
Using the TUN/TAP device driver for network reconnaissance, pivotal
gains, and leveraging access to otherwise “restricted” network areas.

“Space-time is strongly curved near a black hole, so one has to be very careful about definitions. In
particular, the radius of a black hole cannot be defined as the distance from the central singularity to the 
event horizon, because observers trying to measure this would inevitably fall into the singularity.” 

Edward L. Wright

This paper will c o v e r  s e v e r a l  attack vectors.  One may find malfunctions or weaknesses in 
software & hardware, allowing for the path to be taken.  Remember, an attack vector is the path taken to 
deliver malice.

Reading through old RFC's is something I enjoy, and consider myself to be somewhat of an 
Internet historian.  Indeed the Internet works as you think it should, coincidentally it works backwards 
too. Society seems to be up in arms over security.  Yet, how can you be secure when you are 
fundamentally flawed?

Prior to using the TUN/TAP interface one must understand the infrastructures in which they are 
attacking. While performing personal research, I noticed an inherent similarity between MAC (media access 
control) addresses, in which VLAN1 (virtual local area network) and VLAN2 had only differed by a few 
bits.  Coincidentally, I also noticed the similarity between the MAC of the external network, and the internal 
addressing of the router/gateway.  The similarity once again was only a few bits.  Another telling piece of 
information was the RSSI (received signal strength indicator)   Here is an example:

WAN MAC: 00:1e:e1:35:E8:D4 
eMTA MAC: 00:1e:e1:35:E8:D3
CM MAC: 00:1e:D1:35:E8:D2
WLAN MAC/VLAN: 00:1e:e1:35:e8:d0
WLAN1/VLAN MAC: 06:1e:e1:35:e8:d0
WLAN2/VLAN MAC: 02:1e:e1:35:e8:d0

WAN 00:1e:e1:35:E8:D4, WLAN 00:1e:e1:35:e8:d0, an WLAN/VLAN WLAN1/VLAN MAC:
06:1e:e1:35:e8:d0

The commonality between “separate” devices screams at you! The exterior octets of the MAC
increment 00, 02, 06 …. as well as the interior.  Please make note of how these addresses correlate with ports 
and bridges.

In this example we are looking at a device categorized as Data Over Cable Service Interface 
Specification or simply DOCSIS. This is evident by the device having an eMTA (Embedded Multimedia 
Terminal Adapter) MAC address. CM MAC represents the cable modem MAC, WAN (wide area network)  
MAC represents the external MAC address of the device used for consumer communications to the Internet, 
WLAN (wireless local area network)  MAC shows  the wireless address space for an AP (access point), and 
WLAN1 is another AP.  Tying all of this information together, we can begin to gather a deeper understanding
of  the device.  Aiding in our ability to understand the device, one must account for the bridge(s).  A network 
bridge is what allows communication between separate segments.  Typically bridges are thought of outside 
the home/corporate network, yet the modern residential router/gateway, and commercial grade equipment 
for that matter, contain bridges inside them. This is due to a relationship between wireless interfaces, the 
switching mechanism/hubs, r o u t e r , and the flow of data. Trunks are also used in some scenarios.  The 
differences in using a trunk versus a network bridge are vendor dependent. The trunk is in place for the 
VLAN to carry layer two data to the appropriate device. Really, trunking has no bearing on the example, but 
will help prepare one for a situation where an unknown may be in place.  Because in the example given we 
are looking at a DOCSIS device we should also address the services performed by the device.  Typically, 
DOCSIS devices are found in homes and small businesses.  The devices are multi-purpose, serving as a 
DHCP (dynamic host configuration protocol) server, DNS (dynamic name service) relay, cable modem, 
firewall, four port switch, and NAT (network address translator).

Page 1 of 7
Cameron Maerz 2014-10-11



Using the TUN/TAP device driver for network reconnaissance, pivotal
gains, and leveraging access to otherwise “restricted” network areas.

One must also understand the methods used by the networking equipment to discover other 
equipment i.e.: BGP (border gateway protocol), RIP (routing information protocol), MLD (multi listener discovery 
protocol), Etc... Depending on the device you will have received either an IPv4, or IPv6 address.  What 
information can you discover from the multi-cast packets? Where is the DHCP server located?  What is 
your route? Are you on a class A, B, or C network?  These questions all bear much importance, but knowing
your network class is an absolute necessity.  This is because a class C network is a subset of B, and A, while 
B is a subset of A. Our goal is to ensure we are in the lowest network block possibly achievable (class A 
versus C), at which point we will be able to discover all that is around us. 

We must take into account how networking devices work, what they are comprised of, and 
their general purpose.  The purpose is fairly self-explanatory, while the relationship between 
network bridges, DHCP servers, and ports seem to be all but forgotten.  Today many think of a 
switch the same as a router, yet they are very different.  A switch delegates frames via MAC (media
access control) address, while a router makes its networking decision based upon packet contents.

Now that we have a basic understanding of the network topography, we can begin weaving and 
worming our way through the network. This means that it's time to roll out the TUN/TAP interface - more 
specifically, virtualized network taps, and encapsulation via a tunnel, all of which are a part of a package 
named iproute2.   Address resolution poisoning has for a long time been considered a MAC attack.  I 
disagree!  Address resolution poisoning or ARP poisoning uses the MAC addresses due to its protocol 
standard. The attack is simply allowed due to an imbalance in checks and balances.  Please reference RFC 
903! The following is an excerpt from said RFC.

"II. Design Considerations

The following considerations guided our design of the RARP protocol. A. 

ARP and RARP are different operations.  ARP assumes that every
host knows the mapping between its own hardware address and protocol 
address(es).  Information gathered about other hosts is accumulated
in a small cache.  All hosts are equal in status; there is no 
distinction between clients and servers.

On the other hand, RARP requires one or more server hosts to maintain  a
database of mappings from hardware address to protocol address and respond
to requests from client hosts.

B. As mentioned, RARP requires that server hosts maintain large 
databases. It is undesirable and in some cases impossible to maintain such 
a database in the kernel of a host's operating system.  Thus, most 
implementations will require some form of interaction with a program 
outside the kernel.

C. Ease of implementation and minimal impact on existing host software
are important.  It would be a mistake to design a protocol that required 
modifications to every host's software, whether or not it intended to 
participate.

D. It is desirable to allow for the possibility of sharing code with 
existing software, to minimize overhead and development costs. ”

Page 2 of 7
Cameron Maerz 2014-10-11



Using the TUN/TAP device driver for network reconnaissance, pivotal
gains, and leveraging access to otherwise “restricted” network areas.

RARP was the check to ARP, keeping things in balance.  Due to this protocol being dissolved in 
most network areas, ARP poisoning is able to be performed.  It's not a MAC attack - it is simply 
exploiting the lack of checks and balances of an inherently flawed protocol, because someone thought it 
a fabulous idea to save money and time by simply eliminating a fundamental authority over the devices 
on the network! Again, to quote RFC 903, section A:

“A. ARP and RARP are different operations.  ARP assumes that every host 
knows the mapping between its own hardware address and protocol 
address(es).  Information gathered about other hosts is accumulated
in a small cache.”
 

Moving forward, understanding RARP and ARP is important because of its purpose. ARP is a 
critical foundation to modern networks.  Yet its counterpart RARP has been put aside.  In modern networks,
virtualization is very common. Virtual sockets, programmable, and tailored to suit a curious individual’s 
needs, are very disturbing. This is due to one’s ability to act as RARP, remember our virtual device is able to be 
fully tailored to suit one’s needs.  Having the information regarding the network's infrastructure, and a general 
idea regarding the network's communications, we can begin our adventures in offensively looking at the 
device we have connected to, and any devices connected to it. In order to do so we will need to have root 
access, or at least be a sudoer to a Linux kernel supplied with iproute2.  Suppose you have found yourself 
an open wireless access point, and after authentication you try to browse the Internet only to be greeted by an 
ugly old captive portal! Suppose you are at a coffee shop with a public and a private network.  Suppose 
you've cracked a wireless network but it's attached to others.  Suppose you are at home, fed up with your 
ISP, and want explore their back end network. Let us start small, and improve our skill set before becoming 
too bold.

Easy does it. Example:  We have connected to an AP, our internal IP address is 192.168.x.x, yet 
while wirelessly monitoring the AP, we notice a strangely similar MAC address with near-identical signal 
strength.  Thinking these devices might be interconnected, we start to probe other network blocks; for 
instance, we are 192.168.x.x in class a C network, and want to see what's going on in 10.x.x.x/8 class A 
network. Our general ping probes have failed, and NMAP isn't getting the trick done either.  Maybe we 
want to poke around the NAT to see if other hosts are on the network. These are all very possible using 
iproute2 and the appropriate kernel modifications.  The Internet started between two machines (in its most simple 
form), and simply expanded.  In the Internet's expansion, hubs, and switches were developed to allow 
multiple machines to communicate, and a little while later routers were introduced.  This being said, the 
Internet begins at an end point, and ends at an opposing end.  Without communication between machines, 
there is no Inter-, or Intranet.  Knowing this, let us take a step forward and understand a bit of Linux.

At the very heart of every Linux kernel is a router.  This means these kernels have the ability to 
transpose themselves into a routing device, while maintaining the ability to store much more data than a 
router, or switch, and can be configured on the fly.  Understanding this, we can move even further forward 
into libvirt.  Libvirt is the virtualization library for Linux. I found this while playing with an emulator 
named QEMU. What I found most interesting about QEMU was the ability to boot into any network space. 
I wanted to know how this is possible, as I did not want to depend on an emulator because of the system 
resources required.  It's not in my case feasible to spin up fifty virtual machines. After a little research the 
answer was found. The virtual device driver powered by C, named iproute2, which programmatically 
creates soft taps, tunnels, and more tunnels! People reading this paper should be familiar with the concept 
of tunneling as VPN's and SSH are tunnels after all. However, tunneling is when one network protocol 
delivers a different payload protocol via encapsulation.  Factually Cisco has a tunnel for just about 
everything.  Tunnels inside the iproute2 package include: IPIP, GRE, L2TP, and SIT. IPIP performs IP in IP
encapsulation,  GRE (generic routing encapsulation), and L2TP  is layer two transport protocol.

At this point we have an understanding of the networking  device, we understand how it is 
communicating to its clients, we have seen the devices similarities in MAC addresses, and now know we 

Page 3 of 7
Cameron Maerz 2014-10-11



Using the TUN/TAP device driver for network reconnaissance, pivotal
gains, and leveraging access to otherwise “restricted” network areas.

have a virtual device driver capable of multiple instances which is treated as a regular device, and fully 
programmable.  LET'S PWN!  First you must note the network BSSID (broadcast service set identifier) 
MAC, and any VLAN MAC addresses similar within 2 octets of the one you are connected to.

BSSID PWR   Beacons #Data, #/s CH MB   ENC CIPHER   AUTH   ESSID

00:1e:e1:35:e8:d0 -64 383 2 0 6 54e WPA2 CCMP  PSK      HOME-XXXX
06:1e:e1:35:e8:d0 -62 334 0 0 6 54e  OPN     Provider-wifi
02:1e:e1:35:e8:d0 -63  299 0 0 6 54e WPA2 CCMP  PSK     <length:  0>

From the 802.11/wireless side of things the similarities start to become clear.  The open AP's MAC 
address differs by 2 octets  per VLAN.   Note this is an example of a provider who uses proprietary firmware
for their devices.  Other manufactures externals/internals are different, yet still susceptible to attack once 
their inner workings are understood.  This is why I say 2 octets.
Other manufactures MAC addresses differ by a larger amount of space, while in this scenario it's very 
minor. If you issue the command: iw wlan0 scan | grep BSS, a list of MAC addresses will be returned 
within radio range. However for a more clean output, try using airodump-ng which is a part of the 
aircrack-ng suite of tools. Upon authentication, try issuing the command arp -a as a sudoer or as the root 
user.  Did the MAC returned only differ by a few bytes? Let's refer to the example given earlier.

Have you noticed any MAC addresses similar to the external one you connected
to?   Let's refer to the example given earlier.

WAN MAC: 00:1e:e1:35:E8:D4 
eMTA MAC: 00:1e:e1:35:E8:D3
CM MAC: 00:1e:D1:35:E8:D2

ENC CIPHER     AUTH   ESSID

WLAN MAC/VLAN: 00:1e:e1:35:e8:d0        WPA2  CCMP       PSK       HOME-XXXX 
WLAN1/VLAN MAC: 06:1e:e1:35:e8:d0        OPN                              Provider-wifi 
WLAN2/VLAN MAC: 02:1e:e1:35:e8:d0      WPA2  CCMP       PSK       <length:  0>

Note the differences.  Externally the viewable difference is in the first 2 octets, while when 
connected the last 2 octets differ. If you see a MAC address roll though your packet capture device which 
meets this criteria issue the following command: ip link add link wlan0 (wlan0 represents your wireless 
device) name tap0 (or whatever you want to call your soft tap) type macvtap . This creates a virtual tap 
interface.  Now an address must be supplied to the device, use the following syntax:  ip link set dev tap0 
address xx:xx:xx:xx:xx (where xx:xx;ect represents the mac address you have captured and want to clone). 
Next you want to forward traffic through your kernel so you become a networking device, and minimizing 
congestion.  To do so issue the following command: echo '1' > /proc/sys/net/ipv4/ip_forward.  Finally 
ensure the tap is up with the following command: ip link set dev tap0 up. If you have discovered the correct 
device address on the network you now should be able to see traffic outside your issued subnet. 

Keep going! 
Tap the next address and Explore!
To infinity and beyond! 
What do YOU want to do?  

Page 4 of 7
Cameron Maerz 2014-10-11



I was interested in finding out the relationship between the MAC addresses. What does this 
mean? Earlier I mentioned something called a bridge. A network bridge cannot bridge connections 
unless it's addressed with a MAC address, because the switch cannot associate an address to pass 
frames over the bridge. I wanted to know where these bridges were located within the device, and I 
wanted to traverse these bridges to find out what was behind them. bridge-utils is a package for 
Linux that allows one to harness the bridge, however it turns out that you can also use the iproute2 
package by following syntax:

ip link add name br0 type bridge

“Bridge interfaces are virtual Ethernet switches. They can be used to relay traffic 
transparently between Ethernet interfaces, and, increasingly common, as Ethernet switches for virtual 
machines running inside supervisors.  You can assign an IP address to a bridge and it will be visible 
from all bridge ports. If this command fails, check if "bridge" module is loaded.  Add an interface 
to bridge -

ip link set dev ${interface name} master ${bridge  
name} Examples:
ip link set dev eth0 master br0
Interface you added to a bridge becomes a virtual switch port. It operates only on datalink 
layer and ceases all network layer operation.
Remove interface from bridge
ip link set dev ${interface name} nomaster”  http:  //ba  turin.org/docs/  iproute2/

I hope now with the knowledge of soft taps, bridges, tunnels, and knowing mac addresses 
within the routers, one can begin to see where inner device pivoting can be performed!  All of the 
MAC addresses are attached to one singular device locally, yet administered virtually via a 
hypervisor.

“A hypervisor or virtual machine monitor (VMM) is a piece of computer software, firmware 
or hardware that creates and runs virtual machines. A computer on which a hypervisor is running 
one or more virtual machines is defined as a host machine.  Each virtual machine is called a guest 
machine.” ht  t  p  :      //  e  n.w  i  k      i  pe  di  a  .  o      r  g/  w  i  k      i  /  H      y  p      e  rvi  s  or  

Or, they may be administered by the router/switching device itself.  In my case I am granted 
an administration panel with little configuration, allowing me to perform basic configuration such
as port forwarding, apply simplistic firewall configurations that are per-installed,  very minor DHCP 
configurations, MAC filtering, and content blocking. In order to traverse the bridge one must know 
the bridges MAC address. Start off by creating a soft tap of the bridge, and start sniffing traffic.
You should be able to gain some information regarding what is on the opposing side of the bridge.
At this point you need to make a decision.  Either you want to be ninja, and simply exfiltrate data
off the bridge, or you want to cross it with the intentions of going deeper down the rabbit hole.

Tinkering, and research leads to believe the CPE is using MPLS. According to Wikipedia, 
“Multi protocol Label Switching (MPLS) is a mechanism in high-performance telecommunications 
networks that directs data from one network node to the next based on short path labels rather than 
long network addresses, avoiding complex lookups in a routing table.”  We can exploit this by 
definition! In MPLS, traffic is passed between nodes, but what talks to the node? A hypervisor!!

In a term I pulled out of thin air, dubbed Network Asphyxiation, one can discover the 
hypervisor's MAC address!  What I have discovered is by placing network taps in place with 
localized legitimate MAC addresses, and assigning them to multi-cast and send ARP traffic. The 
goal in doing so was simply to observe the device's behavior.  More and more internal traffic 
spewed, all from local MAC addresses, obviously causing serious network congestion, but not to 
the point of halting all service.  The Virtual Manager checks up on the device, revealing its own 
MAC address and corresponding IP address. We now have opened up another path of 



communication within the device!  What's really interesting is tapping the Hypervisor or Virtual 
Manager's MAC address, because this takes your providers ability to administrate your device 
away from them. :) Perhaps you may be inclined to throw a tunnel off that tap and sniff around. 
Asphyxiation of a device is used to discover any controllers, exploiting the mechanism 
relationship with other devices which administrate the node.

Another especially interesting attack vector lays in router behind router setups. One is able 
to wirelessly sniff out the router behind the other router based on radio signal sensitivity.  Once 
located, the router behind router can be cloned with the tap interface, and upon authentication with 
the initial router be switched to address in the CAM (content addressable memory) table of the router
behind the one you've initially authenticated with. Once successfully completed this attack
vector will allow for eavesdropping, data exfiltration, and since you have an address allocated in the 
CAM table you do not have to make your own route to other machines on the other network block. 
This is inherently dangerous.  However, once again this information is proprietary to the 
provider.  Although in other research ventures I have noticed these techniques also affect 
larger commercial grade equipment.  Specifically when pivoting through the router and 
switch.  Network asphyxiation only pertains to managed networking equipment. 

Once a VPN (virtual private network) is able to be located on a network, its contents can be 
viewed quite easily.  To simply understand a VPN is to understand a tunnel. Therefore, to gain 
access to its contents one simply tunnels the tunnel. I found this out upon accessing an open access 
point. Upon acquiring a DHCP leased address, I began sniffing traffic, to find all traffic 
encapsulated, and being routed to an IP address obviously not belonging to the internal router.  I have
not tried to view the contents of a VPN running on a PC, whilst thinking about the concept; I am led to 
believe the action would probably result in denial of service.  This is due to upon setting up the tap 
interface a ping packet is thrown, resulting in a release in DHCP, but wait, this would depend again on 
the networks topography, and how the devices are maintained, yet another point a pentester should 
look at.

Since all the traffic was being routed to the same address, and being I was assigned said 
address upon joining the network. I thought it only logical to tap the MAC of the access point, and
construct a tunnel assigned the IP of the VPN, while not setting a value for the port. This 
circumvented the VPN, allowing me access to the contents of the tunnel!

Also, a deauth packet isn't needed to bump a client off an 802.11 network. You can 
simply clone its MAC address, and run a fake auth attack with Aircrack-ng. The client will get 
bumped out, and per Windows user friendly ways automatically re-authenticate with the network. 
TAADAAA you've got hash.

References

ht  t  p      ://  pu  b      li  b.boul  d      e  r  .i  b      m  .c  o      m  /      i  nfoc  e  n      t  e  r  /      t  i  vi  h      e  l  p/v20r  1      /t  op  i      c  /  c  o      m  .      i  b      m  .  t      i  vol  i  .      t  p      m  .n  e      t  .doc  /  n      e  t  w  ork/  c  
net  _      trunking.h  t      ml  

http  ://  en.wikiped  ia.org/wiki  /Tunnel  ing_protoco  l

http  ://www.lar  tc.org/lar  tc.ht  ml



ht  t  p      ://  s  e  r      a  vo.fi  /  201  2      /  vi  rt  u      a  li  z      e  d-bri  dge  d  -      ne  t  w  orki  ng-w  i  t  h  -      m  a      c  v  t      a  p  

http  ://b  ackrefer  ence.o  rg/2014  /03/20/so  me  -notes-on-mac  vlan  macvt  ap/

http  ://b  aturin.o  rg/do  cs/iprout  e2/

http  ://  en.wikiped  ia.org/wiki  /H  ype  rvisor

http  ://  en.wikiped  ia.org/wiki  /Categor  y:  Tu  nnel  ing_protoco  ls

ht  t  ps  :      //  ww  w  .na  nog.o  r  g      /  m  e  e      t  i  ngs  /  na  nog4  9      /  pre  s  e  nt  a      t  i  ons  /  S  und  a      y  /      m  p      l  s  -na  nog49.pdf  


