing 6-8, lets
the thread do its job, and fetches the exit code to obtain newBase.

Closing Thoughts
Now that you’ve seen how to manipulate memory from your own code, I’ll
show you how to apply the skills from Parts I and II to games. These skills
are paramount to the concepts you’ll explore in the coming chapters, so
make sure you have a firm grasp on what’s happening. If you’re having
trouble, play with the example code as you review concepts, as it provides a
safe sandbox for testing and tweaking how the methods in this and earlier
chapters behave.

The way Listing 6-9 tricks the game into executing GetModuleHandle() is a
form of code injection. But that’s just a glimpse into what injection can do.
If you’re excited to learn more about it, dive into Chapter 7, which explores
this topic in detail.

Part 3
P r oce s s P u ppe t ee r ing

7
C ode I n j ec t ion

Imagine being able to walk into a game
company’s office, sit down, and start add-

ing code to their game client. Imagine
that you can do this for any game you want,

whenever you want, and for any functionality you want.
Almost any gamer you talk to will have ideas on how
to improve a game, but, as far as they know, it’s just a
pipe dream. But you know that dreams are meant to be fulfilled, and now
that you’ve learned a bit about how memory works, you’re ready to start
throwing the rules out the window. Using code injection, you can, for all
intents and purposes, become as powerful as any game’s developers.

Code injection is a means of forcing any process to execute foreign code
within its own memory space and execution context. I touched on this
topic previously in “Bypassing ASLR in Production” on page 128, where
I showed you how to remotely subvert ASLR using CreateRemoteThread(), but
that example only scratched the surface. In the first part of this chapter,
you’ll learn how to create code caves, inject new threads, and hijack thread

134 Chapter 7

execution to force games to execute small snippets of assembly code. In the
second part, you’ll learn how to inject foreign binaries directly into games,
forcing those games to execute entire programs that you’ve created.

Injecting Code Caves with Thread Injection
The first step to injecting code into another process is writing position-
agnostic assembly code, known as shellcode, in the form of a byte array. You
can write shellcode to remote processes to form code caves, which act as the
entry point for a new thread that you want a game to execute. Once a code
cave is created, you can execute it using either thread injection or thread hijack-
ing. I’ll show you an example of thread injection in this section, and I’ll
illustrate thread hijacking in “Hijacking a Game’s Main Thread to Execute
Code Caves” on page 138.

You’ll find example code for this chapter in this book’s resource
files in the directory GameHackingExamples/Chapter7_CodeInjection. Open
main-codeInjection​.cpp to follow along as I explain how to build a simplified
version of the function injectCodeUsingThreadInjection() from that file.

Creating an Assembly Code Cave
In “Bypassing ASLR in Production” on page 128, I used thread injection
to call the function GetModuleHandle() by way of CreateRemoteThread() and
obtain a process handle. In that case, GetModuleHandle() acted as the code
cave; it had the proper code structure to act as the entry point for a new
thread. Thread injection isn’t always that easy, though.

For example, say you want your external bot to remotely call a function
within a game, and the function has this prototype:

DWORD __cdecl someFunction(int times, const char* string);

A few things make remotely calling this function tricky. First, it has two
parameters, meaning you need to create a code cave that will both set up
the stack and properly make the call. CreateRemoteThread() allows you to pass
one argument to the code cave, and you can access that argument relative
to ESP, but the other one would still need to be hardcoded into the code
cave. Hardcoding the first argument, times, is easiest. Additionally, you’d
need to make sure that the cave properly cleans the stack.

N o t e 	 Recall that when bypassing ASLR in Chapter 6, I used CreateRemoteThread() to start
new threads by executing any arbitrary code at a given address and passing that
code a single parameter. That’s why these examples can pass one parameter using the
stack.

Code Injection 135

Ultimately, the code cave to inject that call to someFunction into a run-
ning game process would look something like this pseudocode:

PUSH DWORD PTR:[ESP+0x4] // get second arg from stack
PUSH times
CALL someFunction
ADD ESP, 0x8
RETN

This code cave is almost perfect, but it could be less complex. The CALL
operation expects one of two operands: either a register with an absolute
function address or an immediate integer that holds an offset to a function,
relative to the return address. This means you’d have to do a bunch of off-
set calculations, which can be tedious.

To keep the cave position agnostic, modify it to use a register instead,
as in Listing 7-1.

PUSH DWORD PTR:[ESP+0x4] // get second arg from stack
PUSH times
MOV EAX, someFunction
CALL EAX
ADD ESP, 0x8
RETN

Listing 7-1: A code cave to call someFunction

Since a caller knows that a function it calls will overwrite EAX with its
return value, the caller should ensure that EAX doesn’t hold any critical data.
Knowing this, you can use EAX to hold the absolute address of someFunction.

Translating the Assembly to Shellcode
Because code caves need to be written to another process’s memory, they
cannot be written directly in assembly. Instead, you’ll need to write them
byte by byte. There’s no standard way to determine which bytes represent
which assembly code, but there are a few hacky approaches. My personal
favorite is to compile an empty C++ application with the assembly code in a
function and use OllyDbg to inspect that function. Alternatively, you could
open OllyDbg on any arbitrary process and scan through the disassembly
until you find the bytes for all of the operations you need. This method is
actually really good, as your code caves should be written as simply as pos-
sible, meaning all of the operations should be very common. You can also
find charts of assembly opcodes online, but I find that they’re all pretty
hard to read; the methods I just described are easier overall.

When you know what your bytes should be, you can use C++ to easily
generate the proper shellcode. Listing 7-2 shows the finished shellcode skel-
eton for the assembly in Listing 7-1.

136 Chapter 7

BYTE codeCave[20] = {
 0xFF, 0x74, 0x24, 0x04, // PUSH DWORD PTR:[ESP+0x4]
 0x68, 0x00, 0x00, 0x00, 0x00, // PUSH 0
 0xB8, 0x00, 0x00, 0x00, 0x00, // MOV EAX, 0x0
 0xFF, 0xD0, // CALL EAX
 0x83, 0xC4, 0x08, // ADD ESP, 0x08
 0xC3 // RETN
};

Listing 7-2: Shellcode skeleton

This example creates a BYTE array containing the needed bytes of shell-
code. But the times argument needs to be dynamic, and it’s impossible to
know the address of someFunction at compile time, which is why this shell-
code is written as a skeleton. The two groups of four sequential 0x00 bytes
are placeholders for times and the address of someFunction, and you can
insert the real values into your code cave at runtime by calling memcpy(), as
in the snippet in Listing 7-3.

memcpy(&codeCave[5], ×, 4);
memcpy(&codeCave[10], &addressOfSomeFunc, 4);

Listing 7-3: Inserting times and the location of someFunction into the code cave

Both times and the address of someFunction are 4 bytes each (recall
that times is an int and addresses are 32-bit values), and they belong at
codeCave[5-8] and codeCave[10-13], respectively. The two calls to memcpy() pass
this information as parameters to fill the blanks in the codeCave array.

Writing the Code Cave to Memory
With the proper shellcode created, you can place it inside the target process
using VirtualAllocEx() and WriteProcessMemory(). Listing 7-4 shows one way to
do this.

int stringlen = strlen(string) + 1; // +1 to include null terminator
int cavelen = sizeof(codeCave);

 int fulllen = stringlen + cavelen;
auto remoteString = // allocate the memory with EXECUTE rights

 VirtualAllocEx(process, 0, fulllen, MEM_COMMIT, PAGE_EXECUTE);

auto remoteCave = // keep a note of where the code cave will go
 (LPVOID)((DWORD)remoteString + stringlen);

// write the string first
 WriteProcessMemory(process, remoteString, string, stringlen, NULL);

// write the code cave next
 WriteProcessMemory(process, remoteCave, codeCave, cavelen, NULL);

Listing 7-4: Writing the final shellcode to a code cave memory

Code Injection 137

First, this code determines exactly how many bytes of memory it will
need to write the string argument and the code cave into the game’s mem-
ory, and it stores that value in fulllen . Then, it calls the API function
VirtualAllocEx() to allocate fulllen bytes inside of process with PAGE_EXECUTE
protection (you can always use 0 and MEM_COMMIT, respectively, for the sec-
ond and fourth parameters), and it stores the address of the memory in
remoteString . It also increments remoteString by stringlen bytes and stores
the result in remoteCave , as the shellcode should be written directly to the
memory following the string argument. Finally, it uses WriteProcessMemory()
to fill the allocated buffer with string  and the assembly bytes  stored in
codeCave.

Table 7-1 shows how a memory dump of the code cave might look,
assuming that it is allocated at 0x030000, someFunction is at 0xDEADBEEF,
times is set to 5, and string is pointing to the injected! text.

Table 7-1: Code Cave Memory Dump

Address Code representation Raw data Data meaning

0x030000 remoteString[0-4] 0x69 0x6E 0x6A
0x65 0x63

injec

0x030005 remoteString[5-9] 0x74 0x65 0x64
0x0A 0x00

ted!\0

0x03000A remoteCave[0-3] 0xFF 0x74 0x24
0x04

PUSH DWORD
PTR[ESP+0x4]

0x03000E remoteCave[4-8] 0x68 0x05 0x00
0x00 0x00

PUSH 0x05

0x030013 remoteCave[9-13] 0xB8 0xEF 0xBE
0xAD 0xDE

MOV EAX, 0xDEADBEEF

0x030018 remoteCave[14-15] 0xFF 0xD0 CALL EAX

0x03001A remoteCave[16-18] 0x83 0xC4 0x08 ADD ESP, 0x08

0x03001D remoteCave[19] 0xC3 RETN

The Address column shows where each piece of the cave is located
in memory; the Code representation column tells you which indexes of
remoteString and remoteCave correspond to the bytes in the Raw data col-
umn; and the Data meaning column shows what the bytes represent, in
human-readable format. You can see the injected! string at 0x030000, the
value of times at 0x03000E, and the address of someFunction at 0x030014.

Using Thread Injection to Execute the Code Cave
With a complete code cave written to memory, the only thing left to
do is execute it. In this example, you could execute the cave using the
following code:

HANDLE thread = CreateRemoteThread(process, NULL, NULL,
 (LPTHREAD_START_ROUTINE)remoteCave,
 remoteString, NULL, NULL);

138 Chapter 7

WaitForSingleObject(thread, INFINITE);
CloseHandle(thread);
VirtualFreeEx(process, remoteString, fulllen, MEM_RELEASE)

The calls to CreateRemoteThread(), WaitForSingleObject(), and CloseHandle()
work to inject and execute the code cave, and VirtalFreeEx() covers the
bot’s tracks by freeing the memory allocated in code like Listing 7-4. In
the simplest form, that’s all there is to executing a code cave injected into
a game. In practice, you should also check return values after calling
VirtualAllocEx(), WriteProcessMemory(), and CreateRemoteThread() to make sure
that everything was successful.

For instance, if VirtualAllocEx() returns 0x00000000, it means that the
memory allocation failed. If you don’t handle the failure, WriteProcessMemory()
will also fail and CreateRemoteThread() will begin executing with an entry point
of 0x00000000, ultimately crashing the game. The same is true for the return
values of WriteProcessMemory() and CreateRemoteThread(). Typically, these func-
tions will only fail when the process handle is opened without the required
access flags.

Hijacking a Game’s Main Thread to Execute Code Caves
In some cases, injected code caves need to be in sync with the main thread
of the game process. Solving this problem can be very tricky because it
means that you must control the existing threads in an external process.

You could simply suspend the main thread until the code cave finishes
executing, which might work, but that would prove very slow. The overhead
required to wait for a code cave and then resume a thread is pretty heavy.
A faster alternative is to force the thread to execute the code for you, a pro-
cess called thread hijacking.

N o t e 	 Open the main-codeInjection.cpp file in this book’s source code files to follow
along with building this thread-hijacking example, which is a simplified version of
injectCodeUsingThreadHijacking().

Building the Assembly Code Cave
As with thread injection, the first step to thread hijacking is knowing what
you want to happen in your code cave. This time, however, you don’t know
what the thread will be executing when you hijack it, so you’ll need to make
sure to save the thread’s state when the code cave starts and restore the
state when you’re done hijacking it. This means your shellcode needs to be
wrapped in some assembly, as in Listing 7-5.

PUSHAD // push general registers to the stack
PUSHFD // push EFLAGS to the stack

Code Injection 139

// shellcode should be here

POPFD // pop EFLAGS from the stack
POPAD // pop general registers to the stack

// resume the thread without using registers here

Listing 7-5: A framework for the thread-hijacking code cave

If you were to call the same someFunction that you did with thread injec-
tion, you could use shellcode similar to that in Listing 7-2. The only dif-
ference is that you couldn’t pass the second parameter to your bot using
the stack because you wouldn’t be using CreateRemoteThread(). But that’s no
problem; you could just push it the same way you’d push the first parameter.
The part of the code cave that executes the function you want to call would
need to look like Listing 7-6.

PUSH string
PUSH times
MOV EAX, someFunction
CALL EAX
ADD ESP, 0x8

Listing 7-6: Assembly skeleton for calling someFunction

All that’s changed here from Listing 7-1 is that this example pushes
string explicitly and there’s no RETN. You don’t call RETN in this case because
you want the game thread to go back to whatever it was doing before you
hijacked it.

To resume the execution of the thread normally, the cave needs to
jump back to the thread’s original EIP without using registers. Fortunately,
you can use the GetThreadContext() function to fetch EIP, filling the shellcode
skeleton in C++. Then you can push it to the stack inside your code cave
and do a return. Listing 7-7 shows how your code cave would need to end.

PUSH originalEIP
RETN

Listing 7-7: Jumping to EIP indirectly

A return jumps to the value on the top of the stack, so doing this imme-
diately after pushing EIP will do the trick. You should use this method
instead of a jump, because jumps require offset calculation and make the
shellcode a bit more complex to generate. If you tie Listings 7-5 through 7-7
together, you come up with the following code cave:

//save state
PUSHAD // push general registers to the stack
PUSHFD // push EFLAGS to the stack

140 Chapter 7

// do work with shellcode
PUSH string
PUSH times
MOV EAX, someFunction
CALL EAX
ADD ESP, 0x8

// restore state
POPFD // pop EFLAGS from the stack
POPAD // pop general registers to the stack

// un-hijack: resume the thread without using registers
PUSH originalEIP
RETN

Next, follow the instructions in “Translating the Assembly to Shellcode”
on page 135 and plug those bytes into an array representing your code cave.

Generating Skeleton Shellcode and Allocating Memory
Using the same method shown in Listing 7-2, you could generate the shell-
code for this cave, as shown in Listing 7-8.

BYTE codeCave[31] = {
 0x60, // PUSHAD
 0x9C, // PUSHFD
 0x68, 0x00, 0x00, 0x00, 0x00, // PUSH 0
 0x68, 0x00, 0x00, 0x00, 0x00, // PUSH 0
 0xB8, 0x00, 0x00, 0x00, 0x00, // MOV EAX, 0x0
 0xFF, 0xD0, // CALL EAX
 0x83, 0xC4, 0x08, // ADD ESP, 0x08
 0x9D, // POPFD
 0x61, // POPAD
 0x68, 0x00, 0x00, 0x00, 0x00, // PUSH 0
 0xC3 // RETN
};

// we'll need to add some code here to place
// the thread's EIP into threadContext.Eip

memcpy(&codeCave[3], &remoteString, 4);
memcpy(&codeCave[8], ×, 4);
memcpy(&codeCave[13], &func, 4);
memcpy(&codeCave[25], &threadContext.Eip, 4);

Listing 7-8: Creating the thread-hijacking shellcode array

As in Listing 7-3, memcpy() is used to put the variables into the skeleton.
Unlike in that listing, though, there are two variables that cannot be copied
right away; times and func are known immediately, but remoteString is a result
of allocation and threadContext.Eip will be known only once the thread is
frozen. It also makes sense to allocate memory before freezing the thread,

Code Injection 141

because you don’t want the thread to be frozen any longer than it has to be.
Here’s how this might look:

int stringlen = strlen(string) + 1;
int cavelen = sizeof(codeCave);
int fulllen = stringlen + cavelen;

auto remoteString =
 VirtualAllocEx(process, 0, fulllen, MEM_COMMIT, PAGE_EXECUTE);
auto remoteCave =
 (LPVOID)((DWORD)remoteString + stringlen);

The allocation code is the same as it was for thread injection, so you
can reuse the same snippet.

Finding and Freezing the Main Thread
The code to freeze the main thread is a bit trickier. First, you get the thread’s
unique identifier. This works much like getting a PID, and you can do it
using CreateToolhelp32Snapshot(), Thread32First(), and Thread32Next() from
TlHelp32.h. As discussed in “Obtaining the Game’s Process Identifier” on
page 120, these functions are used to essentially iterate over a list. A pro-
cess can have many threads, but the following example assumes that the
first thread the game process created is the one that needs to be hijacked:

DWORD GetProcessThreadID(HANDLE Process) {
 THREADENTRY32 entry;
 entry.dwSize = sizeof(THREADENTRY32);
 HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0);

 if (Thread32First(snapshot, &entry) == TRUE) {
 DWORD PID = GetProcessId(Process);
 while (Thread32Next(snapshot, &entry) == TRUE) {
 if (entry.th32OwnerProcessID == PID) {
 CloseHandle(snapshot);
 return entry.th32ThreadID;
 }
 }
 }
 CloseHandle(snapshot);
 return NULL;
}

This code simply iterates over the list of all threads on the system and
finds the first one that matches the game’s PID. Then it gets the thread
identifier from the snapshot entry. Once you know the thread identifier,
fetch the thread’s current register state like this:

HANDLE thread = OpenThread(
 (THREAD_GET_CONTEXT | THREAD_SUSPEND_RESUME | THREAD_SET_CONTEXT),
 false, threadID);
SuspendThread(thread);

142 Chapter 7

CONTEXT threadContext;
threadContext.ContextFlags = CONTEXT_CONTROL;
GetThreadContext(thread, &threadContext);

This code uses OpenThread() to get a thread handle. It then suspends
the thread using SuspendThread() and obtains the values of its registers using
GetThreadContext(). After this, the memcpy() code in Listing 7-8 should have all
of the variables it needs to finish generating the shellcode.

With the shellcode generated, the code cave can be written to the allo-
cated memory in the same fashion as in Listing 7-4:

WriteProcessMemory(process, remoteString, string, stringlen, NULL);
WriteProcessMemory(process, remoteCave, codeCave, cavelen, NULL);

Once the cave is ready and waiting in memory, all you need to do is set
the thread’s EIP to the address of the code cave and let the thread resume
execution, as follows:

threadContext.Eip = (DWORD)remoteCave;
threadContext.ContextFlags = CONTEXT_CONTROL;
SetThreadContext(thread, &threadContext);
ResumeThread(thread);

This code causes the thread to resume execution at the address of the
code cave. Because of the way the code cave is written, the thread has no
clue that anything has changed. The cave stores the thread’s original state,
executes the payload, restores the thread’s original state, and then returns
to the original code with everything intact.

When you’re using any form of code injection, it is also important to
understand what data your code caves touch. For example, if you were to
create a code cave that calls a game’s internal functions to create and send
a network packet, you’d need to make sure that any global variables that
the functions touch (like a packet buffer, packet position marker, and so
on) are safely restored once you’re done. You never know what the game is
doing when your code cave is executed—it could be calling the same func-
tion as you!

Injecting DLLs for Full Control
Code caves are very powerful (you can make a game do anything using
assembly shellcode), but handcrafting shellcode isn’t practical. It would be
much more convenient to inject C++ code, wouldn’t it? That’s possible, but
the process is far more complex: the code must be compiled to assembly,
packaged in a position-agnostic format, made aware of any external depen-
dencies, entirely mapped into memory, and then executed on some entry
point.

Code Injection 143

Luckily, all of these things are already taken care of in Windows. By
changing a C++ project to compile as a dynamic library, you can create a self-
contained, position-agnostic binary called a dynamic link library (DLL). Then
you can use a mix of thread injection or hijacking and the LoadLibrary() API
function to map your DLL file into a game’s memory.

Open main-codeInjection.cpp in the GameHackingExamples/Chapter7_
CodeInjection directory and dllmain.cpp under GameHackingExamples/
Chapter7_CodeInjection_DLL to follow along with some example code as
you read this section. In main-codeInjection.cpp, look at the LoadDLL() function
specifically.

Tricking a Process into Loading Your DLL
Using a code cave, you can trick a remote process into invoking LoadLibrary()
on a DLL, effectively loading foreign code into its memory space. Because
LoadLibrary() takes only a single parameter, you could create a code cave to
call it as follows:

// write the dll name to memory
wchar_t* dllName = "c:\\something.dll";
int namelen = wcslen(dllName) + 1;
LPVOID remoteString =
 VirtualAllocEx(process, NULL, namelen * 2, MEM_COMMIT, PAGE_EXECUTE);
WriteProcessMemory(process, remoteString, dllName, namelen * 2, NULL);

// get the address of LoadLibraryW()
HMODULE k32 = GetModuleHandleA("kernel32.dll");
LPVOID funcAdr = GetProcAddress(k32, "LoadLibraryW");

// create a thread to call LoadLibraryW(dllName)
HANDLE thread =
 CreateRemoteThread(process, NULL, NULL,
 (LPTHREAD_START_ROUTINE)funcAdr,
 remoteString, NULL, NULL);

// let the thread finish and clean up
WaitForSingleObject(thread, INFINITE);
CloseHandle(thread);

This code is somewhat a mix of the thread injection code from
“Bypassing ASLR in Production” on page 128 and the code cave created
to call someFunction in Listings 7-2 and 7-3. Like the former, this example
uses the body of a single-parameter API function, namely LoadLibrary, as the
body of the code cave. Like the latter, though, it has to inject a string into
memory, since LoadLibrary expects a string pointer as its first argument. Once
the thread is injected, it forces LoadLibrary to load the DLL whose name was
injected into memory, effectively putting foreign code into a game.

144 Chapter 7

N o t e 	 Give any DLL you plan to inject a unique name, like MySuperBotV2Hook.dll.
Simpler names, such as Hook.dll or Injected.dll, are dangerously generic. If the
name conflicts with a DLL that is already loaded, LoadLibrary() will assume that it
is the same DLL and not load it!

Once the LoadLibrary() code cave loads your DLL into a game, the DLL’s
entry point—known as DllMain()—will be executed with DLL_PROCESS_ATTACH as
the reason. When the process is killed or FreeLibrary() is called on the DLL,
its entry point will be called with the DLL_PROCESS_DETACH reason. Handling
these events from the entry point might look like this:

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved) {
 switch (ul_reason_for_call) {
 case DLL_PROCESS_ATTACH:
 printf("DLL attached!\n");
 break;
 case DLL_PROCESS_DETACH:
 printf("DLL detached!\n");
 break;
 }
 return TRUE;
}

This example function starts by checking why DllMain() was called. It
then outputs text indicating whether it was called because the DLL was
attached or detached, returning TRUE either way.

Keep in mind that the entry point of a DLL is executed inside a loader
lock, which is a global synchronization lock used by all functions that read
or modify the list of modules loaded in a process. This loader lock gets used
by functions like GetModuleHandle(), GetModuleFileName(), Module32First(), and
Module32Next(), which means that running nontrivial code from a DLL entry
point can lead to deadlocks and should be avoided.

If you need to run code from a DLL entry point, do so from a new
thread, as follows:

DWORD WINAPI runBot(LPVOID lpParam) {
 // run your bot
 return 1;
}

// do this from DllMain() for case DLL_PROCESS_ATTACH
auto thread = CreateThread(NULL, 0, &runBot, NULL, 0, NULL);
CloseHandle(thread);

From DllMain(), this code creates a new thread starting on the function
runBot(). It then immediately closes its handle to the thread, as doing any
further operations from DllMain() can lead to serious problems. From inside

Code Injection 145

this runBot(), you can begin executing your bot’s code. The code runs inside
the game, meaning you can directly manipulate memory using the type-
casting methods. You can also do a lot more, as you’ll see in Chapter 8.

When injecting DLLs, make sure you have no dependency issues. If
your DLL relies on some nonstandard DLLs, for example, you have to
either inject those DLLs into the game first or put them in a folder that
LoadLibrary() will search, such as any folder in the PATH environment vari-
able. The former will work only if the DLLs have no dependencies of their
own, whereas the latter is a bit tricky to implement and subject to name col-
lisions. The best option is to link all external libraries statically so that they
are compiled directly into your DLL.

Accessing Memory in an Injected DLL
When you’re trying to access a game’s memory from an injected DLL, pro-
cess handles and API functions are a hindrance. Because a game shares
the same memory space as all code injected into it, you can access a game’s
memory directly from injected code. For example, to access a DWORD value
from injected code, you could write the following:

DWORD value = *((DWORD*)adr); // read a DWORD from adr
((DWORD)adr) = 1234; // write 1234 to DWORD adr

This simply typecasts the memory address adr to a DWORD* and
dereferences that pointer to a DWORD. Doing typecasts in place like that
is fine, but your memory access code will look cleaner if the functions
are abstracted and made generic, just like the Windows API wrappers.

The generic functions for accessing memory from inside injected code
look something like this:

template<typename T>
T readMemory(LPVOID adr) {
 return *((T*)adr);
}

template<typename T>
void writeMemory(LPVOID adr, T val) {
 ((T)adr) = val;
}

Using these templates is just like using the functions under “Writing
Templated Memory Access Functions” on page 123. Here’s an example:

DWORD value = readMemory<DWORD>(adr); // read
writeMemory<DWORD>(adr, value++); // increment and write

These calls are nearly identical to the calls in Listing 6-6 on page 124;
they just don’t need to take the process handle as an argument because

146 Chapter 7

they’re being called from inside the process itself. You can make this
method even more flexible by creating a third templated function called
pointMemory(), as follows:

template<typename T>
T* pointMemory(LPVOID adr) {
 return ((T*)adr);
}

This function skips the dereferencing step of a memory read and simply
gives you the pointer to the data. From there, you’re free to both read from
and write to the memory by dereferencing that pointer yourself, like this:

DWORD* pValue = pointMemory<DWORD>(adr); // point
DWORD value = *pValue; // 'read'
(*pValue)++; // increment and 'write'

With a function like pointMemory() in place, you could eliminate the calls
to readMemory() and writeMemory(). You’d still need to find adr ahead of time,
but from there, the code to read a value, change it, and write it back would
be much simpler to follow.

Bypassing ASLR in an Injected DLL
Similarly, since the code is injected, there’s no need to inject a thread into
the game to get the base address. Instead, you can just call GetModuleHandle()
directly, like so:

DWORD newBase = (DWORD)GetModuleHandle(NULL);

A faster way to get the base address is to utilize the game’s FS memory
segment, which is another superpower you get from injected code. This
memory segment points to a structure called the thread environment block
(TEB), and 0x30 bytes into the TEB is a pointer to the process environment
block (PEB) structure. These structures are used by the operating system
and contain a ton of data about the current thread and the current process,
but we’re interested only in the base address of the main module, which is
stored 0x8 bytes into the PEB. Using inline assembly, you can traverse these
structures to get newBase, like this:

DWORD newBase;
__asm {
 MOV EAX, DWORD PTR FS:[0x30]
 MOV EAX, DWORD PTR DS:[EAX+0x8]
 MOV newBase, EAX
}

The first command stores the PEB address in EAX, and the second com-
mand reads the main module’s base address and stores it in EAX. The final
command then copies EAX to newBase.

Code Injection 147

Closing Thoughts
In Chapter 6, I showed you how to read from memory remotely and how
an injected DLL can directly access a game’s memory using pointers. This
chapter demonstrated how to inject all types of code, from pure assembly
byte code to entire C++ binaries. In the next chapter, you’ll learn just
how much power being in a game’s memory space actually gives you. If you
thought assembly code injection was cool, you’ll love what you can do when
you mix injected C++ with control flow manipulation.

The example code for this chapter contains proofs of concept for every-
thing we’ve discussed. If you’re still unclear about any of the topics, you can
poke at the code to learn exactly what’s going on and see all of the tricks in
action.

8
M anip u l a t ing C on t r o l F l o w

in a G ame

Forcing a game to execute foreign code is
definitely powerful, but what if you could

alter the way a game executes its own code?
What if you could force the game to bypass

the code that draws the fog of war, trick it into mak-
ing enemies visible through walls, or manipulate the
arguments it passes to functions? Control flow manipu-
lation lets you do exactly that, allowing you to change
what a process does by intercepting code execution
and monitoring, modifying, or preventing it.

There are many ways to manipulate the control flow of a process, but
almost all require you to modify the process’s assembly code. Depending on
your goals, you’ll need to either completely remove code from the process
(called NOPing) or force the process to redirect execution to injected func-
tions (called hooking). In the beginning of this chapter, you’ll learn about

150 Chapter 8

NOPing, several types of hooking, and other control flow manipulation tech-
niques. Once I’ve explained the basics, I’ll show you how I’ve applied these
principles to common game libraries like Adobe AIR and Direct3D.

Open the directory GameHackingExamples/Chapter8_ControlFlow in this
book’s resource files to see the complete sample code for the next section
and “Hooking to Redirect Game Execution” on page 153.

NOPing to Remove Unwanted Code
Chapter 7 described how to inject new code into a game, but the opposite—
removing code from a game—can also be useful. Some hacks require you
to stop some of a game’s original code from being executed, and to do that,
you’ll have to get rid of it. One way to eliminate code from a game process
is NOPing, which involves overwriting the original x86 assembly code with
NOP instructions.

When to NOP
Consider a game that won’t show the health bars of cloaked enemies. It’s
pretty hard to see cloaked enemies coming, and you’d have a huge advan-
tage in combat if you could at least see their health bars. The code to draw
health bars often looks like Listing 8-1.

for (int i = 0; i < creatures.size(); i++) {
 auto c = creatures[i];
 if (c.isEnemy && c.isCloaked) continue;
 drawHealthBar(c.healthBar);
}

Listing 8-1: The loop from the drawCreatureHealthBarExample() function

When drawing health bars, a game with cloaked creatures might
use a for loop to check whether the creatures within the screen’s bounds
are cloaked. If an enemy isn’t cloaked, the loop calls some function
(drawHealthBar() in this example) to display the enemy’s health bar.

Given the source code, you could force the game to draw even cloaked
enemies’ health bars by simply removing if (c.isEnemy && c.isCloaked)
continue; from the code. But as a game hacker, you have only the assembly
code, not the source code. When simplified, the assembly that Listing 8-1
translates into looks something like this pseudocode:

startOfLoop: ; for
 MOV i, 0 ; int i = 0
 JMP condition ; first loop, skip increment
increment:
 ADD i, 1 ; i++
condition:
 CMP i, creatures.Size() ; i < creatures.size()
 JNB endOfLoop ; exit loop if i >= creatures.size()

Manipulating Control Flow in a Game 151

body:
 MOV c, creatures[i] ; auto c = creatures[i]
 TEST c.isEnemy, c.isEnemy ; if c.isEnemy
 JZ drawHealthBar ; draw bar if c.isEnemy == false
 TEST c.isCloaked, c.isCloaked ; && c.isCloaked
 JZ drawHealthBar ; draw bar if c.isCloaked == false

 JMP increment ; continue
drawHealthBar:
 CALL drawHealthBar(c.healthBar) ; drawHealthBar(c.healthBar)
 JMP increment ; continue
endOfLoop:

To trick the game into drawing all enemy health bars, regardless of
cloaking, you’d need to remove the JMP increment command  that executes
when c.isEnemy && c.isCloaked evaluates to true. In assembly, though, replac-
ing unwanted code with instructions that do nothing is easier than deleting
code. That’s where the NOP command comes in. Since NOP is a single byte
(0x90), you can overwrite the 2-byte JMP increment command with two NOP
commands. When the processor reaches those NOP commands, it rolls over
them and falls into drawHealthBar() even when c.isEnemy && c.isCloaked evalu-
ates to true.

How to NOP
The first step to NOPing a chunk of assembly code is making the memory
chunk where the code lives writable. It’s possible for the code on the same
memory page to be executed while you’re writing the NOP commands,
though, so you also want to make sure the memory is still executable. You
can accomplish both of these tasks by setting the memory’s protection to
PAGE_EXECUTE_READWRITE. Once the memory is properly protected, you can
write the NOP commands and be done. It technically doesn’t hurt to leave
the memory writable, but it’s good practice to also restore the original pro-
tection when you’re finished.

Provided you have facilities in place for writing and protecting memory
(as described in Chapter 6), you can write a function like the one shown
in Listing 8-2 to write NOP commands to game memory. (Follow along by
opening the project’s NOPExample.cpp file.)

template<int SIZE>
void writeNop(DWORD address)
{
 auto oldProtection =
 protectMemory<BYTE[SIZE]>(address, PAGE_EXECUTE_READWRITE);

 for (int i = 0; i < SIZE; i++)
 writeMemory<BYTE>(address + i, 0x90);

 protectMemory<BYTE[SIZE]>(address, oldProtection);
}

Listing 8-2: Proper NOPing, complete with memory protection

152 Chapter 8

In this example, the writeNop() function sets the appropriate memory
protection, writes a number of NOP commands equal to SIZE, and reapplies
the original memory protection level.

The writeNop() function takes the number of NOP instructions to
place as a template parameter, since the memory functions require a
correctly sized type at compile time. Passing an integer SIZE tells the
memory functions to operate on a type of BYTE[SIZE] at compile time.
To specify a dynamic size at runtime, simply drop the loop and instead
call protectMemory<BYTE> and pass address and address + SIZE as arguments.
As long as the size isn’t larger than a page (and really, you shouldn’t be
NOPing a full page), this will ensure that the memory gets properly pro-
tected even if it’s on a page boundary.

Call this function with the address where you want to place your NOPs
and the number of NOP commands to place:

writeNop<2>(0xDEADBEEF);

Keep in mind that the number of NOP commands should match the
size in bytes of the command being removed. This call to writeNop() writes
two NOP commands to the address 0xDEADBEEF.

Pr ac t ice NOPing

If you haven’t already, open NOPExample.cpp in this chapter’s example code
now and play around with it for a bit. You’ll find a working implementation of
the writeNop() function and an interesting function called getAddressforNOP()
that scans the example program’s memory to find where the NOP command
should be placed.

To see the NOP command in action, run the compiled NOPapplication in
Visual Studio’s debugger with breakpoints at the start and end of the writeNop()
function. When the first breakpoint is hit, press alt-8 to open the disassembly
window, enter address in the input box, and press enter. This brings you to the
NOP’s target address, where you’ll see the assembly code fully intact. Press F5
to continue execution, which triggers the second breakpoint after allowing the
application to place the NOPs. Finally, jump back to address in the disassembly
tab to see that the code was replaced by NOPs.

You can rework this code to do other cool stuff. For example, you might try
placing NOPs on the comparisons instead of the jump or even modifying the
jump’s type or destination.

These and other alternative approaches may work, but note that they
introduce more room for error than overwriting the single JMP with NOP com-
mands. When modifying foreign code, make as few changes as possible to
minimize the potential for errors.

Manipulating Control Flow in a Game 153

Hooking to Redirect Game Execution
So far, I’ve shown you how to manipulate games by adding code to them,
hijacking their threads, creating new threads, and even removing existing
code from their execution flow. These methods are very powerful on their
own, but when combined, they form an even more potent method of manip-
ulation called hooking. Hooking allows you to intercept precise branches of
execution and redirect them to injected code that you’ve written to dictate
what the game should do next, and it comes in a variety of flavors. In this
section, I’ll teach you about four of the most powerful hooking methods for
game hacking: call hooking, virtual function table hooking, import address
table hooking, and jump hooking.

Call Hooking
A call hook directly modifies the target of a CALL operation to point to a new
piece of code. There are a few variations of the CALL operation in x86 assem-
bly, but call hooks are generally used on only one: the near call, which takes
an immediate address as an operand.

Working with Near Calls in Memory

In an assembly program, a near call looks like this:

CALL 0x0BADF00D

This near call is represented by the byte 0xE8, so you might assume it is
stored in memory like this:

0xE8 0x0BADF00D

Or, when split into single bytes and swapped for endianness, like this:

0xE8 0x0D 0xF0 0xAD 0x0B

But the anatomy of a near call in memory is not that simple. Instead
of storing the callee’s absolute address, a near call stores an offset to the
callee relative to the address immediately after the call. Since a near call is
5 bytes, the address immediately after the call is 5 bytes later in memory.
Given that, the address stored can be computed as follows:

calleeAddress – (callAddress + 5)

If CALL 0x0BADF00D lives at 0xDEADBEEF in memory, then the value after
0xE8 is this:

0x0BADF00D – (0xDEADBEEF + 5) = 0x2D003119

154 Chapter 8

In memory, then, that CALL instruction looks like this:

0xE8 0x19 0x31 0x00 0x2D

To hook a near call, you first need to change the offset following 0xE8
(that is, the little-endian 0x19 0x31 0x00 0x2D) to point to your new callee.

Hooking a Near Call

Following the same memory protection rules shown in Listing 8-2, you hook
a near call like so (follow along by opening CallHookExample.cpp):

DWORD callHook(DWORD hookAt, DWORD newFunc)
{
 DWORD newOffset = newFunc - hookAt - 5;

 auto oldProtection =
 protectMemory<DWORD>(hookAt + 1, PAGE_EXECUTE_READWRITE);

 DWORD originalOffset = readMemory<DWORD>(uhookAt + 1);
 writeMemory<DWORD>(hookAt + 1, newOffset);
 protectMemory<DWORD>(hookAt + 1, oldProtection);

 return originalOffset + hookAt + 5;
}

This function takes as arguments the address of the CALL to hook
(hookAt) and the address to redirect execution to (newFunc), and it uses
them to calculate the offset required to call the code at the address newFunc
contains. After you apply the correct memory protections, the callHook()
function writes the new offset to the memory at hookAt + 1 , applies the
old memory protections, calculates the address of the original call , and
returns that value to the caller.

Here’s how you might actually use a function like this in a game hack:

DWORD origFunc = callHook(0xDEADBEEF, (DWORD)&someNewFunction);

This hooks the near call to 0x0BADF00D at 0xDEADBEEF and redirects
it to the address of someNewFunction, which is the code your hack will execute.
After this is called, the origFunc value will hold 0x0BADF00D.

Cleaning Up the Stack

The new callee must also properly handle the stack, preserve registers, and
pass proper return values. At the least, this means your replacement func-
tion must match the game’s original function in both calling convention
and argument count.

Let’s say this is the original full function call, in assembly:

PUSH 1
PUSH 456

Manipulating Control Flow in a Game 155

PUSH 321
CALL 0x0BADF00D
ADD ESP, 0x0C

You can tell the function has the C++ __cdecl convention because the
stack is being reset by the caller. Additionally, the 0x0C bytes being cleaned
from the stack show that there are three arguments, which you can calcu-
late as follows:

0x0C
sizeof(DWORD)

= 3

Of course, you can also obtain the number of arguments by checking
how many things are pushed to the stack: there are three PUSH commands,
one for each argument.

Writing a Call Hook

In any case, the new callee, someNewFunction, must follow the __cdecl conven-
tion and have three arguments. Here’s an example skeleton for the new
callee:

DWORD __cdecl someNewFunction(DWORD arg1, DWORD arg2, DWORD arg3)
{

}

In Visual Studio, C++ programs use the __cdecl convention by default,
so technically you could omit it from your function definition; however, I’ve
found it’s better to be verbose so you get into the habit of being specific.
Also keep in mind that if the caller expects a value to be returned, the
return type of your function should match as well. This example assumes
the return type is always a DWORD or smaller. Since return types in this size
range will all be passed back on EAX, further examples will also use a
return type of DWORD.

In most cases, a hook finishes by calling the original function and
passing its return value back to the caller. Here’s how all of that might fit
together:

typedef DWORD (__cdecl _origFunc)(DWORD arg1, DWORD arg2, DWORD arg3);

_origFunc* originalFunction =
 (_origFunc*)hookCall(0xDEADBEEF, (DWORD)&someNewFunction);

DWORD __cdecl someNewFunction(DWORD arg1, DWORD arg2, DWORD arg3)
{
 return originalFunction(arg1, arg2, arg3);
}

This example uses typedef to declare a type representing the original
function’s prototype and creates a pointer with this type to the original

156 Chapter 8

function. Then someNewFunction() uses this pointer to call the original func-
tion with the original arguments and pass the returned value back to the
caller.

Right now, all someNewFunction() does is return to the original function.
But you can do whatever you want from inside the someNewFunction() call
from here. You can modify the parameters being passed to the original
function or intercept and store interesting parameters for later use. If you
know the caller isn’t expecting a return value (or if you know how to spoof
the return value), you can even forget about the original function and com-
pletely replace, replicate, or improve its functionality inside the new callee.
Once you’ve perfected this skill, you can add your own native C or C++ code
to any part of a game that you wish.

VF Table Hooking
Unlike call hooks, virtual function (VF) table hooks don’t modify assembly
code. Instead, they modify the function addresses stored in the VF tables
of classes. (If you need a refresher on VF tables, see “A Class with Virtual
Functions” on page 75.) All instances of the same class type share a static
VF table, so VF table hooks will intercept all calls made to a member func-
tion, regardless of which class instance the game is calling the function
from. This can be both powerful and tricky.

Writing a VF Table Hook

Before we go any deeper into how to place a VF table hook, we need to
talk about those pesky calling conventions again. VF tables are used by
class instances to call virtual member functions, and all member functions
will have the __thiscall convention. The name __thiscall is derived from

The T ru t h A bou t V F Tab l e s

To simplify the explanation, I lied a little when I said that VF table hooks could
intercept all calls made to a function. In reality, the VF table is traversed only
when a virtual function is called in a way that leaves the compiler with some
plausible type ambiguity. For example, a VF table will be traversed when a
function is called through the inst->function() call format. A VF table won’t be
traversed when a virtual function is invoked in such a way that the compiler is
sure about the type, as in inst.function() or similar calls, since the compiler
will know the function’s address. Conversely, calling inst.function() from a
scope where inst is passed in as a reference would trigger a VF table tra-
versal. Before you try to deploy VF table hooking, make sure the function calls
you want to hook have type ambiguity.

Manipulating Control Flow in a Game 157

the this pointer that member functions use to reference the active class
instance. Thus, member functions are given this as a pseudoparameter
on ECX.

It’s possible to match the prototype of a __thiscall by declaring a class
that acts as a container for all __thiscall hook callbacks, but I don’t prefer
this method. Instead, I find it easier to control the data using inline assem-
bly. Let’s explore how you control the data when placing a VF hook on a
class that looks like this:

class someBaseClass {
 public:
 virtual DWORD someFunction(DWORD arg1) {}
};
class someClass : public someBaseClass {
 public:
 virtual DWORD someFunction(DWORD arg1) {}
};

The someBaseClass class just has one member (a public virtual func-
tion), and the someClass class inherits from someBaseClass and overrides the
someBaseClass::someFunction member. To hook someClass::someFunction, you
replicate the prototype in your VF table hook, as shown in Listing 8-3 (fol-
low along in the VFHookExample.cpp file of the project).

DWORD __stdcall someNewVFFunction(DWORD arg1)
{

 static DWORD _this;
 __asm MOV _this, ECX
}

Listing 8-3: The start of a VF table hook

This function works as a hook because __thiscall only differs from
__stdcall in that the former is given this on ECX. To reconcile this small
difference, the callback function uses inline assembly (denoted by __asm)
to copy this from ECX to a static variable . Since the static variable is actu-
ally initialized as a global, the only code that executes before MOV _this, ECX
is the code that sets up the stack frame—and that code never touches
ECX. That ensures that the proper value is in ECX when the assembly is
executed.

N o t e 	 If multiple threads start calling the same VF function, the someNewVFFunction()
hook will break because _this might be modified by one call while still being used by
another call. I’ve never personally run into this problem, as games don’t typically
throw around multiple instances of critical classes between threads, but an efficient
remedy would be to store _this in thread local storage, ensuring each thread would
have its own copy.

158 Chapter 8

Before returning, a VF table callback must also restore ECX, to keep
with the __thiscall convention. Here’s how that process looks:

DWORD __stdcall someNewVFFunction(DWORD arg1)
{
 static DWORD _this;
 __asm MOV _this, ECX

 // do game modifying stuff here

 __asm MOV ECX, _this
}

After executing some game-hacking code, this version of the function
someNewVFFunction() restores ECX  with a reversed version of the first MOV
instruction from Listing 8-3.

Unlike with __cdecl functions, however, you shouldn’t call functions that
use the __thiscall convention from pure C++ using only a function pointer
and typedef (as you would for a call hook). When calling the original func-
tion from a VF table hook, you must use inline assembly—that’s the only
way to be sure you’re passing data (specifically _this) around properly. For
example, this is how you continue to build the someNewVFFunction() hook:

DWORD __stdcall someNewVFFunction(DWORD arg1)
{
 static DWORD _this, _ret;
 __asm MOV _this, ECX

 // do pre-call stuff here

 __asm {
 PUSH arg1
 MOV ECX, _this

 CALL [originalVFFunction]
 MOV _ret, EAX

 }

 // do post-call stuff here

 __asm MOV ECX, _this
 return _ret;
}

Now, someNewVFFunction() stores this in the _this variable, allows some
code to execute, calls the original game function  that’s being hooked,
stores that function’s return value in _ret , allows some more code to
execute, restores this to ECX , and returns the value stored in _ret. The
callee cleans the stack for __thiscall calls, so unlike a call hook, the pushed
argument doesn’t need to be removed.

Manipulating Control Flow in a Game 159

N o t e 	 If you want to remove a single pushed argument at any point, use the assembly
instruction ADD ESP, 0x4 because a single argument is 4 bytes.

Using a VF Table Hook

With the calling convention established and a skeleton callback in place, it’s
time to move on to the fun part: actually using a VF table hook. A pointer
to a class’s VF table is the first member of every class instance, so placing a
VF table hook requires only a class instance address and the index of the
function to be hooked. Using these two pieces of information, you need
only a modest amount of code to place a hook. Here’s an example:

DWORD hookVF(DWORD classInst, DWORD funcIndex, DWORD newFunc)
{
 DWORD VFTable = ureadMemory<DWORD>(classInst);
 DWORD hookAt = VFTable + funcIndex * sizeof(DWORD);

 auto oldProtection =
 protectMemory<DWORD>(hookAt, PAGE_READWRITE);
 DWORD originalFunc = readMemory<DWORD>(hookAt);
 writeMemory<DWORD>(hookAt, newFunc);
 protectMemory<DWORD>(hookAt, oldProtection);

 return originalFunc;
}

The hookVF() function finds the VF table by reading the first member
of the class instance  and storing it in VFTable. Since the VF table is just
an array of DWORD-sized addresses, this code finds the function address by
multiplying the function’s index in the VF table (funcIndex in this example)
by the size of a DWORD, which is 4, and adding the result to the VF table’s
address. From there, hookVF() acts similar to a call hook: it makes sure the
memory is properly accessible by setting appropriate protections, stores the
original function address for later, writes the new function address, and
finally, restores the original memory protection.

You’ll typically hook the VF table of a class instantiated by the game,
and calling a function like hookVF() for a VF table hook looks like this:

DWORD origVFFunction =
 hookVF(classInstAddr, 0, (DWORD)&someNewVFFunction);

As usual, you need to find classInstAddr and the funcIndex argument
ahead of time.

There are some very niche cases in which VF table hooks are useful, and
it can be really hard to find the right class pointers and functions. Given that,
instead of showing contrived use cases, I’ll come back to VF table hooks in
“Applying Jump Hooks and VF Hooks to Direct3D” on page 175, once I’ve
discussed other types of hooking.

160 Chapter 8

If you want to play with VF hooks before reading more, add new vir-
tual functions to the example classes in this book’s resource files and prac-
tice hooking them. You might even create a second class that derives from
someBaseClass and place a hook on its virtual table to demonstrate how you
can have two completely separate VF hooks on two classes that inherit the
same base class.

IAT Hooking
IAT hooks actually replace function addresses in a specific type of VF table,
called the import address table (IAT). Each loaded module in a process con-
tains an IAT in its PE header. A module’s IAT holds a list of all the other
modules on which the module depends, as well as a list of functions that the
module uses from each dependency. Think of an IAT as a lookup table for
APIs to call one another.

When a module is loaded, its dependencies are also loaded. Dependency
loading is a recursive process that continues until all dependencies for
all modules are loaded. As each dependency is loaded, the operating sys-
tem finds all functions used by the dependent module and fills any blank
spaces in its IAT with the function addresses. Then, when a module calls a
function from a dependency, it makes that call by resolving the function’s
address from the IAT.

Paying for Portability

Function addresses are always resolved from the IAT in real time, so hook-
ing the IAT is similar to hooking VF tables. Since function pointers are
stored in the IAT beside their actual names, there’s no need to do any
reverse engineering or memory scanning; as long as you know the name
of the API you want to hook, you can hook it! Moreover, IAT hooking lets
you easily hook Windows API calls on a module-specific basis, allowing your
hooks to intercept only API calls from a game’s main module.

This portability has a cost, though; the code to place an IAT hook is
much more complex than what you’ve seen so far. First, you need to locate
the PE header of the game’s main module. Since the PE header is the first
structure in any binary, you can find it at the base address of each module,
as shown in Listing 8-4 (follow along in the IATHookExample.cpp file of the
project).

DWORD baseAddr = (DWORD)GetModuleHandle(NULL);

Listing 8-4: Fetching the module’s base address

Once you’ve found the base address, you must verify that the PE header
is valid. This validation can be very important, as some games try to prevent
these types of hooks by scrambling nonessential parts of their PE header after
they load. A valid PE header is prefixed by a DOS header, which indicates

Manipulating Control Flow in a Game 161

the file is a DOS MZ executable; the DOS header is identified by the magic
value 0x5A4D. A member of the DOS header called e_lfanew then points to
the optional header, which contains values like the size of the code, a version
number, and so on and is identified by the magic value 0x10B.

The Windows API has PE structures called IMAGE_DOS_HEADER and
IMAGE_OPTIONAL_HEADER that correspond to the DOS header and optional
header, respectively. You can use them to validate the PE header with
code like Listing 8-5.

auto dosHeader = pointMemory<IMAGE_DOS_HEADER>(baseAddr);
if (dosHeader->e_magic != 0x5A4D)
 return 0;

auto optHeader =
 pointMemory<IMAGE_OPTIONAL_HEADER>(baseAddr + dosHeader->e_lfanew + 24);
if (optHeader->Magic != 0x10B)
 return 0;

Listing 8-5: Confirming the DOS and optional headers are valid

The calls to pointMemory() create pointers to the two headers that need
to be checked. If either if() statement returns 0, then the corresponding
header has the wrong magic number, meaning the PE header isn’t valid.

References to the IAT from assembly are hardcoded, meaning assem-
bly references don’t traverse the PE header to locate the IAT. Instead, each
function call has a static location indicating where to find the function
address. That means overwriting the PE header to say that there are no
imports is a viable way to protect against IAT hooks, and some games have
this protection.

To account for that, you also need to make sure the game’s IAT still
exists. Listing 8-6 shows how to add such a check to the code in Listing 8-5.

auto IAT = optHeader->DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
if (IAT.Size == 0 || IAT.VirtualAddress == 0)
 return 0;

Listing 8-6: Checking that the IAT actually exists

The PE header contains many sections that store information about
the application’s code, embedded resources, relocations, and so on. The
piece of code in Listing 8-6 is particularly interested in the data section,
which—as you might guess—stores many different types of data. Each
type of data is stored in its own directory, and the DataDirectory member of
IMAGE_OPTIONAL_HEADER is an array of directory headers that describes the size
and virtual address of each directory in the data section. The Windows API
defines a constant called IMAGE_DIRECTORY_ENTRY_IMPORT, which happens to be
the index of the IAT header within the DataDirectory array.

162 Chapter 8

Thus, this code uses optHeader->DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]
to resolve the header of the IAT and check that the header’s Size and
VirtualAddress are nonzero, essentially confirming its existence.

Traversing the IAT

Once you know the IAT is still intact, you can start traversing it, and this
is where IAT hooking starts to get ugly. The IAT is an array of structures
called import descriptors. There is one import descriptor for each depen-
dency, each import descriptor points to an array of structures called thunks,
and each thunk represents a function imported from the dependency.

Luckily, the Windows API exposes both the import descriptors and
thunks through the IMAGE_IMPORT_DESCRIPTOR and IMAGE_THUNK_DATA structures,
respectively. Having the structures predefined saves you from creating
your own, but it doesn’t make the code to traverse the IAT any prettier.
To see what I mean, look at Listing 8-7, which builds on Listings 8-4
through 8-6.

auto impDesc =
 pointMemory<IMAGE_IMPORT_DESCRIPTOR>(ubaseAddr + IAT.VirtualAddress);

 while (impDesc->FirstThunk) {
 auto thunkData =

 pointMemory<IMAGE_THUNK_DATA>(baseAddr + impDesc->OriginalFirstThunk);
 int n = 0;

 while (thunkData->u1.Function) {
 // the hook happens in here
 n++;
 thunkData++;
 }
 impDesc++;
}

Listing 8-7: Iterating over the IAT to find a function

Keeping in mind that the import descriptors are stored relative to the
start of the PE header, this code adds the module’s base address to the
virtual address found in the IAT’s directory header , creating a pointer,
impDesc, that points to the module’s first import descriptor.

Import descriptors are stored in a sequential array, and a descriptor
with a FirstThunk member set to NULL signifies the end of the array. Knowing
this, the code uses a while loop  that continues until impDesc->FirstThunk is
NULL, incrementing the descriptor by executing impDesc++ each iteration.

For each import descriptor, the code creates a pointer called thunkData 
that points to the first thunk inside the descriptor. Using a familiar loop,
the code iterates over thunks  until one is found with a Function member
set to NULL. The loop also uses an integer, n, to keep track of the current
thunk index, as the index is important when placing the hook.

Manipulating Control Flow in a Game 163

Placing the IAT Hook

From here, placing the hook is just a matter of finding the proper function
name and replacing the function address. You can find the name inside the
nested while loop, as shown in Listing 8-8.

char* importFunctionName =
 pointMemory<char>(baseAddr + (DWORD)thunkData->u1.AddressOfData + 2);

Listing 8-8: Finding the function name

The function name for each thunk is stored at thunkData->u1.AddressOfData
+ 2 bytes into the module, so you can add that value to the module’s base
address to locate the function name in memory.

After obtaining a pointer to the function name, use strcmp() to check
whether it’s the target function, like so:

if (strcmp(importFuncName, funcName) == 0) {
 // the final step happens in here
}

Once you’ve located the target function using its name, you simply need
to overwrite the function address with the address of your own function.
Unlike function names, function addresses are stored in an array at the
start of each import descriptor. Using n from the thunk loop, you can finally
set the hook, as shown in Listing 8-9.

auto vfTable = pointMemory<DWORD> (baseAddr + impDesc->FirstThunk);
DWORD original = vfTable[n];

 auto oldProtection = protectMemory<DWORD>((DWORD)&vfTable[n], PAGE_READWRITE);
 vfTable[n] = newFunc;

protectMemory<DWORD>((DWORD)&vfTable[n], oldProtection);

Listing 8-9: Finding the function address

This code locates the VF table for the current descriptor by adding the
address of the first thunk to the module base address. The VF table is an
array of function addresses, so the code uses the n variable as an index to
locate the target function address.

Once the address is found, the code in Listing 8-9 works just like a typi-
cal VF hook: it stores the original function address, sets the protection of
index n in the VF table to PAGE_READWRITE , inserts the new function address
into the VF table , and finally restores the old protection.

If you stitch together the code from Listings 8-4 through 8-9, the final
IAT hooking function looks like Listing 8-10.

DWORD hookIAT(const char* funcName, DWORD newFunc)
{

 DWORD baseAddr = (DWORD)GetModuleHandle(NULL);

164 Chapter 8

 auto dosHeader = pointMemory<IMAGE_DOS_HEADER>(baseAddr);
 if (dosHeader->e_magic != 0x5A4D)
 return 0;

 auto optHeader =
 pointMemory<IMAGE_OPTIONAL_HEADER>(baseAddr + dosHeader->e_lfanew + 24);
 if (optHeader->Magic != 0x10B)
 return 0;

 auto IAT =
 optHeader->DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
 if (IAT.Size == 0 || IAT.VirtualAddress == 0)
 return 0;

 auto impDesc =
 pointMemory<IMAGE_IMPORT_DESCRIPTOR>(baseAddr + IAT.VirtualAddress);

 while (impDesc->FirstThunk) {
 auto thunkData =
 pointMemory<IMAGE_THUNK_DATA>(baseAddr + impDesc->OriginalFirstThunk);
 int n = 0;
 while (thunkData->u1.Function) {
 char* importFuncName = pointMemory<char>
 (baseAddr + (DWORD)thunkData->u1.AddressOfData + 2);
 if (strcmp(importFuncName, funcName) == 0) {
 auto vfTable = pointMemory<DWORD>(baseAddr + impDesc->FirstThunk);
 DWORD original = vfTable[n];
 auto oldProtection =
 protectMemory<DWORD>((DWORD)&vfTable[n], PAGE_READWRITE);
 vfTable[n] = newFunc;
 protectMemory<DWORD>((DWORD)&vfTable[n], oldProtection);
 return original;
 }
 n++;
 thunkData++;
 }
 impDesc++;
 }
}

Listing 8-10: The complete IAT hooking function

This is the most complex code that we’ve put together so far, and
it’s pretty hard to read when squished to fit on a page. If you haven’t yet
wrapped your head around what it’s doing, you might want to study the
example code from this book’s resource files before continuing.

Using an IAT Hook to Sync with a Game Thread

With the code in Listing 8-10, hooking any Windows API function is as simple
as knowing the function name and the proper prototype. The Sleep() API is
a common API to hook when game hacking, as bots can use a Sleep() hook
to thread-sync with a game’s main loop.

Manipulating Control Flow in a Game 165

Here’s one way to use hookIAT() to hook the Sleep() API:

VOID WINAPI newSleepFunction(DWORD ms)
{
 // do thread-sensitive things
 originalSleep(ms);
}

typedef VOID (WINAPI _origSleep)(DWORD ms);
_origSleep* originalSleep =
 (_origSleep*)hookIAT("Sleep", (DWORD)&newSleepFunction);

Here’s why this works. At the end of a game’s main loop, it might call
Sleep() to rest until it’s ready to draw the next frame. Since it’s sleeping, it’s
safe for you to do anything you want without worrying about synchroniza-
tion issues. Some games might not do this, or they might call Sleep() from
multiple threads, and those games will require a different method.

A more portable alternative is to hook the PeekMessageA() API function,
because games often call that function from the main loop while waiting
for input. Then, your bot can do thread-sensitive operations from within
the PeekMessageA() hook, ensuring that they’re done from the game’s main
thread. You may also want your bot to use this method to hook the send()
and recv() API functions, as intercepting these allows you to create a packet
sniffer relatively simply.

Jump Hooking
Jump hooking allows you to hook code in places where there is no branch-
ing code to manipulate. A jump hook replaces the code being hooked
with an unconditional jump to a trampoline function. When the jump is hit,

Ge t t ing in Sy nc w i t h Th r ead Sy nc

Your injected code will inevitably have to sync with a game’s main loop, or
it won’t work. When you’re reading or writing data larger than 4 bytes, for
example, being out of sync allows the game to read or write that data at the
same time as you. You’ll be stepping on the game’s toes, and vice versa, lead-
ing to all sorts of race conditions and data corruption issues. Similarly, if you
try to call a game’s function from your own thread, you run the risk of crashing
the game if the function is not thread safe.

Since IAT hooks are thread-safe modifications to the PE header, they can
be placed from any thread. By placing one on a function that’s called before
or after the game’s main loop, you can effectively sync with the game’s main
thread. All you need to do is place the hook and execute any thread-sensitive
code from your hook callback.

166 Chapter 8

the trampoline function stores all current register and flag values, calls a
callback function of your choice, restores the registers, restores the flags,
executes the code that was replaced by the hook, and finally jumps back to
the code just below the hook. This process is shown in Figure 8-1.

SUB EAX, 1
ADD EBX, EAX
PUSH EBX
MOV ECX ESI
CALL function
POP EAX
MOV AL, 1
POP EDI
POP ESI
RETN

Original Code

PUSHFD
PUSHAD
CALL callback
POPAD
POPFD
POP EAX
MOV AL, 1
POP EDI
POP ESI
JMP restore

Trampoline

SUB EAX, 1
ADD EBX, EAX
PUSH EBX
MOV ECX, ESI
CALL function
JMP trampoline
RETN

Hooked Code

// do stuff
RETN

Callback

Figure 8-1: A jump hook

The original code shows an example of some unmodified assembly you
might find in a game, and the hooked code shows how that assembly might
look after being hooked by a jump hook. The trampoline box shows an
example trampoline function, in assembly, and the callback represents the
code you’re trying to execute through hooking. In the original code, the
assembly executes from top to bottom. In the hooked code, to get from the
SUB EAX,1 instruction to the RETN instruction, execution must follow the path
shown by the dashed arrows.

N o t e 	 If your callback code is simple, it can be integrated into the trampoline instead. It’s
also not always necessary to store and restore the registers and flags, but doing so is
good practice.

Placing a Jump

The byte code of an unconditional jump resembles that of a near call, but
the first byte is 0xE9 instead of 0xE8. (See “Working with Near Calls in
Memory” on page 153 for a refresher.) In Figure 8-1, the unconditional
jump JMP trampoline replaces the following four operations:

POP EAX
MOV AL, 1
POP EDI
POP ESI

In this case, you need to replace multiple sequential operations to
accommodate the 5-byte size of the unconditional jump. You may come
across cases where the size of the operation (or operations) being replaced
is larger than 5 bytes. When this happens, replace the remaining bytes with
NOP instructions.

Manipulating Control Flow in a Game 167

Now, let’s look at how to replace those operations. Listing 8-11 shows
the code to place a jump hook.

DWORD hookWithJump(DWORD hookAt, DWORD newFunc, int size)
{
 if (size > 12) // shouldn't ever have to replace 12+ bytes
 return 0;

 DWORD newOffset = newFunc - hookAt - 5;

 auto oldProtection =
 protectMemory<DWORD[3]>(hookAt + 1,PAGE_EXECUTE_READWRITE);

 writeMemory<BYTE>(hookAt, 0xE9);
 writeMemory<DWORD>(hookAt + 1, newOffset);

 for (unsigned int i = 5; i < size; i++)
 writeMemory<BYTE>(hookAt + i, 0x90);
 protectMemory<DWORD[3]>(hookAt + 1, oldProtection);

 return hookAt + 5;
}

Listing 8-11: How to place a jump hook

This function takes the address to hook at, the address of the callback
function, and the size of the memory to overwrite (in bytes) as arguments.
First, it calculates the offset between the hook site and the trampoline and
stores the result in newOffset . Next, PAGE_EXECUTE_READWRITE permissions are
applied to the memory to be changed. The unconditional jump (0xE9) 
and the address of the callback function  are then written to memory,
and a for loop writes NOP instructions (0x90) to any abandoned bytes.
After the old protections are reapplied, hookWithJump() returns to the origi-
nal address.

Notice that the hookWithJump() function ensures that size is not above 12
before placing the jump. This check is important because a jump takes up 5
bytes, meaning it can replace up to five commands if the first four are each
a single byte. If the first four commands are each a single byte, the fifth
command would need to be more than 8 bytes to trigger the if (size > 12)
clause. Because 9-byte operations are very, very rare, 12 is a safe but flexible
limit. Having this limit can stop all sorts of bugs from happening, especially
if your bot is dynamically detecting the size parameter. If the bot messes up
and passes a size of 500,000,000, for instance, the check will stop you from
NOPing the whole universe.

Writing the Trampoline Function

Using the function in Listing 8-11, you can replicate the hook shown in
Figure 8-1, but first you’ll have to create the trampoline function as follows:

DWORD restoreJumpHook = 0;
void __declspec(naked) myTrampoline()
{

168 Chapter 8

 __asm {
 PUSHFD
 PUSHAD
 CALL jumpHookCallback
 POPAD
 POPFD
 POP EAX

 MOV AL, 1
 POP EDI

 POP ESI
 JMP [restoreJumpHook]

 }
}

Just like the trampoline described alongside Figure 8-1, this trampoline
stores all current flag  and register values , calls a callback function ,
restores the registers , restores the flags , executes the code that was
replaced by the hook at  and , and finally jumps back to the original
code just below the jump and NOPs .

N o t e 	 To ensure that the compiler doesn’t autogenerate any extra code within the trampoline,
always declare the trampoline using the __declspec(naked) convention.

Finishing the Jump Hook

Once you create the trampoline, define the callback and set the hook
like so:

void jumpHookCallback() {
 // do stuff
}
restoreJumpHook = hookWithJump(0xDEADBEEF, &myTrampoline, 5);

Finally, inside the jumpHookCallback() function, execute the code that
relies on the hook. If your code needs to read or write the values of the
registers as they were when the hook executed, you’re in luck. The PUSHAD
command pushes them to the stack in the order EAX, ECX, EDX, EBX,
original ESP, EBP, ESI, and EDI. The trampoline calls PUSHAD directly before
the jumpHookCallback() call, so you can reference the register values as argu-
ments, like this:

void jumpHookCallback(DWORD EDI, DWORD ESI, DWORD EBP, DWORD ESP,
 DWORD EBX, DWORD EDX, DWORD ECX, DWORD EAX) {
 // do stuff
}
restoreJumpHook = hookWithJump(0xDEADBEEF, &myTrampoline, 5);

Since the trampoline uses POPAD to directly restore the registers from
these values on the stack, any modifications you make to the parameters
will be applied to the actual registers when they are restored from the
stack.

Manipulating Control Flow in a Game 169

Like VF table hooks, jump hooks are rarely needed, and they can
be tricky to simulate with a simple example. To help you wrap your head
around them, I’ll explore a real-world, practical use case in “Applying Jump
Hooks and VF Hooks to Direct3D” on page 175.

Applying Call Hooks to Adobe AIR
Adobe AIR is a development framework that can be used to make cross-
platform games in an environment similar to Abode Flash. AIR is a
common framework for online games, as it allows developers to write
cross-platform code in a versatile, high-level language called ActionScript.
ActionScript is an interpreted language, and AIR runs the code inside a
virtual machine, which makes it infeasible to hook game-specific code with
AIR. Instead, it is easier to hook AIR itself.

The example code for this section can be found in GameHackingExamples/
Chapter8_AdobeAirHook in this book’s source files. The code comes from an
old project of mine, and it works on any game running Adobe AIR.dll version
3.7.0.1530. I’ve gotten it working on other versions as well, but I can’t guar-
antee it will work with much newer or much older versions, so treat this as a
case study.

Accessing the RTMP Goldmine
The Real Time Messaging Protocol (RTMP) is a text-based network protocol
that ActionScript uses to serialize and send entire objects over the network.
RTMP sits on top of the HyperText Transfer Protocol (HTTP), and a secure
version, RTMPS, sits on top of HTTP Secure (HTTPS). RTMPS allows game
developers to easily send and receive entire object instances over a secure
connection with little complication, making it the network protocol of
choice for any games running on AIR.

N o t e 	 Data sent over RTMP/RTMPS is serialized through Action Message Format
(AMF), and parsing AMF packets is beyond the scope of this book. Search online for
“AMF3 Parser,” and you’ll find a lot of code that does it.

Prof e ssiona l A PI Hooking Lib r a r ie s

There are prewritten hooking libraries, like Microsoft’s Detours and MadCHook,
that use only jump hooks. These libraries can automatically detect and follow
other hooks, they know how many instructions to replace, and they generate
trampoline functions for you. The libraries are able to do this because they
understand how to disassemble and walk through assembly instructions to deter-
mine lengths, jump destinations, and so on. If you need to use hooks with that
much power, it is arguably better to use one of those libraries than to create
your own.

170 Chapter 8

Data sent over RTMP and RTMPS is very rich. The packets contain
information about object types, names, and values. This is a gold mine. If
you can intercept this data in real time, you can instantaneously respond
to changes in game state, see a wealth of critical information without ever
reading it from memory, and find useful pieces of data that you might not
even know exist.

A while back, I was working on a tool that required a ton of insight into
the state of a game. Obtaining such a large amount of data directly from
memory would have been extremely hard, if not impossible. After some
research, I realized that the game was using RTMPS to communicate with
the server, and that prompted me to start digging into this gold mine.

Since RTMPS is encrypted, I knew I had to somehow hook the cryp-
tographic functions used by AIR before I could get any usable data. After
searching online, I found source code for a small tool called airlog, created
by another game hacker who, like me, was trying to log packets sent over
RTMPS. Although the tool hooked the exact functions I needed, the code
was outdated, messy, and, worst of all, didn’t work on the version of AIR
I was trying to hook.

But that didn’t mean it was useless. Not only did airlog hook the two
functions I needed, but it also located them by scanning for certain byte
patterns within the Adobe AIR library. These byte patterns were three years
old, though, so they weren’t working anymore. The newer versions of Adobe
AIR had changed enough that the assembly bytes were no longer the same.
The difference in bytes was a problem for the code in airlog, but not for me.

Inside an inline assembly block, you can specify raw bytes with the fol-
lowing function call:

_emit BYTE

If you replace BYTE with, say, 0x03, the code will be compiled in a way
that treats 0x03 as a byte in the assembly code, regardless of whether that
makes sense. Using this trick, I compiled the byte arrays back to assembly
code. The code didn’t do anything, and it wasn’t meant to; using this trick
simply allowed me to attach to my dummy application with OllyDBG and
inspect bytes, which were conveniently presented as a clean disassembly.

Since these bytes represented the code surrounding the functions I
needed, so, too, did their disassembly. The code was pretty standard and
didn’t seem likely to change, so I turned my attention to the constants. The
code had a few immediate values passed as offsets in commands. Knowing
how commonly these can change, I rewired airlog’s pattern-matching algo-
rithm to support wildcards, updated the patterns to treat any constants as
wildcards, and then ran the match. After some tweaks to the patterns and
a bit of digging through duplicate search results, I tracked down the func-
tions I wanted to hook. I appropriately named them encode() and decode()
and began working on a tool similar to airlog—but better.

Manipulating Control Flow in a Game 171

Hooking the RTMPS encode() Function
I discovered that the encode() function, which is used to encrypt the data for
outgoing packets, is a nonvirtual __thiscall, meaning it’s called by a near
call. Moreover, the call happens inside a loop. The entire loop looks like
Listing 8-12, taken directly from the OllyDBG disassembly pane.

loop:
 MOV EAX, [ESI+3C58]
 SUB EAX,EDI
 PUSH EAX

 LEA EAX, [ESI+EDI+1C58]
 PUSH EAX
 MOV ECX,ESI

 CALL encode
 CMP EAX,-1

 JE SHORT endLoop
 ADD EDI,EAX

 CMP EDI, [ESI+3C58]
 JL loop
endLoop:

Listing 8-12: The encode() loop

With a bit of analysis and some guidance from airlog, I determined
that the encode() function called at  takes a byte array and buffer length
(let’s call them buffer and size, respectively) as parameters. The function
returns -1 when it fails and returns size otherwise. The function operates
on chunks of 4,096 bytes, which is why this happens in a loop.

Turned into more readable pseudocode, the loop calling encode()
looks like this (the numbers refer to the relevant assembly instructions
in Listing 8-12):

for (EDI = 0; EDI < x[ESI+3C58];) {
 EAX = vencode(&[ESI+EDI+1C58], [ESI+3C58] - EDI);
 if (EAX == -1) wbreak;
 EDI += EAX;
}

I wasn’t interested in what encode() did, but I needed the entire buffer
it was looping over, and hooking encode() was my means of getting that buf-
fer. Looking at the real loop in Listing 8-12, I knew that the calling object
instance’s full buffer was stored at ESI+0x1C58, that the full size was stored
at ESI+0x3C58, and that EDI contained the loop counter. I devised the
hook with these things in mind, ultimately creating a two-part hook.

The first part of my hook was a reportEncode() function that logs the
entire buffer on the first loop iteration. Here’s the reportEncode() function
in full:

DWORD __stdcall reportEncode(
 const unsigned char* buffer,
 unsigned int size,

172 Chapter 8

 unsigned int loopCounter)
{
 if (loopCounter == 0)
 printBuffer(buffer, size);
 return origEncodeFunc;
}

This function takes buffer, size, and loopCounter as parameters and
returns the address of the function I dubbed encode(). Before fetching that
address, however, the second part of my hook, a myEncode() function, does all
of the dirty work to obtain buffer, size, and loopCounter, as follows:

void __declspec(naked) myEncode()
{
 __asm {
 MOV EAX, DWORD PTR SS:[ESP + 0x4] // get buffer
 MOV EDX, DWORD PTR DS:[ESI + 0x3C58] // get full size
 PUSH ECX // store ecx
 PUSH EDI // push current pos (loop counter)
 PUSH EDX // push size
 PUSH EAX // push buffer
 CALL reportEncode // report the encode call
 POP ECX // restore ecx
 JMP EAX // jump to encode
 }
}

The myEncode() function is a pure assembly function that replaces the
original encode() function call using a near call hook. After storing ECX on
the stack, myEncode() obtains buffer, size, and loopCounter and passes them
to the reportEncode() function. After calling the reportEncode() function, the
myEncode() function restores ECX and jumps directly into encode(), causing
the original function to execute and return gracefully to the loop.

Since myEncode() cleans everything it uses from the stack, the stack still
contains the original parameters and return address in the correct spot
after myEncode() runs. That’s why myEncode() jumps directly into encode()
instead of using a function call: that stack is already set up with the proper
return address and parameters, so the encode() function will think every-
thing happened as normal.

Hooking the RTMPS decode() Function
The function I named decode(), which is used to decrypt incoming data,
was also a __thiscall that was called in a loop. It worked on chunks of
4,096 bytes and took a buffer and size as parameters. The loop was quite
a bit more complex, containing multiple function calls, nested loops, and
loop escapes, but hooking worked much the same as hooking the so-called
encode() function. The reason for the added complexity is not relevant to
hooking the function, but it makes the code difficult to summarize, so I won’t
show the original function here. The bottom line is this: once all the com-
plexity was rubbed away, the decode() loop was the encode() loop in reverse.

Manipulating Control Flow in a Game 173

Once again, I devised a two-part near call hook. The first part,
reportDecode(), is shown here:

void __stdcall reportDecode(const unsigned char* buffer, unsigned int size)
{
 printBuffer(buffer, size);
}

The function logs each packet that comes through. I didn’t have a loop
index at the time, so I decided that it was okay to log every single partial
packet.

The second part of the hook, the myDecode() function, acts as the new
callee and does all of the dirty work, as follows:

void __declspec(naked) myDecode()
{
 __asm {
 MOV EAX, DWORD PTR SS:[ESP + 0x4] // get buffer
 MOV EDX, DWORD PTR SS:[ESP + 0x8] // get size
 PUSH EDX // push size
 PUSH EAX // push buffer

 CALL [origDecodeFunc]

 MOV EDX, DWORD PTR SS:[ESP + 0x4] // get the buffer

 PUSH EAX // store eax (return value)
 PUSH ECX // store ecx
 PUSH EAX // push size
 PUSH EDX // push buffer
 CALL reportDecode // report the results now
 POP ECX // restore ecx

 POP EAX // restore eax (return value)
 RETN 8 // return and clean stack

 }
}

I knew the buffer was decrypted in place, meaning the encrypted chunk
would be overwritten with the decrypted one once the call to decode() was
complete. This meant that myDecode() had to call the original decode() func-
tion  before calling the reportDecode() function, which would give the
results of the decoding. Ultimately, myDecode() also needed to return with
the same value that the original decode() function would and clean up the
stack, and the final POP  and RETN  instructions took care of that.

Placing the Hooks
The next problem I ran into was that the hooks were for code inside the
module Adobe AIR.dll, which was not the main module of the game. Because
of the code’s location, I needed to find the base addresses for the hooks
a bit differently. Additionally, since I needed these hooks to work across a
few different versions of Adobe AIR, I also had to find the right addresses

174 Chapter 8

for each version. Instead of trying to get my hands on all of the different
versions of Adobe AIR, I took another page out of airlog’s playbook and
decided to programmatically locate the addresses by writing a small mem-
ory scanner. Before I could write the memory scanner, I needed both the
base address and size of Adobe AIR.dll so I could limit my memory search to
only that area.

I found these values using Module32First() and Module32Next() as follows:

MODULEENTRY32 entry;
entry.dwSize = sizeof(MODULEENTRY32);
HANDLE snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, NULL);

DWORD base, size;
if (Module32First(snapshot, &entry) == TRUE) {

 while (Module32Next(snapshot, &entry) == TRUE) {
 std::wstring binaryPath = entry.szModule;

 if (binaryPath.find("Adobe AIR.dll") != std::wstring::npos) {
 size = (DWORD)entry.modBaseSize;
 base = (DWORD)entry.modBaseAddr;
 break;
 }
 }
}

CloseHandle(snapshot);

This code loops through all modules in the process until it finds
Adobe AIR.dll . When it finds the correct module entry , it fetches the
modBaseSize and modBaseAddr properties from it and breaks out immediately.

The next step was finding a sequence of bytes I could use to identify the
functions. I decided to use the byte code surrounding each call. I also had
to make sure that each sequence was unique while avoiding the use of any
constants in the patterns to ensure the code’s portability. Listing 8-13 shows
the byte sequences I ended up with.

const char encodeSeq[16] = {
 0x8B, 0xCE, // MOV ECX, ESI
 0xE8, 0xA6, 0xFF, 0xFF, 0xFF, // CALL encode
 0x83, 0xF8, 0xFF, // CMP EAX, -1
 0x74, 0x16, // JE SHORT endLoop
 0x03, 0xF8, // ADD EDI, EAX
 0x3B, 0xBE}; // part of CMP EDI, [ESI+0x3C58]
const char decodeSeq[12] = {
 0x8B, 0xCE, // MOV ECX, ESI
 0xE8, 0x7F, 0xF7, 0xFF, 0xFF, // CALL decode
 0x83, 0xF8, 0xFF, // CMP EAX, -1
 0x89, 0x86}; // part of MOV [ESI+0x1C54], EAX

Listing 8-13: The encode() and decode() byte sequences

Manipulating Control Flow in a Game 175

Notice the CALL instruction in each pattern; these are the calls to the
Adobe AIR functions I named encode() and decode(). I scanned for these
sequences with the following function:

DWORD findSequence(
 DWORD base, DWORD size,
 const char* sequence,
 unsigned int seqLen){
 for (DWORD adr = base; adr <= base + size – seqLen; adr++) {
 if (memcmp((LPVOID)sequence, (LPVOID)adr, seqLen) == 0)
 return adr;
 }
 return 0;
}

Treating the memory of Adobe AIR.dll as a byte array, the findSequence()
function looks for a sequence of bytes as a subset of that byte array and
returns the address of the first match it finds. With the findSequence() func-
tion written, finding the addresses I needed to hook encode() and decode()
was simple. Here’s how those calls looked:

DWORD encodeHookAt =
 findSequence(base, size, encodeSeq, 16) + 2;
DWORD decodeHookAt =
 findSequence(base, size, decodeSeq, 12) + 2;

Since each target call was 2 bytes into its receptive search sequence,
all I had to do was locate each sequence and add 2. After that, the final
step was to place the hooks using the method described in “Call Hooking”
on page 153.

With my hook finished, I could see every single piece of data that went
between the game’s client and server. Moreover, since the RTMPS protocol
sends serialized ActionScript objects, the data was basically self-document-
ing. Every single piece of information was accompanied by a variable name.
Every variable existed as a member of a well-described object. Every object
had a consistent name. Like I said—it was a gold mine.

Applying Jump Hooks and VF Hooks to Direct3D
Unlike the Adobe AIR hook I just described, hooks for Direct3D (the 3D
graphics component of Microsoft’s DirectX API) are very common and
highly documented. Direct3D is ubiquitous in the world of gaming: a major-
ity of PC games use the library, which means that hooking it gives you a
very powerful method for intercepting data and manipulating the graphics
layers of many different games. You can use a Direct3D hook for a number

176 Chapter 8

of tasks, such as detecting locations of hidden enemy players, increasing
the lighting of dark in-game environments, and seamlessly displaying
additional graphical information. Making effective use of a Direct3D hook
requires you to learn about the API, but there’s more than enough informa-
tion in this book to get you started.

In this section, I’ll give you a high-level introduction to a game loop that
uses Direct3D before diving right into the implementation of a Direct3D
hook. Rather than detailing the internals and giving you the analytical
backstory as I did with the Adobe AIR hook, I’ll go over the most popular
Direct3D hook method, as it is well documented and used by the majority
of game hackers.

The online resources for this book include two pieces of example code
for this section; find those files now if you want to follow along. The first
part, an example Direct3D 9 application for you to hack on, can be found
under GameHackingExamples/Chapter8_Direct3DApplication. The second part,
the actual hook, is under Chapter8_Direct3DHook.

There are multiple versions of Direct3D in use at any given time,
and there are ways to hook each one. For this book, I’ll focus on hooking
Direct3D 9, because it is the only commonly used version that is supported
by Windows XP.

N o t e 	 Even though XP has reached end of life, many people in less developed countries still
use it as a primary gaming system. Direct3D 9 works on all versions of Windows and
is nearly as powerful as its successors, so many game companies still prefer to use it
over newer versions that don’t have as much backward compatibility.

The Drawing Loop
Let’s jump right in with a crash course on how Direct3D works. Inside a
Direct3D game’s source code, you’ll find an infinite loop that processes
input and renders graphics. Each iteration in this drawing loop is called a
frame. If we cut out all the extraneous code and focus simply on a bare skele
ton, we can visualize a game’s main loop with the following code:

int WINAPI WinMain(args)
{
 /* Some code here would be called
 to set up Direct3D and initialize
 the game. Leaving it out for brevity. */
 MSG msg;
 while(TRUE) {
 /* Some code would be here to handle incoming
 mouse and keyboard messages. */
 drawFrame(); // this is the function we care about
 }
 /* Some code here would be called to
 clean up everything before exiting. */
}

Manipulating Control Flow in a Game 177

This function is the entry point of the game. Simply put, it initial-
izes the game and then enters the game’s main loop. Inside the main
loop, it executes code responsible for processing user input before calling
drawFrame() to redraw the screen using Direct3D. (Check out the code in
GameHackingExamples/Chapter8_Direct3DApplication to see a fully functional
game loop.)

Each time it is called, the drawFrame() function redraws the entire
screen. The code looks something like this:

void drawFrame()
{

 device->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 0), 1.0f, 0);
 device->BeginScene();
 // drawing will happen here
 device->EndScene();
 device->Present(NULL, NULL, NULL, NULL);
}

After clearing the screen with device->Clear , the drawFrame() function
calls device->BeginScene() to unlock the scene for drawing. It then executes
some drawing code (what that drawing code actually does isn’t important
right now) and locks the scene with a device->EndScene() call. To finish up, it
renders the scene to the screen by calling the device->Present() function.

Notice that all of these functions are called as members of some
instance called device. This is simply an object instance representing the
Direct3D device, which is used to invoke all sorts of drawing calls. Also,
notice that this function is devoid of any actual drawing code, but that’s
okay. It’s really only important for you to understand the high-level con-
cepts of drawing loops, frames, and the Direct3D device. To recap, games
have a main loop with two responsibilities:

•	 Handling incoming messages

•	 Drawing the game to the screen

Each iteration in this loop is called a frame, and each frame is drawn by
a device. Taking control of the device gives you access to the most sensitive
and descriptive details of the game’s state; that is, you’ll be able to peek into
the game’s state after the data has been parsed, processed, and rendered
to the screen. Moreover, you’ll be able to modify the output of this state.
These two superpowers enable you to pull off all kinds of awesome hacks.

Finding the Direct3D Device
To take control of a Direct3D device, you hook the member functions in the
device’s VF table. Unfortunately, however, using the Direct3D API to instan-
tiate your own instance of the same device class from injected code doesn’t
mean you’ll share a VF table with the game’s instance. Direct3D devices use

178 Chapter 8

a customized runtime implementation of VF tables, and each device gets its
own unique VF table. Additionally, devices sometimes rewrite their own VF
tables, removing any hooks and restoring the original function addresses.

Both of these Direct3D quirks leave you with one inevitable option: you
must find the address of the game’s device and modify its VF table directly.
Here’s how:

1.	 Create a Direct3D device and traverse its VF table to locate the true
address of EndScene().

2.	 Place a temporary jump hook on EndScene().

3.	 When the jump hook callback is executed, store the address of the
device that was used to call the function, remove the hook, and restore
execution normally.

4.	 From there, use VF hooks to hook any member function of the
Direct3D device.

Jump Hooking EndScene()

Since every device will call EndScene() at the end of each frame, you can
hook EndScene() using a jump hook and intercept the game’s device from
your hook callback. Unique devices may have their own unique VF tables,
but the different tables still point to the same functions, so you can find the
address of EndScene() in the VF table of any arbitrary device. Using standard
Direct3D API calls, you can create your own device like this:

LPDIRECT3D9 pD3D = Direct3DCreate9(D3D_SDK_VERSION);
if (!pD3D) return 0;

D3DPRESENT_PARAMETERS d3dpp;
ZeroMemory(&d3dpp, sizeof(d3dpp));
d3dpp.Windowed = TRUE;
d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;
d3dpp.hDeviceWindow = hWnd;

LPDIRECT3DDEVICE9 device;
HRESULT res = pD3D->CreateDevice(
 D3DADAPTER_DEFAULT,
 D3DDEVTYPE_HAL,
 hWnd,
 D3DCREATE_SOFTWARE_VERTEXPROCESSING,
 &d3dpp, &device);
if (FAILED(res)) return 0;

Explaining how everything in Direct3D works is outside the scope of
this book, so just know that you can copy this code to create a Direct3D
device that contains the EndScene() function as a member. The EndScene()
address is at index 42 in the VF table of device (see “The Meaning of Device,

Manipulating Control Flow in a Game 179

Direct3D, and VF Hooks” box to learn how to find that index), and you can
read it using a subset of the VF table hooking code from “Using a VF Table
Hook” on page 159, as follows:

DWORD getVF(DWORD classInst, DWORD funcIndex)
{
 DWORD VFTable = readMemory<DWORD>(classInst);
 DWORD hookAddress = VFTable + funcIndex * sizeof(DWORD);
 return readMemory<DWORD>(hookAddress);
}
DWORD EndSceneAddress = getVF((DWORD)device, 42);

Once you’ve obtained the address, your discovery device has served its
purpose, and it can be destroyed with a call to the Release() function:

pD3D->Release();
device->Release();

With the address of EndScene() in hand, you’d be ready to start thinking
about how to place your hook in memory. But since you just have a function
address, your only option is to place a jump hook at the top of the function.

The Meaning of Device , Dir ec t3D, and V F Hooks

If you’re wondering how I know that the index of the EndScene() function is 42,
you’ve come to the right box. Since Direct3D 9 is a freely available library, you
can actually see quite a bit of what goes on under the hood. The main header
file for the library is d3d9.h. If you open this file in your editor and search for
“EndScene,” you’ll end up in the middle of a large class definition that speci-
fies several functions using C macros. This is the base class for all Direct3D 9
device implementations, and it defines the virtual functions used by the class.

The VF table is constructed in the same order as the functions are defined
in code, so you can determine the index of any member function by simply
counting the lines. You can scroll to the top of the class definition (at line 426 in
my version of the library, and probably yours too), note the line where the first
function is declared (line 429), and then scroll to the EndScene() definition and
note that line (line 473). Finally, count the number of blank or commented lines
(two for me) and do some math: 473 – 429 – 2 = 42.

Presto! The EndScene() function is the 43rd function declared, so it sits
at the 42nd spot in the VF table. Another advantage to having this header is
that you can see the name, argument types, argument names, and return type
of every single function in the device class. So when you’re writing your own
hooks in the future, you’ll know exactly where to look.

180 Chapter 8

Placing and Removing the Jump Hook

Since you’re just using the hook to find the device, you need to call it only
once. After obtaining the device, you’ll remove the jump hook and restore
execution back to the start of EndScene() so that the drawing loop can carry
on its work. Believe it or not, this makes your life much easier. Since the
code will be restored immediately, there’s no need for your trampoline to
execute the commands that are replaced by the jump, and there’s no need
to pad the jump with NOPs. All you need to do is store the original bytes
and place the hook. To do so, you use a slightly tweaked version of the
jump-hooking code from Listing 8-11:

unsigned char* hookWithJump(DWORD hookAt, DWORD newFunc)
{
 DWORD newOffset = newFunc - hookAt - 5;

 auto oldProtection = protectMemory<BYTE[5]>(hookAt, PAGE_EXECUTE_READWRITE);
 unsigned char* originals = new unsigned char[5];
 for (int i = 0; i < 5; i++)

 originals[i] = readMemory<unsigned char>(hookAt + i);
 writeMemory<BYTE>(hookAt, 0xE9);

 writeMemory<DWORD>(hookAt + 1, newOffset);
 protectMemory<BYTE[5]>(hookAt, oldProtection);
 return originals;
}

Like the function in Listing 8-11, this function makes the memory writ-
able , places the hook , and restores the memory protection. Before
placing the hook, it allocates a 5-byte buffer called originals  and fills it
with the original bytes. After the hook is placed, it returns originals to the
calling function.

When it’s time to remove the hook, pass originals to the following
function:

void unhookWithJump(DWORD hookAt, unsigned char* originals)
{
 auto oldProtection = protectMemory<BYTE[5]>(hookAt, PAGE_EXECUTE_READWRITE);
 for (int i = 0; i < 5; i++)
 writeMemory<BYTE>(hookAt + i, originals[i]);
 protectMemory<BYTE[5]>(hookAt, oldProtection);
 delete [] originals;
}

This code simply iterates over originals and quietly places those 5 bytes
back where they were found so that everything is as expected when execu-
tion returns to the EndScene() function. When the time comes, you can place
and remove your actual hook using two lines of code, like this:

auto originals = hookWithJump(EndSceneAddress, (DWORD)&endSceneTrampoline);
unhookWithJump(EndSceneAddress, originals);

Manipulating Control Flow in a Game 181

Once you have the hookWithJump() and unhookWithJump() functions, it’s
time to prepare the callback and find the device.

Writing the Callback and Trampoline

Even though you can obtain the EndScene() address from a VF table, the
EndScene() function doesn’t actually follow the __thiscall convention. Direct3D
classes are simple wrappers around a C API, and all of the member function
calls are forwarded to __stdcall functions that take a class instance as a first
parameter. This means that your trampoline only needs to grab the device
from the stack, pass it to the callback, and then jump back to EndScene().
The callback only has to remove the jump hook before returning to the
trampoline.

The final code for the callback and trampoline to this jump hook looks
something like this:

LPDIRECT3DDEVICE9 discoveredDevice;
DWORD __stdcall reportInitEndScene(LPDIRECT3DDEVICE9 device)
{
 discoveredDevice = device;
 unhookWithJump(EndSceneAddress, originals);
 return EndSceneAddress;
}
__declspec(naked) void endSceneTrampoline()
{
 __asm {
 MOV EAX, DWORD PTR SS:[ESP + 0x4]
 PUSH EAX // give the device to the callback

 CALL reportInitEndScene
 JMP EAX // jump to the start of EndScene
 }
}

Using the hookWithJump() function, you can place a jump hook on
EndScene() that calls the endSceneTrampoline() function. When the game’s
device calls the EndScene() function, the trampoline function calls the
reportInitEndScene() function . The reportInitEndScene() function stores the
captured device pointer to a global variable called discoveredDevice, removes
the hook by calling unhookWithJump(), and returns the address of EndScene()
to the trampoline. To finish up, the trampoline jumps directly to EAX, which
will be holding the address that was returned from the reporting function.

N o t e 	 You can use jump hooks to completely skip the VF table hooking that I’ll show you,
but it’s very unreliable to use “dumb” jump hooks on commonly hooked API func-
tions. Consistently obtaining good results with only jump hooks requires professional
hooking libraries, and I’d rather teach you how to do it completely on your own.

At this point, all that’s left to do is hook the VF table of discoveredDevice
to hack the game. The next two sections will walk you through hooks on the
EndScene() and Reset() functions, which are required if you want a stable hook.

182 Chapter 8

Writing a Hook for EndScene()
A hook on EndScene() is useful because it allows you to intercept a com-
pleted frame just before it is rendered; you can effectively execute your own
rendering code inside the game loop. As you saw when locating this func-
tion’s address in “Jump Hooking EndScene()” on page 178, this function
is at index 42 in the VF table. You can hook EndScene() using a VF hook as
follows:

typedef HRESULT (WINAPI* _endScene)(LPDIRECT3DDEVICE9 pDevice);
_endScene origEndScene =
 (_endScene)hookVF((DWORD)discoveredDevice, 42,(DWORD)&myEndScene);
HRESULT WINAPI myEndScene(LPDIRECT3DDEVICE9 pDevice)
{
 // draw your own stuff here
 return origEndScene(pDevice);
}

This code uses the hookVF() function from “Using a VF Table Hook” on
page 159 to hook EndScene() at index 42 of discoveredDevice, using myEndScene()
as the callback function. A direct Direct3D device will occasionally repatch
its own VF table and restore the original function addresses. This typically
happens from within the EndScene() function, meaning you also have to
repatch the VF table after calling the original EndScene() function. There
are a few changes you can make to this hook to handle that, as shown in
Listing 8-14.

_endScene origEndScene = NULL;
void placeHooks()
{
 auto ret = hookVF((DWORD)discoveredDevice, 42, (DWORD)&myEndScene);
 if (ret != (DWORD)&myEndScene) // don't point to your hook
 origEndScene = (_endScene)ret;
}
placeHooks();

HRESULT WINAPI myEndScene(LPDIRECT3DDEVICE9 pDevice)
{
 // draw your own stuff here
 auto ret = origEndScene(pDevice);
 placeHooks(); // update hooks
 return ret;
}

Listing 8-14: Final code to hook EndScene()

The code to place the hook has been moved into a function called
placeHooks() so it can be called multiple times with ease. The callback func-
tion still forwards the call to the original function, but it makes sure to call
placeHooks() before returning. This ensures that the hook is always active,
even if the original EndScene() function removes it.

Manipulating Control Flow in a Game 183

Another point to notice is that placeHooks() updates the address of
origEndScene() every time the hook is replaced, as long as the address
returned from hookVF() isn’t the address of the myEndScene() function. This
does two distinct things. First, it allows other applications to hook EndScene()
without stepping on their toes, since it will update origEndScene() to whatever
is seen in the VF table. Second, it makes sure that the value of origEndScene()
can never be the address of our callback, preventing a potential infinite
loop. An infinite loop is possible otherwise, because origEndScene() doesn’t
always fix the device’s VF table, meaning placeHooks() can be called when
the VF table still contains the myEndScene() function.

Writing a Hook for Reset()
When you’re using a Direct3D hook in production, you’ll be doing all kinds
of tasks like drawing custom text, displaying images related to your bot, and
interacting with function calls from the game. These tasks will require you
to create your own Direct3D objects that are tied to the game’s device, and
that can be a problem. From time to time, the game may completely reset
its device through a Reset() function. When a device is reset, you’ll need to
update any objects (most commonly fonts and sprites) that you’ve created
for the device, using their OnLostDevice() member functions.

Since Reset() is called from the VF table of the device, you can use
a hook on it to tell you when the device has been reset. Reset() takes two
parameters and is at index 16 in the VF table. You can add this code to
placeHooks() in Listing 8-14 to hook the Reset() function:

auto ret = hookVF((DWORD)discoveredDevice, 16, (DWORD)&myReset);
if (ret != (DWORD)&myReset)
 origReset = (_reset)ret;

And this is the declaration to use for origReset:

typedef HRESULT (WINAPI* _reset)(
 LPDIRECT3DDEVICE9 pDevice,
 D3DPRESENT_PARAMETERS* pPresentationParameters);
_reset origReset = NULL;

When a reset is successful, the original function returns D3D_OK. Your
hook function recognizes this and calls OnLostDevice() accordingly:

HRESULT WINAPI myReset(
 LPDIRECT3DDEVICE9 pDevice,
 D3DPRESENT_PARAMETERS* pPresentationParameters)
{
 auto result = origReset(pDevice, pPresentationParameters);
 if (result == D3D_OK) {
 // call onLostDevice() for all of your objects
 }
 return result;
}

184 Chapter 8

Once you fill in the contents of the if() statement, all of your objects
are ready to use again.

What’s Next?
Now that I’ve shown you how to take control of a game’s Direct3D device,
you’re probably wondering what you can do with it. Unlike the other
examples in the book, the code in this section and the example code don’t
have a one-to-one correlation, but the functionality is still the same. Here’s
a high-level view of the correlation between this chapter and the code in the
Chapter8_Direct3DHook example project.

The file DirectXHookCallbacks.h contains the callbacks for the EndScene()
and Reset() functions, two callbacks for other common functions, and the
trampoline and reporter functions for the temporary jump hook. These func-
tions are all pretty much as described in this chapter, except they call into a
singleton class defined in DirectXHook.h and DirectXHook.cpp. This singleton
class is responsible for forwarding the calls to the original functions.

The class is also responsible for all of the heavy lifting, and it contains
the code to create the discovery device, place the hooks, draw text, handle
device resets, and display images. Furthermore, it allows external code to
add custom callbacks for each hook, as you can see in main.cpp. Here, you’ll
see a number of different callbacks that are drawing custom text, adding
new images to the screen, and changing the textures of models that are
drawn by the game. I recommend poking around in the code to get a better
understanding of what’s going on, but don’t get too carried away. We’ll dive
into this code in Chapter 9 to talk about all the cool hacks it can do.

Op t iona l Fi x e s for S tabi l i t y

The Reset() and EndScene() hooks described in this chapter should work well
for any game running Direct3D 9, but it is slightly unstable. If the game tries
to execute EndScene() when the jump hook is placed, it will crash because the
bytes are being modified. There are two ways to fix this. First, you can place
the jump hook from within an IAT hook on PeekMessage(). This will work
because placing an IAT hook is a thread-safe operation, but it assumes that
PeekMessage() is called only from the same thread that does the Direct3D
drawing.

A safer, but more complex, alternative is to iterate over every thread in the
game (similar to how it worked for thread hijacking) and use SuspendThread()
to pause all threads in the game (except for the one placing the hook, of
course). Before pausing a thread, you must make sure its EIP is not execut-
ing the first 5 bytes of EndScene(). After the hook is placed, you must use
ResumeThread() to restore execution with your hook in place.

Manipulating Control Flow in a Game 185

Closing Thoughts
Control flow manipulation is a very important skill in game hacking, and
a lot of the hacks in this book rely on it. Throughout the next two chap-
ters you’ll learn how to create common hacks using the Direct3D hook,
and you’ll get a better idea of the general use cases of hooking. Even if you
feel a little shaky, continue to Chapter 9. The code examples there center
on the Direct3D hook and will get you even more familiar with hooking
techniques.

Part 4
C r ea t ing B o t s

9
U s ing E x t r a s en s o r y

P e r cep t ion t o Wa r d O f f
Fog o f Wa r

Fog of war (often shortened to just fog) is
a mechanism that game developers com-

monly use to limit a player’s situational
awareness and hide information about the

game environment. Fog is often a literal lack of sight
in massive online battle arena (MOBA) games, but
the concept also includes any lack or obscurity of
pertinent gameplay information. Cloaked figures,
dark rooms, and enemies hiding behind walls are all
forms of fog.

Game hackers can reduce or even completely remove fog using an extra-
sensory perception (ESP) hack. An ESP hack uses hooking, memory manipula-
tion, or both to force a game to display hidden information. These hacks
take advantage of the fact that some types of fog are often implemented on
the client side, as opposed to the server side, meaning that the game clients
still contain information (partial or complete) about what is being hidden.

190 Chapter 9

In this chapter, you will learn how to implement different types of ESP
hacks. First, you’ll learn to light up dark environments. Next, you’ll use
x-ray vision to see through walls. Finally, you’ll learn about zoom hacking,
tweaking heads-up displays, and other simple ESP hacks that can reveal all
sorts of useful (but otherwise hidden) information about the game you’re
playing.

Background Knowledge
This chapter starts the transition from hacking, puppeteering, and reverse
engineering to coding. From here on out, you’ll be learning how to actually
code your own hacks. To keep on topic, everything I’ve talked about thus
far will be treated as background knowledge. If you see a technique used
that you don’t quite remember, such as memory scanning, setting memory
breakpoints, hooking, or writing memory, flip back to the relevant chapters
and study them a bit more before continuing. Throughout the text, you’ll
find notes to remind you where you can brush up on certain topics.

Specifically, this chapter will talk a lot about Direct3D. In “Applying
Jump Hooks and VF Hooks to Direct3D” on page 175, I explained
how to hook into a game’s Direct3D drawing loop. The example code
for that chapter includes a fully featured Direct3D hooking engine in
GameHackingExamples/Chapter8_Direct3DHook. A lot of the hacks in this
chapter build on that hook, and their example code can be found in the
main.cpp file of the Direct3D hook code. You can run the compiled appli-
cation from GameHackingExamples/Chapter8_Direct3DApplication to see the
hacks in action on a test application.

Revealing Hidden Details with Lighthacks
Lighthacks increase lighting in dark environments, allowing you to clearly
see enemies, treasure chests, pathways, and anything else that is normally
obscured by darkness. Lighting is often a cosmetic change that’s added at a
game’s graphical layer, and it can usually be directly modified with a hook
on the graphics layer.

Optimal lighting depends on camera orientation, environment layout,
and even specific traits of a game’s engine, and you can manipulate any of
these factors to create lighthacks. But the easiest way is simply to add more
light to a room.

Adding a Central Ambient Light Source
The online resources for this book include two small lighthack examples.
The first is the enableLightHackDirectional() function in main.cpp, which is
shown in Listing 9-1.

void enableLightHackDirectional(LPDIRECT3DDEVICE9 pDevice)
{
 D3DLIGHT9 light;

Using Extrasensory Perception to Ward Off Fog of War 191

 ZeroMemory(&light, sizeof(light));
 light.Type = D3DLIGHT_DIRECTIONAL;
 light.Diffuse = D3DXCOLOR(0.5f, 0.5f, 0.5f, 1.0f);
 light.Direction = D3DXVECTOR3(-1.0f, -0.5f, -1.0f);

 pDevice->SetLight(0, &light);
 pDevice->LightEnable(0, TRUE);
}

Listing 9-1: A directional lighthack

This code is called from the EndScene() hook, and it adds light to the
scene by creating a light source called light. The code sets light.Type to
directional, which means the light source will act like a spotlight and proj-
ect light in a specific direction. The code then sets the red, green, and blue
values of light.Diffuse to 0.5, 0.5, and 0.5, giving the light an off-white shine
when reflected from a surface. Next, it sets light.Direction to an arbitrary
point in the three-dimensional space. Finally, the code uses the game’s
Direct3D device to set up the light at index 0 and enable lighting effects.

N O T E 	 In the example application, the light shines up and to the right from the bottom left of
the scene. You may need to change this location depending on how your target game is
rendered.

Note that inserting the light at index 0 works for this proof of con-
cept, but it won’t always work. Games typically have multiple light sources
defined, and setting your light at an index the game uses might override
critical lighting effects. In practice, you might try setting the index to an arbi-
trarily high number. There’s an issue with this type of lighthack, though:
directional lights will be blocked by objects such as walls, creatures, and
terrain, meaning shadows can still be cast. Directional lights work great
for wide-open spaces, but not so well for tightly wound corridors or under-
ground caves.

Increasing the Absolute Ambient Light
The other lighthack method, seen in the enableLightHackAmbient() function,
is far more aggressive than the one in Listing 9-1. It affects the light level
globally, rather than adding an extra light source. Here’s what the code
looks like:

void enableLightHackAmbient(LPDIRECT3DDEVICE9 pDevice)
{
 pDevice->SetRenderState(D3DRS_AMBIENT, D3DCOLOR_XRGB(100, 100, 100));
}

This lighthack sets the absolute ambient light (which you indicate
by passing D3DRS_AMBIENT to the SetRenderState() function) to a medium-
strength white. The D3DCOLOR_XRGB macro sets that strength, taking 100 as

192 Chapter 9

its parameters for the red, green, and blue levels. This lights up objects
using an omnidirectional white light, effectively revealing everything at
the cost of shadows and other lighting-based details.

Creating Other Types of Lighthacks
There are many other ways to create lighthacks, but they differ from game
to game. One creative way to affect the light in a game is to NOP the code
that the game uses to call the device->SetRenderState() function. Since this
function is used to set up the global ambient light strength, disabling calls
to it leaves Direct3D at the default light settings and makes everything vis-
ible. This is perhaps the most powerful type of lighthack, but it requires
your bot to know the address of the lighting code to NOP.

There are also memory-based lighthacks. In some games, players and
creatures emit light of different colors and strengths, often depending on
attributes like their equipment, mount, or active spells. If you understand
the structure of the game’s creature list, you can directly modify the values
that determine a creature’s light level.

For instance, imagine a game in which characters emit a bluish ball
of light when under a healing or strengthening spell. Somewhere in the
game’s memory are values associated with each creature that tell the game
the color and intensity of light the creature should emit. If you can locate
these values in memory, you can change them so that the creatures effec-
tively emit orbs of light. This type of lighthack is commonly used in games
with a 2D top-down style, since the orbs around individual creatures pro-
duce a cool artistic effect while shedding light on important parts of the
screen. In 3D games, however, this sort of hack just turns creatures into
blobs of light that run around.

You can also hook the SetLight() member function at index 51 in the
VF table of the game’s Direct3D device. Then, whenever your hook callback
is invoked, you can modify the properties of the intercepted D3DLIGHT9 light
structure before passing it to the original function. You might, for instance,
change all lights to the D3DLIGHT_POINT type, causing any existing light sources
in the game to radiate light in every direction like a light bulb. This type of
lighthack is very powerful and accurate, but it can produce some disturbing
visuals. It also tends to break in any environment that has no lighting, and
opaque obstacles still block point light sources.

Lighthacks are very powerful, but they don’t reveal anything. If infor-
mation is hidden behind an obstacle, rather than by darkness, you’ll need a
wallhack to reveal it.

Revealing Sneaky Enemies with Wallhacks
You can use wallhacks to show enemies that are hidden by walls, floors, and
other obstacles. There are a few ways to create these hacks, but the most com-
mon method takes advantage of a type of rendering known as z-buffering.

Using Extrasensory Perception to Ward Off Fog of War 193

Rendering with Z-Buffering
Most graphics engines, including Direct3D, support z-buffering, which is a
way to make sure that when there are overlapping objects in a scene, only
the top object is drawn. Z-buffering works by “drawing” the scene to a two-
dimensional array that describes how close the object at each pixel on the
screen is to the viewer. Think of the array’s indices as axes: they correspond
to the x-axis (right and left) and y-axis (up and down) for each pixel on the
screen. Each value stored in the array is the z-axis value for a pixel.

When a new object appears, whether it is actually drawn on the
screen is decided by the z-buffer array. If the spot at the object’s x- and
y-position is already filled in the array, that means there’s another object
at that pixel on the screen. The new object will appear only if it has a lower
z-axis value (that is, if it’s closer to the viewer) than the pixel already there.
When the scene is finished being drawn to the array, it is flushed to the
screen.

To illustrate this, imagine a three-dimensional space that needs to be
drawn to a two-dimensional canvas by some game with 4×4-pixel viewport.
The z-buffer for this scenario would look like Figure 9-1.

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

z = 0
No color

(0,0)

(0,3) (3,3)

(3,0)

Figure 9-1: An empty z-buffer

To start, the game draws a blue background that completely fills the
viewport and is located as far away on the z-axis as possible; let’s say the
highest z-value is 100. Next, the game draws a 2×2-pixel red rectangle at

194 Chapter 9

position (0,0) with a z-position of 5. Finally, the game draws a 2×2-pixel
green rectangle at position (1,1) with a z-position of 3. The z-buffer would
now look like Figure 9-2.

z = 5
Red

z = 5
Red

z = 100
Blue

z = 100
Blue

z = 5
Red

z = 100
Blue

z = 100
Blue

z = 3
Green

z = 3
Green

z = 100
Blue

z = 3
Green

z = 3
Green

z = 100
Blue

z = 100
Blue

z = 100
Blue

z = 100
Blue

(0,0)

(0,3) (3,3)

(3,0)

Figure 9-2: A filled z-buffer

The z-buffer neatly handled overlapping objects based on their z-posi-
tions. The green square that’s closest on the z-axis overlaps the red square
that’s a bit farther away, and both squares overlap the blue background,
which is very far away.

This behavior allows a game to draw its map, players, creatures, details,
and particles without worrying about what is actually visible to the player.
This is a huge optimization for game developers, but it exposes a large area
of attack. Since all game models are always given to the graphics engine,
you can use hooks to detect objects that the player can’t actually see.

Creating a Direct3D Wallhack
You can create wallhacks that manipulate z-buffering in Direct3D using a
hook on the DrawIndexedPrimitive() function, which is called when a game
draws a 3D model to the screen. When an enemy player model is drawn,
a wallhack of this type disables z-buffering, calls the original function to
draw the model, and then reenables z-buffering. This causes the enemy
model to be drawn on top of everything else in the scene, regardless of
what’s in front of it. Some wallhacks can also render specific models in a
solid color, such as red for enemies and green for allies.

Using Extrasensory Perception to Ward Off Fog of War 195

Toggling Z-Buffering

The Direct3D hook in main.cpp from GameHackingExamples/Chapter8_
Direct3DHook has this example wallhack in the onDrawIndexedPrimitive()
function:

void onDrawIndexedPrimitive(
 DirectXHook* hook,
 LPDIRECT3DDEVICE9 device,
 D3DPRIMITIVETYPE primType,
 INT baseVertexIndex, UINT minVertexIndex,
 UINT numVertices, UINT startIndex, UINT primCount)
{
 if (numVertices == 24 && primCount == 12) {
 // it's an enemy, do the wallhack
 }
}

This function is used as a callback for a hook on DrawIndexedPrimitive()
at VF index 82 of the game’s Direct3D device. Every model the game draws
passes through this function, accompanied by some model-specific proper-
ties. By inspecting a subset of the properties, namely the numVertices and
primCount values, the hook detects when an enemy model is drawn and com-
mences the wallhack. In this example, the values representing an enemy
model are 24 and 12.

The magic happens inside the if() statement. Using just a few lines
of code, the wallhack draws the model in a way that ignores z-buffering,
like so:

device->SetRenderState(D3DRS_ZENABLE, false); // disable z-buffering
DirectXHook::origDrawIndexedPrimitive(// draw model
 device, primType, baseVertexIndex,
 minVertexIndex, numVertices, startIndex, primCount);
device->SetRenderState(D3DRS_ZENABLE, true); // enable z-buffering

Simply put, this code disables z-buffering when drawing the enemy
model and reenables it afterward. With z-buffering off, the enemy is drawn
in front of everything.

Changing an Enemy Texture

When a model is rendered onscreen, a texture is used to skin the model.
Textures are 2D images that are stretched around 3D models to apply the
colors and patterns that make up the model’s 3D artwork. To change the
way an enemy looks when it’s drawn in your wallhack, you can set it to be
drawn with a different texture, as in this example:

// when hook initializes
LPDIRECT3DTEXTURE9 red;
D3DXCreateTextureFromFile(device, "red.png", &red);

196 Chapter 9

// just before drawing the primitive
device->SetTexture(0, red);

The first block of this code loads the texture from a file and is executed
only once—when the hook is initialized. The full example code does this in
an initialize() function, which gets called the first time the EndScene() hook
callback is invoked. The second block of this code happens right before the
call to the original DrawIndexedPrimitive() function in the wallhack, and it
causes the model to be drawn with the custom texture.

Fingerprinting the Model You Want to Reveal
The trickiest part to creating a good wallhack is finding the right values for
numVertices and primCount. To do this, you can create a tool that logs every
unique combination of the two variables and allows you to iterate over the
list using your keyboard. Working example code for this tool won’t be use-
ful in the example application provided with this chapter, but I’ll give you
some high-level implementation details.

First, in the global scope, you’d declare a structure that has members to
store the following:

•	 numVertices and primCount

•	 A std::set of this structure (let’s call it seenParams)

•	 An instance of that structure (let’s call it currentParams)

The std::set requires a comparator for this structure, so you’d also
declare a comparison functor that calls memcmp() to compare two of the
structures using memcmp(). Each time the DrawIndexedPrimitive() callback is
invoked, your hack could create a structure instance with the intercepted
values and pass it to a seenParams.insert() function, which should insert the
parameter pair into the list only if the pair isn’t already there.

Using the GetAsyncKeyState() Windows API function, you could then
detect when the spacebar is pressed and execute something similar to this
pseudocode:

auto current = seenParams.find(currentParam);
if (current == seenParams.end())
 current = seenParams.begin();
else
 current++;
currentParams = *current;

This would set currentParams to the next pair in seenParams when the space-
bar is pressed. With this code in place, you could use code similar to a wall-
hack to change the texture of models matching currentParams.numVertices
and currentParams.primCount. The tool could also draw those values on the
screen so you could see them and write them down.

With a tool like this, finding the proper models is as easy as starting
up a game in a mode where your character won’t die (against a friend, in

Using Extrasensory Perception to Ward Off Fog of War 197

a customization mode, and so on), running the bot, and pressing the space-
bar until each model you need is highlighted. Once you have the values
for your target models, you’ll modify the numVertices and primCount check in
your wallhack so it knows which models to highlight.

N o t e 	 Character models are commonly made up of smaller models for individual body seg-
ments, and games often show different models of a character at different distances.
That means a game may have 20 or more models for one type of character. Even in
that case, selecting only one model (say, the enemy’s torso) to show in your wallhack
may be enough.

Getting a Wider Field of Vision with Zoomhacks
Many games in the MOBA and real-time strategy (RTS) genres use a 3D
top-down style that makes them immune to wallhacks. They also use dark-
ness on the map as a type of fog, but showing the dark areas using a light-
hack doesn’t give any extra information; models hidden inside the fog are
known only to the game server, not to the client.

This style makes most types of ESP hacks useless: there’s little unknown
information to reveal, so these hacks only augment your view of the infor-
mation you can already see. One type of ESP hack, however, can still be
helpful. Zoomhacks let you zoom out much farther than a game normally
allows, effectively revealing large portions of the map that you couldn’t see
otherwise—and thus getting around the game’s wallhack and lighthack
immunity.

Using NOPing Zoomhacks
MOBA and RTS games typically allow players a variable but limited amount
of zoom. The simplest type of zoomhack finds the value of the zoom factor
(a multiplier that changes as the zoom level changes, typically a float or
double) and overwrites it with a larger value.

To find the zoom factor, fire up Cheat Engine and search for a float
with an unknown initial value. (To brush up on Cheat Engine, head over
to “Cheat Engine’s Memory Scanner” on page 5.) For rescans, repeat
the following process until there are only a few values left to find the zoom
factor:

1.	 Go to the game window and zoom in.

2.	 Search for an increased value in Cheat Engine.

3.	 Go to the game window and zoom out.

4.	 Search for a decreased value in Cheat Engine.

Try to get the value list down to one option. To confirm that the
remaining value is the zoom factor, freeze it in Cheat Engine and see how
zoom behaves in-game; freezing the proper value will disable zooming. If
you fail to find the zoom factor using a float search, retry the search using

198 Chapter 9

a double. If both searches fail, try them again but correspond zooming in
with decreased values and zooming out with increased values instead. Once
you’ve found the zoom factor in memory, you can write a small bot to over-
write it to the zoom factor that best suits you.

More advanced zoomhacks NOP the game code responsible for mak-
ing sure the zoom factor is within a set range. You should be able to find
this code with OllyDbg. Set a memory on-write breakpoint on the zoom
factor, zoom in-game to trigger the breakpoint, and inspect the code at
the breakpoint. (To hone your OllyDbg memory breakpoint skills, flip to
“Controlling OllyDbg Through the Command Line” on page 43.) You
should see the code that modified the zoom factor. Zoom limitation code
is typically easy to spot: constants that match the minimum and maximum
zoom values are a dead giveaway.

If you can’t find the limitation code using this method, then the limita-
tion may be applied when the graphics are redrawn at a new zoom level,
rather than when the zoom factor changes. In this case, switch your break-
point to memory on-read and look for the same clues.

Scratching the Surface of Hooking Zoomhacks
You can also create zoomhacks by using a Direct3D hook on the function
device->SetTransform(type, matrix), but this requires a deep understanding of
how a game sets up the player’s perspective. There are a few different ways
to manage perspective, but you control zoom level using either view (trans-
form type D3DTS_VIEW) or projection (transform type D3DTS_PROJECTION).

Properly manipulating transform matrices that control view and projec-
tion requires some pretty extensive knowledge of the mathematics behind
3D graphics, though, so I stay away from this method at all costs—and I’ve
never had trouble simply manipulating the zoom factor. If you’re interested
in this kind of hack, though, I recommend reading a 3D game program-
ming book to learn more about 3D mathematics first.

But sometimes, even a zoomhack isn’t enough. Some useful informa-
tion may remain hidden as a part of a game’s internal state or may simply
be hard for a player to determine at a moment’s glance. For these situations,
a heads-up display is the tool for the job.

Displaying Hidden Data with HUDs
A heads-up display (HUD) is a type of ESP hack that displays critical game
information in an overlay. HUDs often resemble a game’s existing interface
for displaying information like your remaining ammunition, a mini-map,
your current health level, any active ability cooldowns, and so on. HUDs
typically display either historical or aggregated information, and they’re
mostly used on MMORPGs. They are often text based, but some also con-
tain sprites, shapes, and other small visual effects.

Using Extrasensory Perception to Ward Off Fog of War 199

The HUDs you can create depend on what data is available in the
game. Common data points are these:

•	 Experience gain per hour (exp/h)

•	 Creature kills per hour (KPH)

•	 Damage per second (DPS)

•	 Gold looted per hour (GPH)

•	 Healing per minute

•	 Estimated time until next level

•	 Amount of gold spent on supplies

•	 Overall gold value of items looted

More advanced custom HUDs may display large tables containing items
looted, supplies used, the number of kills for each type of creature, and the
names of players that have recently been seen.

Beyond what you’ve already learned about reading memory, hooking
graphics engines, and displaying customized data, there’s not much else
I can teach you about how to create a HUD. Most games have a simple
enough architecture that you can easily obtain most of the information you
need from memory. Then, you can run some basic hourly, percentage, or
summation calculations to get the data into a usable format.

Creating an Experience HUD
Imagine you want a HUD that displays your current level, hourly experi-
ence, and how long you’ll have to play before your character levels up. First,
you could use Cheat Engine to find the variables that contain your level and
experience. When you know those values, you can use either a game-specific
algorithm or a hardcoded experience table to calculate the experience
required to reach the next level.

When you know how much experience you need to level up, you can
calculate your hourly experience. Put into pseudocode, that process might
look like this:

// this example assumes the time is stored in milliseconds
// for seconds, remove the "1000 * "
timeUnitsPerHour = 1000 * 60 * 60
timePassed = (currentTime - startTime)

u timePassedToHourRatio = timeUnitsPerHour / timePassed
v expGained = (currentExp - startExp)

hourlyExp = expGained * timePassedToHourRatio

w remainingExp = nextExp - currentExp
x hoursToGo = remainingExp / hourlyExp

200 Chapter 9

To find your hourly experience, hourlyExp, you’d store your experience
and the time when your HUD first starts; these are startExp and startTime,
respectively. This example also assumes currentLevel and currentExp are pre-
viously defined, where currentLevel is the character’s level and currentExp is
the current amount of experience.

With these values, hourlyExp can be calculated by multiplying a ratio u
of the time units in an hour to the time that has passed by the experience
gained since startTime v. In this case, the time unit is a millisecond, so the
time units get multiplied by 1,000.

Next, currentExp is subtracted from nextExp to determine the remaining
experience w to level up. To calculate how many hours are left to level up,
your remaining experience is divided by your hourly experience x.

When you have all this information, you can finally display it onscreen.
Using the Direct3D hooking engine provided in this book’s example code,
you’d draw the text using this call inside the EndScene() hook callback:

hook->drawText(
 10, 10,
 D3DCOLOR_ARGB(255, 255, 0, 0),
 "Will reach level %d in %0.20f hours (%d exp per hour)",
 currentLevel, hoursToGo, hourlyExp);

That’s all you need for a working, experience-tracking HUD. Variations
of these same equations can be used to calculate KPH, DPS, GPH, and other
useful time-based measures. Furthermore, you can use the drawText() func-
tion of the Direct3D hook to display any information you can locate and
normalize. The hook also contains addSpriteImage() and drawSpriteImage()
functions that you can use to draw your own custom images, allowing you
to make your HUDs as fancy as you want.

Using Hooks to Locate Data
Memory reading isn’t the only way to get data for a custom HUD. You can
also gather information by counting the number of times a specific model
is drawn by the DrawIndexedPrimitive() function, hooking the game’s internal
functions responsible for drawing certain types of text, or even intercept-
ing function calls responsible for processing data packets from the game
server. The methods you use to do this will be drastically different for
every game, and finding those methods will require you to pair everything
you’ve learned from this book with your own ingenuity and programming
instincts.

For instance, to create a HUD that displays how many enemies are on
the map, you could use the model-fingerprinting methods used by wallhacks
to count the number of enemies and output that number to the screen. This
method is better than creating a way to read the list of enemies from mem-
ory, since it doesn’t require new memory addresses every time the game
patches.

Using Extrasensory Perception to Ward Off Fog of War 201

Another example is displaying a list of enemy cooldowns, which would
require you to intercept incoming packets that tell the client which spell
effects to display. You could then correlate certain spells with certain
enemies based on spell and enemy location, spell type, and so on, and use
that information to track spells each enemy has used. If you correlate the
data with a database of cooldown times, you can display exactly when each
enemy spell can be used again. This is especially powerful because most
games don’t store enemy cooldowns in memory.

An Overview of Other ESP Hacks
In addition to the hacks discussed in this chapter, there are a number of
ESP hacks that don’t have common names and are specific to certain genres
or even certain games. I’ll quickly take you through the theory, background,
and architecture of some of these hacks.

Range Hacks
Range hacks use a method similar to wallhacks to detect when the
models for different types of champions or heroes are drawn. Then
they draw circles on the ground around each hero model. The radius
of each circle corresponds to the maximum attack range of the cham-
pion or hero it surrounds, effectively showing you areas where you can
be damaged by each enemy.

Loading-Screen HUDs
Loading-screen HUDs are common in MOBA and RTS games that
require all players to sit through a loading screen while everyone’s game
is starting up. These hacks take advantage of the fact that such games
often have websites where historical player statistics can be queried. You
can write a bot that automatically queries the statistics of each player in
the game and seamlessly displays the information as an overlay on your
loading screen, allowing you to study your enemies before launching
into battle.

Pick-Phase HUDs
Pick-phase HUDs are similar to their loading-screen cousins, but they
are displayed during the pregame phase when each player is picking
a champion or hero to play. Instead of showing enemy statistics, pick-
phase HUDs show statistics about allies. This allows you to quickly assess
the strengths and weaknesses of your allies so you can make better deci-
sions about which character to play.

Floor Spy Hacks
Floor spy hacks are common in older 2D top-down games that have dif-
ferent distinct floors or platforms. If you’re on the top floor, you might
want to know what’s going on downstairs before you go charging in.
You can write floor spy hacks that modify the current floor value (typi-
cally an unsigned int) to a different floor above or below you, allowing
you to spy on other floors.

202 Chapter 9

Games often recalculate the current floor value every frame based on
player position, so NOPs are sometimes required to keep the value from
being reset every time a frame is redrawn. Finding the current floor value
and the code to NOP would be similar to finding the zoom factor, as dis-
cussed in “Using NOPing Zoomhacks” on page 197.

Closing Thoughts
ESP hacks are powerful ways to obtain extra information about a game.
Some of them can be done pretty easily through Direct3D hooks or simple
memory editing. Others require you to learn about a game’s internal data
structures and hook proprietary functions, giving you a reason to employ
your reverse engineering skills.

If you want to experiment with ESP hacks, study and tweak the example
code for this chapter. For practice with more specific ESP hacks, I encour-
age you to go out and find some games to play around with.

10
Re s pon s ive H ack s

The average gamer has a reaction time of
250 milliseconds, or a quarter of a second.

Professional gamers average a fifth of a
second, but some can react in a sixth of a sec-

ond. These figures are based on online tests that mea-
sure players’ reaction times to singular, predictable
events. In actual games, though, players must react to dozens of differ-
ent events, like health loss, incoming skill shots, abilities coming off of
cooldown, enemy attacks, and many others. Only very skilled gamers can
maintain a fourth- or fifth-of-a-second reaction time in such dynamic envi-
ronments; the only way to be faster is to be a computer.

In this chapter, you’ll learn how to make bots that react faster than any
player. First, I’ll show you some code patterns you can incorporate into a
bot to detect when certain events happen within a game. Next, you’ll learn
how to make a bot that moves your character, heals, or casts spells all on its
own. Once you’ve explored those fundamental techniques, I’ll help you tie
them together to implement some of the most common, and most powerful,
responsive hacks.

204 Chapter 10

Observing Game Events
Within just a few seconds of playing a game, most people can make essen-
tial observations about the game environment. You can clearly see when
missiles are flying toward your character, when your health is too low, and
when abilities come off of cooldown. For a bot, though, these seemingly
intuitive observations are not as easy to make. The bot must detect each
event by looking for changes in memory, detecting visual cues, or intercept-
ing network traffic.

Monitoring Memory
To detect simple events, such as your health bar dropping low, you can pro-
gram a bot to periodically read your health from memory and compare it to
some minimum acceptable value, as in Listing 10-1.

// do this every 10 milliseconds (100 times a second)
auto health = readMemory<int>(HEALTH_ADDRESS);
if (health <= 500) {
 // some code to tell the bot how to react
}

Listing 10-1: An if statement that checks health

Given the address of your character’s health, you can check the value
there as often as you need; every 10 milliseconds is typically a good rate.
(Flip back to Chapter 1 if you need a refresher on locating values in mem-
ory.) Once health drops below a certain value, you’ll want to run some reac-
tion code to cast a healing spell or drink a potion. I’ll talk about how you
can do this later in the chapter.

If you want your bot to have more granular information and the chance
for a greater variety of responses, you can program it to react to any change
in health, instead of only after a set threshold. To do so, change the code in
Listing 10-1 to compare your current health to the amount you had during
the previous execution, as follows:

// still do this every 10 milliseconds
static int previousHealth = 0;
auto health = readMemory<int>(HEALTH_ADDRESS);
if (health != previousHealth) {
 if (health > previousHealth) {
 // react to increase
 } else {
 // react to decrease
 }
 previousHealth = health;
}

Now, this code uses a static variable called previousHealth to track the
value of health on the previous iteration. If previousHealth and health differ,
the bot not only reacts to the change in health but also reacts differently

Responsive Hacks 205

to health increases and decreases. This technique is the simplest, and most
common, way to react to changes in a game state. With the proper memory
addresses, you can use this code pattern to observe changes in health,
mana, ability cooldowns, and other critical information.

Detecting Visual Cues
Health is relatively simple for a bot to check because it’s just a number, but
some game elements have to be relayed to the bot differently. For example,
when status ailments or buffs are affecting a character, the easiest way for
you to tell is to simply look for an onscreen status indicator, and the same is
true for bots.

When reading memory isn’t enough, you can detect certain events by
hooking a game’s graphics engine and waiting for the game to render a
specific model. (Refer back to “Applying Jump Hooks and VF Hooks to
Direct3D” on page 175 and “Creating a Direct3D Wallhack” on page 194
to get refreshed on Direct3D hooks.) When the model is drawn, you can
queue up a reaction to be executed after the frame is drawn, like this:

// below is the drawIndexedPrimitive hook
void onDrawIndexedPrimitive(...) {
 if (numVertices == EVENT_VERT && primCount == EVENT_PRIM) {
 // react, preferably after drawing is done
 }
}

Using the same model-fingerprinting trick as the wallhack code in
Chapter 9, this code detects when a specific model is drawn to the screen
and reacts accordingly. This code reacts to the event every single frame,
though, and that can make your game unplayable. You’ll probably want
some internal cooldown to avoid spamming a reaction. In cases where the
indicator model is persistently drawn (that is, not blinking), you can actu-
ally track it across frames to determine when it appears and disappears.

Here’s a code snippet that also handles tracking:

bool eventActive = false;
bool eventActiveLastFrame = false;
// below is the drawIndexedPrimitive hook
void onDrawIndexedPrimitive(...) {
 if (numVertices == EVENT_VERT && primCount == EVENT_PRIM)
 eventActive = true;
}

// below is the endScene hook
void onDrawFrame(...) {
 if (eventActive) {
 if (!eventActiveLastFrame) {
 // react to event model appear
 }
 eventActiveLastFrame = true;

206 Chapter 10

 } else {
 if (eventActiveLastFrame) {
 // react to event model disappear
 }
 eventActiveLastFrame = false;
 }
 eventActive = false;
}

The onDrawIndexedPrimitive() function still checks whether a certain
model was drawn, but now, two Booleans track whether the model was
drawn this frame or the previous frame. Then, when the frame is com-
pletely drawn, the bot can check these variables and react to the model
either appearing or disappearing.

This method works great for detecting visual status indicators that
appear only when your character is affected by stuns, movement slows,
snares, poisons, and so on. You can also use it to detect when enemies
appear and disappear in MOBA and RTS games, as these games draw only
enemies that are explicitly in the sight range of an allied unit or player.

Intercepting Network Traffic
One of the most reliable ways to observe events is the same way the game
client does: by waiting for the game server to tell you that they occurred.
In this type of communication, the game server sends byte arrays called
packets over the network to the client, using sockets. The packets are typi-
cally encrypted and contain blobs of data serialized through a proprietary
format.

A Typical Packet-Parsing Function

To receive and process packets, a game client does something like
Listing 10-2 before it draws a frame.

void parseNextPacket() {
 if (!network->packetReady()) return;

 auto packet = network->getPacket();
 auto data = packet->decrypt();
 switch (data->getType()) {
 case PACKET_HEALTH_CHANGE:
 onHealthChange(data->getMessage());
 break;
 case PACKET_MANA_CHANGE:
 onManaChange(data->getMessage());
 break;
 // more cases for more packet types
 }
}

Listing 10-2: A simplified look at how a game parses packets

Responsive Hacks 207

The exact code for any particular game might look different, but the
control flow is always the same: receive a packet, decrypt it, decide what
kind of message it contains, and call a function that knows what to do with
it. Some game hackers intercept raw network packets and replicate this
functionality in their bots. This technique works, but it requires extensive
knowledge of encryption, a complete understanding of how the game stores
data inside a packet, the ability to man-in-the-middle the network connec-
tion, and a way to locate the decryption keys being used by the game client.

Hooking the functions responsible for handling the packets after they
are decrypted and parsed is a much better approach; in Listing 10-2, those
functions are the onHealthChange() and onManaChange() functions. This method
leverages the game’s inherent ability to process packets, allowing a bot to
remain ignorant of the various network facilities the game uses. It also gives
you discretion over which network data you intercept, as you need to hook
only the handlers that meet your needs.

N o t e 	 Intercepting entire packets can sometimes be advantageous—for example, in any
game that uses Adobe AIR and communicates using RTMPS. Since RTMPS is so
heavily documented, there’s no need to reverse engineer the format or encryption.
Chapter 8 explains how to hook RTMPS in detail.

There are a few tricks you can use to easily find the parser function
and, ultimately, the switch() statement that dispatches packets to their han-
dlers. The most useful method I’ve found is to place a breakpoint on the
function the game uses to receive data from the network, and then analyze
the flow of the application when the breakpoint is hit.

Let’s walk through how you might do this with OllyDbg attached to
your target game. In Windows, recv() is the API function to receive data
from a socket. From the OllyDbg command line, you can set a breakpoint
on recv() by entering the bp recv command. When the breakpoint is hit,
you can climb the call stack using ctrl-F9, the shortcut for execute until
return, and F8, the shortcut for step over. This combination essentially lets
the program execute until the callee has returned to the caller, allowing
you to climb the call stack in tandem with the game. At each stack level, you
can inspect the code of each caller until you find one that has a big switch()
statement; this should be the packet parser.

A Trickier Parser

Depending on the game’s architecture, though, finding the parser function
may not be that simple. Consider a game with a parser function that looks
like this:

packetHandlers[PACKET_HEALTH_CHANGE] = onHealthChange;
packetHandlers[PACKET_MANA_CHANGE] = onManaChange;

void parseNextPacket()
{
 if (!network->packetReady()) return;

208 Chapter 10

 auto packet = network->getPacket();
 auto data = packet->decrypt();
 auto handler = packetHandlers[data->getType()];
 handler->invoke(data->getMessage());
}

Since the parseNextPacket() function doesn’t have a switch() statement,
there’s no obvious way to identify it in memory. Unless you pay very close
attention, you’ll likely climb right past it on the call stack. When a game
has a parser function like this, trying to figure out what the parser func-
tion looks like might be pointless. If you don’t see a switch() statement when
climbing the recv() call stack, you’ll have to note every callee on the call
stack instead.

Instead of climbing up the call stack from the breakpoint, you’d go
to every address marked as a RETURN below ESP in the OllyDbg stack pane.
These are the return addresses into each caller for each callee. At each
return address, you’d need to find the top of the caller in OllyDbg’s dis
assembly pane and note the address. As a result, you’d have a list of every
function call leading up to the recv() call.

Next, you’d repeat the same list-making process from breakpoints
placed on a few of the game’s handler functions. You can find a handler
function by monitoring memory that it will inevitably use. The handler for
a health change packet, for instance, will update your health in memory.
Using OllyDbg, you can set a memory on write breakpoint to the health
address. When the breakpoint gets triggered, it means the game updated
the health value from a handler function. This should work the same way
for most values that are controlled by the server. The server will control any
game-critical values, such as health, mana, level, items, and so on.

Once you’ve recorded the call stack from recv() and a few handler func-
tions, you can correlate them to locate the parser function. For example,
consider the three pseudo–call stacks in Table 10-1.

Table 10-1: Pseudo–Call Stacks for Three Packet-Related Functions

recv() stack onHealthChange() stack onManaChange() stack

0x0BADF00D 0x101E1337 0x14141414

0x40404040 0x50505050 0x60606060

0xDEADBEEF 0xDEADBEEF 0xDEADBEEF

0x30303030 0x30303030 0x30303030

0x20202020 0x20202020 0x20202020

0x10101010 0x10101010 0x10101010

These stacks show what memory might look like during a call to recv()
and to a game’s hypothetical onHealthChange() and onManaChange() functions.
Notice that each function originates from a chain of four common function

Responsive Hacks 209

calls (shown in boldface). The deepest common address, 0xDEADBEEF, is
the address of the parser. For a better understanding of this structure, look
at the call stacks laid out in a tree view, as in Figure 10-1.

0x0BADF00D � recv()
0x40404040 � network->getPacket()

0x14141414 � onManaChange()
0x60606060 � handler->invoke()

0x101E1337 � onHealthChange()
0x50505050 � handler->invoke()

0xDEADBEEF � parseNextPacket()
0x30303030 � processInput()
0x20202020 � executeFrame()
0x10101010 � main()

Figure 10-1: Tree view of our three call stacks

Each function’s call stack branches out from the function at
0xDEADBEEF, meaning that function is a common point of origin for
all three calls. The example parseNextPacket() function is responsible for
calling these functions, so it must be the most recent common ancestor at
0xDEADBEEF.

N o t e 	 These call stacks are hypothetical, and they’re simplified beyond what you’ll typically
encounter. Real call stacks will probably have quite a few more function calls, and
comparing them won’t be as easy.

A Hybrid Parsing System

A third variation of the parsing loop might be a hybrid of the previous two
that uses a switch() statement after a function call. Here’s another hypo-
thetical function:

void processNextPacket()
{
 if (!network->packetReady()) return;
 auto packet = network->getPacket();
 auto data = packet->decrypt();
 dispatchPacket(data);
}

void dispatchPacket(data)
{
 switch (data->getType()) {
 case PACKET_HEALTH_CHANGE:
 processHealthChangePacket(data->getMessage());
 break;

210 Chapter 10

 case PACKET_MANA_CHANGE:
 processManaChangePacket(data->getMessage());
 break;
 // more cases for more data types
 }
}

The processNextPacket() function fetches a new packet and calls
dispatchPacket() to handle the data. In this case, the dispatchPacket() func-
tion exists in the call stack of each handler, but not in the one for the
recv() function. Look at the hypothetical stacks in Table 10-2, for
example.

Table 10-2: Pseudo–Call Stacks for Three Packet-Related Functions

recv() stack onHealthChange() stack onManaChange() stack

0x0BADF00D 0x101E1337 0x14141414

0x40404040 0x00ABCDEF 0x00ABCDEF

0xDEADBEEF 0xDEADBEEF 0xDEADBEEF

0x30303030 0x30303030 0x30303030

0x20202020 0x20202020 0x20202020

0x10101010 0x10101010 0x10101010

Although these three functions have the same first four addresses in
their call stacks, only the two handlers have one more address in common
(again shown in boldface). That’s 0x00ABCDEF, and it’s the address of the
dispatchPacket() function. Once again, you can imagine these laid out in a
tree view, as in Figure 10-2.

0x0BADF00D � recv()
0x40404040 � network->getPacket()

0xDEADBEEF � parseNextPacket()
0x30303030 � processInput()
0x20202020 � executeFrame()
0x10101010 � main()

0x14141414 � onManaChange()0x101E1337 � onHealthChange()

0x0ABCDEF � dispatchPacket()

Figure 10-2: Tree view of our three call stacks

A Parser Hack

Once you’ve located the function responsible for dispatching packets to
their handlers, you’ll be able to spot every handler that can be called. You

Responsive Hacks 211

can deduce a handler’s purpose by placing a breakpoint on it and watching
what values change in memory when it executes. Then, you can hook any
handlers that your bot needs to react to. (Flip back to Chapter 8 if you need
a refresher on how you might hook these functions.)

Of course, there are endless ways to implement network behavior. I
can’t cover them all, but seeing these three common techniques should
help you understand the methodology. No matter what game you’re deal-
ing with, a breakpoint on recv() should be a step in the right direction.

Performing In-Game Actions
Before a bot can react to events, you have to teach it to play the game. It
needs to be able to cast spells, move around, and activate items. On this
front, bots aren’t much different from people: they can just be told which
buttons to press. Pressing buttons is simple and suffices in many cases, but
in more intricate situations, a bot may have to communicate on the network
and tell the server what it’s trying to do.

To follow along with the examples in this section and explore on your
own afterward, open the files in the GameHackingExamples/Chapter10_
ResponsiveHacks/ folder in this book’s resource files.

Emulating the Keyboard
The most common buttons you’ll press in a game are keyboard keys, and
there are a couple of ways you can teach your bot to type.

The SendInput() Function

One common way to emulate the keyboard is with the SendInput() Windows
API function. This function, which sends keyboard and mouse input to the
topmost window, has the following prototype:

UINT SendInput(UINT inputCount, LPINPUT inputs, int size);

The first parameter, inputCount, is the number of inputs being sent. For
the examples in this book, I’ll always use a value of 1. The second parame-
ter, inputs, is a pointer to a structure (or an array of structures whose length
matches the inputCount value) with the predefined type INPUT. The final
parameter is the size of inputs in memory, as calculated with the formula
size = inputCount × sizeof(INPUT).

The INPUT structure tells the SendInput() function what type of input to
send, and the following code shows how you might initialize an instance of
INPUT to press the F1 key:

INPUT input = {0};
input.type = INPUT_KEYBOARD;
input.ki.wVk = VK_F1;

212 Chapter 10

To have your bot actually press F1, you’d need to send this input twice,
like so:

SendInput(1, &input, sizeof(input));
// change input to key up
input.ki.dwFlags |= KEYEVENTF_KEYUP;
SendInput(1, &input, sizeof(input));

The first call to SendInput() presses F1, and the second releases it. The
release happens not because the input was sent twice, but because the sec-
ond call was made with the KEYEVENTF_KEYUP flag enabled in the input param-
eter’s keyboard flags field. Since setting up input for even a single key is a bit
messy, it’s best to wrap everything inside a function. The result looks some-
thing like Listing 10-3.

void sendKeyWithSendInput(WORD key, bool up)
{
 INPUT input = {0};
 input.type = INPUT_KEYBOARD;
 input.ki.wVk = key;
 input.ki.dwFlags = 0;

 if (up)
 input.ki.dwFlags |= KEYEVENTF_KEYUP;
 SendInput(1, &input, sizeof(input));
}
sendKeyWithSendInput(VK_F1, false); // press
sendKeyWithSendInput(VK_F1, true); // release

Listing 10-3: A wrapper for emulating keystrokes with SendInput()

This function initializes input with the given key, enables the flag
KEYEVENTF_KEYUP if up is set, and calls the SendInput() function. This means
sendKeyWithSendInput() must be called a second time to send the key release,
even though the release is always required. The function is written this way
because key combinations that involve modifiers like shift, alt, or ctrl
must be sent a bit differently; the modifier’s press must come before the
key’s press, but its release must come after the key’s release.

The following code shows how you’d use the sendKeyWithSendInput() func-
tion to tell a bot to press shift-F1:

sendKeyWithSendInput(VK_LSHIFT, false); // press shift
sendKeyWithSendInput(VK_F1, false); // press F1
sendKeyWithSendInput(VK_F1, true); // release F1
sendKeyWithSendInput(VK_LSHIFT, true); // release shift

You’d have to call sendKeyWithSendInput() four times, but that’s still easier
than using the code without a wrapper function.

Responsive Hacks 213

The SendMessage() Function

An alternative method for sending keystrokes relies on the SendMessage()
Windows API function. This function allows you to send input to any win-
dow, even if it’s minimized or hidden, by posting data directly to the target
window’s message queue. This advantage makes it the method of choice
for game hackers, because it enables users to do other things while their
bot plays the game in the background. SendMessage() has the following
prototype:

LRESULT SendMessage(
 HWND window,
 UINT message,
 WPARAM wparam,
 LPARAM lparam);

The first parameter, window, is a handle to the window that the input
is being sent to. The second parameter, message, is the type of input being
sent; for keyboard input, this parameter is WM_KEYUP, WM_KEYDOWN, or WM_CHAR.
The third parameter, wparam, should be the key code. The final parameter,
lparam, should be 0 when the message is WM_KEYDOWN and 1 otherwise.

Before you can use the SendMessage() function, you must obtain a handle
to the target process’s main window. Given the title of the window, you can
obtain a handle using the FindWindow() Windows API function, as follows:

auto window = FindWindowA(NULL, "Title Of Game Window");

With a valid window handle, making a call to SendMessage() looks some-
thing like this:

SendMessageA(window, WM_KEYDOWN, VK_F1, 0);
SendMessageA(window, WM_KEYUP, VK_F1, 0);

The first call presses the F1 key, and the second call releases it. Keep in
mind, however, that this series of calls works only for keys that don’t input
text, like F1, insert, or tab. To have your bot press keys that input text, you
must also send a WM_CHAR message between the down and up messages. To
type W, for instance, you’d do something like this:

DWORD key = (DWORD)'W';
SendMessageA(window, WM_KEYDOWN, key, 0);
SendMessageA(window, WM_CHAR, key, 1);
SendMessageA(window, WM_KEYUP, key, 1);

This creates a key variable so the letter key to press can be changed eas-
ily. Then it follows the same steps the F1 example used, just with a WM_CHAR
message in between.

214 Chapter 10

N o t e 	 You can actually send nothing but the WM_CHAR message and get the same result, but
it’s best practice to send all three messages. Game developers can easily shut down bots
by patching the game to ignore WM_CHAR messages that don’t follow WM_KEYDOWN, and
they can even use it as a way to detect your bot and ban you.

As I showed with the SendInput() technique, you can create a wrapper
around this functionality to make your bot code easier to work with. The
wrapper looks something like this:

void sendKeyWithSendMessage(HWND window, WORD key, char letter)
{
 SendMessageA(window, WM_KEYDOWN, key, 0);
 if (letter != 0)
 SendMessageA(window, WM_CHAR, letter, 1);
 SendMessageA(window, WM_KEYUP, key, 1);
}

Unlike Listing 10-3, this wrapper actually sends both the press and
release. This is because SendMessage() can’t be used to send keystrokes with
modifiers, so there’s never any need to insert code between the two calls.

N o t e 	 There are multiple ways a game might check whether a modifier key is pressed,
though. You might be able to send modifier keys to certain games by calling the
SendMessage() function, but it depends on how those games detect modifiers.

You can use this wrapper in a similar way as the one in Listing 10-3. For
example, this code sends F1 followed by W:

sendKeyWithSendMessage(window, VK_F1, 0);
sendKeyWithSendMessage(window, 'W', 'W');

This example, like all of the SendMessage() code I’ve shown so far, sim-
ply gets the job done. It can input text, but it doesn’t exactly send proper
messages.

There are a lot of small details you have to get right if you want to send
100 percent valid messages with the SendMessage() function. For instance,
the first 16 bits of lparam should store the number of times the key has been
automatically repeated as a result of being held down. The next 8 bits
should store the scan code, a key identifier that is specific to each keyboard
manufacturer. The next bit, number 24, should be set only if the button is
on an extended part of the keyboard, such as the number pad. The follow-
ing 4 bits are undocumented, and the next bit should be set only if the alt
key was down when the message originated. The last 2 bits are the previous
state flag and the transition state flag. The previous state flag is set only if
the key was previously down, and the transition state is set only if the key
was previously in the state opposite its current position (that is, if the key is
now up and was previously down, or vice versa).

Responsive Hacks 215

Thankfully, the average game doesn’t consider most of these values. For
that matter, the average piece of software doesn’t care about them either.
If you have to fill all of these values with proper data to make your bot
work, you’re moving in the wrong direction. There are many other ways to
perform actions, the majority of which are simpler than trying to emulate
the exact behavior of the operating system’s kernel-level keyboard input
handler/dispatcher. In fact, there’s already a function that does that, and
I’ve already talked about it: the SendInput() function.

You can also control the mouse with the SendInput() and SendMessage()
functions, but I highly recommend avoiding it. Any mouse commands
you send will affect, and be affected by, any legitimate mouse movements,
mouse clicks, or keystrokes sent by the player. The same is true for keyboard
input, but the complications are much rarer.

Sending Packets
Before a game draws a frame, it checks for keyboard and mouse input.
When it receives input that results in an action, such as moving around or
casting a spell, it checks to make sure the action is possible and, if so, tells
the game server that the action has been performed. The game code to
check for events and alert the server often looks something like this:

void processInput() {
 do {
 auto input = getNextInput();
 if (input.isKeyboard())
 processKeyboardInput(input);
 // handle other input types (e.g., mouse)
 } while (!input.isEmpty());
}
void processKeyboardInput(input) {
 if (input.isKeyPress()) {
 if (input.getKey() == 'W')
 step(FORWARD);
 else if (input.getKey() == 'A')
 step(BACKWARD);
 // handle other keystrokes (e.g., 'S' and 'D')
 }
}
void step(int direction) {
 if (!map->canWalkOn(player->position))
 return;
 playerMovePacket packet(direction);
 network->send(packet);
}

The processInput() function is called every frame. The function iterates
over all pending inputs and dispatches different types of inputs to their rel-
evant handlers. In this case, when keyboard input is received, it’s dispatched

216 Chapter 10

to the processKeyboardInput() function. This handler then checks whether
the key is either W or S, and, if so, calls step() to move the player in the cor-
responding direction.

Since step() is used to perform an action, it is called an actor function.
The invocation of an actor function is called actuation. You can directly call
a game’s actor functions from your bot to perform an action while com-
pletely bypassing the input layer.

Before you can call an actor, though, you must find its address. To do
this, you can attach OllyDbg to the game, open the command line, and
enter bp send. This will place a breakpoint on the send() function, which is
used to send data over the network. When you play the game, every time
you take a step, cast a spell, pick up loot, or do anything else, your break-
point should trigger, and you can note each function in the call stack.

N o t e 	 The game should call send() every time you do anything while playing. Pay attention
to what you did before each send() breakpoint is hit, as that will give you a rough
idea of what action each call is communicating to the server, and, ultimately, what
the actor you find is responsible for.

Once you have a few different call stacks, you can compare them to
locate the actor functions. To see how to spot the actor functions, let’s com-
pare the two annotated call stacks in Figure 10-3.

0x0BADF00D � castSpell()

0x40404040 � processKeyboardInput()
0x30303030 � processInput()
0x20202020 � doFrame()
0x10101010 � main()

0xDEADBEEF � step()

0x70707070 � send()
0x60606060 � connection->send()
0x50505050 � network->send()

Figure 10-3: Tree view of call stacks to two actor functions

Like these two stacks, the call stacks you find should be identical at the
top, sharing a couple of common functions responsible for generic network
transmission. They should also be identical on the bottom, since each call
to send() should have originated from the processInput() function. Each
stack should have some unique functions between these identical regions,

Responsive Hacks 217

though, and those are the actor functions you’re looking for. Typically, the
function of interest is immediately beneath the common network calls. In
this case, the two actors are the step() and castSpell() functions.

After hacking the same game for a while, you’ll learn how far up
the stack the actor functions are from the send() call. In Figure 10-3, for
example, the actors happen three calls before the send() call. Knowing this,
you could just climb the stack in OllyDbg (ctrl-F9 followed by F8) three
times when your send() breakpoint is hit and be inside the actor function
that sent the data.

Once you’ve found an actor function, you can call it from an injected
DLL. Here’s how you might call step() if you found it at 0xDEADBEEF:

typedef void _step(int direction);
auto stepActor = (_step*)0xDEADBEEF;

stepActor(FORWARD);

Since the bot won’t know the actual name for this game function, the
code assigns the contents of memory at 0xDEADBEEF to a conveniently
named variable: stepActor. Then, the code just calls stepActor() like any
other function.

If you’ve got the right address, function prototype, and parameters, this
should work beautifully; you’ll be able to automate actions as if you have
access to the game’s source code. Just make sure to call the actor functions
from inside the same thread as the game, or you can run into threading
issues. The best way to do this is to call the actors from a hook on a major
function like Direct3D’s EndScene() or the Windows API’s PeekMessage() func-
tion, as these functions will usually be called only from the game’s main
thread.

Using t his to C a l l _ _t hisca l l

If you try to call an actor function that’s a nonstatic member of a class, the
function will have a _thiscall calling convention, which means you’ll need to
pass the instance of the class on the ECX register. (You can brush up on calling
conventions in “Function Calls” on page 94.) Passing the instance is straight-
forward, but you’ll have to locate a pointer chain to the class instance first.

To find the pointer chain, you can drop a breakpoint on the actor function,
grab the class instance value from ECX when the breakpoint kicks, and throw
that value into a Cheat Engine pointer scan. Then, to call the function, you’d
walk the pointer chain, obtain the current instance address, and use inline
assembly to set up ECX and make the actual function call. This process works
similarly to the way VF hook callbacks call their original counterparts, as shown
in “Writing a VF Table Hook” on page 156.

218 Chapter 10

Tying the Pieces Together
After you’ve created frameworks for observing events and performing
actions, you can tie them together to create responsive hacks. Responsive
hacks come in many flavors, but there are a few common ones.

Making the Perfect Healer
A favorite bot among gamers is autohealing, a hack that automatically uses a
healing spell when the player’s health decreases drastically or drops below
a certain threshold. Given a way to detect changes in health and an actor
function to cast spells, an autohealer might look something like this:

void onHealthDecrease(int health, int delta) {
 if (health <= 500) // health below 500
 castHealing();
 else if (delta >= 400) // large drop in health
 castHealing();
}

This autohealing function is pretty simple, but it works well. More
advanced autohealers might have many more levels of healing and be able
to learn as they go. You’ll get working example code and an in-depth expla-
nation of advanced autohealers in “Control Theory and Game Hacking” on
page 222.

Resisting Enemy Crowd-Control Attacks
Anti-crowd-control hacks detect incoming crowd-control attacks and automati-
cally cast spells that reduce their effects or completely negate them. Crowd-
control attacks disable players in some way, so having enemies cast them on
you can be a pain.

Given a way to detect incoming or active crowd-control effects, such as
by detecting a Direct3D model or by intercepting an incoming packet, and
an actor function to cast spells, you could have a bot react instantly to such
attacks like so:

void onIncomingCrowdControl() {
 // cast a shield to block the crowd control
 castSpellShield();
}
void onReceiveCrowdControl() {
 // cleanse crowd control that has already taken effect
 castCleanse();
}

An onIncomingCrowdControl() function might try to stop the crowd-
control spell from ever hitting you. Failing that, the bot could call an
onReceiveCrowdControl() spell to remove the effects.

Responsive Hacks 219

Avoiding Wasted Mana
Spell trainers are also quite common among botters. Spell trainers wait until
the player has full mana and then cast spells to increase the player’s magic
level or stats. This allows players to quickly increase their magic skills, as
they will never waste mana regeneration just because they have full mana.

Given a way to detect changes in mana and an actor function to cast
spells, a bot might include the following pseudocode for a spell trainer:

void onManaIncrease(int mana, int delta) {
 if (delta >= 100) // player is using mana potions,
 return; // they must need the mana, abort
 if (mana >= MAX_MANA - 10) // mana is nearly full, waste some
 castManaWasteSpell();
}

This function takes the player’s mana and the increase in that player’s
mana (delta) as parameters. If the increase in mana is above a certain
amount, it assumes the player is using potions or other items to replenish
mana, and it won’t cast any extra spells. Otherwise, if the player has plenty
of mana, the function fires off any old spell to get the player some experi-
ence points.

Other common responsive hacks are autoreload to instantly reload
ammo, autododge to evade incoming projectiles, and autocombo to instantly
attack the same target as a nearby ally. Really, the only limit to the number
of responsive hacks you can add to a bot is the number of events your bot
can observe in the game, multiplied by the number of valid and helpful
responses it can send for each event.

Closing Thoughts
Using hooks, memory manipulation, and keyboard simulation, you can
begin creating your first responsive hacks. These hacks are your entry
point into gaming autonomy, but they’re only a glimpse of what’s possible.
Chapter 11 will be the pinnacle of your game-hacking adventure. Using
everything you’ve learned so far, and building on the principles of respon-
sive hacks, you’ll learn how to automate advanced actions and create a truly
autonomous bot.

If you’re not feeling quite ready to go deeper, I strongly recommend
reviewing the earlier material and then getting some practice in an isolated
environment on your own machine. Implementing bots like this is a lot eas-
ier than you might think, and it’s an amazingly satisfying experience. Once
you’re comfortable making autohealers and other basic responsive hacks,
you’ll be ready to start completely automating gameplay.

11
P u t t ing I t A l l Toge t he r :

W r i t ing A u t onomo u s B o t s

The end goal of game hacking is to make
a full-fledged automated bot capable of

playing a game for hours on end. Such
bots can heal, drink potions, farm monsters,

loot corpses, walk around, sell loot, buy supplies, and
more. Making bots this powerful requires you to com-
bine your hooks and memory reads with concepts like
control theory, state machines, and search algorithms,
which are all covered in this chapter.

Throughout the lessons here, you’ll also learn about common auto-
mated hacks and how they should behave at a high level. After covering
the theory and code behind automated hacks, I’ll give you a high-level
look at two types of bots that rely on such code: cavebots, which can explore

222 Chapter 11

caves and bring home the loot, and warbots, which can fight enemies for
you. By the end of the chapter, you should be ready to bust out your tools,
fire up your development environment, and start making some really awe-
some bots.

Control Theory and Game Hacking
Control theory is a branch of engineering that provides a way to control the
behavior of dynamic systems. Control theory determines the state of a system
using sensors, after which a controller determines the set of actions needed to
bring the system’s current state to some other desired state. After the con-
troller executes the first action in the set, the entire process—known as a
feedback loop—repeats (see Figure 11-1).

Action System output
Controller System

Sensors

Figure 11-1: A control theory feedback loop

Let’s apply this feedback loop to game hacking. To automate play
within a game (the system), a bot implements some algorithms (the con-
troller) that understand how to play the game in any state observed by
the memory reads, network hooks, and so on (the sensors). The control-
ler typically has some human inputs, like the path to walk, creatures to
attack, and loot to pick up. Thus, to reach the desired state, the controller
must perform some subset of these inputs that are possible given the cur-
rent state.

For instance, if there are no creatures onscreen and no corpses to
loot, the desired state may be for the player to reach the next location
(called a waypoint) in the predefined path. In this case, the controller
moves the player one step closer to the waypoint on each iteration. If the
player encounters a creature, the controller might decide to attack the
creature in the first frame and, in the following frames, switch between
running from the creature (known as kiting) and shooting spells at it.
Once the creature dies, the controller executes a set of actions to loot
the body and continue to the next waypoint.

Given this example of how a feedback loop might operate, it might
seem overwhelming to code such a system. Luckily, there are a few design
patterns that make the task much easier than it sounds.

Putting It All Together: Writing Autonomous Bots 223

State Machines
State machines are mathematical models
of computation that describe how a sys-
tem behaves based on input. Figure 11-2
shows a simple state machine that reads
a list of binary digits. The machine
starts with an initial state of S1. As it
iterates over the digits in the input, it
changes its state accordingly. In this
case, states S1 and S2 repeat themselves
when the machine encounters a 1 and
activate one another when it encounters
a 0. For example, for the binary digits
11000111, the state transitions would be
S1, S1, S2, S1, S2, S2, S2, and finally S2.

With a small spin on the classical state machine theory, a state machine
can be the controller in a control theory feedback loop. This tweaked ver-
sion of a state machine comprises a list of states, the conditions signifying
each state, and the actions that must happen to reach each state.

S1 S2

Input

1 1
0

0

Figure 11-2: A simple state machine

S tat e M achine s and G ame H acking

A game-hacking state machine not only must keep an internal state but also
must respond to (or actuate) the game environment based on that state. The
overall game state can change based on your bot’s actuation, the behavior
of other players, and other unpredictable occurrences in the game environ-
ment. For this reason, trying to persistently walk a state machine based on the
observed game environment is futile; it’s nearly impossible to create a set of
transitions for each state to account for every possible observation that can
be made between iterations. It makes more sense for the state machine to
reevaluate the game environment as a fresh slate each time it considers the
input. To do this, the state machine must use the game environment itself as
the mechanism for transitioning between states—that is, the machine’s actua-
tion on the environment should have enough of an effect on the next iterations
that it activates a new state. Classical state machines can be devised that are
capable of working like this, but we’re going to flatten them out and use them in
a much simpler, yet still very powerful, way.

If you’re familiar with classical state machines, this may not seem intuitive,
but in the coming sections you’ll see how state machines can be mutated and
paired with control theory to achieve what we want.

224 Chapter 11

The major difference is that instead of one state merely activating
another, for each state in a game automation state machine, a bot will per-
form in-game actions that change the overall state of the game and, thus,
the state that is detected on the next iteration of the feedback loop. In
code, an object to represent a state in this machine might look like this:

class StateDefinition {
public:
 StateDefinition(){}
 ~StateDefinition(){}
 bool condition();
 void reach();
};

You can assemble StateDefinition objects into a state machine with a
simple std::vector definition, like this:

std::vector<StateDefinition> stateMachine;

And presto, you have the skeleton of a state machine, ready to receive
any StateDefinition objects you create. In conjunction with a feedback loop,
this state machine can be used to define the flow of automation.

First, you can create a list of definitions that model your bot’s desired
behavior, ordered in the vector by importance. Each StateDefinition object
can use information from your sensors as input, passing that data to the
condition() function to determine whether or not the state should be acti-
vated. Then, you can create a controller that loops over the list of states,
calling the reach() function of the first state whose condition() function
returns false. Finally, you can wrap the controller in a feedback loop. If you
don’t see how this feedback loop would work yet, don’t worry; I’ll show you
how to code it now.

N o t e 	 You can think of the statement in your condition() function as a requirement for the
machine to transition to the next state. If the statement is true, it means no actuation
must happen before the next state in the list can be evaluated and the loop can con-
tinue iterating. If the statement is false, it means some actuator must occur before the
transition can happen.

You’ll find all of the example code for the following section and
“Error Correction” on page 230 in the GameHackingExamples/Chapter11_
StateMachines directory of this book’s source files. The included projects
can be compiled with Visual Studio 2010, but they should also work with any
other C++ compiler. Download them at https://www.nostarch.com/​gamehacking/
and compile them if you want to follow along.

Putting It All Together: Writing Autonomous Bots 225

Combining Control Theory and State Machines
To tie states together with a feedback loop, first you have to provide each
StateDefinition object with a generic way to access the sensors and actua-
tors that you’ve implemented. The StateDefinition class then becomes the
following:

class StateDefinition {
public:
 StateDefinition(){}
 ~StateDefinition(){}
 bool condition(GameSensors* sensors);
 void reach(GameSensors* sensors, GameActuators* actuators);
};

This change simply modifies the condition() and reach() functions to
accept instances of the classes GameSensors and GameActuators as arguments.
GameSensors and GameActuators are classes you need to define; GameSensors will
contain the results of memory reads, network hooks, and other data sources
your bot intercepts from the game, while GameActuators will be a collection of
actor functions capable of performing actions inside the game.

Next, you need a generic way to define each individual state. You
could abstract the definition of each state to its own class that inherits
StateDefinition and implements condition() and reach() as virtual functions.
Alternatively, if the source code needs to fit in a small space (like a book,
wink wink), you could keep a single class to represent each definition and
use std::function to implement the condition() and reach() functions outside
the class definition.

Following that alternative method, the final version of StateDefinition
would look like this:

class StateDefinition {
public:
 StateDefinition(){}
 ~StateDefinition(){}
 std::function<bool(GameSensors*)> condition;
 std::function<void(GameSensors*, GameActuators*)> reach;
};

With this version of the StateDefinition class, you could define a new
state by creating an instance of the class and assigning condition() and
reach() to functions that correspond with the intended behavior.

A Basic Healer State Machine
The next step is defining the bot’s actual behavior. To keep the example
code simple, let’s say you’re implementing an automatic healer. This healer

226 Chapter 11

has two healing methods: it uses strong healing if the player is at or below
50 percent health and weak healing if the player is between 51 and 70 per-
cent health.

A state machine representing this behavior needs two states, one for
strong healing and one for weak healing. To start, you need to define the
state machine as a vector with two StateDefinition objects:

std::vector<StateDefinition> stateMachine(2);

This code creates a state machine called stateMachine and initializes
it with two empty StateDefinition objects. Next, you define the condition()
and reach() functions for these state definitions. The strong healing state is
the most important because it keeps the character from dying, so it should
come first in the vector, as shown in Listing 11-1.

auto curDef = stateMachine.begin();
curDef->condition = [](GameSensors* sensors) {

u return sensors->getHealthPercent() > 50;
};
curDef->reach = [](GameSensors* sensors, GameActuators* actuators) {

v actuators->strongHeal();
};

Listing 11-1: Code for a strong healing state

This code first creates an iterator called curDef that points to the first
StateDefinition object in the stateMachine vector. The object’s condition()
function is then defined u; in English, this definition says, “The state is met
if the player’s health percent is greater than 50.” If the state isn’t met, then
the object’s reach() function calls the strongHeal() actor function v so that
strong healing can be performed.

With the strong healing state defined, next you define the weak healing
state, as shown in Listing 11-2.

curDef++;
curDef->condition = [](GameSensors* sensors) {

u return sensors->getHealthPercent() > 70;
};
curDef->reach = [](GameSensors* sensors, GameActuators* actuators) {

v actuators->weakHeal();
};

Listing 11-2: Code for weak healing

After incrementing curDef so it points to the second StateDefinition
object in the stateMachine vector, this code defines the object’s condition()

Putting It All Together: Writing Autonomous Bots 227

function u as, “The state is met if the player’s health percent is greater than
70.” It also defines the object’s reach() function as an actuators->weakHeal()
call v.

Once you’ve finished defining the state machine, you must imple-
ment the controller. Since the actual behavior of the controller is con-
tained in the state machine, you only need to add a simple loop to
complete it:

for (auto state = stateMachine.begin(); state != stateMachine.end(); state++) {
 if (u!state->condition(&sensors)) {
 state->reach(&sensors, &actuators);
 break;
 }
}

This controller loop iterates over the state machine, executes the
reach() function of the first state whose condition() function returns false u,
and breaks out if any reach() function is called. The final step is to imple-
ment the feedback loop and plop the controller loop inside it, as shown in
Listing 11-3.

while (true) {
 for (auto state = stateMachine.begin();
 state != stateMachine.end();
 state++) {
 if (!state->condition(&sensors)) {
 state->reach(&sensors, &actuators);
 break;
 }
 Sleep(FEEDBACK_LOOP_TIMEOUT);
}

Listing 11-3: Final healing state machine and feedback loop

This loop continuously executes the controller loop and sleeps for
FEEDBACK_LOOP_TIMEOUT milliseconds between each execution. The Sleep()
call allows the game server to receive and process any actuation from the
previous iteration and allows the game client to receive any results of the
actuation from the server before executing the next controller loop.

If you’re still a bit confused about what I just showed you, check out
Figure 11-3, which shows how the infinitely looping code in Listing 11-3
works. First, it checks whether the strong healing condition is true, and if it
is, the weak healing condition is checked. If the strong healing condition
is false, then the player’s health must be at or below 50 percent, so a strong
healing method gets called. If the weak healing condition check is false,
then the player’s health must be between 51 and 70 percent, so the weak
healing method is executed.

228 Chapter 11

Weak healing condition:
Player has more than

70 percent health

Strong healing condition:
Player has more than

50 percent health

Weak healing
reach()

Strong healing
reach()

Sleep()

while (true)

Begin

True

True

False

False

Figure 11-3: Flowchart of the healing state machine and feedback loop

After either method, the machine sleeps. If both condition checks are
true, then the player needs no healing. The machine does nothing to change
the state and sleeps before starting again at the top of the while loop.

A Complex Hypothetical State Machine
The behavior implemented in the healing state machine is simple, so roll-
ing it into this kind of control structure may seem like overkill, but it’s
useful if you want to expand the controller. If, for example, you wanted to
combine the healing state machine with the “walk, attack, loot” behavior
that I discussed in “Control Theory and Game Hacking” on page 222, the
control structure would be much more complex. Let’s take a high-level look
at the states you’d need:

Strong healing  Condition met if health is over 50 percent. Reach by
casting strong healing spell.

Weak healing  Condition met if health is over 70 percent. Reach by
casting weak healing spell.

Attack spell  Condition met if no target is available or if attack spell is
on cooldown. Reach by casting attack spell on target.

Putting It All Together: Writing Autonomous Bots 229

Kite monster  Condition met if no target is available or if distance
from target is adequate. (The definition of “adequate” depends on how
far away you want to be from enemies when kiting.) Reach by taking a
step away from target.

Target monster  Condition met if there’s no creature to attack. Reach
by attacking a creature.

Loot item  Condition met if there’s no corpse open or if open corpse
has nothing to loot. Reach by taking an item from open corpse.

Approach corpse  Condition met if there are no corpses to open or if
adjacent to a corpse. Reach by taking a step toward a corpse that will be
opened.

Open corpse  Condition met if the character is not adjacent to a
corpse that can be opened. Reach by opening adjacent corpse.

Follow path  Condition met if the character is unable to move to cur-
rent waypoint or if standing on current waypoint. Reach by taking a
step toward current waypoint.

Advance waypoint  Condition met if there are no waypoints left to
follow. Reach by updating the current waypoint to the next waypoint
in the list. If the character can’t reach the current waypoint for some
reason (say, if the character is stuck), then the Advance Waypoint state
keeps it from being stuck. If the character has reached the current way-
point, Advance Waypoint selects the next waypoint to keep things mov-
ing along.

This state machine is quite a bit more complex than the healing-
only state machine. If I diagrammed this state machine, there would
be 23 objects in the diagram, with arrows going over 33 control paths.
Compare that to Figure 11-3, which has only 7 objects and 9 control paths.

You could code the healer behavior without using a state machine or
feedback loop, but I can’t imagine how to easily do the same for this full-
fledged bot. Each of these 10 states relies on not only its own condition
but also the condition of every state preceding it. Moreover, hardcoding
the logic would either require a ton of nested if() statements or a bunch
of stacked if()/return() statements—and, either way, it would just behave
exactly like the state machine but with no runtime flexibility.

Runtime flexibility refers to a state machine’s ability to mutate. Unlike
hardcoded condition checks, state definitions in a state machine can be
moved, removed, and added dynamically. The state machine method allows
you to plug and play different behaviors and features depending on user
input.

To take this concept a step further, you could expose your sensors and
actuators to a Lua environment, create Lua functions capable of adding
and removing states from the state machine, and modify the StateDefinition
so that its condition() and reach() functions can call Lua functions exposed
by the Lua environment. Writing a control system this way would allow you

230 Chapter 11

to code the core of your bot (hooks, memory reading, actuation) in C++
while making Lua (a high-level, dynamic language) available to you for
automation.

N o t e 	 You can embed Lua in your own programs by including a few headers and link-
ing against the Lua library. This process is not difficult, but it’s outside the scope of
this book, so I encourage you to check out Chapter 24 of Programming in Lua by
Roberto Ierusalimschy (http://www.lua.org/pil/24.html) for more information.

Error Correction
Another piece of control theory that’s useful for game hacking is error correc-
tion. An error correction mechanism in a controller observes the outcome
of actuation, compares the outcome to an expected result, and adjusts future
calculations to bring later outcomes closer to the expected one. Error correc-
tion can come in handy when you’re working with stochastic systems, where
the output generated from a given input is not fully predictable.

Games as a whole are stochastic, but, luckily for game hackers, the results
of actions are mostly deterministic. Take the healing controller, for example.
In most games, you can calculate exactly how much health you can heal
with a given spell, and, thus, you know exactly when to heal. But imagine
you’re writing a healer for the small spectrum of situations where your heal-
ing is impossible to calculate; for instance, maybe the bot is supposed to
work on a variety of characters spanning many levels without user input.

Error correction could enable your bot to learn how to best heal the
players. In this scenario, there are two ways you can implement error cor-
rection, each of which depends on how the healing system works.

Adjusting for a Constant Ratio

If you heal for a constant ratio of health, you’ll only need to adjust your con-
troller after the first heal. Assuming that your sensors can detect how much
you’ve healed, this adds only a few lines of code. You could easily modify the
weak healing state in Listing 11-2 to something like this:

curDef->condition = [](GameSensors* sensors) -> bool {
 static float healAt = 70;
 static bool hasLearned = false;
 if (!hasLearned && sensors->detectedWeakHeal()) {
 hasLearned = true;
 healAt = 100 - sensors->getWeakHealIncrease();
 }
 return sensors->getHealthPercent() > healAt;
};

Instead of hardcoding 70 as the threshold for weak healing, this code
moves the threshold to a static variable called healAt. It also adds another
static variable called hasLearned so that the code knows when learning is
complete.

Putting It All Together: Writing Autonomous Bots 231

On each invocation of this condition() function, the code checks two
conditions: whether hasLearned is false and whether the sensors detected a
weak healing event. When this check passes, the code sets hasLearned to true
and updates healAt to heal at or below the perfect percentage; that is, if your
weak healing mustered up a 20 percent increase in health, healAt would be
set to 80 percent health instead of 70 percent, so each heal would bring the
player back up to 100 percent health.

Implementing Adaptable Error Correction

But what if your healing power increases? If a character can gain levels,
apply skill points, or increase maximum health, the amount of health it can
heal may change accordingly. For example, if you start a bot on a level-10
character and let it run until the character is level 40, your healing code
will need to adapt. A level-40 character healing like it did at level 10 would
either immensely overheal or die quickly against on-level game enemies.

To handle this scenario, a bot needs to constantly update its healing
threshold to reflect the observed healing amount. Listing 11-4 shows how you
can modify the strong healing condition function in Listing 11-1 to do this.

curDef->condition = [](GameSensors* sensors) -> bool {
 static float healAt = 50;

u if (sensors->detectedStrongHeal()) {
 auto newHealAt = 100 - sensors->getStrongHealIncrease();

v healAt = (healAt + newHealAt) / 2.00f;
w sensors->clearStrongHealInfo();

 }
 return sensors->getHealthPercent() > healAt;
};

Listing 11-4: Tweaking the strong healing condition code

As in the modified weak healing function, the healing threshold has
been moved to a static variable called healAt, but this time, the logic is a bit
different. Since learning must happen continually, there’s no variable to
track whether the bot has already learned its true healing capacity. Instead,
the code just checks whether the sensors have seen a strong healing event
since its last invocation u. If so, the code replaces healAt with the average of
healAt and newHealAt and calls a function to clear the sensors of information
related to strong healing w.

Clearing the sensors is actually very important, because it keeps the
code from constantly updating healAt against feedback from the same
strong healing cast. Notice, too, that this function doesn’t update healAt
to a perfect value but instead slides it toward the observed optimal value.
This behavior makes the new function ideal for situations where there is
some amount of randomness in how much you can actually heal. If your bot
needs to slide toward the new value faster, you might change the line at v
to something like this:

healAt = (healAt + newHealAt * 2) / 3.00f;

232 Chapter 11

This code to update healAt uses an average weighted toward the newHealAt
value. There are a few points to consider when using this approach, however.
First, what happens when you overheal? In some games, when you heal to
full health, your sensors might be able to detect only how much you actu-
ally healed. In other games, your sensors may be able to detect the actual
amount healed. Put another way, if you cast a 30 percent strong heal from
85 percent health, do your sensors see a heal of 30 percent or 15 percent?
If the answer is 30 percent, you’re set. If the answer is 15 percent, your code
needs a way to adjust downward.

One way to adjust accordingly is to decrement healAt when your sensors
see a heal that brings you to full health, like this:

curDef->condition = [](GameSensors* sensors) -> bool {
 static float healAt = 50;
 if (sensors->detectedStrongHeal()) {

u if (sensors->getStrongHealMaxed()) {
 healAt--;
 } else {
 auto newHealAt = 100 - sensors->getStrongHealIncrease();
 healAt = (healAt + newHealAt) / 2.00f;
 }
 sensors->clearStrongHealInfo();
 }
 return sensors->getHealthPercent() > healAt;
};

This code is almost the same as Listing 11-4, but it adds an if() clause
to decrement healAt if a max heal is detected u. Otherwise, the function
should behave like Listing 11-4.

Healing is a simple case, but this code shows a great example of how
you can use error correction to dynamically improve your bots’ behavior.
One more advanced use case is adjusting skillshots to account for enemy
movement patterns. Every player has patterns in how they avoid skillshots,
so if your sensors are able to measure the direction and distance an enemy
moves when dodging a skillshot, your controller code can adjust the loca-
tion where the bot initially shoots the skillshot. In this same scenario, learn-
ing would also help the bot account for differences in game server latency,
character movement speed, and so on.

When using error correction, note that your code will be cleaner and
more portable if your state definitions have some form of internal book-
keeping other than static variables. Moreover, to avoid cluttering your state
definitions, I suggest encapsulating the error correction logic in some
external modules that are easily invoked when needed.

Pathfinding with Search Algorithms
One common challenge you’ll face when writing an autonomous bot is cal-
culating a path for a character to follow from one location to another. Aside
from the sheer reverse engineering challenge of creating sensors to read

Putting It All Together: Writing Autonomous Bots 233

which coordinates on the game map are blocking forward movement or
not, there’s also the algorithmic challenge of calculating a path within that
map. Calculating a path is called pathfinding, and game hackers often use a
search algorithm to tackle it.

Two Common Search Techniques
Given a grid of tiles, a starting location a, and an ending location b, a
search algorithm calculates a path from a to b. The algorithm does this
by creating a node at a, adding nodes adjacent to a to a list of tiles to be
explored (called the frontier), updating the node to the best tile in the fron-
tier, and repeating the process until the node reaches b. Different search
algorithms select the best node differently, using either a cost, a heuristic,
or both.

Dijkstra’s algorithm, for example, calculates the cost of a tile based on its
distance from the a node and selects the tile with the lowest cost. Imagine
an empty two-dimensional grid with a in the middle. In a search following
Dijkstra’s algorithm, the frontier will expand in a circular pattern around a
until b lies on the edge of the circle, as seen in Figure 11-4.

The greedy best-first search algorithm, instead of prioritizing nodes by
their distance from the starting point, uses a heuristic to estimate the dis-
tance from a node in the frontier to b. The algorithm then selects the node
with the shortest estimated distance. Imagine this algorithm in the same
grid as before; the frontier would be a line going almost directly from a to
b, as seen in Figure 11-5.

How Obstacles Disrupt Searches
The difference in how these algorithms behave becomes clearer once obsta-
cles are added to the grid. If, for instance, a wall separates a and b, Dijkstra’s

Figure 11-4: The frontier of Dijkstra’s
algorithm. Lighter tiles are higher cost.

Figure 11-5: The frontier of the
greedy best-first search algorithm.
Lighter tiles are higher cost.

a

b

a

b

234 Chapter 11

algorithm will always find the quickest path, but with a huge consequence.
The radius of the circular frontier around a will be equal to the length of
the final path; let’s call that radius r. If no grid boundaries clip the frontier,
you can roughly calculate the number of nodes opened by taking the area
of a circle with radius r. If the path around the wall is 50 tiles, the algorithm
will open roughly 7,854 tiles, as shown in this equation:

π × 502 = 7,854

In the same scenario, greedy best-first search will calculate a less-than-
optimal path but open substantially fewer tiles. It’s not as easy to visualize
how the frontier will expand, and it’s not important right now, so I won’t go
into it here. At the end of the day, neither of these algorithms really fits the
pathfinding problem well. The optimal path is slow, and the fast path isn’t
optimal.

To quickly calculate an optimal path, you need to fuse Dijkstra’s algo-
rithm with greedy best-first search. Luckily, someone has already done this,
and the resulting algorithm is a monster known as A-star search (often just
called A*).

A* uses the sum of a cost, called g, and a heuristic, called h, to select
nodes. These resulting sum is called the score. Put simply, score = g + h. Like
Dijkstra’s algorithm, A* can calculate the most optimal path from a to b,
and like greedy best-first search, it can do so relatively quickly.

An A* Search Algorithm
Now that you know the fundamentals, let’s write code to implement the
A* algorithm. This implementation will work in a two-dimensional grid. It
won’t allow diagonal movement at first, but I’ll discuss in a bit how you can
modify the code to work with diagonal movement, too.

All of the example code for this section is in the GameHackingExamples/
Chapter11_SearchAlgorithms directory of this book’s source files. The included
projects can be compiled with Visual Studio 2010, but they should also work
with any other C++ compiler. Download them at https://www.nostarch.com/
gamehacking/ and compile them to follow along. If you execute Chapter11_
SearchAlgorithms.exe, you’ll be able to define your own 20×20 grid and watch
the algorithm calculate a search path.

Creating an A* Node

To start, define an empty AStarNode class as follows:

typedef std::shared_ptr<class AStarNode> AStarNodePtr;
class AStarNode
{
public:
};

This code defines the AStarNode class and a std::shared_ptr type defini-
tion called AStarNodePtr to make it easier to create safe pointers to the class.

Putting It All Together: Writing Autonomous Bots 235

Next, within the public scope of this class, declare member variables for the
node’s x-position, y-position, cost, and node’s score:

int x, y;
int g, score;

Additionally, you need a public member of type AStarNodePtr that refer-
ences the parent node:

AStarNodePtr parent;

After declaring all member variables, declare a public constructor that
initializes them upon instance creation, as follows:

AStarNode(int x, int y, int cost, AStarNodePtr p, int score = 0)
 : x(x), y(y), g(cost), score(score), parent(p)
{}

Now, to make creating safe pointers easier, add a static helper function
like this:

static AStarNodePtr makePtr(
 int x, int y, int cost,
 AStarNodePtr p,
 int score = 0)
{
 return AStarNodePtr(new AStarNode(x, y, cost, p, score));
}

This makePtr() function creates a new instance of AStarNode and returns
the instance wrapped inside of an AstarNodePtr.

Let’s recap. The AStarNode class has member variables x, y, g, score, and
parent. When the class is constructed, all of these members are initialized
from values passed to the constructor, with the exception of score, which
is optional (because you use it only when making copies of an AStarNode
instance) and set to 0 if not provided.

Next, define a public member function to calculate the heuristic when
given the destination coordinates:

int heuristic(const int destx, int desty) const
{
 int xd = destx - x;
 int yd = desty - y;

u return abs(xd) + abs(yd);
}

This function returns the Manhattan distance heuristic u, a distance cal-
culation designed for grids where diagonal movement is not possible:

∆ ∆x y+

236 Chapter 11

To calculate a path that allows diagonal movement, you’d need to
modify this function to use the Euclidean distance heuristic, which looks
like this:

() ()∆ ∆ ∆ ∆x x y y× + ×

The class also needs a function to update score. You add that function
to the public scope as follows:

#define TILE_COST 1
void updateScore(int endx, int endy)
{
 auto h = this->heuristic(endx, endy) * TILE_COST;
 this->score = g + h;
}

Now, score should change to g + h when given destination coordinates
to calculate h.

To wrap up, the node class also needs a function that can calculate all
of its child nodes. The function could do this by creating new nodes for
each tile adjacent to the current node. Each new node refers to the current
node as its parent, so the class needs to be able to create an AStarNodePtr to a
copy of the current node as well. Here’s how all that works:

AStarNodePtr getCopy()
{
 return AStarNode::makePtr(x, y, g, parent, score);
}
std::vector<AStarNodePtr> getChildren(int width, int height)
{
 std::vector<AStarNodePtr> ret;
 auto copy = getCopy();
 if (x > 0)

u ret.push_back(AStarNode::makePtr(x - 1, y, g + TILE_COST, copy));
 if (y > 0)

v ret.push_back(AStarNode::makePtr(x, y - 1, g + TILE_COST, copy));
 if (x < width - 1)

w ret.push_back(AStarNode::makePtr(x + 1, y, g + TILE_COST, copy));
 if (y < height - 1)

x ret.push_back(AStarNode::makePtr(x, y + 1, g + TILE_COST, copy));
 return ret;
}

This function creates child nodes at (x – 1, y) u, (x, y – 1) v, (x + 1,
y) w, and (x, y + 1) x. Their parent is the node that called getChildren, and
their g is the parent’s g plus TILE_COST.

To allow for diagonal movement, this function needs to add children
at (x – 1, y – 1), (x + 1, y – 1), (x + 1, y + 1), and (x – 1, y + 1). Additionally, if

Putting It All Together: Writing Autonomous Bots 237

moving diagonally would cost more—that is, if the character requires more
time to do it—you’d also need to do the following:

1.	 Change TILE_COST to 10.

2.	 Define a constant DIAG_TILE_COST as TILE_COST multiplied by the time
increase. If a diagonal step takes 1.5 times as long, DIAG_TILE_COST would
be 15.

3.	 Give diagonal children a g of the parent’s g plus DIAG_TILE_COST.

To finish off AStarNode, declare operators for comparing the priority and
equality of two nodes. You could place these declarations outside the class
in global scope like this:

u bool operator<(const AStarNodePtr &a, const AStarNodePtr &b)
{
 return a.score > b.score;
}

v bool operator==(const AStarNodePtr &a, const AStarNodePtr &b)
{
 return a.x == b.x && a.y == b.y;
}

These operators allow std::priority_queue to sort nodes by score u and
std::find to determine node equality by location v.

Writing the A* Search Function

Now that you’ve completed the AStarNode class, you can code the actual
search function. Start by defining the function prototype:

template<int WIDTH, int HEIGHT, int BLOCKING>
bool doAStarSearch(
 int map[WIDTH][HEIGHT],
 int startx, int starty,
 int endx, int endy,
 int path[WIDTH][HEIGHT])
{ }

The prototype accepts the game map’s width and height, as well as the
value that signifies a blocking tile on the map, as template parameters. The
doAStarSearch() function also takes the map itself (map), the starting coordi-
nates (startx and starty), the destination coordinates (endx and endy), and a
blank map (path) where it can fill the calculated path when it finishes.

N o t e 	 The first three parameters are template parameters, so you can pass them as compile-
time constants. I’ve done this for the example code to allow explicit array size declara-
tions for the map and path parameters and to allow a definite value to signify blocking
tiles on the map. In practice, the map you read from a game will have a dynamic size,
and you’ll probably need a more robust way to pass this data.

238 Chapter 11

Next, the doAStarSearch() function needs a sorted list to hold the fron-
tier and a container to track all created notes so you can update the score
and parent of an existing node if it’s opened as a child of a different parent.
You can create these as follows:

std::vector<AStarNodePtr> allNodes;
std::priority_queue<AStarNodePtr> frontier;

The frontier is defined with std::priority_queue since it can automati-
cally sort the nodes based on their score. The node container, allNodes, is
defined as a std::vector.

Now, let’s create the first node:

auto node = AStarNode::makePtr(startx, starty, 0, nullptr);
node->updateScore(endx, endy);
allNodes.push_back(node);

The first node is a no-cost orphan node at the position (startx, starty).
The node is given a score based on what the updateScore() function returns,
and then it’s added to the allNodes container.

With a node in the container, it’s time to write the meat of the A* algo-
rithm, starting with a simple loop:

while (true) {
}

Until otherwise specified, the rest of the code in this section will appear
inside of this loop, in the order shown.

From here, the first step is to check the goal state. In this case, the goal is
to find a path for the player to follow to the next waypoint, which happens
when the node object’s position is (endx, endy). Thus, to check the goal state,
the program needs to check whether node has reached those coordinates or
not. Here’s how that check should look:

if (node->x == endx && node->y == endy) {
 makeList<WIDTH, HEIGHT>(node, allNodes, path);
 return true;
}

When the goal state is met, the program reports true back to the caller
and fills path with the final path. For now, assume a function called makeList()
can fill in path for you; I’ll show you this function shortly. If the goal state isn’t
met, you need to expand the children of node, which is actually a pretty com-
plicated process:

auto children = node->getChildren(WIDTH, HEIGHT);
for (auto c = children.begin(); c != children.end(); c++) {

u if (map[(*c)->x][(*c)->y] == BLOCKING) continue;

Putting It All Together: Writing Autonomous Bots 239

 auto found = std::find(allNodes.rbegin(), allNodes.rend(), *c);
v if (found != allNodes.rend()) {
w if (*found > *c) {

 (*found)->g = (*c)->g;
 (*found)->parent = (*c)->parent;
 (*found)->updateScore(endx, endy);
 }
 } else {
 (*c)->updateScore(endx, endy);

x frontier.push(*c);
y allNodes.push_back(*c);

 }
}

After calling node->getChildren to generate a list of nodes that can be
added to the frontier, the code iterates over each child and ignores any that
are on blocking tiles u. Next, for each child, the code checks whether a node
has already been opened at the same coordinates v. If so, and if the score
of the existing node is greater than the score of the new child, the exist-
ing node is updated to the parent, cost, and score of the new child by the
if() statement at w. If the new child doesn’t have a brother-from-another-
mother, it will be added as is to the frontier x and the node list y.

Also notice that std::find uses the reverse begin and reverse end itera-
tors of allNodes instead of the regular iterators u. The example does this
because new nodes are appended to the end of the vector and duplicate
nodes will be close together, so duplicates will usually be closer to the end
of the vector. (This step could also be done directly against the frontier, but
std::priority_queue doesn’t allow iteration over nodes and writing the sort in
place would make the code too large for print.)

Eventually, the function will run out of new children to add to the fron-
tier; the following if() statement handles that situation:

if (frontier.size() == 0) return false;
u node = frontier.top();
v frontier.pop();

This code points node to the cheapest node from the frontier u, removes
it from the frontier v, and lets the loop repeat. If the frontier ends up empty,
the function reports false back to the caller, since there’s nothing left to
search.

Creating the Path List

Finally, it’s time to implement the makeList() function:

template<int WIDTH, int HEIGHT>
void makeList(
 AStarNodePtr end,
 std::vector<AStarNodePtr> nodes,
 int path[WIDTH][HEIGHT])

240 Chapter 11

{
 for (auto n = nodes.begin(); n != nodes.end(); n++)

u path[(*n)->x][(*n)->y] = 2;
 auto node = end;
 while (node.get() != nullptr) {

v path[node->x][node->y] = 1;
 node = node->parent;
 }
}

This function updates path with both a list of closed nodes u and the
calculated path v. For this example, the value 2 represents the closed nodes
and 1 represents the path nodes. The program calculates nodes in the path
by following parent nodes from the goal node until it reaches the starting
node, which is an orphan with nullptr as a parent.

When A* Searches Are Particularly Useful
Make sure to play with the example code and executable for the previous
section, because that’s the only way you’ll really get acquainted with the
behavior of A* searches. In most newer games, you should be able to just
send a packet with the destination or even emulate a click on the map at the
desired spot, but when you come across a situation where you need to calcu-
late a path, you’ll be glad you learned A*.

There are actually many situations where calculating a path can be
useful:

Selecting targets
When your bot is selecting targets to attack, you may want to check
whether your character can actually reach them. Otherwise, if an
enemy is isolated in an unreachable room, you might get stuck in
place trying to target them forever!

Selecting corpses
As your looting state(s) determine which corpses to open, you can opti-
mize by always trying to loot the closest corpse first.

Emulating mouse movements
Very rarely, some heavily protected games actually correlate in-game
actions with mouse movements to ensure that there’s no bot running.
In this case, you might need to emulate the mouse. Using a modified
version of A* where the screen is the map, there are no blocking tiles,
and node costs are slightly randomized, you can calculate human-like
paths for your mouse to follow when you simulate movement.

Kiting monsters
If you ever need to write code to kite monsters, you can implement A*
with a goal state of being N units away from all creatures. Using the
same cost mechanism shown in this chapter, play with the heuristic

Putting It All Together: Writing Autonomous Bots 241

to give a higher cost to nodes that are closer to creatures. Kiting
isn’t exactly a conventional use case, and the heuristic will require a
bunch of tweaking, but it works amazingly once you’ve got it going.
Some implementations can kite any number of monsters better than
a human!

Predicting enemy movements
If you’re writing a bot that fights other players, you can use A* to pre-
dict their movements and act accordingly. For instance, if your enemy
starts running away, your bot can assume they are running to their
base, calculate their route, and use a spell to block their path or even
teleport to a location where it expects them to be.

These are just a few use cases for A* searches, and you’ll definitely
find many more as you improve your bots. For the rest of the chapter, I’ll
describe some popular automated hacks that you can implement using the
techniques described in this book.

Common and Cool Automated Hacks
Now that you’ve seen the design patterns and algorithms needed to create
efficient, self-teaching bots, it’s time to learn about some popular auto-
mated hacks that go beyond simple healing and pathfinding. Let’s fly up to
10,000 feet to explore two types of bots at a high level.

Looting with Cavebots
While discussing control theory, state machines, and search algorithms, I
touched on the idea of a cavebot that kills creatures, grabs loot, and walks
around caves. The abilities of cavebots can vary greatly.

Ot he r Use s for A* Sea rch

A* isn’t just for calculating paths. With abstractions on top of the AStarNode
class, you can adapt the same algorithm to any search problem. Realistically,
A* is just a weighted iteration over a multidimensional data set that iterates
until some goal object is found, and, thus, it can solve any problem that can be
represented as a multidimensional data set. More advanced applications for
A* include playing chess and checkers, and—when it’s paired with a three-
dimensional Manhattan distance heuristic and a depth-first search implementa-
tion—even solving a Rubik’s cube. Sadly, I’m not going to go into these use
cases; if you want to get really good with search algorithms, I encourage you
to research more online.

242 Chapter 11

Depositing Gold and Restocking Supplies

If you want to leave a character botting for days on end, you’ll need a deposi-
tor and a refiller. A depositor can deposit loot in your bank or vault, while a
refiller refills your potions, runes, and other supplies. These features can be
described with six basic states:

Leave spawn  Condition met if the character is in the spawn area or
cave, if it has nothing to deposit, and if it has enough supplies. Reach
this state by exiting the spawn area or cave.

Walk to town  Condition met if the character is in the spawn area or
cave. Reach this state by walking from the spawn or cave to town.

Deposit  Condition met if the character is in the spawn area or cave,
or if the character is in town and has nothing to deposit. Reach this
state by putting loot in the bank or vault.

Withdraw cash  Condition met if the character is in the spawn area
or cave, is in town with no supplies to purchase, or has enough gold to
purchase supplies. Reach this state by withdrawing gold from the bank
or vault.

Purchase supplies  Condition met if the character is in the spawn area
or cave or if the character has enough supplies to start hunting. Reach
by buying supplies.

Enter spawn  Condition met if the character is in the spawn area or
cave. Reach this state by walking to the spawn area or cave.

These states would come before the states related to following waypoints
(I describe a couple of those states in “A Complex Hypothetical State
Machine” on page 228) in the vector of StateDefinition objects. Placing
them first gives them priority over remaining in the cave, while still allow-
ing the character to target, kill, and loot monsters on the way back to town.
Depending on where you’re hunting and how you want the bot to behave,
you may also tell your targeting states not to attack creatures if the charac-
ter isn’t in the spawn area or cave, and you might add an extra state before
walk to town that attacks only creatures that block the character’s path to
town. Specifying that extra state increases the bot’s efficiency, since trips to
and from town will be much quicker if the monsters on the way aren’t worth
killing.

Using the Character as Bait

Two other cavebot features that can make your bot awesome are lure mode
and dynamic lure. You wouldn’t implement these two features as actual states
in a complex bot; rather, you’d have them inform the bot’s targeting and
walking states to help the bot make decisions.

You can control lure mode with special waypoints in your path, and its
code will tell your targeting states to attack creatures only if the bot is stuck,
similar to the mechanism discussed for walking to or from town. The differ-
ence is that lure mode can be switched on and off at different areas in the

Putting It All Together: Writing Autonomous Bots 243

cave, allowing you to lure multiple mobs of monsters to certain locations
before attacking them. This can make your bot much more efficient, as cer-
tain types of characters may excel at killing many monsters at once.

Dynamic lure is similar, but instead of turning it on and off at definite
locations via waypoints, you can automatically turn lure mode on when
there aren’t enough monsters. For example, a bot with the dynamic lure
feature might tell the targeting states not to attack any creature until five
monsters are on screen. The targeting states would resume attacking and
kiting until all five monsters are dead, and the bot would snap back into
lure mode until a suitably sized mob appears again.

If your character is quick enough to outrun monsters, though, you’ll
need to modify your bot’s walking states to walk slowly when lure mode is
on and creatures are present. Otherwise, your character will leave mobs
behind without killing them. You can slow down a character by adding
a state before the follow path state in your state machine definition that
delays movement slightly when lure mode is on and any creatures are too
far away.

Allowing Players to Script Custom Behaviors

Nearly every cavebot includes a scripting interface that allows players to add
their own behaviors. You could implement this interface as a way to specify
custom waypoints to follow, spells to use, or items to loot. In more advanced
bots, you might make your targeting, looting, walking, and luring systems
as dynamic as possible so players can add unique features. If you implement
your automation in Lua, third parties could easily improve and expand your
bot’s abilities.

Making your bot easy to write scripts for takes a lot of work off your
shoulders, since other programmers who play the game might release
scripts to add support for new hunting spots and improve your automation.
Such scripting services are common in botting communities, and players
often create and sell professional-grade scripts that integrate with bots.

Automating Combat with Warbots
Another class of automated bots is used for player versus player (PvP) combat.
These warbots, or PvP bots, have many features categorized as responsive
or ESP hacks, since the bots focus on responding to incoming damage or
spells, revealing hidden enemies, and giving the player an information
advantage.

Fully automated warbots are rare, but I’ve already lightly discussed how
you can use some automation techniques to make smarter healers, teach
bots to land more accurate skillshots, and predict players’ paths to stop
them in their tracks. Let’s explore a few other cool hacks that fall on the
fringe of responsive, ESP, and automated.

N o t e 	 In games that are completely PvP based, such as battlegrounds or real-time strategy
games, some players might also just call these bots, since war or PvP is the bot’s only
purpose.

244 Chapter 11

Autowall Bots
If your character has a spell to create a temporary wall, you can code
a bot that automatically blocks enemy players when they enter small
corridors. Using error correction, the bot could learn how far ahead of
the enemy to place the wall. With some really creative engineering, the
bot could even learn which enemies can jump over walls by checking
whether each enemy manages to get past the wall before it disappears.

Autosnipe Bots
For characters with a long-range skillshot or global execution spell, you
can use automation to detect when an enemy across the map has low
health and cast your spell to kill them. You can also use error correc-
tion to more accurately guess where to shoot a long-range skillshot. If
you’re unable to calculate exact damage amounts, error correction can
also help a bot determine how much damage a spell does and tweak the
casting threshold accordingly.

Autokite Bots
If you’re playing a carry character that does most of its damage by
attacking at a short distance, you might implement a bot to automati-
cally kite enemies. Using a set of states similar to the ones a cavebot
might use to kite monsters, you can make a bot that automatically kites
enemy characters when you attack them. When you stop targeting the
enemy, the bot can stop kiting. Using A* search, you can improve the
kiting mechanism to avoid multiple enemies, or, if you want to escape
while attacking, guide the kiting mechanism back to a safe place, such
as your team’s base or a neutral location.

Closing Thoughts
By this point, you should be ready to go out and make some pretty awesome
bots. Don’t worry if you’re still not completely comfortable with the tech-
niques in this chapter; the best way to learn is to just dive in and start hack-
ing. Use the thousands of lines of example code provided for this book to
get started without working from scratch, and most of all, have fun!

In the next chapter, I’ll discuss ways that bots can hide from anti-cheat
mechanisms, which are pieces of software that games use to detect and stop
botters.

12
S t a y ing H idden

Game hacking is an ever-evolving prac-
tice, a game of cat and mouse between

hackers and game developers where each
party works to subvert the other. As long as

people make bots, game companies will find ways to
hinder bot advances and ban players who use bots.
Rather than making their games inherently harder to
hack, though, game companies focus on detection.

The largest game companies have very sophisticated detection suites
called anti-cheat software. In the beginning of this chapter, I’ll discuss the
capabilities of the most common anti-cheat suites. After revealing how these
suites detect bots, I’ll teach you some powerful ways to evade them.

246 Chapter 12

Prominent Anti-Cheat Software
The best-known anti-cheat suites use the same methods as most antivirus soft-
ware to scan for bots and flag them as threats. Some anti-cheat suites are also
dynamic, meaning their inner workings and capabilities can change based
on the game they’re protecting. Anti-cheat software developers also track
down and patch their suites against bypass software, so always do your own
in-depth research of any anti-cheat software that you might face.

When these suites detect a botter, they flag the botter’s account for ban-
ishment. Every few weeks, game company administrators ban the flagged
players in a ban wave. Game companies use ban waves instead of instan-
taneous bans because banning in waves is more profitable. If botters are
banned after a few weeks of playing, their familiarity with the game will
make them more likely to buy a new account than if they were banned the
moment their bot started running.

There are dozens of anti-cheat suites, but I’ll focus on the five packages
that are the most common and thoroughly understood: PunkBuster, ESEA
Anti-Cheat, Valve Anti-Cheat (VAC), GameGuard, and Warden.

The PunkBuster Toolkit
PunkBuster, made by Even Balance Inc., is the original anti-cheat tool-
kit. Many games use PunkBuster, but it’s most common in first-person
shooter games like Medal of Honor, Far Cry 3, and several installments of
the Battlefield series.

The toolkit uses a myriad of detection methods, the most formidable of
which are signature-based detection (SBD), screenshots, and hash valida-
tion. PunkBuster is also known for imposing hardware bans that perma-
nently ban a cheater’s computer, rather than just their game account, by
saving a fingerprint of the hardware’s serial numbers and blocking logins
from a machine that matches it.

Signature-Based Detection
PunkBuster scans the memory of all processes on a system running a game
that employs it, searching for byte patterns unique to known cheat software,
called signatures. If PunkBuster detects a signature, the player is flagged
for a ban. PunkBuster carries out memory scans from user mode using the
NtQueryVirtualMemory() Windows API function, and it sometimes runs scans
from multiple hidden processes.

Signature-based detection is blind to context by design, and it ulti-
mately suffers from a fatal flaw: false positives. On March 23, 2008, a team
of hackers set out to prove the existence of this flaw by spamming public
chatrooms with a text string that PunkBuster would identify as a bot signa-
ture. Since SBD blindly scans process memory for matching patterns, any
and all legitimate players inside these public chatrooms were flagged as
botters.

Staying Hidden 247

This caused thousands of fair players to be banned with no justification.
A similar situation happened again in November 2013: PunkBuster falsely
banned thousands of players on Battlefield 4. That time, no one was trying to
prove a point; the company had just added a bad signature to its software.

PunkBuster resolved both of these issues by restoring the players’
accounts, but these incidents show just how aggressive its flavor of SBD is.
In the time since these attacks, though, PunkBuster’s SBD has reduced
the number of false positives by checking only for signatures at predefined
binary offsets.

Screenshots
As another method of bot detection, PunkBuster also periodically takes
screenshots of a player’s screen and sends them to the central game server.
This form of detection is a nuisance, and it’s weak compared to SDB. Game-
hacking communities speculate that PunkBuster implemented this feature
to give game admins proof against botters who dispute bans.

Hash Validation
In addition to employing SBD and screenshots, PunkBuster detects bots by
creating cryptographic hashes of a game’s executable binaries on a player’s
system and comparing them to hashes stored on a central server. If the
hashes do not match, the player is flagged for a ban. This check is carried
out only on the binaries on the filesystem, not on in-memory binaries.

The ESEA Anti-Cheat Toolkit
The ESEA Anti-Cheat toolkit is used by the E-Sports Entertainment Association
(ESEA), primarily for its Counter-Strike: Global Offensive league. Unlike
PunkBuster, this suite is known for generating very few false positives and
being highly effective at catching cheaters.

ESEA Anti-Cheat’s detection capabilities resemble those of PunkBuster,
with one noteworthy difference. ESEA Anti-Cheat’s SBD algorithm is car-
ried out from a kernel-mode driver using three different Windows Kernel
functions: the MmGetPhysicalMemoryRanges() function, the ZwOpenSection() func-
tion, and the ZwMapViewOfSection() function. This implementation makes
the anti-cheat system nearly immune to memory spoofing (a common way
to defeat SBD), as the functions used by the scan are much harder to hook
when they’re called from a driver.

The VAC Toolkit
VAC is the toolkit Valve Corporation applies to its own games and many of
the third-party games available on its Steam gaming platform. VAC uses
SDB and hash validation methods that resemble PunkBuster’s detection
techniques, and it also uses Domain Name System (DNS) cache scans and
binary validation.

248 Chapter 12

DNS Cache Scans
DNS is a protocol that converts between domain names and IP addresses
smoothly, and the DNS cache is where that information gets stored on a
computer. When VAC’s SBD algorithm detects cheat software, VAC scans
the player’s DNS cache for any domain names associated with cheating
websites. It’s not certain whether a positive DNS cache scan is required for
VAC’s SBD algorithm to flag a player for banishment, or if the DNS cache
scan simply acts as another nail in the coffin for players who are already
flagged by SBD.

N o t e 	 To see your DNS cache, enter ipconfig /displaydns at a command prompt. Yes, VAC
looks at all of that.

Binary Validation
VAC also uses binary validation to prevent in-memory tampering of execut-
able binaries. It scans for modifications like IAT, jump, and code hooking
by comparing hashes of in-memory binary code to hashes of the same code
in the binaries on the filesystem. If it finds a mismatch, VAC flags the player
for a ban.

This detection method is formidable, but Valve’s initial implementation
of the algorithm was flawed. In July 2010, VAC’s binary validation falsely
banned 12,000 Call of Duty players. The binary validation module failed
to account for a Steam update, and it banned the players when their in-
memory code did not match the updated binaries on the filesystem.

False Positives
VAC has had other issues with false positives. Its initial release routinely
banned fair players for “faulty memory.” This same early version banned
players for using Cedega, a platform that ran Windows games on Linux. And
on April 1, 2004, Valve falsely banned a couple thousand players due to a
server-side glitch. On two separate occasions, one in June 2011 and one in
February 2014, VAC also falsely banned thousands of Team Fortress 2 and
Counter-Strike players due to bugs that the company refuses to disclose. As
with PunkBuster, these incidents show that VAC is very aggressive.

The GameGuard Toolkit
GameGuard is an anti-cheat toolkit made by INCA Internet Co. Ltd. and
used by many MMORPGs, including Lineage II, Cabal Online, and Ragnarok
Online. In addition to some mildly aggressive SBD, GameGuard uses root-
kits to proactively prevent cheat software from running.

User-Mode Rootkit
GameGuard utilizes a user-mode rootkit to deny bots access to the Windows
API functions they use to operate. The rootkit hooks the functions at their

Staying Hidden 249

lowest-level entry point, often inside undocumented functions in ntdll.dll,
user32.dll, and kernel32.dll. These are the most notable API functions
GameGuard hooks, and here’s what GameGuard does from inside each
hooked function:

NtOpenProcess()  Blocks any OpenProcess() attempts on the game being
protected.

NtProtectVirtualMemory()  Blocks any VirtualProtect() or VirtualProtectEx()
attempts on the game.

NtReadVirtualMemory() and NtWriteVirtualMemory()  Block any
ReadProcessMemory() and WriteProcessMemory() attempts on the game.

NtSuspendProcess() and NtSuspendThread()  Block any attempts to suspend
GameGuard.

NtTerminateProcess() and NtTerminateThread()  Block any attempts to ter-
minate GameGuard.

PostMessage(), SendMessage(), and SendInput()  Block any attempts to send
programmatic input to the game.

SetWindowsHookEx()  Prevents bots from globally intercepting mouse and
keyboard input.

CreateProcessInternal()  Automatically detects and hooks into new
processes.

GetProcAddress(), LoadLibraryEx(), and MapViewOfFileEx()  Prevent any
attempt to inject libraries into the game or GameGuard.

Kernel-Mode Rootkit
GameGuard also uses a driver-based rootkit to prevent bots that work in
the kernel. This rootkit has the same abilities as its user-mode counterpart,
and it works by hooking ZwProtectVirtualMemory(), ZwReadVirtualMemory(),
ZwWriteVirtualMemory(), SendInput(), and similar functions.

The Warden Toolkit
Warden, made exclusively for Blizzard’s games, is by far the most advanced
anti-bot toolkit I’ve encountered. It’s hard to say what exactly Warden does,
because it downloads dynamic code at runtime. This code, delivered as
compiled shellcode, typically has two responsibilities:

•	 Detect bots.

•	 Periodically send a heartbeat signal to the game server. The value sent
is not predefined but instead is generated by some subset of the detec-
tion code.

If Warden fails to complete the second task or sends the wrong value, the
game server will know that it’s been disabled or tampered with. Furthermore,
a bot can’t disable the detection code and leave the heartbeat code running.

250 Chapter 12

Warden is formidable because you not only have no way to know what
you’re hiding from but also have no way to disable the toolkit. Even if you
manage to avoid detection today, a new detection method might be used
tomorrow.

If you plan on publicly distributing bots, you will eventually meet one
of the anti-cheat solutions described in the previous sections—and you’ll
have to beat it. Depending on your bot’s footprint, the type of detection in
the game you’re botting, and your implementation, the difficulty of evading
one of these toolkits can range from trivial to extremely hard.

Carefully Managing a Bot’s Footprint
A bot’s footprint is how many unique, detectable characteristics it has. For
example, a bot that hooks 100 functions will typically be easier to detect
than a bot that hooks only 10 functions because the former makes an order
of magnitude more changes to a game’s code than the latter. Since a tar-
geted detection system needs to detect only one hook, the developer of the
former bot needs to spend much more time making sure all of the bot’s
hooks are as stealthy as possible.

Another footprint characteristic is how detailed a bot’s user interface
is. If a known bot has many dialog boxes that all have specific titles, a game
company can just have its anti-cheat software detect the bot by searching for
windows that have those titles. This same basic reasoning can be used with
process names and filenames.

Minimizing a Bot’s Footprint
Depending on how your bot works, there are many ways to minimize its
footprint. If your bot relies heavily on hooks, for instance, you can avoid
directly hooking a game’s code and instead focus on hooking Windows API
functions. Windows API hooking is surprisingly common, so developers
can’t assume a program that hooks the Windows API is a bot.

The H a lt ing Probl em

A bot that could disable Warden’s detection code and still send the heart-
beat signal would solve the halting problem, which Alan Turing proved to be
impossible in 1936. The halting problem is the problem of determining, with a
generic algorithm, whether a program will finish running or continue forever.
Because Warden does two tasks using the same shellcode, writing a generic
algorithm that can disable just one task is a variation of the halting problem:
the algorithm can’t be sure which parts of the code will definitely execute,
which parts won’t, and which parts are responsible for each task.

Staying Hidden 251

If your bot has a well-defined user interface, you can mask the interface
by removing all strings from window bars, buttons, and so on. Instead, dis-
play images that show text. If you’re worried about specific process names
or filenames being detected by the anti-cheat software, use generic file-
names and make your bot copy itself to a new, randomized directory every
time it launches.

Masking Your Footprint
Minimizing your footprint is a preferred way to avoid detection, but it’s not
necessary. You can also obfuscate your bot, making it harder for anyone to
figure out how it works. Obfuscation can prevent both anti-bot developers
from trying to detect your bot and other bot developers from analyzing
your bot to steal proprietary functionality. If you sell your bot, obfuscation
prevents people from cracking it to bypass your purchase verification, too.

One common type of obfuscation is called packing. Packing an execut-
able encrypts it and hides it inside another executable. When the container
executable is launched, the packed executable is decrypted and executed
in-memory. When a bot is packed, analyzing the binary to learn what the
bot does is impossible, and debugging the bot process is much harder.
Some common packer programs are UPX, Armadillo, Themida, and ASPack.

Teaching a Bot to Detect Debuggers
When anti-bot developers (or other bot creators) can debug a bot, they can
figure out how it works and thus how to stop it. If someone is actively try-
ing to pick apart a bot, packing the executable may not be enough to evade
them. To protect against this, bots often employ anti-debugging techniques,
which obfuscate control flow by changing the bot’s behavior when a debug-
ger is detected. In this section, I’ll quickly cover some well-known methods
for detecting when a debugger is attached to your bot, and in the next, I’ll
show you some tricks for obfuscation.

Calling CheckRemoteDebuggerPresent()

CheckRemoteDebuggerPresent() is a Windows API function that can tell you if a
debugger is attached to the current process. Code to check for a debugger
might look like this:

bool IsRemoteDebuggerPresent() {
 BOOL dbg = false;
 CheckRemoteDebuggerPresent(GetCurrentProcess(), &dbg);
 return dbg;
}

This check is pretty straightforward—it calls CheckRemoteDebuggerPresent()
with the current process and a pointer to the dbg Boolean. Calling this
function is the easiest way to detect a debugger, but it’s also very easy for a
debugger to evade.

252 Chapter 12

Checking for Interrupt Handlers

Interrupts are signals the processor sends to trigger a corresponding han-
dler in the Windows kernel. Interrupts are typically generated by hardware
events, but they can also be generated in software using the INT assem-
bly instruction. The kernel allows some interrupts—namely, interrupts
0x2D and 0x03—to trigger user-mode interrupt handlers in the form of
exception handlers. You can take advantage of these interrupts to detect
debuggers.

When a debugger sets a breakpoint on an instruction, it replaces that
instruction with a breakpoint instruction, such as INT 0x03. When the
interrupt is executed, the debugger is notified via an exception handler,
where it handles the breakpoint, replaces the original code, and allows the
application to resume execution seamlessly. When faced with an unrecog-
nized interrupt, some debuggers even silently step over that interrupt and
allow execution to continue normally, without triggering any other excep-
tion handlers.

You can detect this behavior by purposely generating interrupts within
exception handlers in your code, as shown in Listing 12-1.

inline bool Has2DBreakpointHandler() {
 __try { __asm INT 0x2D }
 __except (EXCEPTION_EXECUTE_HANDLER){ return false; }
 return true;
}

inline bool Has03BreakpointHandler() {
 __try { __asm INT 0x03 }
 __except (EXCEPTION_EXECUTE_HANDLER){ return false; }
 return true;
}

Listing 12-1: Detecting interrupt handlers

During normal execution, these interrupts trigger the exception han-
dlers surrounding them in the code. During a debugging session, some
debuggers might intercept the exceptions generated by these interrupts and
silently ignore them, preventing the surrounding exception handlers from
executing. Thus, if the interrupts don’t trigger your exception handler, then
a debugger is present.

Checking for Hardware Breakpoints

Debuggers can also set breakpoints using the processor’s debug registers;
these are called hardware breakpoints. A debugger can set a hardware break-
point on an instruction by writing the address of the instruction to one of
the four debug registers.

Staying Hidden 253

When an address present on a debug register is executed, the debug-
ger is notified. To detect hardware breakpoints (and thus, the presence of
a debugger), you can check for nonzero values on any of the four debug
registers like this:

bool HasHardwareBreakpoints() {
 CONTEXT ctx = {0};
 ctx.ContextFlags = CONTEXT_DEBUG_REGISTERS;
 auto hThread = GetCurrentThread();
 if(GetThreadContext(hThread, &ctx) == 0)
 return false;
 return (ctx.Dr0 != 0 || ctx.Dr1 != 0 || ctx.Dr2 != 0 || ctx.Dr3 != 0);
}

Printing Debug Strings

OutputDebugString() is a Windows API function that can be used to print log
messages to a debugger console. If no debugger is present, the function will
return with an error code. If a debugger is present, however, the function
will return with no error code. Here’s how you can use this function as a
trivial debugger check:

inline bool CanCallOutputDebugString() {
 SetLastError(0);
 OutputDebugStringA("test");
 return (GetLastError() == 0);
}

Like the CheckRemoteDebuggerPresent() method, this method is very
straightforward but also very easy for a debugger to evade.

Checking for DBG_RIPEXCEPTION Handlers

Debuggers typically have exception handlers that blindly catch exceptions
with Windows’ DBG_RIPEXCEPTION exception code, making that code a clear
way to spot a debugger. You can detect these exception handlers in much
the same way Listing 12-1 detects interrupt handlers:

#define DBG_RIPEXCEPTION 0x40010007
inline bool hasRIPExceptionHandler() {
 __try { RaiseException(DBG_RIPEXCEPTION, 0, 0, 0); }
 __except(EXCEPTION_EXECUTE_HANDLER){ return false; }
 return true;
}

254 Chapter 12

Timing Control-Critical Routines

If an anti-bot developer is debugging your bot, the developer will likely
place breakpoints on and single-step through parts of your code that are
critical to the bot’s behavior. You can detect this activity by measuring code
execution times; when someone steps through code, execution takes a lot
longer than usual.

For example, if a function only places some hooks, you can be sure that
the code shouldn’t take more than a tenth of a second to do the memory
protection. You could check the execution time for memory protection with
help from the GetTickCount() Windows API function, as follows:

--snip--
auto startTime = GetTickCount();
protectMemory<>(...);
if (GetTickCount() - startTime >= 100)
 debuggerDetectedGoConfuseIt();
--snip--

Checking for Debug Drivers

Some debuggers load kernel-mode drivers to assist their operation. You can
detect these debuggers by attempting to get a handle to their kernel-mode
drivers, like this:

bool DebuggerDriversPresent() {
 // an array of common debugger driver device names
 const char drivers[9][20] = {
 "\\\\.\\EXTREM", "\\\\.\\ICEEXT",
 "\\\\.\\NDBGMSG.VXD", "\\\\.\\RING0",
 "\\\\.\\SIWVID", "\\\\.\\SYSER",
 "\\\\.\\TRW", "\\\\.\\SYSERBOOT",
 "\0"
 };
 for (int i = 0; drivers[i][0] != '\0'; i++) {
 auto h = CreateFileA(drivers[i], 0, 0, 0, OPEN_EXISTING, 0, 0);
 if (h != INVALID_HANDLE_VALUE) {
 CloseHandle(h);
 return true;
 }
 }
 return false;
}

There are a few common kernel-mode driver device names to check for,
like \\\\.\\EXTREM and the others shown in the drivers array. If this handle-
fetching code succeeds, then there’s a debugger running on the system.
Unlike with the previous methods, though, obtaining a handle to one of
those drivers doesn’t always mean the debugger is attached to your bot.

Staying Hidden 255

Anti-Debugging Techniques
Once you detect a debugger, there are multiple ways to obfuscate your con-
trol flow. For instance, you might try to crash the debugger. The following
code crashes OllyDbg v1.10:

OutputDebugString("%s%s%s%s");

The string "%s%s%s%s" contains format specifiers, and OllyDbg passes
it to printf() without any extra parameters, which is why the debugger
crashes. You could place this code in a function that gets called in response
to detecting a debugger, but this option works only against OllyDbg.

Causing an Unavoidable Infinite Loop

Another obfuscation method to try is overloading the system until the per-
son debugging your bot is forced to close the bot and debugger. This func-
tion does the trick:

void SelfDestruct() {
 std::vector<char*> explosion;
 while (true)
 explosion.push_back(new char[10000]);
}

The infinite while loop just keeps adding elements to explosion until the
process runs out of memory or someone pulls the plug.

Overflowing the Stack

If you want to really confuse the analyst, you can make a chain of functions
that eventually cause a stack overflow, but in an indirect way:

#include <random>
typedef void (* _recurse)();
void recurse1(); void recurse2();
void recurse3(); void recurse4();
void recurse5();
_recurse recfuncs[5] = {
 &recurse1, &recurse2, &recurse3,
 &recurse4, &recurse5
};
void recurse1() { recfuncs[rand() % 5](); }
void recurse2() { recfuncs[(rand() % 3) + 2](); }
void recurse3() {
 if (rand() % 100 < 50) recurse1();
 else recfuncs[(rand() % 3) + 1]();
}
void recurse4() { recfuncs[rand() % 2](); }
void recurse5() {
 for (int i = 0; i < 100; i++)
 if (rand() % 50 == 1)

256 Chapter 12

 recfuncs[i % 5]();
 recurse5();
}
// call any of the above functions to trigger a stack overflow

In a nutshell, these functions randomly and infinitely recurse until
there’s no room left on the call stack. Causing the overflow indirectly makes
it hard for the analyst to pause and examine previous calls before they real-
ize what’s happened.

Causing a BSOD

If you’re serious about obfuscation, you can even trigger a Blue Screen of
Death (BSOD) when you detect a debugger. One way to do that is to set
your bot’s process as critical using the SetProcessIsCritical() Windows API
function and then call exit(), since Windows will trigger a BSOD when a
critical process is killed. Here’s how you might do that:

void BSODBaby() {
 typedef long (WINAPI *RtlSetProcessIsCritical)
 (BOOLEAN New, BOOLEAN *Old, BOOLEAN NeedScb);
 auto ntdll = LoadLibraryA("ntdll.dll");
 if (ntdll) {
 auto SetProcessIsCritical = (RtlSetProcessIsCritical)
 GetProcAddress(ntdll, "RtlSetProcessIsCritical");
 if (SetProcessIsCritical)
 SetProcessIsCritical(1, 0, 0);
 }
}

BSODBaby();
exit(1);

Or maybe you’re evil, in which case you can do this:

BSODBaby();
OutputDebugString("%s%s%s%s");
recurse1();
exit(1);

Assuming you’ve implemented all of the techniques described in this
section, this code would cause a BSOD, crash the debugger (if it’s OllyDbg
v1.10), overflow the stack, and exit the running program. If any one of the
methods fails or gets patched, the analyst still has to deal with the remain-
ing ones before they can continue debugging.

Defeating Signature-Based Detection
Even with amazing obfuscation, you won’t easily beat signature detection.
Engineers who analyze bots and write signatures are very skilled, and obfus-
cation is, at best, a nuisance that makes their job marginally harder.

Staying Hidden 257

To completely evade SBD, you need to subvert the detection code. This
requires knowing exactly how the SBD works. PunkBuster, for instance,
uses NtQueryVirtualMemory() to scan the memory of all running processes
for any signatures. If you want to bypass this, you can inject code into all
PunkBuster processes with a hook on the NtQueryVirtualMemory() function.

When the function tries to query memory from your bot process, you
can give it whatever data you want, like this:

NTSTATUS onNtQueryVirtualMemory(
 HANDLE process, PVOID baseAddress,
 MEMORY_INFORMATION_CLASS memoryInformationClass,
 PVOID buffer, ULONG numberOfBytes, PULONG numberOfBytesRead) {

 // if the scan is on this process, make sure it can't see the hook DLL
 if ((process == INVALID_HANDLE_VALUE ||
 process == GetCurrentProcess()) &&
 baseAddress >= MY_HOOK_DLL_BASE &&
 baseAddress <= MY_HOOK_DLL_BASE_PLUS_SIZE)

u return STATUS_ACCESS_DENIED;

 // if the scan is on the bot, zero the returned memory
 auto ret = origNtQueryVirtualMemory(
 process, baseAddress,
 memoryInformationClass,
 buffer, numberOfBytes, numberOfBytesRead);
 if(GetProcessId(process) == MY_BOT_PROCESS)

v ZeroMemory(buffer, numberOfBytesRead);
 return ret;
}

This onNtQueryVirtualMemory() hook returns STATUS_ACCESS_DENIED u
when NtQueryVirtualMemory() tries to query the hook DLL’s memory, but it
gives zeroed memory v when NtQueryVirtualMemory() tries to query the bot’s
memory. The difference isn’t for any specific reason; I’m just showing two
ways you can hide from the NtQueryVirtualMemory() function call. If you’re
really paranoid, you can even replace the entire buffer with a random byte
sequence.

Of course, this method works only for SBD that happens from user
mode, like the SBD in PunkBuster or VAC. SBD that happens from the
driver, like ESEA’s, or that isn’t predictable, like Warden’s, isn’t as easy to
bypass.

In those cases, you can take precautions to eliminate unique signa-
tures in your bot. If you’re distributing the bot to more than a dozen or so
people, however, removing all distinguishing properties is tricky. To throw
analysts off the scent, each time you give somebody a copy of the bot, you
could try some combination of the following:

•	 Compiling the bot using a different compiler

•	 Changing the compiler optimization settings

•	 Toggling between using __fastcall and __cdecl

258 Chapter 12

•	 Packing the binaries using a different packer

•	 Switching between static and dynamic linking of runtime libraries

Varying these elements creates a different assembly for each user, but
there’s a limit on how many unique versions of the bot you can produce that
way. Past some point, this method doesn’t scale to demand, and eventually,
game companies will have signatures for every incarnation of your bot.

Apart from obfuscation and code mutation, there aren’t many ways
to defeat advanced SBD mechanisms. You could implement your bot in
a driver or create a kernel-mode rootkit to hide your bot, but even those
methods aren’t foolproof.

N o t e 	 This book doesn’t cover implementing a bot in a driver or creating a rootkit to hide
a bot, as both topics are pretty complex. Rootkit development alone is a subject that
dozens of books have covered already. I’d recommend Bill Blunden’s The Rootkit
Arsenal: Escape and Evasion in The Dark Corners of The System (Jones &
Bartlett Learning, 2009).

Some game hackers try to cover every single base, hooking every
memory-reading function and the entire filesystem API, but still get
caught by determined systems like Warden. In fact, I recommend stay-
ing away from Warden and Blizzard at all costs.

Defeating Screenshots
If you encounter a detection mechanism that uses screenshots as additional
proof to nail botters, you’re in luck. Bypassing screenshot mechanisms is
easy: don’t let your bot be seen.

You can subvert this type of detection by keeping a minimal UI and
making no visibly distinguishable changes to the game client. If your bot
requires a HUD or other distinctive UI displays, though, don’t fret—you
can have your cake and eat it, too. As long as you can intercept the screen-
shot code, you can hide your fingerprints while a screenshot is taken.

In some versions of PunkBuster, for example, the Windows API func-
tion GetSystemTimeAsFileTime() is called just before a screenshot is taken. You
can use a hook on this function to quickly hide your UI for a few seconds to
ensure it’s not seen:

void onGetSystemTimeAsFileTime(LPFILETIME systemTimeAsFileTime) {
 myBot->hideUI(2000); // hide UI for 2 seconds
 origGetSystemTimeAsFileTime(systemTimeAsFileTime);
}

Just hook GetSystemTimeAsFileTime() using the techniques described in
“Hooking to Redirect Game Execution” on page 153, write a hideUI() func-
tion, and call the hideUI() function before execution resumes.

Staying Hidden 259

Defeating Binary Validation
Defeating binary validation is as simple as not placing hooks inside game-
specific binaries. Jump hooks and IAT hooks on Windows API functions are
extremely common, so wherever you can, try to get away with using those
methods instead of using jump or near-call hooks in a game binary. In cases
where you must directly hook a game’s code, you can trick the anti-cheat
software’s binary validation routines by intercepting the binary scan and
spoofing the data to match what the software expects to see.

Like SBD, binary validation often uses NtQueryVirtualMemory() to
scan memory. To trick the validation code, start with a hook on that
function. Then, write a function like this one to spoof the data when
NtQueryVirtualMemory() is called:

NTSTATUS onNtQueryVirtualMemory(
 HANDLE process, PVOID baseAddress,
 MEMORY_INFORMATION_CLASS memoryInformationClass,
 PVOID buffer, ULONG numberOfBytes, PULONG numberOfBytesRead) {

 auto ret = origNtQueryVirtualMemory(
 process, baseAddress,
 memoryInformationClass,
 buffer, numberOfBytes, numberOfBytesRead);
 // place tricky code somewhere in here
 return ret;
}

Inside this hook, you’ll need to watch for any memory scans over mem-
ory that has been modified by one of your hooks.

N o t e 	 This example assumes the bot has only one hook and that variables prefixed with
HOOK_ already exist and describe the code the hook replaces.

Listing 12-2 shows some scan-monitoring code.

// is the scan on the current process?
bool currentProcess =
 process == INVALID_HANDLE_VALUE ||
 process == GetCurrentProcess();

// is the hook in the memory range being scanned?
auto endAddress = baseAddress + numberOfBytesRead - 1;
bool containsHook =
 (HOOK_START_ADDRESS >= baseAddress &&
 HOOK_START_ADDRESS <= endAddress) ||
 (HOOK_END_ADDRESS >= baseAddress &&
 HOOK_END_ADDRESS <= endAddress);

u if (currentProcess && containsHook) {
 // hide the hook
}

Listing 12-2: Checking whether hooked memory is being scanned

260 Chapter 12

When a memory scan over the hooked code happens (which makes
currentProcess and containsHook become true at the same time), code inside
the if() statement u updates the output buffer to reflect the original code.
This means you must know where the hooked code is within the scanned
block, taking into account the fact that the block may span only a subset of
the hooked code.

So if baseAddress marks the address where the scan starts, HOOK_START_
ADDRESS marks the spot where the modified code starts, endAddress marks the
address where the scan ends, and HOOK_END_ADDRESS marks the address where
the modified code ends, you can use some simple math to calculate which
parts of the modified code are present in which parts of the buffer. You do
so as follows, using writeStart to store the offset of the modified code in the
scan buffer and readStart to store the offset of the scan buffer relative to
the modified code, in case the scan buffer starts in the middle of the modi-
fied code:

int readStart, writeStart;
if (HOOK_START_ADDRESS >= baseAddress) {
 readStart = 0;
 writeStart = HOOK_START_ADDRESS - baseAddress;
} else {
 readStart = baseAddress - HOOK_START_ADDRESS;
 writeStart = baseAddress;
}

int readEnd;
if (HOOK_END_ADDRESS <= endAddress)
 readEnd = HOOK_LENGTH - readStart - 1;
else
 readEnd = endAddress – HOOK_START_ADDRESS;

Once you know how many bytes you need to replace, where to put them,
and where to get them, you can do the spoof with three lines of code:

char* replaceBuffer = (char*)buffer;
for (; readStart <= readEnd; readStart++, writeStart++)
 replaceBuffer[writeStart] = HOOK_ORIG_DATA[readStart];

Completely assembled, the code looks like this:

NTSTATUS onNtQueryVirtualMemory(
 HANDLE process, PVOID baseAddress,
 MEMORY_INFORMATION_CLASS memoryInformationClass,
 PVOID buffer, ULONG numberOfBytes, PULONG numberOfBytesRead) {
 auto ret = origNtQueryVirtualMemory(
 process, baseAddress,
 memoryInformationClass,
 buffer, numberOfBytes, numberOfBytesRead);
 bool currentProcess =
 process == INVALID_HANDLE_VALUE ||
 process == GetCurrentProcess();

Staying Hidden 261

 auto endAddress = baseAddress + numberOfBytesRead - 1;
 bool containsHook =
 (HOOK_START_ADDRESS >= baseAddress &&
 HOOK_START_ADDRESS <= endAddress) ||
 (HOOK_END_ADDRESS >= baseAddress &&
 HOOK_END_ADDRESS <= endAddress);
 if (currentProcess && containsHook) {
 int readStart, writeStart;
 if (HOOK_START_ADDRESS >= baseAddress) {
 readStart = 0;
 writeStart = HOOK_START_ADDRESS - baseAddress;
 } else {
 readStart = baseAddress - HOOK_START_ADDRESS;
 writeStart = baseAddress;
 }

 int readEnd;
 if (HOOK_END_ADDRESS <= endAddress)
 readEnd = HOOK_LENGTH - readStart - 1;
 else
 readEnd = endAddress – HOOK_START_ADDRESS;

 char* replaceBuffer = (char*)buffer;
 for (; readStart <= readEnd; readStart++, writeStart++)
 replaceBuffer[writeStart] = HOOK_ORIG_DATA[readStart];
 }
 return ret;
}

Of course, if you had multiple hooks that you needed to hide from
binary validation scans, you would need to implement this functionality
in a more robust way that would allow it to track multiple modified code
regions accordingly.

Defeating an Anti-Cheat Rootkit
GameGuard and some other anti-cheat suites come with user-mode rootkits
that not only detect bots but also proactively prevent them from running.
To defeat this type of protection, rather than think outside the box, you can
completely copy the box and work inside that copy.

For example, if you want to write memory to a game, you must call
the WriteProcessMemory() function, which is exported by kernel32.dll. When
you call this function, it directly calls NtWriteVirtualMemory() from ntdll.dll.
GameGuard hooks ntdll.NtWriteVirtualMemory() to prevent you from writing
memory. But if NtWriteVirtualMemory() is exported from, say, ntdll_copy.dll,
GameGuard won’t hook that function.

That means you can copy ntdll.dll and dynamically import all of the
functions you need, as follows:

// copy and load ntdll
copyFile("ntdll.dll", "ntdll_copy.dll");

262 Chapter 12

auto module = LoadLibrary("ntdll_copy.dll");

// dynamically import NtWriteVirtualMemory
typedef NTSTATUS (WINAPI* _NtWriteVirtualMemory)
 (HANDLE, PVOID, PVOID, ULONG, PULONG);
auto myWriteVirtualMemory = (_NtWriteVirtualMemory)
 GetProcAddress(module, "NtWriteVirtualMemory");

// call NtWriteVirtualMemory
myWriteVirtualMemory(process, address, data, length, &writtenlength);

After copying ntdll.dll, this code imports the NtWriteVirtualMemory() from
the copy with the name myWriteVirtualMemory(). From there, the bot can use
this function in place of the NtWriteVirtualMemory() function. They’re effec-
tively the same code in the same library, just loaded under different names.

Copying a function that anti-cheat software hooks works only if you
call that function at its lowest-level entry point, though. If this code copied
kernel32.dll and dynamically imported the WriteProcessMemory() function, an
anti-cheat rootkit would still stop the bot, because kernel32_copy.dll would
still rely on ntdll.NtWriteVirtualMemory() when calling the WriteProcessMemory()
function.

Defeating Heuristics
In addition to all of the advanced client-side detection mechanisms we’ve
just discussed, game companies will employ server-side heuristics that can
detect bots simply by monitoring a player’s behavior. These systems learn
to distinguish between human and autonomous player behavior through
machine-learning algorithms. Their decision-making process is often inter-
nal and incomprehensible to humans, so it’s difficult to pinpoint exactly
what features of gameplay lead to detection.

You don’t need to know how such algorithms work to trick them; your
bot just needs to act human. Here are some common behaviors that are dis-
tinguishably different between humans and bots:

Intervals between actions
Many bots perform actions unreasonably fast or at consistent intervals.
Bots will seem more human-like if they have a reasonable cooldown
period between actions. They should also have some form of random-
ization to prevent them from repeating an action at a constant rate.

Path repetition
Bots that farm enemies automatically visit a preprogrammed list of
locations to kill creatures. These waypoint lists are often extremely accu-
rate, indicating each location as an exact pixel. Humans, conversely,
move in less predictable ways and visit more unique locations along the
way to a familiar area. To replicate this behavior, a bot might walk to a

Staying Hidden 263

random location within a certain range of a target location, rather than
to the target location itself. Also, if the bot randomizes the order in
which it visits target locations, the variety of paths it takes will increase
further.

Unrealistic play
Some botters run their bots in the same location for hundreds of con-
secutive hours, but humans can’t play a game that long. Encourage your
users to refrain from botting for more than eight hours at a time and
warn them that doing the same thing for seven straight days will defi-
nitely trigger alarms in a heuristic system.

Perfect accuracy
Bots can hit a thousand head shots in a row without firing a single extra
bullet, and they can hit every skill shot with consistent precision. But it’s
virtually impossible for a human to do the same, so a smart bot should
be intentionally inaccurate at times.

These are just a few examples, but in general, you can sneak past
heuristic checks if you just use common sense. Don’t try to have a bot do
something a human can’t, and don’t have the bot do any single thing for
too long.

Closing Thoughts
Game hackers and game developers are engaged in a constant battle of
wits. Hackers will keep finding ways to subvert detection, and developers
will keep finding better ways to detect them. If you’re determined, however,
the knowledge in this chapter should help you defeat any anti-cheat soft-
ware you encounter.

A
About text field, Trainer generator

dialog, 9
accessing memory

in injected DLL, 145–146
for writing and reading, 122–124

Action Message Format (AMF), 169
actor functions, 216
actuation, 216, 223
Address column

Event Properties dialog, 55
OllyDbg disassembler pane, 27

addresses, memory. See memory
addresses

Address Space Layout Randomization
(ASLR), 128

bypassing in injected DLL,
146–147

bypassing in production,
128–130

disabling for bot
development, 128

in Process Explorer, 56, 57
Adobe AIR hooking, 169

decode() function, 172–173,
174–175

encode() function, 171–172,
174–175

placing hooks, 173–175
RTMP, assessing, 169–170

Adobe AIR.dll, 173–175
airlog tool, 170
alignment

in numeric data, 68
of variables, in data structures,

70–71
ambient light, adding, 190–192
AMF (Action Message Format), 169

anti-cheat software, 245–246
anti-cheat rootkit, defeating,

261–262
binary validation, defeating,

259–261
bot footprints, managing,

250–256
ESEA Anti-Cheat toolkit, 247
GameGuard toolkit, 248–249
heuristics, defeating, 262–263
PunkBuster toolkit, 246–247
screenshots, defeating, 258
signature-based detection,

evading, 256–257
VAC toolkit, 247–248
Warden toolkit, 249–250

anti-crowd-control hacks, 218
anti-debugging techniques, 251,

255–256
arithmetic instructions, 90–92
A* search algorithm, 234

cost, 233
creating node, 234–237
creating path list, 239–240
score, 234
uses for, 240–241
writing search function, 237–239

ASLR. See Address Space Layout
Randomization (ASLR)

Asm2Clipboard plug-in, 42
assembly code

copying, 42
tracing, 32–33
viewing and navigating in

OllyDbg, 27–29
assembly language, 78. See also

x86 assembly language
assembly patterns, searching for,

19–21

I nde x

266 Index

AStarNode class, 234–236
AT&T syntax, 80
autocombo, 219
autododge, 219
autokite bots, 244
automatic healer, 218, 225–228,

230–232
autonomous bots, 221–222. See also

control theory; state
machines

cavebots, 241–243
complex hypothetical state

machine, 228–230
error correction, 230–232
healer state machine, 225–228
pathfinding with search

algorithms, 232–234
warbots, 243–244

autoreload, 219
autosnipe bots, 244
autowall bots, 244

B
ban waves, 246
Bigger Than scan type, Cheat

Engine, 6
binary arithmetic instructions, 90
binary validation, 248, 259–261
bits, EFLAGS register, 84
Blue Screen of Death (BSOD), 256
bots. See also autonomous bots;

extrasensory perception
(ESP) hacks

anti-crowd-control hacks, 218
anti-debugging techniques, 251,

255–256
automatic healer, 218, 225–228,

230–232
detecting debuggers, 251–254
detecting visual cues, 205–206
disabling ASLR for

development, 128
emulating keyboard, 211–215
footprints, managing, 250–256
game updates, dealing with,

101–104

intercepting network traffic,
206–211

monitoring memory, 204–205
obfuscation, 251, 255–256
sending packets, 215–217
spell trainers, 219

branching, 92–94
breakpoints, 30, 34, 38
Breakpoints window, OllyDbg, 26
BSOD (Blue Screen of Death), 256
BYTE data type, 67
bytes, machine code, 78

C
C++, 66
callee, 94–95
caller, 94–95
callHook() function, 154
call hooking, 153–156. See also Adobe

AIR hooking
calling conventions, 95

for call hooks, 155
__cdecl, 95, 155
__fastcall, 95
__stdcall, 95
__thiscall, 95, 217
for trampoline functions, 168
for VF table hooks, 156–158

CALL instruction, 94–95
call stack

overflow, 255–256
viewing, 30
x86 assembly language, 86–88

Call stack window, OllyDbg, 26
capacity of std::vector, 109
casting spells. See spells
cavebots, 241–243
__cdecl convention, 95, 155
Changed Value scan type, Cheat

Engine, 7
characters. See also enemies

health bars, monitoring with
bots, 204–205

pausing execution when health
drops, 39–42

player health, finding with
OllyDbg, 99–101

Index 267

char data type, 67
Cheat Engine, 3, 5–6

automatically locating string
addresses with, 102

cheat tables, 7–8
correct address, determining, 7
first scan, running, 6
installing, 4
Lua scripting environment,

18–22
memory modification, 8–11
next scan, running, 7
pointer scanning with, 14–18
scan types, 6
std::list, determining whether

data is stored in, 112–113
std::map, determining whether

data is stored in, 117
trainer generator, 9–11
VF tables, 78
zoom factor, finding, 197

cheat tables, Cheat Engine, 7–8
Cheat Utility plug-in, 42–43
CheckRemoteDebuggerPresent()

function, 251
classes, 74–78
class instances, 76
CloseHandle() function, 122, 138
closing mutexes, 59–60
CMP instruction, 92
code caves, 134

loading DLLs, 143–146
thread hijacking, 138–142
thread injection, 134–138

code injection, 133–134
bypassing ASLR in production,

128–130
DLLs, 142–146
with thread hijacking, 138–142
with thread injection, 134–138

code patches, creating, 31–32
column configurations, Process

Monitor, 51
combat, automating, 243–244
command line plug-in, OllyDbg,

43–44
command syntax, x86 assembly

language, 79–81

Comment column, OllyDbg
disassembler pane, 28

complex hypothetical state machine,
228–230

conditional breakpoints, 34, 38
conditional statements, 93
constant ratio of health, adjusting

for, 230–231
control-critical routines, timing, 254
control flow hacks, 31
control flow manipulation, 149–150.

See also Adobe AIR
hooking; Direct3D
hooking

call hooking, 153–156
IAT hooking, 160–165
jump hooking, 165–169
NOPing, 150–152
VF table hooking, 156–160

control theory, 222
combining with state

machines, 225
complex hypothetical state

machine, 228–230
error correction, 230–232
healer state machine, 225–228

control windows, OllyDbg, 25–26
cooldowns, displaying enemy,

200–201
copying assembly code, 42
copy-on-write protection, 126
corpses, bot behavior toward,

229, 240
correct address, determining in

Cheat Engine, 7
CPU window, OllyDbg, 26–30, 40
crashing debuggers, 255
CreateRemoteThread() function, 129,

130, 134, 138
CreateToolhelp32Snapshot() function,

120, 141
creature data, knowing structure

behind, 106–107
critical game information, displaying,

198–201
crowd-control attacks, 218
cryptographic functions,

hooking, 170

268 Index

CS register, 85
C-style operators, OllyDbg, 34–35
custom behaviors for cavebots,

scripting, 243

D
dark environments, lighting up,

190–192
data modification instructions, 89
data structures, 71–73
data types, 66

classes and VF tables, 74–78
numeric data, 67–69
OllyDbg, 36
string data, 69–71
unions, 73–74

DBG_RIPEXCEPTION handlers,
checking for, 253

debugging. See also OllyDbg
anti-debugging techniques,

255–256
debug drivers, checking for, 254
debug strings, printing, 253
detecting debuggers, 251–254
Process Monitor, 52–53

__declspec(naked) convention, 168
decode() function, hooking, 172–173,

174–175
Decreased Value By scan type, Cheat

Engine, 7
Decreased Value scan type, Cheat

Engine, 7
dependencies, DLL, 145
dependency loading, 160
depositor, 242
destination operand, 80
detection, avoiding. See anti-cheat

software
device->SetRenderState() function, 192
Dijkstra’s algorithm, 233–234
Direct3D 9, 176
Direct3D hooking, 175–176. See also

extrasensory perception
(ESP) hacks

detecting visual cues in games,
205–206

drawing loop, 176–177

finding devices, 177–181
optional fixes for stability, 184
writing hook for EndScene(),

182–183
writing hook for Reset(), 183–184

directional lighthacks, 190–191
disabling ASLR, 128
disassembler pane, OllyDbg,

27–29, 42
Disassembly column, OllyDbg

disassembler pane, 28
dispatchPacket() function, 210
display base, 27
DLL (dynamic link library),

injecting, 142–146
DllMain() entry point, 144–145
DLLs option, Process Explorer

pane, 57
Domain Name System (DNS) cache

scans, 248
DOS header, 160–161
DrawIndexedPrimitive() function, 194,

195, 196, 200
drawing loop, Direct3D, 176–177
DS register, 85
dump pane, OllyDbg, 29–30
DWORD data type, 67, 145–146
dynamically allocated memory, 6,

11, 12
dynamic link library (DLL),

injecting, 142–146
dynamic lure, 242–243
dynamic structures, 105

std::list class, 110–113
std::map class, 114–118
std::string class, 105–108
std::vector class, 108–110

E
EAX register, 81
EBP register, 83
EBX register, 82
ECX register, 82, 157
EDI register, 83
EDX register, 82
EFLAGS register, 84, 92
EIP register, 83, 139

Index 269

emulating keyboard, 211–215
enableLightHackDirectional() function,

190–191
encode() function, hooking, 171–172,

174–175
EndScene() function

jump hooking, 178–181
stability of, 184
writing hook for, 182–183

endSceneTrampoline() function, 181
enemies. See also extrasensory

perception (ESP) hacks
cooldowns, displaying, 200–201
critical game information,

displaying, 198–201
predicting movements of, 241
texture, changing, 195–196

entropy, 5, 7
Environment tab, Process Explorer

Properties dialog, 58
error correction, 230–232
ESEA (E-Sports Entertainment

Association), 247
ESEA Anti-Cheat toolkit, 247
ESI register, 83
ESP hacks. See extrasensory

perception (ESP) hacks
ESP register, 83
ES register, 85
Euclidean distance heuristic, 236
event class filters, Process Monitor,

51–52
event log, Process Monitor, 52–53
Event Properties dialog, 54–55
Exact Value scan type, Cheat

Engine, 6
exception handlers, checking for, 253
execute protection, 125–128
Execute until return button,

OllyDbg, 25
experience-tracking HUD, 200
exponent, float data type, 68
expressions, OllyDbg, 36–37

accessing memory
contents with, 36

elements evaluated by, 35–36
expression engine, 33–36

pausing execution when health
of character drops,
39–42

pausing execution when name of
player is printed, 37–38

supported data types, 36
extrasensory perception (ESP) hacks,

189–190
background knowledge, 190
floor spy hacks, 201–202
HUDs, 198–201
lighthacks, 190–192
loading-screen HUDs, 201
pick-phase HUDs, 201
range hacks, 201
wallhacks, 192–197
zoomhacks, 197–198

F
false positives, VAC toolkit, 248
__fastcall convention, 95
feedback loop, 222
file accesses, inspecting in Process

Explorer, 60
Filesystem event class filter, 52
FILO (first-in-last-out), 86
filters, event class, 51–52
findItem() function, 116–117
findSequence() function, 175
first-in-last-out (FILO), 86
first-person shooter (FPS), xxii, 246
first scan, running in Cheat

Engine, 6
flags, process access, 121
float data type, 67–68
floor spy hacks, 201–202
fog of war, 189. See also extrasensory

perception (ESP) hacks
footprints, managing, 250–256
Found intermodular calls window,

OllyDbg, 40
FPS (first-person shooter), xxii, 246
FPU registers, 29
Frame column, Event Properties

window, 54
frames, in Direct3D drawing loop, 176

270 Index

Freeze interval, Trainer generator
dialog, 9

freezing
addresses, 8
main thread, 141

frontier, 233
FS register, 85
function calls, x86 assembly

language, 94–95
function flowchart, OllyFlow, 45
function names, finding for IAT

hooking, 163

G
GameActuators class, 225
game automation state machine,

223–224
GameGuard toolkit, 248–249
game updates, determining new

addresses after, 101–104
general registers, 81–82
generic memory functions, 123–124
getAddressforNOP() function, 152
GetAsyncKeyState() function, 196
GetExitCodeThread() function, 129
GetModuleFileName() function, 144
GetModuleHandle() function, 129–130,

134, 144, 146–147
GetSystemTimeAsFileTime() function, 258
GetThreadContext() function, 139, 142
GetTickCount() function, 254
GetWindowThreadProcessId() function, 120
goal state, 238
Go To button, OllyDbg, 25
greedy best-first search algorithm,

233–234
GS register, 85
guard protection, 126

H
halting problem, 250
handle manipulation options,

Process Explorer, 59–60
handler functions, 208
handles, 56, 121, 210–211, 252

Handles option, Process Explorer
pane, 57

Handles window, OllyDbg, 26
hardware breakpoints, checking for,

252–253
hash validation, 247
heads-up display (HUD), 198–201
healer state machine, 225–228,

230–232
health of characters

health bars, monitoring with
bots, 204–205

health bars of enemies,
displaying, 150–152

pausing execution upon
drop in, 39–42

heap data, 16
heuristics, 233

defeating, 262–263
Euclidean distance, 236
Manhattan distance, 235

Hex dump column, OllyDbg
disassembler pane, 27–28

hidden data, displaying, 198–201
Hidden option, Process Explorer

pane, 57
hooking, 42, 149, 153. See also Adobe

AIR hooking; Direct3D
hooking; extrasensory
perception (ESP) hacks

call, 153–156
detecting visual cues in games,

205–206
IAT, 160–165
intercepting network traffic,

206–211
jump, 165–169
prewritten libraries, 169
signature-based detection,

evading, 257
VF table, 156–160
zoomhacks, 198

hotkeys
Patches window, OllyDbg, 32
Process Explorer, 57
Process Monitor, 52
for trainer, setting up, 10

Index 271

hourly experience, finding, 200
HTTP (HyperText Transfer

Protocol), 169
HTTPS (HTTP Secure), 169
HUD (heads-up display), 198–201

I
IAT (import address table) hooking,

160–165
IDIV instruction, 92
IMAGE_DOS_HEADER structure, 161
IMAGE_IMPORT_DESCRIPTOR structure, 162
IMAGE_OPTIONAL_HEADER structure, 161
Image tab, Process Explorer

Properties dialog, 57–58
IMAGE_THUNK_DATA structure, 162
immediate value, 80
import address table (IAT) hooking,

160–165
import descriptors, 162
IMUL arithmetic instruction, 90–91
Increased Value By scan type, Cheat

Engine, 7
Increased Value scan type, Cheat

Engine, 7
index registers, 83
infinite loops, causing

unavoidable, 255
in-game actions, bots for

anti-crowd-control hacks, 218
automatic healer, 218, 225–228,

230–232
emulating keyboard, 211–215
sending packets, 215–217
spell trainers, 219

in-game events, logging, 50–52
instructions, 79

arithmetic, 90–92
branching, 92–94
data modification, 89
function calls, 94–95
jump, 92–94

int data type, 67
Intel syntax, 80
interrupt handlers, checking for, 252
iterator, 120

J
jumpHookCallback() function, 168
jump hooking, 165–169, 178–181
jump instructions, x86 assembly

language, 92–94

K
kernel-mode rootkit, GameGuard

toolkit, 249
keyboard, emulating, 211–215
KEYEVENTF_KEYUP flag, 212
kiting, 222, 240–241

L
libraries, hooking, 169
lighthacks, 190–192
list class, 110–111
listItem class, 110–111
little-endian ordering, 67
loader lock, 144
loading-screen HUDs, 201
LoadLibrary() function, 143–144
Location column, Event Properties

window, 54
logging events, Process Monitor,

50–52
Log window, OllyDbg, 25
long data type, 67
long long data type, 67
looting, 229, 241–243
Lua scripting environment, Cheat

Engine, 18–22
lure mode, 242

M
machine code, 78
main loop

Direct3D drawing loop,
176–177

syncing with, 164–165
mana, avoiding wasted, 219
Manhattan distance heuristic, 235
mantissa, float data type, 68

272 Index

massively multiplayer online
role-playing games
(MMORPGs), xxi–xxii,
198, 248

massive online battle arena (MOBA),
xxii, 189, 197, 201, 206

memcpy() function, 136
memory, 65–66

classes and VF tables, 74–78
data structures, 71–73
numeric data, 67–69
string data, 69–71
unions, 73–74

memory access
in injected DLL, 145–146
for writing and reading,

122–124
memory addresses, 4

accessing with OllyDbg
expressions, 36

correct, determining in Cheat
Engine, 7

freezing, 8
new, determining after game

updates, 101–104
rebasing at runtime, 128–129
static, 6

memory-based lighthacks, 192
memory dump

of class data, 76
of code cave, 137
of data structures, inspecting,

70–71
of numeric data, inspecting,

68–69
of string data, inspecting, 70

memory forensics, 97–98
new addresses, determining

after game updates,
101–104

player health, finding with
OllyDbg, 99–101

purpose of data, deducing,
98–99

std::list class, 110–113
std::map class, 114–118
std::string class, 105–108
std::vector class, 108–110

memory manipulation, 119
accessing memory, 122–124
address space layout

randomization, 128–130
memory protection, 124–128
process identifier, obtaining,

120–122
Memory map window, OllyDbg, 26
memory modification, 8–11
memory monitoring with bots,

204–205
memory offset, 80
memory on write breakpoint, 208
memory pointer, 11
memory protection, 124–128, 151
memory scanning, 3, 98. See also

Cheat Engine; pointer
scanning

basic, 4–5
importance of, 4
memory modification, 8–11
new addresses, determining after

game updates, 101–104
optimization of code, 22
player health, finding with

OllyDbg, 99–101
purpose of data, deducing,

98–99
MMORPGs (massively multiplayer

online role-playing
games), xxi–xxii, 198, 248

mnemonics, 78
MOBA (massive online battle arena),

xxii, 189, 197, 201, 206
modifying memory values, 8–11
Module32First() function, 144, 174
Module32Next() function, 144, 174
Module column, Event Properties

window, 54
Modules window, OllyDbg, 25
monitoring memory with bots,

204–205
monsters, kiting, 240–241
mouse movements, emulating,

215, 240
MOV instruction, 89
multiclient patching, 30
mutexes, closing, 59–60

Index 273

N
named pipes, locating, 60
name of specific player, pausing

execution when printed,
37–38

Names window, OllyDbg, 29
near calls, 153–154
near function call, 39
.NET processes, 59
Network event class filter, 52
new addresses, determining after

game updates, 101–104
next scan, running in Cheat

Engine, 7
nodes, 233, 234–238
no-operation (NOP) commands,

31, 32
NOPing, 150–152

lighthacks, 192
zoomhacks, 197–198

NtQueryVirtualMemory() function, 246,
257, 259

NtWriteVirtualMemory() function,
261–262

null terminator, 70
numeric data types, 67–69
numeric operators, OllyDbg, 34–35

O
obfuscation, 251, 255–256
observing game events

detecting visual cues, 205–206
intercepting network traffic,

206–211
monitoring memory, 204–205

obstacles, searches disrupted by,
233–234

offset, 54
OllyDbg, 23–24

assembly code, 27–29, 32–33
call stack, viewing, 30
code patches, creating, 31–32
command line for, 43–44
control windows, 25–26
CPU window, 26–30
crashing debuggers, 255

dealing with game updates, 104
debugger buttons and

functions, 25
expression engine, 33–37
memory, viewing and searching,

29–30
memory dump of numeric data,

68–69
memory dump of string data, 70
packet parser, finding, 207–208
Patches window, 31–32
patching if() statements, 46–47
pausing execution when health

of character drops,
39–42

pausing execution when name
of player is printed,
37–38

plug-ins, 42–46
register contents, viewing and

editing, 29
Run trace window, 32–33
supported data types, 36
translating code cave assembly

to shellcode, 135–136
user interface, 24–26
zoom limitation code,

finding, 198
OllyFlow plug-in, 45–46
opcodes, 78
OpenProcess() function, 121–122
OpenThread() function, 142
operands

binary arithmetic
instructions, 90

IDIV instruction, 92
MOV instruction, 89
syntax, 80–81
unary arithmetic instructions, 90

operations, 79
operators, using in OllyDbg

expression engine, 34–35
optimizing memory code, 22
ordering, little-endian, 67
order of variables, in data structures,

70–71
OutputDebugString() function, 253

274 Index

P
packets

intercepting, 206–211
sending, 215–217

packing, 251
padding, 68
page protection, 125–126
pages, 124
parsing packets, 206–211
Patches window, OllyDbg, 26, 31–32
patching, multiclient, 30
patching if() statements, 46–47
Path column, Event Properties

dialog, 55
pathfinding with search algorithms,

232–234. See also A* search
algorithm

path list, A* search algorithm,
239–240

Pause button, OllyDbg, 25
pausing execution, 37–38, 39–42
pausing threads, 184
PEB (process environment block)

structure, 146
PeekMessage() function, 184
PE header, 160–161
pick-phase HUDs, 201
PID (process identifier), 120–122
pipes, locating named, 60
Play button, OllyDbg, 25
player health, finding with OllyDbg,

99–101
player versus player (PvP) combat,

243–244
plug-ins, OllyDbg, 42–46
pointer chains, 11–12
pointer path, 11
Pointerscanner Scanoptions dialog,

Cheat Engine, 14–16
pointer scanning, 11

basics of, 12–14
with Cheat Engine, 14–18
pointer chains, 11–12
rescanning, 17–18

Pong, 46–47

Popup trainer on keypress field,
Trainer generator
dialog, 9

predicting enemy movements, 241
prewritten hooking libraries, 169
printf() call, 72, 73–74, 75
printing debug strings, 253
Process32First() function, 120
Process32Next() function, 120–121
process access flags, 121
PROCESS_ALL_ACCESS flag, 121
Process and thread activity event

class filter, 52
PROCESS_CREATE_THREAD flag, 121
process environment block (PEB)

structure, 146
Process Explorer, 49–50, 55–56

configuring colors, 56
handle manipulation options,

59–60
hotkeys, 57
Properties dialog, 57–59
user interface and controls,

56–57
process handles, obtaining, 121
process identifier (PID), 120–122
processInput() function, 215–216
processKeyboardInput() function, 216
Process Monitor, 49–50

configuring columns in, 51
debugging, 53–55
event class filters, 51–52
high-score file, finding, 55
hotkeys, 52
inspecting events in event log,

52–53
logging in-game events, 50–52

Process Monitor Filter dialog, 50
Processname field, Trainer generator

dialog, 9
processNextPacket() function, 210
processor registers, 81–86
Process profiling event class

filter, 52
PROCESS_VM_OPERATION flag, 121, 122
PROCESS_VM_READ flag, 121
PROCESS_VM_WRITE flag, 121

Index 275

Properties dialog, Process Explorer,
57–59

protection, memory, 124–128, 151
PunkBuster toolkit, 246–247, 257
purpose of data, deducing, 98–99
PvP (player versus player) combat,

243–244

R
range hacks, 201
reading from game memory, 119

accessing memory, 122–124
address space layout

randomization, 128–130
memory protection, 124–128
process identifier, obtaining,

120–122
ReadProcessMemory() function, 122–124
read protection, 125–128
Real Time Messaging Protocol

(RTMP)
assessing, 169–170
decode() function, hooking,

172–173, 174–175
encode() function, hooking,

171–172, 174–175
intercepting packets, 207

real-time strategy (RTS), xxii, 197,
201, 206, 243

rebasing addresses at runtime, 128–129
reconnaissance, 49–50

Process Explorer, 55–60
Process Monitor, 50–55

recv() function, 207–208
red-black tree, 114–115
References window, OllyDbg, 26,

28–29, 40, 100
refiller, 242
registers, processor, 81–86
registers pane, OllyDbg, 29
Registry event class filter, 51
Rescan pointerlist window, Cheat

Engine, 17–18
responsive hacks, 203

anti-crowd-control hacks, 218
automatic healer, 218, 225–228,

230–232

detecting visual cues, 205–206
emulating keyboard, 211–215
intercepting network traffic,

206–211
monitoring memory, 204–205
sending packets, 215–217
spell trainers, 219

rootkits
defeating anti-cheat, 261–262
GameGuard toolkit, 248–249

root node, 113–114
RTMP. See Real Time Messaging

Protocol
RTS (real-time strategy), xxii, 197,

201, 206, 243
runtime flexibility, 229
Run trace window, OllyDbg, 26, 32–33

S
SBD. See signature-based

detection (SBD)
scan code, 214
scan types, Cheat Engine, 6
scan value, 4
score, 234
screenshots, 247, 258
scripting custom behaviors for

cavebots, 243
scripting engine, Cheat Engine, 18–22
search algorithms, 232–234. See also

A* search algorithm
Security tab, Process Explorer

Properties dialog, 58
segment registers, 84–86
send() function, 216–217
sending packets, 215–217
SendInput() function, 211–212, 215
SendMessage() function, 213–215
sensors, of a system, 222
Set/Change hotkey screen, Cheat

Engine, 10
SetLight() member function, 192
SetProcessIsCritical() function, 256
shellcode, 134, 135–136, 138–141
short data type, 67
sign, float data type, 68

276 Index

signature-based detection (SBD)
ESEA Anti-Cheat toolkit, 247
evading, 256–257
PunkBuster toolkit, 246–247

signatures, 246
single-instance limitation, 59–60
skillshots, 232
Sleep() function, 164–165, 227
Smaller Than scan type, Cheat

Engine, 6
source operand, 80
Source window, OllyDbg, 26
spawning threads, 129
spells

anti-crowd-control hacks, 218
complex hypothetical state

machine, 228–230
spell trainers, 219

SS register, 85
stack frame, 87–89
stack overflow, 255–256
stack pane, OllyDbg, 30
stack trace, Process Monitor, 54–55
state machines, 223–224

automated healer, 225–228
combining with control

theory, 225
complex hypothetical, 228–230
error correction, 230–232
Lua functions, adding, 229–230
runtime flexibility, 229

static addresses, 6
__stdcall convention, 95
std::list class, 110–113
std::map class, 114–118
std::string class, 105–108
std::vector class, 108–110
Step into button, OllyDbg, 25
Step over button, OllyDbg, 25
stochastic systems, 230
string data, 21, 69–71, 100–101
string operators, OllyDbg, 35
Strings tab, Process Explorer

Properties dialog, 58
struct member alignment, 71
structures, data, 71–73

subregisters, 83
SuspendThread() function, 142, 184
syncing with game threads, 164–165
systems, controlling behavior of, 222

T
targets, selecting, 240
TCP/IP tab, Process Explorer

Properties dialog, 58
TEB (thread environment block), 146
templates

for changing memory
protection, 127

memory access functions,
123–124, 145–146

TEST instruction, 92
text strings, 21, 69–71, 100–101
texture of enemies, changing,

195–196
__thiscall convention, 95,

156–158, 217
Thread32First() function, 141
Thread32Next() function, 141
thread environment block

(TEB), 146
threads

hijacking, 138–142
injection, 134–138
spawning, 129

Threads tab, Process Explorer
Properties dialog, 58

Threads window, OllyDbg, 26
thunks, 162–163
timing control-critical routines, 254
Title field, Trainer generator

dialog, 9
toggling z-buffering, 195
Trace into button, OllyDbg, 25
Trace over button, OllyDbg, 25
tracing with OllyDbg, 32–33, 39–42
trainer generator, Cheat Engine,

9–11
trampoline functions, 165–168, 181
traversals

IAT hooking, 162
VF tables, 156

Index 277

U
unary arithmetic instructions, 90
unavoidable infinite loops,

causing, 255
Unchanged Value scan type, Cheat

Engine, 7
unions, 73–74
Unix syntax, 80
Unknown Initial Value scan type,

Cheat Engine, 6
updates, determining new addresses

after, 101–104
user interface, Process Explorer,

56–57
user-mode rootkit, GameGuard

toolkit, 248–249

V
VAC toolkit, 247–248
Value Between scan type, Cheat

Engine, 6
Value Type directive, Cheat Engine, 6
VF (virtual function) tables

class instances and, 76–78
finding Direct3D devices,

177–181
hooking, 156–160, 182–183
traversals, 156

VirtualAllocEx() function,
136–137, 138

virtual functions, classes with, 75–76
VirtualProtectEx() function, 126–128
VirtualProtect() function, 127

W
WaitForSingleObject() function, 129, 138
wallhacks, 192

creating for Direct3D, 194–197
rendering with z-buffering,

193–194
warbots, 243–244
Warden toolkit, 249–250
waypoints, 222, 229
wchar_t data type, 67
window handle, fetching, 120

Windows window, OllyDbg, 26
WM_CHAR messages, 213–214
WORD data type, 67
WriteProcessMemory() function,

122–124, 136–137, 138
write protection, 125–128
writing to game memory, 119

accessing memory, 122–124
address space layout

randomization, 128–130
code caves, 136–137
memory protection, 124–128
process identifier, obtaining,

120–122

X
x86 assembly language, 78–79

arithmetic instructions, 90–92
branching instructions, 92–94
call stack, 86–88
command syntax, 79–81
data modification

instructions, 89
function calls, 94–95
jump instructions, 92–94
NOPing, 150–152
processor registers, 81–86

x86 Windows memory protection
attributes, 125–126

Z
z-buffering, 192–195
zoom factor, 197
zoomhacks, 197–198

Practical Forensic Imaging
Securing Digital Evidence with Linux Tools
by bruce nikkel

fall 2016, 256 pp., $49.95
isbn 978-1-59327-793-2

Practical Malware Analysis
The Hands-On Guide to
Dissecting Malicious Software
by michael sikorski and
andrew honig

feb 2012, 800 pp., $59.95
isbn 978-1-59327-290-6

IOS Application Security
The Definitive Guide for Hackers
and Developers
by david thiel

feb 2016, 296 pp., $49.95
isbn 978-1-59327-601-0

Black Hat Python
Python Programming for
Hackers and Pentesters
by justin seitz

dec 2014, 192 pp., $34.95
isbn 978-1-59327-590-7

The Car Hacker’s Handbook
A Guide for the Penetration Tester
by craig smith

mar 2016, 304 pp., $49.95
isbn 978-1-59327-703-1

The IDA Pro Book, 2nd Edition
The Unofficial Guide to the
World’s Most Popular Disassembler
by chris eagle

jul 2011, 672 pp., $69.95
isbn 978-1-59327-289-0

More no-nonsense books from No Starch Press

800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

resources
Visit https://www.nostarch.com/gamehacking/ for resources, errata, and other
information.

http://www.nostarch.com/blackhatpython

You don’t need to be a wizard to transform a
game you like into a game you love. Imagine
if you could give your favorite PC game a more
informative heads-up display or instantly col-
lect all that loot from your latest epic battle.

Bring your knowledge of Windows-based
development and memory management,
and Game Hacking will teach you what you
need to become a true game hacker. Learn
the basics, like reverse engineering, assembly
code analysis, programmatic memory manip
ulation, and code injection, and hone your
new skills with hands-on example code and
practice binaries.

Level up as you learn how to:

💎	 Scan and modify memory with Cheat
Engine

💎	 Explore program structure and execution
flow with OllyDbg

💎	 Log processes and pinpoint useful data files
with Process Monitor

💎	 Manipulate control flow through NOPing,
hooking, and more

💎	 Locate and dissect common game memory
structures

You’ll even discover the secrets behind common
game bots, including:

💎	 Extrasensory perception hacks, such as
wallhacks and heads-up displays

💎	 Responsive hacks, such as autohealers and
combo bots

💎	 Bots with artificial intelligence, such as
cave walkers and automatic looters

Game hacking might seem like black magic,
but it doesn’t have to be. Once you understand
how bots are made, you’ll be better positioned
to defend against them in your own games.
Journey through the inner workings of PC
games with Game Hacking, and leave with a
deeper understanding of both game design
and computer security.

About the Author
Nick Cano wrote his first scripts for open source
game servers when he was 12 and has been
a part of the game-hacking community ever
since. He has years of experience in detecting
and defending against malware, and advises
developers and designers on best practices
to protect their games against bots. Nick has
spoken about his research and tools at many
conferences.

Get Inside the Game

$44.95 ($51.95 CDN)	 Shelve In: Computers/Security

TH E F I N EST I N G E E K E NTE RTA I N M E NT™
www.nostarch.com

Cano

Game Hacking
Developing Autonomous Bots

for Online GamesDeveloping Autonomous Bots for Online Games

Nick Cano
Foreword by Dr. Jared DeMott

WARNING! This book does not condone piracy, violating the DMCA, infringing copyright, or breaking in-game Terms of
Service. Game hackers have been banned from games for life, sued for millions of dollars, and even jailed for their work.

Game Hacking

	Foreword
	Untitled
	Acknowledgments
	Introduction
	Prerequisites for the Reader
	A Brief Game Hacking History
	There’s a Reason for Everything
	How This Book Is Organized
	About the Online Resources
	How to Use This Book

	Part 1: Tools of the Trade
	Chapter 1: Scanning Memory
Using Cheat Engine
	Why Memory Scanners Are Important
	Basic Memory Scanning
	Cheat Engine’s Memory Scanner
	Scan Types
	Running Your First Scan
	Next Scans
	When You Can’t Get a Single Result
	Cheat Tables

	Memory Modification in Games
	Manual Modification with Cheat Engine
	Trainer Generator

	Pointer Scanning
	Pointer Chains
	Pointer Scanning Basics
	Pointer Scanning with Cheat Engine
	Pointer Rescanning

	Lua Scripting Environment
	Searching for Assembly Patterns
	Searching for Strings

	Closing Thoughts

	Chapter 2: Debugging Games
with OllyDbg
	A Brief Look at OllyDbg’s User Interface
	OllyDbg’s CPU Window
	Viewing and Navigating a Game’s Assembly Code
	Viewing and Editing Register Contents
	Viewing and Searching a Game’s Memory
	Viewing a Game’s Call Stack

	Creating Code Patches
	Tracing Through Assembly Code
	OllyDbg’s Expression Engine
	Using Expressions in Breakpoints
	Using Operators in the Expression Engine
	Working with Basic Expression Elements
	Accessing Memory Contents with Expressions

	OllyDbg Expressions in Action
	Pausing Execution When a Specific Player’s Name Is Printed
	Pausing Execution When Your Character’s Health Drops

	OllyDbg Plug-ins for Game Hackers
	Copying Assembly Code with Asm2Clipboard
	Adding Cheat Engine to OllyDbg with Cheat Utility
	Controlling OllyDbg Through the Command Line
	Visualizing Control Flow with OllyFlow

	Closing Thoughts

	Chapter 3: Reconnaissance
with Process Monitor
and Process Explorer
	Process Monitor
	Logging In-Game Events
	Inspecting Events in the Process Monitor Log
	Debugging a Game to Collect More Data

	Process Explorer
	Process Explorer’s User Interface and Controls
	Examining Process Properties
	Handle Manipulation Options

	Closing Thoughts

	Part II: Game Dissection
	Chapter 4: From Code to Memory: A General Primer
	How Variables and Other Data Manifest in Memory
	Numeric Data
	String Data
	Data Structures
	Unions
	Classes and VF Tables

	x86 Assembly Crash Course
	Command Syntax
	Processor Registers
	The Call Stack
	Important x86 Instructions for Game Hacking

	Closing Thoughts

	Chapter 5: Advanced Memory Forensics
	Advanced Memory Scanning
	Deducing Purpose
	Finding the Player’s Health with OllyDbg
	Determining New Addresses After Game Updates

	Identifying Complex Structures in Game Data
	The std::string Class
	The std::vector Class
	The std::list Class
	The std::map Class

	Closing Thoughts

	Chapter 6: Reading from and Writing to Game Memory
	Obtaining the Game’s Process Identifier
	Obtaining Process Handles
	Working with OpenProcess()

	Accessing Memory
	Working with ReadProcessMemory() and WriteProcessMemory()
	Accessing a Value in Memory with ReadProcessMemory() and WriteProcessMemory()
	Writing Templated Memory Access Functions

	Memory Protection
	Differentiating x86 Windows Memory Protection Attributes
	Changing Memory Protection

	Address Space Layout Randomization
	Disabling ASLR to Simplify Bot Development
	Bypassing ASLR in Production

	Closing Thoughts

	Part III: Process Puppeteering
	Chapter 7: Code Injection
	Injecting Code Caves with Thread Injection
	Creating an Assembly Code Cave
	Translating the Assembly to Shellcode
	Writing the Code Cave to Memory
	Using Thread Injection to Execute the Code Cave

	Hijacking a Game’s Main Thread to Execute Code Caves
	Building the Assembly Code Cave
	Generating Skeleton Shellcode and Allocating Memory
	Finding and Freezing the Main Thread

	Injecting DLLs for Full Control
	Tricking a Process into Loading Your DLL
	Accessing Memory in an Injected DLL
	Bypassing ASLR in an Injected DLL

	Closing Thoughts

	Chapter 8:
Manipulating Control Flow in a Game
	NOPing to Remove Unwanted Code
	When to NOP
	How to NOP

	Hooking to Redirect Game Execution
	Call Hooking
	VF Table Hooking
	IAT Hooking
	Jump Hooking

	Applying Call Hooks to Adobe AIR
	Accessing the RTMP Goldmine
	Hooking the RTMPS encode() Function
	Hooking the RTMPS decode() Function
	Placing the Hooks

	Applying Jump Hooks and VF Hooks to Direct3D
	The Drawing Loop
	Finding the Direct3D Device
	Writing a Hook for EndScene()
	Writing a Hook for Reset()
	What’s Next?

	Closing Thoughts

	Part IV: Creating Bots
	Chapter 9: Using Extrasensory Perception to Ward Off Fog of War
	Background Knowledge
	Revealing Hidden Details with Lighthacks
	Adding a Central Ambient Light Source
	Increasing the Absolute Ambient Light
	Creating Other Types of Lighthacks

	Revealing Sneaky Enemies with Wallhacks
	Rendering with Z-Buffering
	Creating a Direct3D Wallhack
	Fingerprinting the Model You Want to Reveal

	Getting a Wider Field of Vision with Zoomhacks
	Using NOPing Zoomhacks
	Scratching the Surface of Hooking Zoomhacks

	Displaying Hidden Data with HUDs
	Creating an Experience HUD
	Using Hooks to Locate Data

	An Overview of Other ESP Hacks
	Closing Thoughts

	Chapter 10: Responsive Hacks
	Observing Game Events
	Monitoring Memory
	Detecting Visual Cues
	Intercepting Network Traffic

	Performing In-Game Actions
	Emulating the Keyboard
	Sending Packets

	Tying the Pieces Together
	Making the Perfect Healer
	Resisting Enemy Crowd-Control Attacks
	Avoiding Wasted Mana

	Closing Thoughts

	Chapter 11: Putting It All Together: Writing Autonomous Bots
	Control Theory and Game Hacking
	State Machines
	Combining Control Theory and State Machines
	A Basic Healer State Machine
	A Complex Hypothetical State Machine
	Error Correction

	Pathfinding with Search Algorithms
	Two Common Search Techniques
	How Obstacles Disrupt Searches
	An A* Search Algorithm
	When A* Searches Are Particularly Useful

	Common and Cool Automated Hacks
	Looting with Cavebots
	Automating Combat with Warbots

	Closing Thoughts

	Chapter 12:
Staying Hidden
	Prominent Anti-Cheat Software
	The PunkBuster Toolkit
	Signature-Based Detection
	Screenshots
	Hash Validation

	The ESEA Anti-Cheat Toolkit
	The VAC Toolkit
	DNS Cache Scans
	Binary Validation
	False Positives

	The GameGuard Toolkit
	User-Mode Rootkit
	Kernel-Mode Rootkit

	The Warden Toolkit
	Carefully Managing a Bot’s Footprint
	Minimizing a Bot’s Footprint
	Masking Your Footprint
	Teaching a Bot to Detect Debuggers
	Anti-Debugging Techniques

	Defeating Signature-Based Detection
	Defeating Screenshots
	Defeating Binary Validation
	Defeating an Anti-Cheat Rootkit
	Defeating Heuristics
	Closing Thoughts

	Index
	Blank Page

